+ All Categories
Home > Documents > 16_4_BOSTON_04-72_0079.pdf

16_4_BOSTON_04-72_0079.pdf

Date post: 01-Jun-2018
Category:
Upload: tespak
View: 215 times
Download: 0 times
Share this document with a friend

of 9

Transcript
  • 8/9/2019 16_4_BOSTON_04-72_0079.pdf

    1/9

    9

    Thermodynamics of M u l t i - S t e p

    Water

    Decomposition Processes

    r

    James

    E.

    Funk

    \

    i

    College of Engineer ing

    Un ive rsi ty of Kentucky

    Le xin gto n, Kentucky 40506

    Processes which con ve r t water i n t o hydrogen and oxygen are of i n t e r e s t

    f o r many re as on s,

    inc lud ing th e many advantages accru ing t o t he

    t r a n s -

    p o r t of en ergy a s hydrogen. Hydrogen may be used a s

    a

    sourc e of th er -

    m a l or e l e c t r i c a l ene rgy , depending on w hethe r

    it

    i s burned or used i n

    an e lec t roch emic al dev ic e such

    as

    a f u e l

    c e l l .

    Hydrogen i s a l s o a

    key

    raw

    material

    i n t h e c he m ic al pr o c e s s i n d u s t r i e s

    and i n pe tr ol eum r e f in i ng . It i s e s ti m a te d t h a t by 1975 t h e t o t a l

    consumption of hydrogen i n t h e

    U . S . w i l l

    b e

    a t

    t h e r a t e of f o u r

    t r i l -

    l i o n c u b i c

    f e e t pe r yea r and growing. Gaseous and l i q u id hydrocarbons

    are

    now th e pr i nc ip a l r a w m a t e r i a l s f o r p ro du ci ng l a r g e q u a n t i t i e s o f

    hydrogen by means of e i t h e r c a t a l y t i c steam reforming or p a r t i a l oxi-

    d a t i o n .

    a r t i f i c i a l n a t u ra l g as ,

    w i l l

    increase the demand for hydrogen even

    more. I t would c l e a r l y b e i n t h e i n t e r e s t o f c o n s e r v a ti o n of n a t u r a l

    reso urc es t o develop an economical proce ss t o produce hydrogen f rom

    w a t e r .

    A

    comprehensive stud y of therm al pro ce sse s t o produce hydrogen from

    water was performed and re p or te d by Gene ral Motors ( 1 , 2 ) . A t h r e e

    s t e p p r oc e s s

    i n v o l vi n g e i t h e r t a n ta lu m c h l o r i d e o r bi sm u th c h l o r i d e

    and a f ou r s t e p p r oces s u s ing e i t h e r mercury ch l o r id e or vanadium

    c h l o r i d e

    w e r e

    desc r ibed . A ge ne ra l d i sc us s io n of energy requirements

    f o r th e decomposition of wa ter was pu bl ish ed by Funk and Reinstrom 3 )

    and , more recen t ly , a f o u r s t e p t he rm a l p r o c e s s w a s descr ibed by

    deBeni and Marchetti

    4 ) . A

    re vie w o f t h e c u r r e n t s t a t u s

    of

    e l e c t r o -

    l y t i c hyd rogen as a f u e l has been pub li shed by G rego ry , e t . a l . ( 5 ) .

    The p r e s s u r e f o r in e xp e ns iv e a nd p l e n t i f u l p i p e l i n e g a s ,

    \

    Second L aw L i m i t a t i o n s

    I f one gram mole of wa ter of l i q u id wa te r

    a t

    25OC and 1 atm i s conver-

    t e d i n t o one gram mole of hydrogen and one ha lf gram mole of oxygen

    a t

    25OC and

    1

    atm t h e g i b b s f u n c t i o n f o r t h e sys tem in cr ea se s by 56.7

    kc al , th e en tha lpy inc rea ses by 68.3 kc a l and the en t ropy inc re as es by

    39 cal/OK. I f t h e decom position i s done re ve rs ib ly a t 25OC an d1 atm--

    4

    s ay i n a n e l e c t r o l y s i s c e ll -- 56 .7 k c a l , t h e cha nge i n t h e g i b b s func-

    t ion , mus t be supp l i ed

    as

    u s e fu l work and

    11.6 k c a l

    t h e d i f f e r e n c e

    1

    between t he ent hal py change and gibbs fu nc t i on change, m ust be sup-

    p l i e d

    as

    h e a t .

    The amount of us e fu l work re qu ir ed may be decreased by ope ra t in g the

    si ng le s te p decomposit ion a t some hig her temp erature. The amount

    of

    energy requi red a s h e a t

    w i l l

    i n c r e a s e by t h e

    same

    amount th a t

    the

    work

    r equ i r ed i s decreased under th e b e s t c ase assumpt ions of e qua l spec i -

    f i c h e a t s a nd p e r f e c t t h er m al r e g e n e r a t i o n of p r o d u c ts a nd r e a c t a n t s .

