+ All Categories
Home > Documents > 13.Clock Stand07

13.Clock Stand07

Date post: 04-Apr-2018
Category:
Upload: sckid
View: 219 times
Download: 0 times
Share this document with a friend

of 35

Transcript
  • 7/29/2019 13.Clock Stand07

    1/35

    VLSI System Design NCKUEE-KJLEE

    Clock Strategy

    Clocked Systems

    Latch and Flip-flops System timing

    Clock skew

    High speed latchdesign

    Phase locked loop Dynamic logic

    Multiple phase clock

    Clock distribution

  • 7/29/2019 13.Clock Stand07

    2/35

    VLSI System Design NCKUEE-KJLEE

    Clocked Systems

    Most VLSI systems are a combination of

    pipelines and

    f ini t e state machines(FSM)

    Finite state machine

    Pipelined systems

    Logic...

    LogicD Q

    CLK CLK

    D QInput outputD Q

    CLK or CLKS

    Comb.Logic

    Q D

  • 7/29/2019 13.Clock Stand07

    3/35

    VLSI System Design NCKUEE-KJLEE

    Single-phase clock timing

    waveformsTc: clock cycle time (period)

    Ts: setup time -- the time beforethe clock edge during whichthe data input (D) has to be

    stable

    Th: hold time -- the time after theclock edge during which thedata input (D) has to remainstable

    Tq: clock-to-Q delay -- The delayfrom the clock edge to the Q

    output

    Clock

    Cycle Time (Tc)

    Setup Time (Ts)

    Hold Time (Th)

    data

    Clock-to-Q Delay (Tq)

    Q

    CLK

    D Q

  • 7/29/2019 13.Clock Stand07

    4/35VLSI System Design NCKUEE-KJLEE

    Latches and flip-flops

    (a) Negative Latch (Level sensitive)

    (b) Positive Latch (Level sensitive)

    clk

    D

    Q

    clk

    D

    Q

    CLK

    0

    1

    s

    D

    Q

    CLK

    0

    1s

    DQ

  • 7/29/2019 13.Clock Stand07

    5/35VLSI System Design NCKUEE-KJLEE

    Latches and flip-flops

    (c) Positive edge-triggered register(single-phase clock)

    (d) Pass transistor/inverter implementation

    clk

    D

    QM

    QCLK

    0

    1 s

    D

    CLK

    0

    1s

    QQM

    master slave

    clk=0

    clk=1

    master slave

  • 7/29/2019 13.Clock Stand07

    6/35VLSI System Design NCKUEE-KJLEE

    System timing

    RegisterA

    CombinationalLogicTd

    RegisterBclock

    Tq Ts

    (A) Positive-edge triggered

    Tq Td Ts

    Tc

    Tc >Tq + Td + Ts

    (B) Alternatively, one may use latches as storage elements to save area.

    LatchA

    CombinationalLogic

    Td

    LatchB

    CombinationalLogic

    Tdclock

    Tq Ts

  • 7/29/2019 13.Clock Stand07

    7/35VLSI System Design NCKUEE-KJLEE

    (C)

    LatchA

    CombinationalLogicTda

    LatchBclock

    Tq Ts Latchc

    CombinationalLogicTdb

    A B

    Tc1 Tco

    Tqa Tda Tsb Tqb Tdb Tsc

    Tc1>Tqa+Tda+Tsb Tco>Tqb+Tdb+Tsc

    If Tc=Tc1+Tco and Tc1=Tco, Tqa=Tqb,

    Tsb=Tsc

    => The limit is Tc = Tda + Tdb + 2(Tq+Ts)

    System timing (cont)

  • 7/29/2019 13.Clock Stand07

    8/35VLSI System Design NCKUEE-KJLEE

    Racing due to clock skew

    1. If Tc2 > Tc1 + tq1 + td2

    M2 may sample a w rong

    dat a (current data)

