+ All Categories
Home > Documents > 15.07.14.IEEEBTS.DL.pdf

15.07.14.IEEEBTS.DL.pdf

Date post: 02-Mar-2018
Category:
Upload: aditya-joshi
View: 212 times
Download: 0 times
Share this document with a friend

of 71

Transcript
  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    1/71

    Layered Division Multiplexing: Basic

    Conce ts A lication Scenarios andPerformanceIEEE BTS LECTURE

    . ,

    IEEE Broadcast Technology Society Distinguished Lecturer

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    2/71

    IEEE Broadcast Technolo Societ

    The IEEE Broadcast Technology Society (BTS) is

    one of the technical societies & councils ou can

    join as an IEEE member.

    entertainment to audiences worldwide and on the go

    BTS now has about 2,000 members and chapters worldwide,

    s onsors technical eriodicals rovides su ort for technical meetin s

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    3/71

    S eaker

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    4/71

    S eaker

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    5/71

    S eaker

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    6/71

    A enda

    Introduction

    Layered Division Multiplexing

    System technical highlights Results

    Prototypes

    Conclusions

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    7/71

    Introduction

    Layered Division Multiplexing (LDM), which grew out from the Cloud-Txn (*) concept, is a

    .

    (*)

    Cloud

    Transmission:

    Y.Wu etal,Cloudtransmission:Anewspectrumreusefriendlydigitalterrestrialbroadcasting

    transmissionsystem.Broadcasting, IEEETransactionsOn58(3),pp.329337.2012.

    It has been proposed as a Physical Layer technology to theATSC 3.0 next gen. DTV standard

    In short, the main goal is to develop a terrestrial DTV PHY Layer thatis: Simple to build, Flexible and Efficient, With backward

    compa e u ure ex ens on

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    8/71

    Introduction

    Conventional FDM/TDM

    single-decker bus.

    is like a double-decker bus, morecapacity with the same foot print in

    c anne .

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    9/71

    Introduction

    It also provides flexibili ty for future growth: multi-decker bus, or adaptive-decker bus, with full backward

    .

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    10/71

    A enda

    Introduction Layered Division Multiplexing

    Basic Concepts

    System Architecture

    .

    System technical highlights

    Prototypes

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    11/71

    Basic Conce t

    Use of spectrum overlay techniques to

    transmit multi le data streams in one RF

    channel with different robustness and datacapacity for different services and

    reception environmentsInjection

    LevelStream A

    100% of RF bandwidth and 100% of the time are

    used to transmit the multi-layered signals

    Stream B

    -

    efficiency and flexible use of the spectrum

    Si nal cancellation is used to retrieve the robust

    RFChannel BWupper layer signal first, cancel it from the receivedsignal, and then start the decoding of lower layer

    signal

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    12/71

    Basic Conce t

    The upper layer (UL) needs to be ultra-robust: Limited Data Rate

    The lower layer (LL) wil l carry a high data rate:

    Required for multiple HD and UHD services to fixed or portable

    terminals

    Injected from 3 to 6 dB below the upper layer signal

    -

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    13/71

    Basic Conce t

    The upper layer (UL) needs to be ultra-robust

    The lower layer (LL) wil l carry a high data rate:

    Required for multiple HD and UHD services to fixed or portable

    terminals

    Injected from 3 to 6 dB below the upper layer signal

    -

    More layers could be added later as network extension for new

    The network is scalable and can be implemented progressively It is backward compatible for future extension

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    14/71

    Basic Conce t

    10m directional antennaS/N = -1 dB

    Upper layer por table reception:

    1.5m Omni-directional antenna,

    S/N = -0.5 dB

    1.5m Omni-directional antenna,

    S/N = +2 dB

    DTV Tx

    Lower layer fixed reception:

    10m directional antenna,S/N = +19 dB

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    15/71

    A enda

    Introduction Layered Division Multiplexing

    Basic Concepts

    System Architecture

    .

