+ All Categories
Home > Documents > 17.05h_Bettge

17.05h_Bettge

Date post: 01-Jan-2016
Category:
Upload: veky-pamintu
View: 5 times
Download: 1 times
Share this document with a friend
Description:
17.05h_Bettge
Popular Tags:
32
Federal Instutute for Materials Research and Testing Corrosion Aspects of Materials Selection for CO2 Transport and Storage Dirk Bettge, A.S. Ruhl, R. Bäßler, O. Yevtushenko, A. Kranzmann Federal Instutute for Materials Research and Testing Berlin, Germany Also with the BAM COORAL-Team: T. Bohlmann, S. Bohraus, A. Göbel, P. Wichmann, E. Hoffmann Bettge/Bäßler/Kranzmann ICEPE 20.6.2011 Folie 1
Transcript
Page 1: 17.05h_Bettge

COORAL – MINIRISKFederal Instutute for Materials Research and Testing

Corrosion Aspects of Materials Selection for

CO2 Transport and Storage

Dirk Bettge, A.S. Ruhl, R. Bäßler, O. Yevtushenko, A. Kranzmann

Federal Instutute for Materials Research and Testing

Berlin, Germany

Also with the BAM COORAL-Team:T. Bohlmann, S. Bohraus, A. Göbel, P. Wichmann, E. Hoffmann

Bettge/Bäßler/Kranzmann ICEPE 20.6.2011 Folie 1

Page 2: 17.05h_Bettge

COORAL – MINIRISK

Contents

• COORAL Joint Research Project• COORAL Joint Research Project• Materials and Gas Selection

E i t d CO t• Experiments under CO2 stream• EC Experiments under Aquifer and CO2

• Conclusions• Outlook

Bettge/Bäßler/Kranzmann Folie 2ICEPE 20.6.2011

Page 3: 17.05h_Bettge

COORAL – MINIRISK

COORAL Main Goals• COORAL: CO2 Purity for Sequestraion and Storing

(CO2-Reinheit für Abscheidung und Lagerung)(CO2-Reinheit für Abscheidung und Lagerung)

• Funding by

– German Ministry of Economics (50 %)

– E.ON, Vattenfall, ENBW, VNG, Alstom (50 %)

• Scheduled term 42 months, start date 01.04.2009

• Objectives:

– Limits of impurities

CO– Developing phases in the CO2 stream

– Corrosion of compressor and tube materials

Geochemical reactions– Geochemical reactions

– Safety issues

– Cost effectiveness

Bettge/Bäßler/Kranzmann Folie 3

Cost effectiveness

ICEPE 20.6.2011

Page 4: 17.05h_Bettge

COORAL – MINIRISK

CCS Transport Chain

• BAM Fields of Interest:• BAM Fields of Interest:– Compression– Transport– Injection

T = 170 °C

T = 5 °C

Generation Compression InjectionTransport

Bettge/Bäßler/Kranzmann ICEPE 20.6.2011 Folie 4Storage T = 60 °C

Page 5: 17.05h_Bettge

COORAL – MINIRISK

Materials Selection

N b N Sh Si TNumber Name Short Sign Treatment1.4006 X12Cr13 KM

1.4313 X3CrNiMo13-4 KR QT650

essi

on

T 170 °C1.4542 X5CrNiCuNb16-4 KS P930

1.4562 X1NiCrMoCu32-28-7 KU

3.7165 Ti-Al6-V4 KXCom

pre T = 170 °C

1.1018 Soft Iron TA

1.0484 L290NB TB

1.0582 L360NB TC

rans

port

T = 5 °C1.8977 L485MB TD

1.7225 42CrMo4 IH

1.4021 X20Cr13 IN

onT

1.4034 X46Cr13 IO

1.4542 X5CrNiCuNb16-4 IS P930

1.4162 X2CrMnNiN22-5-2 IT

1 4562 X1NiC M C 32 28 7 IU

Inje

ctio

T = 60 °C

Bettge/Bäßler/Kranzmann Folie 5ICEPE 20.6.2011

1.4562 X1NiCrMoCu32-28-7 IU

Page 6: 17.05h_Bettge

COORAL – MINIRISK

Gas Selection

OxyfuelEstimated CO2 stream compositions

CO2 O2 N2 Ar NOx SOx H2O++ 99,95% 0,01% 0,01% 0,01% 50 ppm 50 ppm 0,01%+ 98,00% 0,67% 0,71% 0,59% 0,01% 0,01% 0,01%- 96,00% 1,34% 1,38% 1,25% 0,01% 0,01% 0,01%

