+ All Categories
Home > Documents > 16.4 Green’s Theorem - University of Pennsylvaniawziller/math114s14/Ch16-4-5.pdfBut we can also...

16.4 Green’s Theorem - University of Pennsylvaniawziller/math114s14/Ch16-4-5.pdfBut we can also...

Date post: 12-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
14
16.4 Green’s Theorem
Transcript
  • 16.4

    Green’s Theorem

  • :

    Suppose that is a simple piecewise smooth closed curve, traversed

    counter clockwise, and C is the boundary of a region .

    If , , , and are continuous in , then

    y x

    C

    R

    P Q P Q R

    Green's Theorem

    x yR C

    Q P dA Pdx Qdy

    We can use Green's theorem to compute areas:

    1( )

    2R R R

    area R xdy ydx xdy ydx

    Review:

    : (a) If is defined in a connected and simply connected region,

    then if and only if ( ) 0f

    Theorem F

    F curl F

    b) If , then ( ) ( ) C

    f dr f B f A F F

  • 2

    2

    2, 2arctan , 0

    1

    x

    x yP e Q x Q Px

    2

    2

    22arctan

    1

    GThmx

    C R

    e dx x dy dAx

    0 1

    2

    1

    2

    1x

    dydxx

    y x

    10

    2

    1

    2

    1 xy dx

    x

    0

    2 2

    1

    2 2

    1 1

    xdx

    x x

    02

    12arctan ln 1x x

    0 2arctan 1 ln 2 42 ln 2 2 ln 2

    2

    Compute the closed line intgeral 2arctan

    where C is the triangle with vertices 0,0 , 0,1 ,and 1,1 .

    x

    C

    e dx x dy

    Example :

    x yR C

    Q P dA Pdx Qdy

  • Regions with Holes

    x yR

    Q P dA 1 2

    x y x y

    R R

    Q P dA Q P dA

    1 2C C

    Pdx Qdy Pdx Qdy C

    Pdx Qdy

    1 2C C C

    We can use Green's Theorem when there is a hole (or holes) in the interior.still

    line integrals along the

    connecting lines cancel!

    But we need to keep the interior region on the left!

    1 2divide into two regions and R R R

    1 2

    now use Green's theorem

    on and :R R

    So the interior curve is traversed clockwise, while the exterior curve counterclockwise.

  • 1 2If in the region R between and we have:

    , and , , , are continuous, then

    we can use Green's Theorem:

    y x

    C C

    P Q P Qx yQ = P

    C

    Pdx Qdy 1 2C C

    Pdx Qdy Pdx Qdy

    0

    2 2

    but C C

    Pdx Qdy Pdx Qdy

    1 2

    1 2

    1 2

    If in the region and

    we have , then

    with and both traversed counter clockwise

    x y

    C C

    C C

    Q P Pdx Qdy Pdx Qdy

    C C

    Theorem : between

    1 2

    Under these circumstances, the line integral on

    can be traded in for the line integral on .C C

    1

    2 1

    2

    Do this when the line integral is too involved

    and you can find a totally contained in the

    with the line integral being much easier to calculate.

    C

    C C

    C

    1 2Evaluate where C

    Pdx Qdy C C C Example :

  • 2 2 2 2 2 2 2 2

    '

    So C C

    y x y xdx dy dx dy

    x y x y x y x y

    2 2

    22 2

    As we saw in previous section: x yy x

    Q Px y

    2 2: 1C x y

    : cos , sin , 0 2C x t y t t

    2 2 2 2

    'C

    y xdx dy

    x y x y

    2

    0

    1 2dt

    1 2 3 42 2 2 2Evaluate where

    C

    y xdx dy C C C C C

    x y x y

    Example :

    2

    0

    = sin( )( sin(t)) cos( )cos(t)t t dt

    2 2 2 2

    We can use the same argument to say that

    2 for closed

    curved C that contains the origin in its interior.

    C

    y xdx dy any

    x y x y

    2 2 2 2and 0 if the origin is not in the interior!

    C

    y xdx dy

    x y x y

    We can introduce a new curve ' that avoids the origin!C

    but , are not continuous at (0,0)!