    \\

    t

    If the

    pr oces s

    i s

    depicted on a temp erature e ntropy diagram, t h e work

    r e d u c t i o n i s equa l t o t h e a r e a enc losed when t he p r oces s l oop i s

    cl os ed by allowing t h e c oo le r hydrogen and oxygen

    t o

    form water

    ,

    I

    I

  • 8/9/2019 16_4_BOSTON_04-72_0079.pdf

    2/9

  • 8/9/2019 16_4_BOSTON_04-72_0079.pdf

    3/9

    81

    The total work and heat requirements

    4) over the I reactions to obtain

    I

    1

    \

    i=I

    w

    =

    AG, -

    AS(^)

    i=l

    are obtainedby summing

    3)

    and

    [T i)

    -

    To] 5 )

    Another important feature becomes apparent if the process is divided

    into J reactions which have positive entropy changes and L reactions

    which have negative entropy changes.

    To

    minimize the required work,

    the first group of reactions

    should be operated at some high tempera-

    ture,

    TH,

    and the second group operated at To.

    In this case,

    j=

    As is evident from Eqn. (-71, the required

    -

    To]

    work is zero when

    There is no reason why

    ( 8 ) cannot be satisfied along with

    7 )

    i=I i=J

    l=L

    This result cannot be obtained for a single step process, in which

    case the zero work requirement must be accomplished by a temperature

    manipulation rather than the selection

    of

    a suitable sequence

    of

    reactions.

    Work of Separation

    The theoretical work of separation, AGs, required to separate a mix-

    ture of ideal gases into its components is given by

    AGs

    = -

    R T . ~k In Xk 10)

    is the number of moles of the kth component and xk is the

    whereole fr ction of that camponent.

    Fig. 1 shows a reaction process which accomplishes the reaction

  • 8/9/2019 16_4_BOSTON_04-72_0079.pdf

    4/9

    /

    82

    The amount of

    material

    e n t e r i n g t h e s e p a r a t o r dep end s o n

    E ,

    t h e f r a c -

    t i o n a l mola r c onve r s i on o f R1, w hich i n t u rn de pe nds on t h e s t a nda rd

    f r e e ene rgy change fo r

    t h e reaction,

    AGR.

    t h e s t a n da r d f r e e e n e rg y ch an ge f o r a r e a c t i n g m i x tu r e

    of

    i d e a l g a s e s

    with Eqn. (10) y i e l d s

    Combining t h e de f i n i t i o n of

    A G ~ A G ~ - R T [ ~

    -1 I n

    s1 r2

    In

    s2 --- - C p - C r )

    In p*]

    (12)

    where

    and p* i s t h e o p e r a t i n g p r e s s u r e

    4 x 1 .

    (12)

    shows t h a t t h e t h e o r e t i c a l work of s e p a r a t i o n

    i s

    g r e a t e r

    t h a n s t a n d ar d f r e e e ne r gy ch an ge f o r t h e r e a c t i o n . I

    An example of th e t h e o re t i c a l work of se pa ra t io n f o r the vanadium

    c h l o r i d e p r o c e s s i s shown i n F igs . 2 and 3. Fig. 2 i s

    a

    schematic of

    t h e f i r s t s t a g e i n which t h e r e

    i s

    a g a s ph as e r e a c t i o n o f c h l o r i n e

    w i t h w a t e r

    a t

    1000K a t

    1

    atm. P ig . 3 shows th e th eo re t i ca l w o r k of

    s e pa ra t i on a nd it may b e noted t h a t th e sep ara t io n work

    i s

    i nc re a s e d

    i f the mi x t u re l e a ve s the r e a c t i o n cham ber a t less t ha n e qu i l i b r i um

    c ond i t i ons . F i g. 3 i s

    f o r t h e s e p a r a t i o n of a l l four components and

    the minimum work requirement i s 9.2 k c a l pe r gram mole of hydrogen

    produced.

    A

    s imilar

    c a l c u l a t i o n f o r t h e s e p a r a t i o n of o n ly t h e

    HC1

    and O 2 y i e l d s a work requirement

    of

    7.1 kca l .

    i

    The Vanadium Chloride Process

    I

    Thi s p roc e s s

    w a s

    s t u d ie d i n c o n si d er a bl e d e t a i l . A p l a n t l a you t was /

    The en t i r e vanadium c hl or id e process

    i s

    shown i n F ig . 4. The

    sums

    of

    t he e n t ha lpy , e n t ropy ,

    and f r e e energy changes o n o t e x a c t l y equal

    t h o s e f o r w a t e r com pos it ion becau se of q ue st io na bl e thermochemical-data.

    made assuming a h el iu m c o o l e d n u c l e a r r e a c t o r a s t h e h e a t s ou rc e.

    Estimates

    w e r e

    made f o r pumping, he a t re gen era t ion , etc. The r e s u l t s

    are shown

    i n T ab le 1 and, as can b e s e e n , t h i s p r o c e ss

    i s

    no t as

    e f f i c i e n t

    as

    a

    w a t e r

    e l e c t r o l y s i s p l an t .