    System technical highlights

    Prototypes

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    16/71

    S stem Architecture

    Preamble Preamble

    UL payloadGI UL payloadGI

    Max. 250 ms Max. 250 ms

    LL payloadGI LL payloadGI

    The Upper and Lower layer share some parameters:

    FFT Size GI length

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    17/71

    S stem Architecture: Transmitter

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    18/71

    S stem Architecture: Transmitter

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    19/71

    S stem Architecture: Receiver

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    20/71

    S stem Architecture: Receiver

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    21/71

    A enda

    Introduction Layered Division Multiplexing

    Basic Concepts

    System Architecture

    .

    System technical highlights

    Prototypes

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    22/71

    Capacity Examples: Case I Mobile + Fixed Reception

    LDM (two layers) vs. DVB-T2+NGH (single layer) 8 MHz RF Channel

    LDM System Mobile 50% Capacity Mobile 33.3% Capacity Mobile 25% Capacity

    Data rate SNR Data rate SNR Data rate SNR Data rate SNR

    layer 3.1 Mbps

    QPSK 1/4-1.0 dB

    Low layer w. -4 dB injection

    Low-rate.

    16QAM 2/314.4 dB

    Mid-rate26.3 Mbps

    64QAM 2/319.0 dB

    High-rate

    32.9 Mbps

    64QAM 5/6 22.3 dB

    power eve s are re erence o e o a n- an power o a ayers

    LDM: 16K FFT, GI= 1/16, P12,2. TDM: Fixed 32K FFT, GI = 1/32, P24,4; Mobile 8K FFT, GI = 1/8, P6,2.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    23/71

    Capacity Examples: Case I Mobile + Fixed Reception

    LDM (two layers) vs. DVB-T2+NGH (single layer) 8 MHz RF Channel

    LDM System Mobile 50% Capacity Mobile 33.3% Capacity Mobile 25% Capacity

    Data rate SNR Data rate SNR Data rate SNR Data rate SNR

    layer 3.1 Mbps

    QPSK 1/4-1.0 dB

    2.5 Mbps

    QPSK 2/5-0.2 dB

    Low layer w. -4 dB injection Fixed(T2) 50%

    Low-rate.

    16QAM 2/314.4 dB

    .

    256QAM2/317.8 dB

    Mid-rate26.3 Mbps

    64QAM 2/319.0 dB - N/A

    High-rate

    32.9 Mbps

    64QAM 5/6 22.3 dB - N/A

    power eve s are re erence o e o a n- an power o a ayers

    LDM: 16K FFT, GI= 1/16, P12,2. TDM: Fixed 32K FFT, GI = 1/32, P24,4; Mobile 8K FFT, GI = 1/8, P6,2.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    24/71

    Capacity Examples: Case I Mobile + Fixed Reception

    LDM (two layers) vs. DVB-T2+NGH (single layer) 8 MHz RF Channel

    LDM System Mobile 50% Capacity Mobile 33.3% Capacity Mobile 25% Capacity

    Data rate SNR Data rate SNR Data rate SNR Data rate SNR

    layer 3.1 Mbps

    QPSK 1/4-1.0 dB

    2.5 Mbps

    QPSK 4/5

    4.7

    dB

    Low layer w. -4 dB injection Fixed(T2) 75%

    Low-rate.

    16QAM 2/314.4 dB

    .

    64QAM 3/512.0 dB

    Mid-rate26.3 Mbps

    64QAM 2/319.0 dB

    27.2 Mbps

    256QAM 2/317.8 dB

    High-rate

    32.9 Mbps

    64QAM 5/6 22.3 dB

    34 Mbps

    256QAM 5/6 22.0 dB

    power eve s are re erence o e o a n- an power o a ayers

    LDM: 16K FFT, GI= 1/16, P12,2. TDM: Fixed 32K FFT, GI = 1/32, P24,4; Mobile 8K FFT, GI = 1/8, P6,2.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    25/71

    Capacity Examples: Case I Mobile + Fixed Reception

    LDM (two layers) vs. DVB-T2+NGH (single layer) 8 MHz RF Channel

    LDM System Mobile 50% Capacity Mobile 33.3% Capacity Mobile 25% Capacity

    Data rate SNR Data rate SNR Data rate SNR Data rate SNR

    layer 3.1 Mbps

    QPSK 1/4-1.0 dB

    2.5 Mbps

    QPSK 2/5-0.2 dB

    2.6 Mbps

    QPSK 2/33.1dB

    2.5 Mbps

    QPSK 4/5

    4.7

    dB

    Low layer w. -4 dB injection Fixed(T2) 50% Fixed(T2) 66.7% Fixed(T2) 75%

    Low-rate.