85 00% 4 70% 5 80% 4 57% 0 01% 0 01% 0 01%

Oxyfuel

CO2 O2 N2 NOx SOx H2O Amin+ 99,80% 0,02% 0,02% 0,02% 0,02% 0,02% 0,02%

99 40% 0 01% 0 01% 0 01% 0 01% 0 01% 0 01%

Post-Combustion

-- 85,00% 4,70% 5,80% 4,57% 0,01% 0,01% 0,01%

- 99,40% 0,01% 0,01% 0,01% 0,01% 0,01% 0,01%

A. Kather, TUHH

So called „Worst Case Composition“ to start with:

CO2 – 2 % O2 – 750 ppm CO – 600 ppm H2O – 70 ppm SOx – 100 NOx2 2 pp pp 2 pp x x

Bettge/Bäßler/Kranzmann Folie 6ICEPE 20.6.2011

Variation of amounts of the impurities to determine their influence

Page 7: 17.05h_Bettge

COORAL – MINIRISK

Gas Reactions (without intermediates)

• SO2 + 7 H2O ⇒ H2SO4 (H2O)6 ; liquid sulphuric acid forms up to 120 °C

• CO + O2 ⇒ CO2 + 1/2O2 ; CO and O2 are consumed

• NO2 + CO ⇒ CO2 + 1/2N2 + 1/2O2; N2 is formed

• H2O + 2NO2 ⇒ HNO3 + HNO2, gaseous nitric acid and nitrous acid areformed to low amounts

• SO2 + 1/2O2 ⇒ SO3 ; is formed at > 60°C

Bettge/Bäßler/Kranzmann Folie 7ICEPE 20.6.2011

Page 8: 17.05h_Bettge

COORAL – MINIRISK

Screening Experiments under Ambient Pressure

3 Chamber Furnaces

Gas Mixing

Compression 170 °C

DataAkquisition

Bettge/Bäßler/Kranzmann Folie 8ICEPE 20.6.2011

Page 9: 17.05h_Bettge

COORAL – MINIRISK

Screening Experiments60 °C, 600 hours, 600 H2O – 70 SO2 – 100 NO2 – 750 CO – 8000 O2 (in ppm)

Bettge/Bäßler/Kranzmann Folie 9

42CrMo4 X2CrMnNiN22-5-2

ICEPE 20.6.2011

Page 10: 17.05h_Bettge

COORAL – MINIRISK

Screening Experiments5 °C, 600 hours, 600 H2O – 70 SO2 – 100 NO2 – 750 CO – 8.000 O2

• Very slight uniform corrosion of pipeline materials

Iron L290NB L360NB L485MB

Bettge/Bäßler/Kranzmann Folie 10ICEPE 20.6.2011

Page 11: 17.05h_Bettge

COORAL – MINIRISK

Phase Analysis Using XRD

- Amorphous or very fine grained layer

Bettge/Bäßler/Kranzmann Folie 11ICEPE 20.6.2011

Page 12: 17.05h_Bettge

COORAL – MINIRISK

Screening Experiments170 °C, 600 hours, 600 ppm H2O – 70 ppm SO2 – 100 ppm NO2 – 750 ppm CO –