    The ob je c t he re i s n o t to d e s c r i b e a n i n e f f i c i e n t p r o ce s s - any number

    of such proce sses can be e a s i l y d e v i s e d . It is, ra ther

    an a t t e m p t t o

    qu i c k l y l o s e t h e i r a ppe a l when subjected t o sa ne what more p ra c t i c a l

    co ns ide ra t ion s of work of sep ara t io n , the rmal reg ene ra t io n , pumping

    F e r

    etc .

    Such

    a

    r e s u l t i s n o t e s p e c i a l l y s u r p r is i n g i n v i e w of the

    ob l e c t i ve , w hich , i n i t s most fundamental

    t e r m s ,

    i s

    an a t t em pt t o con-

    v e r t h e a t t o u s e f u l work more e f f i c i e n t l y t h a n i n a s ta te of t h e a r t

    power plant .

    Refe rences

    1.

    r

    i n d i c a t e t h a t p r o c es s e s which may be i n i t i a l l y a t t r a c t i v e

    can

    q u i t e

    F i n a l

    Technica l Repor t - Ammonia P rod uct i on F e a s ib i l i t y Study ,

    Al l i so n Div i s ion of Genera l Motors ,

    EDR

    4200, November,

    1965.

    f

    2.

    System Study of Hydrogen Gen era tio n by Thermal Energy, A ll is o n

    Div i s io n of Genera l Motors EDR 3714, vol . 11, Supplement A, 1964.

  • 8/9/2019 16_4_BOSTON_04-72_0079.pdf

    5/9

    3.

    Funk, J.

    E. ,

    and Reinstrom,

    R . M . ,

    Energy Requi rements i n t h e

    Product ion

    of

    Hydrogen From Water ,

    I

    EC Proc. D e s .

    D e v . ,

    v o l . 5, N o . 3, pp 366-342, Ju ly 1966 .

    4 .

    deBeni,

    G .

    and Marchet t i ,

    C . ,

    Hydrogen, Key

    t o

    t h e Energy Market ,

    Eur o Spe c t r a , 9 ,

    46-50,

    June, 1970.

    Parameter

    Maximum helium t em -

    p e r a t u r e

    Minimum helium t em -

    p e r a t u r e

    H e l i u m

    system pres-

    sure

    P r o c e s s h e a t i n p u t

    T o t a l h e a t re-

    5. Gregory, D. P., Ng D.Y.C. , and Long, G .

    M.,

    t o be pu bl is he d i n The

    Elect rochemis t ry of Cleaner Environments, J . O ' M . Bockr is , Ed.,

    New York, Plenum P re s s ,

    1971.

    U n it s Systems Remarks

    F

    2000

    2000 1500 1500

    F 37 37

    67 67

    atm

    1 0

    1

    10

    1 H e

    p r e s s u r e

    drop

    e q u a l s

    1 0

    p s i i n

    a l l c a s e s

    k c a l 1 5 5

    155

    475 475

    Adknowledgment

    This work

    w a s

    done a t t h e A l l i s o n D i v is i on

    of

    General

    Motors

    and was

    p a r t i a l l y s u pp o rt ed by

    U.S.

    Army Engineer

    Reac to r s

    Group,

    F o r t B e l -

    v o i r , V i r g i n i a . P e rm i ss io n

    t o

    p u b l i s h t h e s e

    r e s u l t s

    i s g r a t e f u l l y

    acknowledged.

    Tab le

    1

    Vanadium Chloride

    Process

    D a t a Tabu la t ion

    I

    j e c t e d

  • 8/9/2019 16_4_BOSTON_04-72_0079.pdf

    6/9

    /

    I

  • 8/9/2019 16_4_BOSTON_04-72_0079.pdf

    7/9

    85

    L

    l

    n

    c

    0

    L

    0

    s z

    Z

    .e,

    u

    0

    Z

    a

    2

    a

    . .

    m

    a,

    Lc

    a

    :

    a,

    a

    Lc

    d

    JZ

    U

    4

    .

    a .

    E

    m

  • 8/9/2019 16_4_BOSTON_04-72_0079.pdf

    8/9

    8

    100

    -

    0

    2

    0

    N

    .L

    Temperature

    =

    IOOOOK

    Pressure

    =

    atm

    al l components separated)

    0 . 2

    0.4 0.6 0.8

    1.0

    Extent

    of

    reaction -e

    F i g .

    3

    Th e o re ti c a l Work of Separat ion

  • 8/9/2019 16_4_BOSTON_04-72_0079.pdf

    9/9

    7

    112 Q l)

    Stage I

    g]+Cl, g) -2HCl g )

    +

    1/2

    O, g) a t

    1340OF

    +

    -

    77OF

    Stage

    III

    4VCt3 s)+2VCl4

    9 )

    +OVCC 8 ) a t 1340OF

    Stage

    Ip:

    @

    c

    2VCI4

    I)e

    V C J ,

    (E) C12 s )

    a t

    77OF

    Enthalpy, entropy, and f ree energy tab ulat ion

    values in kilocalories)

    . .

    Fig Vanadi- Chloride Process

    9

    O r

    -26.71 73.4

    -46.0 48.3'

    5 3 9

    59.9


Recommended