    Transparency problem

    2. If Tc1 + tq1 + td2 >Tc (cycle time)

    M2 cannot sample t heprevious data

    REG1-bitd q

    Logic

    REG1-bitd q

    delaydelayTc

    1Tc

    2

    M1

    M2

    Td2

    1 0

    clk

    Tc1

    Tc2

    Td2 Old Data New Data

    clk

  • 7/29/2019 13.Clock Stand07

    9/35

    VLSI System Design NCKUEE-KJLEE

    Single-phase clock using D-FF

    C2 C1

    C1 C2L1 L2

    C1 = C2 or C2 = C1

    C2 C1 C1 C2

    C1C2

    Wrong datain L2

    Correctdata

    C1

    C2

    1) C2=C1

    2) C1=C2

    Wrongonly if

    FSM --> "feedback" orPipeline --> "feedthrough"

    Comb.Logic

    L1 L2Comb

    CLK

  • 7/29/2019 13.Clock Stand07

    10/35

    VLSI System Design NCKUEE-KJLEE

    To eliminate (reduce) time skew

    (clock skew)1.Balanced delay clock driver 2.Use buffers where necessary

    3.Very careful simulation(HSPICE)

    4.Very small rise and fall time onthe clock-- large buffer for large

    load5.Multiple clocking strategies

    clk-in clk

    clk

    clk-in clk

    clk

    usually slightly smaller than the inverter

    clkclk

    clkclk

    Large Load

  • 7/29/2019 13.Clock Stand07

    11/35

    VLSI System Design NCKUEE-KJLEE

    Some Implementations of clockedlatches

    Use a weak trickle inverter

    small inverter

    (low-gain, smallerW or large L)

    -ck

    ck

    D Q

    Transmission-gate latch

    D

    Q

    D

    Q

    clk

    clk

    clk

    clk

    eliminate a metalconnection

    smaller area

    compared with a tri-state buffer

    D

    c lk

    c lk

    c lk

    c lk

    bufferedinput

    or

  • 7/29/2019 13.Clock Stand07

    12/35

    VLSI System Design NCKUEE-KJLEE

    Typical symbolic layouts forlatches

    D

    Qclk

    clk

    clk

    clk

    -clk

    clkclk

    -clk

    D Q

    -clk

    clkclk

    -clk

    D Q

    VDD

    V

    SS

    QD

    clk -clk

    (a)

    VDD

    VSS

    QD

    clk -clk

    VDD

    VSS

    QD

    clk -clk

    (b) (c)

  • 7/29/2019 13.Clock Stand07

    13/35

    VLSI System Design NCKUEE-KJLEE

    logic gate based latches

    Q

    clk

    D

    Q

    -Q

    D

    clk

    (a) Level sensitive

    Q

    -Q

    D

    clk

    (b) Edge triggered

  • 7/29/2019 13.Clock Stand07

    14/35

    VLSI System Design NCKUEE-KJLEE

    Asynchronously settable andresettable F/Fs

    -clk

    clkclk

    -clk

    -clk

    clk

    clk

    -clk

    -reset

    D

    Q

    -clk

    clkclk

    -clk

    -clk

    clk

    clk

    -clk

    -reset

    D

    Q

    -set

    (a)

    (b)

  • 7/29/2019 13.Clock Stand07

    15/35

    VLSI System Design NCKUEE-KJLEE

    Dynamic single clock latches

    The feedback inverter and transmission gate are eliminated.

    The latched value is stored on the capacitance of the input to

    the inverter (mainly gate capacitance) Clock-to-Q (Tq) is very small need to be very careful to

    prevent transparency problem.

    Internal inversion of the clock is often necessary.

    Dynamic nodes should be always refreshed or clamped to aknown state when in stand-by or low-power mode.

    clk

    -clk

    D -Q

    clk

    -clk

    D

    (b)(a)

  • 7/29/2019 13.Clock Stand07

    16/35

    VLSI System Design NCKUEE-KJLEE

    clk

    D

    -clk

    clk

    -clk

    D Q

    -clk

    clk

    clk

    -clk

    D

    -clk

    clk

    Q

    (d)master-slave F/F(c)Tristate inverter (e)

    Dynamic single clock latches (cont)

  • 7/29/2019 13.Clock Stand07

    17/35

    VLSI System Design NCKUEE-KJLEE

    Refreshing for Dynamic latches

    Dynamic storage nodes areusually a gate capacitance.