    16QAM 2/314.4 dB

    .

    256QAM2/317.8 dB

    .

    64QAM 2/313.5 dB

    .

    64QAM 3/512.0 dB

    Mid-rate26.3 Mbps

    64QAM 2/319.0 dB - N/A

    27.2 Mbps

    256QAM 3/420.0 dB

    27.2 Mbps

    256QAM 2/317.8 dB

    High-rate

    32.9 Mbps

    64QAM 5/6 22.3 dB - N/A - N/A

    34 Mbps

    256QAM 5/6 22.0 dB

    power eve s are re erence o e o a n- an power o a ayers

    LDM: 16K FFT, GI= 1/16, P12,2. TDM: Fixed 32K FFT, GI = 1/32, P24,4; Mobile 8K FFT, GI = 1/8, P6,2.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    26/71

    Capacity Examples: Case II Indoor + Fixed Reception

    LDM (two layers) vs. DVB-T2+NGH (single layer) 8 MHz RF Channel

    LDM System Mobile 50% Capacity Mobile 33.3% Capacity Mobile 25% Capacity

    Data rate SNR Data rate SNR Data rate SNR Data rate SNR

    layer 5.46 Mbps

    QPSK 6/152.7 dB

    5.46 Mbps

    QPSK 2/54.7 dB

    5.46 Mbps

    16QAM 2/38.9 dB

    5.55 Mbps

    64 QAM 3/5

    12.0

    dB

    Low layer w. -4 dB injection Fixed(T2) 50% Fixed(T2) 66.7% Fixed(T2) 75%

    Low-rate.

    16QAM 2/314.4 dB

    .

    256QAM2/317.8 dB

    .

    64QAM 2/313.5 dB

    .

    64QAM 3/512.0 dB

    Mid-rate26.3 Mbps

    64QAM 2/319.0 dB - N/A

    27.2 Mbps

    256QAM 3/420.0 dB

    27.2 Mbps

    256QAM 2/317.8 dB

    High-rate

    32.9 Mbps

    64QAM 5/6 22.3 dB - N/A - N/A

    34 Mbps

    256QAM 5/6 22.0 dB

    power eve s are re erence o e o a n- an power o a ayers

    LDM: 16K FFT, GI= 1/16, P12,2. TDM: Fixed 32K FFT, GI = 1/32, P24,4; Mobile 8K FFT, GI = 1/8, P6,2.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    27/71

    Capacity Examples: Case II Indoor + Fixed Reception

    LDM (two layers) vs. DVB-T2+NGH (single layer) 8 MHz RF Channel

    LDM System Mobile 50% Capacity Mobile 33.3% Capacity Mobile 25% Capacity

    Data rate SNR Data rate SNR Data rate SNR Data rate SNR

    layer 5.46 Mbps

    QPSK 6/152.7 dB

    5.46 Mbps

    QPSK 2/54.7 dB

    5.46 Mbps

    16QAM 2/38.9 dB

    5.55 Mbps

    64 QAM 3/5

    12.0

    dB

    Low layer w. -4 dB injection Fixed(T2) 50% Fixed(T2) 66.7% Fixed(T2) 75%

    Low-rate.

    16QAM 2/314.4 dB

    .

    256QAM2/317.8 dB

    .

    64QAM 2/313.5 dB

    .

