+ All Categories
Home > Documents > 16 th KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

16 th KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Date post: 27-Jan-2016
Category:
Upload: kiefer
View: 39 times
Download: 0 times
Share this document with a friend
Description:
16 th KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3. Robust Hybrid Seismic Isolation System for a Seismically Excited Cable-Stayed Bridge. Kyu-Sik Park , Ph. D. Candidate, KAIST, Korea Hyung-Jo Jung , Assistant Professor, Sejong Univ., Korea - PowerPoint PPT Presentation
Popular Tags:
29
16 th KKCNN Symposium on Civil Engineeri ng Kyungju, Korea, December 8-10, 2003 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Assistant Professor, Sejong Univ., Korea Woo-Hyun Yoon Woo-Hyun Yoon, Professor, Kyungwon Univ., Korea In-Won Lee In-Won Lee, Professor, KAIST, Korea Robust Hybrid Seismic Isolation ystem for a Seismically Excited Cable-Stayed Bridge
Transcript
Page 1: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

16th KKCNN Symposium on Civil EngineeringKyungju, Korea, December 8-10, 2003

Kyu-Sik ParkKyu-Sik Park, Ph. D. Candidate, KAIST, Korea

Hyung-Jo JungHyung-Jo Jung, Assistant Professor, Sejong Univ., Korea

Woo-Hyun YoonWoo-Hyun Yoon, Professor, Kyungwon Univ., Korea

In-Won LeeIn-Won Lee, Professor, KAIST, Korea

Robust Hybrid Seismic IsolationSystem for a Seismically Excited

Cable-Stayed Bridge

Robust Hybrid Seismic IsolationSystem for a Seismically Excited

Cable-Stayed Bridge

Page 2: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 22

Introduction

Robust hybrid seismic isolation system

Numerical examples

Conclusions

Contents

Page 3: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 33

Introduction

Hybrid seismic isolation system (HSIS)

A combination of passive and active control devices

• Passive devices: offer some degree of protection in the case of power failure

• Active devices: improve the control performances

However, the robustness of HSIS could be decreased by the

active control devices.

A combination of passive and active control devices

• Passive devices: offer some degree of protection in the case of power failure

• Active devices: improve the control performances

However, the robustness of HSIS could be decreased by the

active control devices.

Page 4: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 44

Objective of this study

Apply robust control algorithms to improve

the controller robustness of HSIS

Apply robust control algorithms to improve

the controller robustness of HSIS

Page 5: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 55

Robust hybrid seismic isolation system (RHSIS)

Control devices

Passive control devices

• Lead rubber bearings (LRBs)

• Design procedure: Ali and Abdel-Ghaffar (1995)

• Bouc-Wen model

Active control devices

• Hydraulic actuators (HAs)

• An actuator capacity has a capacity of 1000 kN.

• The actuator dynamics are neglected.

Passive control devices

• Lead rubber bearings (LRBs)

• Design procedure: Ali and Abdel-Ghaffar (1995)

• Bouc-Wen model

Active control devices

• Hydraulic actuators (HAs)

• An actuator capacity has a capacity of 1000 kN.

• The actuator dynamics are neglected.

Page 6: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 66

Control algorithm

RHSIS I

• Primary control scheme

· Linear quadratic Gaussian (LQG) algorithm

• Secondary control scheme

· On-Off type controller according to LRB’s responses

RHSIS I

• Primary control scheme

· Linear quadratic Gaussian (LQG) algorithm

• Secondary control scheme

· On-Off type controller according to LRB’s responses

HA,HA,

,

0,

i ci

ff

2,LRB ,LRB0.005m or 0.03m/s

otherwise

r ri ix x

Page 7: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 77

Bridge Model

SensorLQGOn-OffHA

LRB

MU

Xey

mysy

HA( )cu

,LRB ,LRB,r rx x

HA / 0uHA / 0f

LRBf

fgx

Block diagram of RHSIS I

Page 8: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 88

RHSIS II

• H2 control algorithm with frequency weighting filters

• Frequency weighting filters

RHSIS II

• H2 control algorithm with frequency weighting filters

• Frequency weighting filters

20

2 2

2

2g g g

gg g g

S sW

s s

0 2.5044

0.3

17 rad/sec

g

g

S

1/ 60 1

1/ 30 1z

sW

s

0.2(1/ 60 1)

1/ 240 1u

sW

s

Page 9: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 99

Bridge Model

SensorH2HA

LRB

MU

X

ey

mysy

,LRB ,LRB,r rx x

HAuHAf

LRBf

fgx

Block diagram of RHSIS II

DMWgkggx

R Wu

WzQzz

v

K

u

uz

Page 10: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 1010

RHSIS III

• H control algorithm with frequency weighting filters

RHSIS III

• H control algorithm with frequency weighting filters

Page 11: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 1111

Numerical examples

Analysis model

Bridge model

• Bill Emerson Memorial Bridge

· Benchmark control problem (Dyke et al., 2003)

· Under construction in Cape Girardeau, MO, USA

· 16 Shock transmission devices (STDs) are employed between the tower-deck connections.