    Assume the leakagecurrent= 1 nA

    and the storage

    capacitance = 0.02PF

    Even if the storage of thecorrect state is unimportant,the leakage may cause thestorage node to assume a levelthat causes the inverter todraw significant current.

    large current

    si

    VC 100

    10

    51002.0

    9

    12 ==

    must refresh every 100 s

    5V -> 2.5V

    Ph l k d l (PLL) l k

  • 7/29/2019 13.Clock Stand07

    18/35

    VLSI System Design NCKUEE-KJLEE

    Phase locked loop (PLL) clocktechniques

    (1) To synchronize internal and external clocks.

    (2) To synchronize data transfers between chips.

    (3) To operate the internal clock at a higher rate.

    output pad

    dclk

    clock

    clockpad

    clockroute

    dclk

    +dpad

    clock

    dclk

    data out

    (a) Without PLL

    output pad

    dclk

    clock

    clockpad

    clockroute

    dclk

    +dpad

    clock

    dclk

    data out

    PLLchip

    (a) With PLL

    (1)

  • 7/29/2019 13.Clock Stand07

    19/35

    VLSI System Design NCKUEE-KJLEE

    (2) (3)

    clockPLL

    clockPLL

    system clock

    bus

    g speetristate bus

    To ensure the output of chipsare synchronized with eachother.

    output pad

    dclk

    clock

    clock

    pad

    clockroute

    dclk

    +dpad

    clock

    dclk

    PLLchip

    / 4

    Clock rate

    clock

    d clockclk

    at d

    4clk

    4

    PLL techniques

  • 7/29/2019 13.Clock Stand07

    20/35

    VLSI System Design NCKUEE-KJLEE

    Block diagram of a PLL circuit

    PhaseDetector Chargepump Filter VCO

    U

    D

    Ffb

    referenceclock(Fin)

    n*Fin

    Phase detector: detect the difference between Ffb and Fin.

    If Ffb > Fin =>D pulseIf Ffb > Fin =>U pulse

    Charge pump: charge or Discharge a capacitor according to D and U.

    Filter: filter the capacitor output (smoother).VCO: Change the oscillation frequency depending on the control voltage.(Voltage Control Oscillator)

    n

  • 7/29/2019 13.Clock Stand07

    21/35

    VLSI System Design NCKUEE-KJLEE

    Phase Detector

    If F1 falls before F2

    => UP=1

    If F2 falls before F1

    => DN=1

    UP

    DN

    16/8

    16/8

    16/8

    16/8

    16/8

    16/8

    16/8

    16/8

    16/8

    16/8

    16/8

    16/8

    F1

    F2

    16/8

    16/8

    F1

    F2

  • 7/29/2019 13.Clock Stand07

    22/35

    VLSI System Design NCKUEE-KJLEE

    Charge Pump

    CAP charges when CHGUP=1discharge when CHGDN=1

    N2

    N1

    N3 N4

    P12/5

    /5

    10/2

    40/2

    40/2

    P-REF

    N-REF

    P-SWITCHSW0

    SW1

    P-SWITCH SW0

    SW1

    P-REF

    N-REF

    CHGUP

    CHGDN

    CAP

    P1

    40/2

    N540/2

    SW0

    SW1

    10/210/2

    8/1

    16/1

    IN

    Bias circuit

  • 7/29/2019 13.Clock Stand07

    23/35

    VLSI System Design NCKUEE-KJLEE

    Filter

    in

    2/6

    2400/6

    4/6

    2400/6

    out

    outin

    controlvoltage

    32/1

    16/1

    16/1

    32/1

    32/1

    16/1

    16/1

    32/1

    16/1

    16/1

    32/116xFsc

    13stages

    32/1

    VCO

    VCO

  • 7/29/2019 13.Clock Stand07

    24/35

    VLSI System Design NCKUEE-KJLEE

    Metastability Problem

    If the setup or hold time is notsatisfied, I.e., D changes at theactivation edge of the clock, thenthe output Q will have a state