    (so we cannot use Green's theorem on the square)

    P Q

  • 2 2

    Evaluate 3 where is the path from

    ( 2,0) to (2,0) along the upper portion of the ellipse 2 4.

    xy xy

    C

    ye y dx xe x dy C

    x y

    Example :

    Notice that 1 xy xy xyye y e xyey

    and 3 3 xy xy xyxe x e xye

    x

    x yC R

    Pdx Qdy Q P dA

    hence is an exact differential (not ).xy xyye y dx xe x dy not df

    But we can also use Green's theorem by "closing up" the half of the ellipse with

    a convenient path. Choose a straight line from ( 2,0) to (2,0).C'

    along ' : , 0, 1, 0 hence 0! xy xyC x t y dx dy ye y dx xe x dy

    ' 2

    By Green's theorem 2 2 ( ) 2 2 2xy xy

    C C

    ye y dx xe x dy dA area R

    Notice that is a closed curve going counter clockwise

    enclosin g a semicircle R.

    C' C

    ' '

    But also .... .... ....xy xy

    C C C C C

    ye y dx xe x dy

    Hence 4 2xy xyC

    ye y dx xe x dy

  • 16.5,16.6

    Surface Integrals

  • Goal: define the surface integral , , where is a surface in 3-space.S

    G x y z d S If 1, we get ( )

    S

    G d area S To compute a line integral '( )

    C C

    d t dt F r F r

    we choose a parametrization: ( ) ( ), ( ), ( )t x t y t z t r

    What is a parametrization for a surface? , ( , ), ( , ), ( , )u v x u v y u v z u vr

    where ( , ) lie in some region in the planeu v uv

  • Examples: 2 2 21) A cylinder: x y a Set cos( ), sin( ) x a u y a u

    2 2 22) A cone: z x y

    use the paramter to describe the heightv

    cos( ),

    sin( )

    x v u

    y v u

    2 2 2x y v

    Set z v 2 2 2 2 2

    Here:

    a z h x y

  • sin( )cos( )

    sin( )sin( )

    z cos( )

    x

    y

    Example: 2 2 2 2P arametrize the sphere: x y z a

    0

    0 2

    0

    Recall spherical coordinates: , ,

    The sphere is described by a

    Use the angles as , parameter: u v sin( )cos( ), sin( )sin( ), z cos( )x a u v y a u v a u

  • , ( , ), ( , ), ( , )u v x u v y u v z u vr

    area element in the

    plane: uv u v

    , , , , ,u vx y z x y z

    u u u v v v

    r r

    span the tangent plane

    area of the rectangle with sides and u vu v r r

    = u v u vu v u v r r r r

    area element is u vd dudv r r

    What is the area element?

    a surface S is called smooth if and are

    linearly indepenedent, i.e. 0

    u v

    u v

    r r

    r r

  • Surface area: ( ) u vS

    area S d dudv r r

    where , ( , ), ( , ), ( , )u v x u v y u v z u vr

    2 2 2 2Compute the surface area of a sphere: .x y z a Example:

    , sin( )cos( ), sin( )sin( ), cos( )u v a u v a u v a ur

    u v r r cos( )cos( ) cos( )sin( ) sin( )

    sin( )sin( ) sin( )cos( ) 0

    a u v a u v a u

    a u v a u v

    i j k

    cos( )cos( ), cos( )sin( ), sin( )u a u v a u v a u r

    sin( )sin( ), sin( )cos( ), 0v a u v a u v r

    2 2 2 2 2 2 2 2sin ( )cos( ) sin ( )sin( ) sin( )cos( )cos ( ) sin( ) cos( )sin ( )a u v a u v a u u v a u u v i j k

    2 2 2 2 2sin ( )cos( ) sin ( )sin( ) sin( )cos( )a u v a u v a u u i j k2

    u v r r4 4 2 4 4 2 4 2 2sin ( )cos ( ) sin ( )sin ( ) sin ( )cos ( )a u v a u v a u u

    4 4 4 2 2sin ( ) sin ( )cos ( )a u a u u 4 2sin ( )a u2 sin( )u v a u r r

    , u v

  • 2 2 2 2Surface area of a sphere: .x y z a

    ( ) u vS

    area S d dudv r r

    2 sin( )u v a u r r

    2

    2

    0

    sin( )o

    a u dudv

    2

    2 2

    0

    0 0

    sin( ) cos( ) 2a u du dv a u

    2 21 1 2 4a a

    2Area of a sphere of radius is 4a a

    34Recall: volume of a sphere of radius is 3

    a a

    , u v


Recommended