    64QAM 3/512.0 dB

    Mid-rate26.3 Mbps

    64QAM 2/319.0 dB - N/A

    27.2 Mbps

    256QAM 3/420.0 dB

    27.2 Mbps

    256QAM 2/317.8 dB

    High-rate32.9 Mbps

    64QAM 5/622.3 dB - N/A - N/A

    34 Mbps

    256QAM 5/622.0 dB

    power eve s are re erence o e o a n- an power o a ayers

    LDM: 16K FFT, GI= 1/16, P12,2. TDM: Fixed 32K FFT, GI = 1/32, P24,4; Mobile 8K FFT, GI = 1/8, P6,2.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    28/71

    LDM vs TDM/FDM: Gain

    LDM vs TDM: MOBILE SERVICE GAIN (AWGN)

    50% 33.3% 25%

    3.1 Mbps 0.8 dB 4.1 dB 5.7 dB

    . ps . . .

    LDM vs TDM: HIGH-CAPACITY GAIN (AWGN)

    .

    17.5 Mbps 3.4 dB - 0.9 dB -2.4 dB

    -. .

    24.6 Mbps N/A N/A -0.3 dB

    LDM gain between 4-8 dB

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    29/71

    LDM vs TDM/FDM: Ca acit Gain

    High S/N environment

    P

    ower

    Single layer system wastes channel capacity LDM improves spectrum efficiency

    Only part of time (TDM) or RF channel (FDM) used 100% time, 100% RF channel

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    30/71

    LDM vs TDM/FDM: Ca acit Gain

    Low S/N environment

    P

    ower

    Single layer system wastes channel capacity LDM improves spectrum efficiency

    Only part of time (TDM) or RF channel (FDM) used 100% time, 100% RF channel

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    31/71

    A enda

    Introduction

    Layered Division Multiplexing

    Basic Concepts

    System Architecture

    .

    System technical highlights

    Prototypes

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    32/71

    Im act of In ection on Thresholds

    InjectionLevel

    Stream A

    The injection level provides an

    remains constant

    additional tool for broadcasters to

    configure the coverage area.

    Stream B

    Higher injection levels provide more

    emphasis on the fixed services

    There is a tradeoff between injection level and required SNR

    Channel BW emphasis on the mobile/portable services

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    33/71

    Im act of In ection on Thresholds

    Upper layeronly

    Injection level UL Min. SNR Lower layeronly

    LL Min. SNR

    -3 dB -0.5 dB 11.0 dB - .

    3.1 Mbps

    R = QPSK

    .

    11.2 Mbps

    R = 1/2 16QAM

    -4 dB -1.0 dB 11.7 dB

    -5 dB -1.5 dB 12.4 dB

    = - .

    3.1 Mbps

    R = QPSK

    - - . = .

    26.3 Mbps

    R = 2/3 64QAM

    .

    -4 dB -1.0 dB 18.9 dB

    -5 dB -1.5 dB 19.6 dB

    SNR = -3.4dB

    3.1 MbpsR = QPSK

    - - . SNR=18.1dB

    35.1 MbpsR= 2/3 256QAM

    .

    -4 dB -1.0 dB 23.6 dB

    -5 dB -1.5 dB 24.3 dB

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    34/71

    Ke Enablin Technolo ies

    that can achieve a negative SNR value, closer to the Shannon limit, and savepower.

    Closer to the Shannon limit at low coding rate;

    It can be truncated to higher rate code for power saving and low latencydecoding.

    goo s gna cance a on sc eme a can m n m ze e cance a on

    errors which makes a high data rate lower layer viable. Low-complex channel estimation and equalization algorithms.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    35/71

    A enda

    Introduction

    Layered Division Multiplexing System technical highlights

    New LDPC Coding Algorithms

    Signal Cancellation and Channel Estimation

    Do ler Influence Non-Uniform Constellations

    Latency & Complexity

    Results

    Prototypes

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    36/71

    A rate com atible LDPC code

    LDPC Parity Check Matrix (PCM)

    Structure full com atible with DVB

    Code PCM

    of R < 0.5

    It is very close to the Shannon limit

    (< 1 dB)

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    37/71

    Cancellation in a two la ered s stem

    Total Signal Power

    pper ayer gna + ower ayer gna

    Lower Layer

    pper ayer

    Signal S(U)Injection

    Level

    Signal S(L)

    Pilot Signals

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    38/71

    Cancellation in a two la ered s stem

    Total Signal PowerMultipath Distort ion[S(U) + S(L)] + Noise

    Upper Layer

    Signal S(U)Injection

    Level

    Signal S(L)