    depending on the timing relationbetween D and CLK

    QQD

    clk

    clkdelay=2.2ns

    Q

    -Q

    delay=2.3ns

    Q

    -Q

    metastablepoint

    delay=2.4ns

    Q

    -Q

    metastablepoint

    NoProblem

    Long delay

    Outputerror

    clock

    2ns

    delay

    4ns data

    Metastable state in a pair of

  • 7/29/2019 13.Clock Stand07

    25/35

    VLSI System Design NCKUEE-KJLEE

    Metastable state in a pair ofinverters

    To Solve the metastabilityproblem:

    Set up t ime is short er thanthe clock- to-Q delays in asynchronizat ion syst em.

    For asynchronous input :need a special circuit

    called synchronizer.

    BAInv1

    Inv2

    metastablepoint

    0V 2.5V 5V

    VA

    VB Inv1

    Inv2

    Single phase N P CMOS dynamic

  • 7/29/2019 13.Clock Stand07

    26/35

    VLSI System Design NCKUEE-KJLEE

    Single-phase N-P CMOS dynamiclogic

    Combine N-P sect ion of domino logic w it h clocked CMOS(C2MOS) latch as t he output stage.

    clk -clk

    clk

    -clk

    n-logicblock

    p-logicblock

    C2MOS latch

    From n or buffered p-logic

    n-p CMOS clk logic stage

    to -clk section

    to n-logic blocksto p-logicblocks

    to n-logicblocks

    to p-logicblocks

    Inputs from

    -clk stages

    a

    clk -clk

    clk

    -clk

    n-logicblock

    p-logicblock

    C2MOSlatch

    n-p CMOS -clk logic stage

    to -clksection

    b

    evaluationPrecharge

    (c)

    -clklogic

    clklogic

    -clklogic

    Prechargeevaluation

    evaluationPrecharge

    clk -clk0 11 0

    Design rules for N-P CMOS

  • 7/29/2019 13.Clock Stand07

    27/35

    VLSI System Design NCKUEE-KJLEE

    Design rules for N-P CMOSdynamic logic

    Two problems to be solved

    1.Each sect ion must beint ernally race free.

    2.When dif ferent sect ion arecascaded t o from pipelinedsystem, clock skew shouldnot cause a problem.

    R1: During precharge, logic-blocks must be sw it chedoff.

    R2: During evaluat ion,int ernal input s can makeonly one t ransit ion.

    When a st at ic logic is used ina N-P CMOS dynam ic logic, itshould be placed aft er

    dynamic logic (I .e., oneshould keep t he st atic logicup to t he C2MOS lat ch.

    Reason: stat ic logic af t er

    creat es a glit ch at it s output .

    clkclk

  • 7/29/2019 13.Clock Stand07

    28/35

    VLSI System Design NCKUEE-KJLEE

    R3: There exists in each logic block

    at least one dynamic gat et hat is separat ed fromt he previous C2MOSoutput stage by an even numberof invent ions.

    or

    R4: The total number of inversionsbet w een t w o consecut ive

    C2MOS stage is even.

