+ All Categories
Home > Documents > 14nano107 Future of Digital Light

14nano107 Future of Digital Light

Date post: 07-Jul-2018
Category:
Upload: christian-calvo
View: 216 times
Download: 0 times
Share this document with a friend

of 23

Transcript
  • 8/18/2019 14nano107 Future of Digital Light

    1/23

    FUTURE OF DIGITAL

    CH13

  • 8/18/2019 14nano107 Future of Digital Light

    2/23

    From China: 2.5petaflops/s

    World Fastest supercomputer World Upcoming fastest supercomputer

    Blue Gene /Q-Mira from IBM 10petaflops/s

    IBM Exascale Super computer

    Project 2020

    THE RACE FOR SUPERCOMPUTING POWER

    INTEL CMOS Integrated Silicon

    Nanophotonics Computer Chip

    Project 2010

  • 8/18/2019 14nano107 Future of Digital Light

    3/23

    THE NEXT BIGGEST SUPERCOMPUTER POTENTIAL BREAKTHROUGH

    Quantum Computer

    In theory, quantum computers would be able to process infinite computations across

    multiple "dimensions".

    The quantum computer took a step closer to reality in January 2011 when Oxford

    University physicists unveiled a successful test of a quantum chip.

  • 8/18/2019 14nano107 Future of Digital Light

    4/23

    ITRS Roadmap

  • 8/18/2019 14nano107 Future of Digital Light

    5/23

    FREQUENCY

    Lead Microprocessors frequency used to double every 2 years

    P6 

    Pentium ® proc486 386 

    286 8086 8085 

    8080 

    8008 

    4004 0.1 

    10 

    100 

    1000 

    10000 

    1970  1980  1990  2000  2010 

    Year 

       F   r   e   q   u   e   n   c   y

        (   M    h   z    )

    Doubles every

    2 years

    P4 

    Courtesy, Intel

    Core i7 (3.3GHz)

  • 8/18/2019 14nano107 Future of Digital Light

    6/23

    CHIP POWER OF INTEL PROCESSORS

  • 8/18/2019 14nano107 Future of Digital Light

    7/23

    POWER DISSIPATION

    Lead Microprocessors power continues to increase

    P6 Pentium ® proc

    486 

    386 

    286 8086 

    8085 8080 

    8008 4004 

    0.1 

    10 

    100 

    1971  1974  1978  1985  1992  2000 

    Year 

       P   o   w   e   r    (   W   a   t   t   s    )

    Courtesy, Intel

  • 8/18/2019 14nano107 Future of Digital Light

    8/23

    POWER: MAJOR PROBLEM

    5KW18KW

    1.5KW

    500W

    4004 8008 

    8080 8085 

    8086 286 

    386 486 

    Pentium® proc 

    0.1 

    10 

    100 

    1000 

    10000 

    100000 

    1971  1974  1978  1985  1992  2000  2004  2008 

    Year 

       P   o   w   e   r    (   W   a   t   t   s    ) Core i7

    (130W) 

    Power delivery and dissipation will be prohibitive

    To maintain Moore’s Law 

    Courtesy, Intel

  • 8/18/2019 14nano107 Future of Digital Light

    9/23

    Active and Passive Components of

    CMOS Power

  • 8/18/2019 14nano107 Future of Digital Light

    10/23

    DELAY VS. VT/VDD

    Need to minimize VT with respect to VDD

  • 8/18/2019 14nano107 Future of Digital Light

    11/23

    TEM OF THIN GATE OXIDE

  • 8/18/2019 14nano107 Future of Digital Light

    12/23

    TUNNELING THROUGH SiO2

  • 8/18/2019 14nano107 Future of Digital Light

    13/23

  • 8/18/2019 14nano107 Future of Digital Light

    14/23

    Dealing with Short Channel Effects in bulk MOSFET

    1.Increasing body doping concentration2.Using halo implant

    High doping density results in:

    • Lower carrier mobility;• high tunneling effect which increases off-state currents;

    • Larger depletion capacitors leading to high sub-threshold swing which

    increases off-state currents;

    • Larger parasitic capacitance, Cgd, Cds.

  • 8/18/2019 14nano107 Future of Digital Light

    15/23

    Limit of Bulk CMOS Scaling

  • 8/18/2019 14nano107 Future of Digital Light

    16/23

    BULK CMOS SCALING LIMIT

    To reduce short channel effects, we need to reduce Xdep (channel depletion

    layer thickness), X j ( Junction depletion width), tox (oxide layer thickness

    under gate). Defining a figure of merit

    For bulk MOSFET gate length

    Lbulk >

  • 8/18/2019 14nano107 Future of Digital Light

    17/23

    9. 17

    AFTER SCALING PROCESS REACHES LIMITS ...

    • New ideas, technologies, and concepts will be required for continued 

    performance improvements. 

    • Examples of new ideas, technologies, and concepts:

    •Silicon on insulator (S0I) technology

    •Depleted MOSFETS and FinFETS 

    •SiGe and SiC technology 

    •3D integration 

    •Optical interconnects

    •Nanowire transistors 

    2010 2015 2020

  • 8/18/2019 14nano107 Future of Digital Light

    18/23

    SOI CMOS

    anneal

    SIMOX PROCESS

  • 8/18/2019 14nano107 Future of Digital Light

    19/23

    Dealing with Short Channel Effects in

    FULLY DEPLETED SILICON ON INSULATOR (FD-SOI)

    Use ultra-thin film (tsi is small) as the conducting body, depletion layer is

    confined in the film.( Xdep

  • 8/18/2019 14nano107 Future of Digital Light

    20/23

  • 8/18/2019 14nano107 Future of Digital Light

    21/23

  • 8/18/2019 14nano107 Future of Digital Light

    22/23

  • 8/18/2019 14nano107 Future of Digital Light

    23/23


Recommended