    Pilot Signals

    Noise

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    39/71

    Cancellation in a two la ered s stem

    S(U) + S(L) + (Channel Estimation Error) + Noise Total Signal Power

    Upper Layer

    Signal S(U)Injection

    Level

    Signal S(L)

    Pilot Signals

    Noise

    Channel

    EstimationError

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    40/71

    Cancellation in a two la ered s stem

    S(U) + S(L) + (Channel Estimation Error) + Noise

    Channel Estimation Error is the Signal Cancellation Error

    Lower La erSignal S(L)

    Pilot Signals

    Noise Channel

    EstimationError

    . .

    Channel estimation error should be much lower than the noise.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    41/71

    Cancellation Error

    =

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    42/71

    Pilot-Aided Channel Estimation and Decision-Directed Channels ma on n ng e- c o c anne s w eren ec o e ays.

    Signal cancellation performance vs. echo delay;

    Pilot Aided 3rd

    order interpolation (PA-Cinterp); Pilot Aided DFT interpolation (PA-DFTF);

    Decision Directed DFT Filtering (DD-DFTF).

    Montalban, J.; Bo Rong; Yiyan Wu; Liang Zhang; Angueira, P.; Velez, M., "Cloud Transmission frequency domain cancellation," Broadband Multimedia

    Systems and Broadcasting (BMSB), 2013 IEEE International Symposium on , vol., no., pp.1,4, 5-7 June 2013

    Montalban, J.; Angulo, I.; Vlez, M.; Angueira, P.; Regueiro, C.; Yiyan Wu; Liang Zhang; Li., W. Error Propagation in the Cancellation Stage for a Multi-" - , , , ., ., . , , -

    June 2014

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    43/71

    1. Signal cancellation error is the same as the channel estimation error.

    . .

    need to invent new fancy algorithms.

    3. Channel estimation error also related to noise level. Channel estimation error

    should be lower than the noise level to minimize the impact to the receiver

    performance

    . .

    algorithms work better for low SNR cases; Two layer system is equivalent to

    boosting pilots by several dB (injection level) for lower channel estimation, which

    prov es goo c anne es ma on resu s.

    5. Larger size FFT OFDM modulation will improve estimation performance,since for the same ercenta e of ilots lar e FFT modulation reduces the ilot

    spacing (in Hz).

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    44/71

    A enda

    Introduction

    Layered Division Multiplexing

    System technical highlights

    New LDPC Coding Algorithms

    Signal Cancellation and Channel Estimation

    Do ler Influence Non-Uniform Constellations

    Latency & Complexity

    Results

    Prototypes

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    45/71

    5

    Signal Contributions

    Double the FFT size, the Dopplernoise increase by 6 dB. -5

    0

    For 16K FFT, the Doppler noise is

    about -10 dB. -15

    -10

    Power(dBm)

    16K FFT

    8K FFT

    If the UL layer SNR is -3 dB, the -

    10 dB Doppler noise is 13 dB

    below the noise threshold and will-25

    -20

    4K FFT

    have very limited impact.

    0 50 100 150 200 25-35

    -30

    Symbol Number

    2K FFT

    150 Hz Doppler shift

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    46/71

    20LDM UL (=-5 dB), TI=200ms, 16K, TU-6, ATSC-3. Ideal CSI

    UL: QPSK 7/15; =-5dB

    16

    18: ; =-

    UL: QPSK 5/15; =-5 dB

    12

    14

    R

    min

    up to 260 km/h for the

    CR=5/15 4.5 Mb s8

    10S

    with a 3 dB margin4

    6

    0 50 100 150 200 250 3002

    V (km/h)

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    47/71

    16

    18

    20LDM UL, LL-5dB, TI-100ms, 32k, QPSK, TU, ATSC-3 LDPC, DFT-ChEst

    LDM-UL, r-4/15TDM, r-8/15

    TDM, r-10/15

    TDM, r-12/15

    12

    14

    o

    iseRatio[dB]

    6

    8Signalto

    0 20 40 60 80 100 120 140 1602

    4

    Vehicle speed [km/h]