    Reason:

    C2

    MOS

    C2

    MOS

    or Domino The same evaluationphase in a section

    1 1

    clk clk

    0 0

    clk clk

    or

    clk

    -clk

    C2MOS latch

    (clk section)

    clk

    -clk

    even number ofinversions

    at least onedynamic stage

    C2MOS latch

    output stage

    (-clk section)

    OR

    even umber of inversions

  • 7/29/2019 13.Clock Stand07

    29/35

    VLSI System Design NCKUEE-KJLEE

    Two phase clocking

    D Q

    phi2

    -phi2

    phi1

    -phi1

    DFF1

    (a)

    C

    2C

    1

    phi1

    =1

    phi2

    =0

    C2C1

    phi1

    =0

    phi2=1

    phi1

    phi2

    (b)

    (d)C

    2C1

    phi

    1

    =1

    phi2=0

    phi1

    phi

    2

    logic

    logic

    phi1

    phi2

    small dealy overlap

    skewedclokcs

    (c)

    overlap

    slow risetime

  • 7/29/2019 13.Clock Stand07

    30/35

    VLSI System Design NCKUEE-KJLEE

    Two phase clock generation

    1. Globally distribute two clockswith or without theircomplements.

    3. A single global clock and locallygenerated two-phase clocks

    Two-phase clock generator

    clk

    Delay for non-overlapperiod

  • 7/29/2019 13.Clock Stand07

    31/35

    VLSI System Design NCKUEE-KJLEE

    Two phase registers

    -phi1

    D Q

    phi1

    -phi2

    phi2

    DEF1

    -phi1

    phi

    1

    D n1

    Q-phi

    2

    phi

    2

    DEF2

    -phi1

    phi1

    D n2

    Q

    -phi2

    phi2

    DEF3Both of these dynamic registers

    have to drive a local storage gate.

    D Q

    phi1 phi2

    DEF1A

    high level =VDD

    -Vtn

    (a)

    Q

    phi1 phi2DEF1B

    p leakers

    (b)D

    Q

    clk

    (c)

    D

    T h l i

  • 7/29/2019 13.Clock Stand07

    32/35

    VLSI System Design NCKUEE-KJLEE

    Two phase logic

    1. Static logic with two phaseregisters

    2. Dynamic logic

    Logic Logic

    -phi1

    phi1

    -phi2

    phi2

    phi1

    n-logicphi

    1n-logic

    -phi1

    phi1

    -phi2

    phi2

    from phi2

    stageto phi

    1stage

    phi1

    precharge phi1

    logic

    latch phi2

    data

    evaluate phi1logic

    precharge phi

    1

    logic

    latch phi2data

    phi2

    evaluate phi2

    logic

    evaluate phi2

    logicprecharge phi

    2

    logic

    latch phi1

    data

    F Ph l k

  • 7/29/2019 13.Clock Stand07

    33/35

    VLSI System Design NCKUEE-KJLEE

    Four-Phase clock

    11

    12

    2

    324

    Four-Phase logic clocking method

    nonoverlapping

    clk1

    clk2clk

    3

    clk4

    D

    clk1

    clk12

    clk3

    clk3clk1

    clk34

    Q

    clk1

    clk2

    clk3

    clk4

    (b)

    D

    clk1

    clk2

    clk3

    clk3

    clk1

    clk4 Q

    inv1 inv2

    n1

    (a)

    clk1

    SlaveLatch

    Logic MasterLatch

    Logic

    clk2 clk3 clk4

    Cl k di t ib ti

  • 7/29/2019 13.Clock Stand07

    34/35

    VLSI System Design NCKUEE-KJLEE

    Clock distribution

    1. A single large buffer

    2. A distributed-clock-treeapproach

    n-bit datapath

    n-bit datapath

    n-bit datapath

    n-bit datapath

    n-bit datapath

    n-bit datapath

    n-bit datapath

    n-bit datapath

    n-bit datapath

    n-bit datapath

    n-bit datapath

    n-bit datapath

    clock

    delays have to matchbetween stages

    T d i l k t t

  • 7/29/2019 13.Clock Stand07

    35/35

    VLSI System Design NCKUEE-KJLEE

    Trends in clock strategy

    For first-time designer, use static logic, single-phasestatic registers.

    For standard cell and gate-array design, single-phasemay be the only choice.

    Two phase clocking make timing design of RAMs, ROMs

    and PLAs easier. In modern process and circuits, cycle time is the main

    concern => single phased

    Processes are extremely dense => single phase


Recommended