Bridge model

• Bill Emerson Memorial Bridge

· Benchmark control problem (Dyke et al., 2003)

· Under construction in Cape Girardeau, MO, USA

· 16 Shock transmission devices (STDs) are employed between the tower-deck connections.

Page 12: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 1212

142.7 m 350.6 m 142.7 m

gx

Schematic of the Bill Emerson Memorial Bridge

Page 13: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 1313

142.7 m 350.6 m 142.7 m

gx

Configuration of sensors

: Accelerometer

: Displacement sensor

Page 14: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 1414

142.7 m 350.6 m 142.7 m

gx

Configuration of control devices (HAs+LRBs)

2+3

2+3 4+3

4+3

4+3

4+3

2+3

2+3

Page 15: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 1515

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0T im e (se c )

-3

-2

-1

0

1

2

3

4

Acc

eler

atio

n (m

/s2 )

El C entro

PGA: 0.348gPGA: 0.348g

0 1 2 3 4 5 6 7 8 9 1 0F re q u e n c y (H z )

0

1

2

3

4

5

6

7

8

Pow

er S

pect

ral D

ensi

ty

Historical earthquake excitations Historical earthquake excitations

Page 16: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 1616

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0T im e (se c )

-3

-2

-1

0

1

2

3

4

Acc

eler

atio

n (m

/s2 )

El C entro

PGA: 0.348gPGA: 0.348g

0 1 2 3 4 5 6 7 8 9 1 0F re q u e n c y (H z )

0

1

2

3

4

5

6

7

8

Pow

er S

pect

ral D

ensi

ty0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

T im e (se c )

-2

-1

0

1

2

Acc

eler

atio

n (m

/s2 )

M exico C ity

PGA: 0.143gPGA: 0.143g

0 1 2 3 4 5 6 7 8 9 1 0F re q u e n c y (H z )

0

1

2

3

4

5

6

Pow

er S

pect

ral D

ensi

ty

Historical earthquake excitations Historical earthquake excitations

Page 17: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 1717

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0T im e (se c )

-3

-2

-1

0

1

2

3

4

Acc

eler

atio

n (m

/s2 )

El C entro

PGA: 0.348gPGA: 0.348g

0 1 2 3 4 5 6 7 8 9 1 0F re q u e n c y (H z )

0

1

2

3

4

5

6

7

8

Pow

er S

pect

ral D

ensi

ty0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

T im e (se c )

-2

-1

0

1

2

Acc

eler

atio

n (m

/s2 )

M exico C ity

PGA: 0.143gPGA: 0.143g

0 1 2 3 4 5 6 7 8 9 1 0F re q u e n c y (H z )

0

1

2

3

4

5

6

Pow

er S

pect

ral D

ensi

ty

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0T im e (se c )

-2

-1

0

1

2

3

Acc

eler

atio

n (m

/s2 )

G ebze

PGA: 0.265gPGA: 0.265g

0 1 2 3 4 5 6 7 8 9 1 0F re q u e n c y (H z )

0

1

2

3

4

5

6

7

8

9

Pow

er S

pect

ral D

ensi

ty

Historical earthquake excitations Historical earthquake excitations

Page 18: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 1818

• J1/J7 : Peak/Normed base shear

• J2/J8 : Peak/Normed shear at deck level

• J3/J9 : Peak/Normed overturning moment

• J4/J10 : Peak/Normed moment at deck level

• J5/J11 : Peak/Normed cable tension deviation

• J6: Peak Deck dis. at abutment

• J1/J7 : Peak/Normed base shear

• J2/J8 : Peak/Normed shear at deck level

• J3/J9 : Peak/Normed overturning moment

• J4/J10 : Peak/Normed moment at deck level

• J5/J11 : Peak/Normed cable tension deviation

• J6: Peak Deck dis. at abutment

Evaluation criteria Evaluation criteria

Page 19: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 1919

Analysis results

Control performances Control performances

Displacement under El Centro earthquake

(a) Uncontrolled (b) RHSIS III

Page 20: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 2020

Cable tension under El Centro earthquake

(a) Uncontrolled (b) RHSIS III

Page 21: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 2121

Shear force under El Centro earthquake

(a) Uncontrolled (b) RHSIS III

Page 22: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 2222

Evaluation criteria CHSIS* RHSIS I RHSIS II RHSIS III

J1. Max. base shear 0.4854 0.4607 0.5319 0.4930

J2. Max. deck shear 0.9214 0.9250 0.9607 0.8997

J3. Max. base moment 0.4427 0.4395 0.5057 0.4519

J4. Max. deck moment 0.6558 0.6546 0.6441 0.5617

J5. Max. cable deviation 0.1433 0.1428 0.1252 0.1437

J6. Max. deck dis. 1.5532 1.5598 1.0652 1.1863

J7. Norm base shear 0.3770 0.3762 0.3929 0.3581

J8. Norm deck shear 0.8986 0.9035 0.7868 0.9035

J9. Norm base moment 0.3375 0.3378 0.3590 0.3216

J10. Norm deck moment 0.7277 0.7503 0.5404 0.7338

J11. Norm cable deviation 1.707e-3 1.678e-3 1.275e-2 1.741e-2

• Maximum evaluation criteria for all three earthquakes • Maximum evaluation criteria for all three earthquakes