    3 dB

    Threshold

    135km/h

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    48/71

    Sync & Timing Clock RecoveryCommon

    TunerIF & Down

    Converter A-D ConverterOFDM Demo

    & EqualizationTime De-Intl

    AGC

    Stream AStream A Decoder Upper Layer BICM

    +

    Bit to CellMapping

    Data + FEC

    Lower Layer BICM

    Common Modules

    Stream B Decoder Stream B

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    49/71

    Sync & Timing Clock RecoveryCommon

    TunerIF & Down

    Converter A-D ConverterOFDM Demo

    & EqualizationTime De-Intl

    AGC

    A large part of the circuits can be shared (tuner, sync, IF, ADC,

    AGC, OFDM demodulator, equalizer, time deinterleaver etc.)

    Clearly no complexity increase in common parts.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    50/71

    Com lexit of LDM receivers

    For a LDM receiver that decodes the high-data rate lower layer

    Re-modulate the decoded data and then cancel it from the received signal

    Complexity mainly depend on the LDPC decoder

    LDPC decoding performance of the UL must be considered

    Stream A

    Delay

    Stream A Decoder

    Data buffer

    Upper Layer BICM

    Lower La er BICM

    + Bit to Cell

    Mapping

    Data + FEC

    Common Modules

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    51/71

    LDPC Decodin Performance of U er la er

    50QPSK 4/15 & 64-QAM 10/15 (IL = -5 dB). AWGN, Rice, Rayleigh and TU-6 fading channels

    QPSK 4/15 AWGN UL: QPSK+4/15

    35

    40

    45

    QPSK 4/15 Rice

    QPSK 4/15 Rayleigh

    QPSK 4/15 TU-6 (Doppler = 33.3 Hz)

    n

    LL: 64NUC+10/15,IL: -5dB

    15

    20

    25BER

    Iteratio

    -0

    5

    10

    SNR [dB]

    Given LLtarget SNR of

    LDPC iterations vs SNR,

    iterations < 5

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    52/71

    LDPC Decodin Performance of U er la er

    LDPC decoder complexity:

    LDPC computation complexity increase < 20% (10/50, worst case)

    LDM wil l likely use up to 16QAM (4 bits) for UL and 1k-QAM (10 bits) for LL,

    so the total LDPC complexity increase is 20% x 4/10 = 8% referenced to the

    LL only case (LL must be able to decode the highest modulation single PLP

    case .

    Memory increase estimation assuming UL and LL use 64k LDPC codes

    , , ,

    (50 iteration) should be finished simultaneously

    maximum 64k cells arerequired . 32k cells for current decoding + 32k cells for storing next data

    If TDI = 219(512K) cells 12.5% memory increase (worst case)

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    53/71

    A enda

    Layered Division Multiplexing System technical highlights

    Results

    Simulations

    Lab Tests

    Field Tests

    Conclusions

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    54/71

    Simulation Confi uration

    Single Layer

    CONSTELATION Code Rate

    (Mbps/Hz)Bit Rate (Mbps)

    QPSK3/15 0.38 1.834/15 0,53 2.45

    5/15 0.66 3.07

    16-QAM

    . .

    4/15 1.05 4.91

    5/15 1.32 6.15

    Const. Code RateSpectral Efficiency

    (Mbps/Hz)Bit Rate (Mbps)

    QPSK 3/15 0,38 1.83

    QPSK 4/15 0,51 2.45

    Lower Layer

    16-QAM 3/4 3.17 16.63

    64-QAM 2/3 4.22 22.18256-QAM 2/3 5.28 27.72

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    55/71

    Com uter Simulations: Sin le La er

    Stationary Channels (Ideal Channel Estimation)

    AWGN RICE Rayleigh 0 dB Echo

    QPSK4/15 -2.9 -2.7 -2 -2.3

    5/15 -1.7 -1.5 -0.5 -0.9

    16-QAM4/15 0.7 0.9 2.1 1.7

    5/15 2.3 2.6 3.8 3.5

    Mobile Channels (Ideal Channel Estimation)

    5 Hz 50 Hz 75 Hz

    QPSK4/15 -0.9 -0.8 -1.0

    5/15 0.4 0.1 0.4

    16-QAM4/15 2.8 3.2 3.5

    . . .