*Conventional HSIS (HSIS with LQG)

Page 23: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 2323

Evaluation criteria CHSIS* RHSIS I RHSIS II RHSIS III

J1. Max. base shear 0.4854 0.4607 0.5319 0.4930

J2. Max. deck shear 0.9214 0.9250 0.9607 0.8997

J3. Max. base moment 0.4427 0.4395 0.5057 0.4519

J4. Max. deck moment 0.6558 0.6546 0.6441 0.5617

J5. Max. cable deviation 0.1433 0.1428 0.1252 0.1437

J6. Max. deck dis. 1.5532 1.5598 1.0652 1.1863

J7. Norm base shear 0.3770 0.3762 0.3929 0.3581

J8. Norm deck shear 0.8986 0.9035 0.7868 0.9035

J9. Norm base moment 0.3375 0.3378 0.3590 0.3216

J10. Norm deck moment 0.7277 0.7503 0.5404 0.7338

J11. Norm cable deviation 1.707e-3 1.678e-3 1.275e-2 1.741e-2

• Maximum evaluation criteria for all three earthquakes • Maximum evaluation criteria for all three earthquakes

*Conventional HSIS (HSIS with LQG)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

Evaluation Criteria

Val

ues

CHSIS*RHSIS IRHSIS IIRHSIS III

Page 24: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 2424

Controller robustness

• The dynamic characteristic of as-built bridge is not

identical to the numerical model.

• To verify the applicability of RHSIS, the controller

robustness is investigated to perturbation of stiffness

parameter.

Controller robustness

• The dynamic characteristic of as-built bridge is not

identical to the numerical model.

• To verify the applicability of RHSIS, the controller

robustness is investigated to perturbation of stiffness

parameter.

pert (1 ) K K

where

pertKK

: nominal stiffness matrix: perturbed stiffness matrix: perturbation amount (5% ~ 30 %)

Page 25: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 2525

• Maximum variations of evaluation criteria for all three earthquakes (%, 5% perturbation)• Maximum variations of evaluation criteria for all three earthquakes (%, 5% perturbation)

Evaluation criteria RHSIS I RHSIS II RHSIS III

J1. Max. base shear 14.24 9.20 6.88

J2. Max. deck shear 17.78 4.42 13.49

J3. Max. base moment 16.74 4.93 5.26

J4. Max. deck moment 6.09 6.21 5.49

J5. Max. cable deviation 13.62 13.96 14.51

J6. Max. deck dis. 4.61 1.48 2.70

J7. Norm base shear 6.73 6.12 5.70

J8. Norm deck shear 8.09 4.93 6.44

J9. Norm base moment 6.33 5.54 5.91

J10. Norm deck moment 8.54 7.56 10.86

J11. Norm cable deviation 16.84 13.78 17.29

Page 26: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 2626

• Maximum variations of evaluation criteria for all three earthquakes (%, 20% perturbation)• Maximum variations of evaluation criteria for all three earthquakes (%, 20% perturbation)

Evaluation criteria RHSIS II RHSIS III

J1. Max. base shear 36.51 33.02

J2. Max. deck shear 22.93 34.32

J3. Max. base moment 33.08 30.67

J4. Max. deck moment 34.48 40.71

J5. Max. cable deviation 50.07 33.27

J6. Max. deck dis. 5.02 8.06

J7. Norm base shear 31.78 30.19

J8. Norm deck shear 39.33 35.96

J9. Norm base moment 29.70 28.99

J10. Norm deck moment 45.34 32.40

J11. Norm cable deviation 72.35 52.74

Page 27: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 2727

0

20

40

60

80

5 10 15 20 25 30

Stiffness perturbation (±, %)

Max

. var

iati

on (

%)

RHSIS I

RHSIS IIRHSIS III

Max. variation of evaluation criteria for variations of stiffness perturbation

Page 28: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 2828

Conclusions

Hybrid seismic isolation system with robust control algorithms

Has excellent robustness for stiffness perturbation without loss of control performances

• RHSIS I obtains robustness only for 5% stiffness perturbations.

• RHSIS III has more larger acting region of controller

than RHSIS II.

Has excellent robustness for stiffness perturbation without loss of control performances

• RHSIS I obtains robustness only for 5% stiffness perturbations.

• RHSIS III has more larger acting region of controller

than RHSIS II. Robust hybrid seismic isolation system could effectively

be used to seismically excited cable-stayed bridge.

Page 29: 16 th  KKCNN Symposium on Civil Engineering Kyungju, Korea, December 8 - 10 , 200 3

Structural Dynamics & Vibration Control Lab., KAIST, KoreaStructural Dynamics & Vibration Control Lab., KAIST, Korea 2929

This research is supported by the National Research Laboratory (NRL) program from the Ministry of Science of Technology (MOST) and the Grant for Pre-Doctoral Students from the Korea Research Foundation (KRF) in Korea.

Thank you for your attention!

Acknowledgements


Recommended