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    56/71

    Sin le La er Channel Estimation Loss

    Stationary Channels

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    57/71

    LDM In ection Ran e = -4 dB

    AWGN RICE Rayleigh 0 dB Echo

    UL QPSK 4/15 -0.4 -0.1 1.3 0.8

    LL 16QAM 3/4 15.4 15.9 18.8 18.7

    LL 64QAM 2/3 18.9 19.2 21.5 21.3

    LL 256QAM 2/3 23.2 23.5 25.7 25.8

    Mobile Channels (Ideal Channel Estimation)

    fd=5 Hz f d =50 Hz f d =75 Hz

    QPSK 4/15 2.0 2.3 2.4

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    58/71

    LDM Channel Estimation Loss

    Stationary Channels

    Mobile Channels

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    59/71

    A enda

    Introduction

    Layered Division Multiplexing

    System technical highlights

    Results

    Simulations

    Field Tests

    Prototypes

    Conclusions

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    60/71

    Lab Set U

    UPV/EHUSW

    DEMOD

    Based on a DVB-T2 Software Defined Radio

    (SDR) platform;

    Upper Layer tested under different channel :

    AWGN, Rice, Rayleigh, etc.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    61/71

    UNIVERSITY OF THE BASQUE COUNTRYLDM RECEIVER

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    62/71

    Sin le La er HW Im act

    Stationary Channels

    Mobile Channels

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    63/71

    LDM HW Im act

    Stationary ChannelsMobile Channels

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    64/71

    LDM Field TestBILBAOBILBAO

    SPAINSPAIN, ,

    Frequency 690 MHzTransmitter ERP 35.68 dBW

    Tx Antenna Height 48 meters

    Alt itude (a.g.l.) 216 meters

    Radiation Pattern Directive (140-210)

    Polarization Vertical

    Channel Bandwidth 6 MHz

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    65/71

    Simulation Lab and Field Test Results

    -1

    100

    Upper Layer: 8K, GI=1/32, CR=1/4, QPSK, R=2.3 Mbps

    -1

    100Low er Layer: 8K, GI=1/32, CR=2/3, 256-QAM, R=30.1 Mbps

    AWGN: Simulated

    AWGN: Laboratory

    Field Test

    10-2

    10

    10-2

    10

    10-4

    10-3

    BER

    10-4

    10-3

    BER

    R=1/4, 2.3 Mbps.

    Lower Layer:

    10-6

    10-5

    10-6

    10-5

    256QAM, R=2/3,

    30.1 Mbps

    8k FFT

    -

    10

    -7

    -

    10

    -7

    AWGN: Simulated

    AWGN: Laboratory

    Field Test

    -2 -1.5 -1 -0.5 010

    -

    SNR (dB)

    22 24 26 28 30

    10-

    SNR (dB)

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    66/71

    A enda

    Introduction

    Layered Division Multiplexing

    System technical highlights

    Results

    Simulations

    Field Tests

    Prototypes

    Conclusions

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    67/71

    UNIVERSITY OF THE BASQUE COUNTRYLDM RECEIVER

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    68/71

    ETRI: Electronics and TelecommunicationsResearch Istitute Korea

    Shown in next Dec ATSC AH 32 Face to Face meetings and in Las VegasNabShow

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    69/71

    A enda

    Introduction

    Layered Division Multiplexing

    System technical highlights

    Results

    Simulations

    Field Tests

    Prototypes

    Conclusions

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    70/71

    Conclusions

    LDM is a multiplexing scheme, that can mix different services

    with different reception conditions in one RF channel.

    The main advantage is the use of the 100 % of the spectrum

    ur ng e w o e transm ss on t me.

    It achieves 5 to 6 dB SNR gain when compared to TDM/FDM

    systems for robust mobile/indoor reception.

  • 7/26/2019 15.07.14.IEEEBTS.DL.pdf

    71/71

    A

    Pablo Angueira

    [email protected]

    p: www.e u.es sr_ra o