8 000 ppm O8.000 ppm O2

Compressor materials

TiX12Cr131.4562 1 4313 1 4542 TiX12Cr131.4562 1.4313 1.4542

Bettge/Bäßler/Kranzmann Folie 12ICEPE 20.6.2011

Page 13: 17.05h_Bettge

COORAL – MINIRISK

Screening Experiments170 °C, 600 hours, 600 ppm H2O – 220 ppm SO2 – 1.000 ppm NO2 – 750 ppm CO

8 000 ppm O– 8.000 ppm O2

From here, the amount of impurities was increased beyond „worst case“

Ti 42CrMo41.4562 X12Cr13 1.45421.4313

Bettge/Bäßler/Kranzmann Folie 13ICEPE 20.6.2011

Pipeline steelsX20Cr13 X46Cr13 1.4162

Page 14: 17.05h_Bettge

COORAL – MINIRISK

60°C, 240 hours, 8.000 ppm H2O, 220 ppm SO2, 1.000 ppm NO2Amount of H2O was increased beyound “worst case”

Screening Experiments

Amount of H2O was increased beyound worst case

Pipeline steels X46Cr1342CrMo4

Bettge/Bäßler/Kranzmann Folie 14ICEPE 20.6.2011

Injection materials1.4562

Page 15: 17.05h_Bettge

COORAL – MINIRISK

Screening Experiments30°C, 120 hours, 8.000 ppm H2O, 220 ppm SO2, 1.000 ppm NO2

Pipeline steels X46Cr1342CrMo4

Bettge/Bäßler/Kranzmann Folie 15ICEPE 20.6.2011

X20Cr13 X12Cr131.45621.41621.4542 1.4313

Page 16: 17.05h_Bettge

COORAL – MINIRISK

Screening Experiments5°C, 8.000 ppm H2O, 220 ppm SO2, 1000 ppm NO2

A id d ti d t ditiAcid condensation under extreme conditions

Bettge/Bäßler/Kranzmann Folie 16ICEPE 20.6.2011

Page 17: 17.05h_Bettge

COORAL – MINIRISK

Screening Experiments5°C, 8.000 ppm H2O, 220 ppm SO2, 1000 ppm NO2

A id d ti d t ditiAcid condensation under extreme conditions

Pipeline steelsPipeline steels

Bettge/Bäßler/Kranzmann Folie 17ICEPE 20.6.2011

Page 18: 17.05h_Bettge

COORAL – MINIRISK

L290NB, Experiments over 120 h at 5°C

atio

n [p

pm]

Con

cent

ra

Bettge/Bäßler/Kranzmann Folie 18ICEPE 20.6.2011

Page 19: 17.05h_Bettge

COORAL – MINIRISK

Thickness Measurement L290NB5 °C, 2 % H2O, 650 ppm SO22 pp 2=> condensating acidapprox. 0.7 .. 1.0 mm loss/year

Bettge/Bäßler/Kranzmann Folie 19ICEPE 20.6.2011

Page 20: 17.05h_Bettge

COORAL – MINIRISK

Conclusions Screening ExperimentsPipeline Steels under Ambient Pressurep• At temperatures of 60°C and higher no corrosion observed under the

described conditions• At 30°C corrosion only under very high H2O content ≥ 8 000 ppm due toAt 30 C corrosion only under very high H2O content ≥ 8.000 ppm due to

acid condensation• At 5 °C corrosion only under high water content ≥ 2.000 ppm due to acid

condensationcondensation

Injection and Compression• „Compressor materials“ without corrosion• High alloyed „injection materials“ without corrosion• 42CrMo4 and X46Cr13 behave similar to pipeline steels42CrMo4 and X46Cr13 behave similar to pipeline steels

Bettge/Bäßler/Kranzmann Folie 20ICEPE 20.6.2011

Page 21: 17.05h_Bettge

COORAL – MINIRISK

C

Conditions:

Electro Chemical Experiments on Injection Materials

Conditions:

• Wet CO2 stream

• High temperature high pressure• High temperature, high pressure

• Aquifer water (“brine”) with high Cl- content

A if t i i th i li t th i j ti i t d i• Aquifer water can rise in the pipeline to the injection point during

the downtime

Bettge/Bäßler/Kranzmann Folie 21ICEPE 20.6.2011

Page 22: 17.05h_Bettge

COORAL – MINIRISK

Experimental

Chemical composition of the steels, %

C, max. Cr Mo Mn S, max. Ni Si, max. P, max. Cu N

1.4162 0.04 21-22 0.1-0.8 4-6 0.03 1.3-1.7 1 0.04 0.1-0.8 0.251.4021 0.25 12-14 1.5 0.015 1 0.04

1.7225 0.45 0.9-1.2 0.15-0.3 0.6-0.9 0.035 0.4 0.035

Simulation of the “real conditions” in the lab:

• Artificial brine similar to onshore CCS-site in Germany• Brine saturation with CO2• Continues CO2 flowContinues CO2 flow• Temperature 60 °C known as critical for CO2 corrosion

Bettge/Bäßler/Kranzmann Folie 22ICEPE 20.6.2011

Page 23: 17.05h_Bettge

COORAL – MINIRISK

Reference Temperature Brine composition

Experimental setup

electrodep

controllerBrine composition

Cations mg L-1 Anions mg L-1

Ca2+ 1760 Cl- 143300K+ 430 SO4

2- 3600

CO t

Mg2+ 1270 HCO3- 40

Na+ 90100

T 333 KCO2 in

CO2 out T = 333 KCO2 flow 3-5 L/hpH = 5.8-6.0

Counterelectrode

HeaterWE= test specimen

Bettge/Bäßler/Kranzmann Folie 23ICEPE 20.6.2011

Page 24: 17.05h_Bettge

COORAL – MINIRISK

Localized corrosionTheoretical background

CO2 corrosion:

H2O + CO2 + Fe = FeCO3 + H2

CO2 + H2O H2CO3

Anodic:Anodic:

Fe Fe++ + 2e-

Cathodic:

2HCO + 2 2CO 2 + H2HCO3- + 2e- 2CO3

2- + H2

2H+ + 2e- H2

Bettge/Bäßler/Kranzmann

Maurice V., Marcus P. in Modern Aspects of Electrochemistry, 2009

Folie 24ICEPE 20.6.2011

Page 25: 17.05h_Bettge

COORAL – MINIRISK

1 4021 (X20C 13) i CO2 t t d li b i80

90

1.4021X20Cr13

0.0

1.4021 (X20Cr13) in CO2 saturated saline brine

50

60

70

kΩ •

cm

2

X20Cr13

-0.5 g/Ag

Cl, V

20

30

40Rpo

l, k

-1.0

EAg

0 2 4 6 8 10 12 14 1610

20

t, days

Bettge/Bäßler/Kranzmann Folie 25ICEPE 20.6.2011

Page 26: 17.05h_Bettge

COORAL – MINIRISK

1 021 ( 20C 13) CO2

240

260

1.4021 (X20Cr13) in CO2 saturated saline brine

180

200

220

240

, µm

1.4021X20Cr13

120

140

160

180 P

it de

pth

-390 -380 -370 -360 -35080

100

120

-350 mV -400 mV-390 mVE applied, mV vs Ag/AgCl

-380 mV

Bettge/Bäßler/Kranzmann Folie 26ICEPE 20.6.2011

Page 27: 17.05h_Bettge

COORAL – MINIRISK

1 22 ( 2C ) CO2

600

1.7225 (42CrMo4) in CO2 saturated saline brine

160

-600

120

140

Ω •

cm

2

-620

AgC

l, m

V

100

R

pol, -640

E Ag

/A

0 2 4 6 8 10 12 14 16

80-660

Time, days

Corrosion rate 1 9

Bettge/Bäßler/Kranzmann

Corrosion rate 1.9 mm/a

Folie 27ICEPE 20.6.2011

Page 28: 17.05h_Bettge

COORAL – MINIRISK

1 22 ( 2C ) CO2O

1.7225 (42CrMo4) in CO2 saturated saline brine

FeFe

FeFe

O

FeFe

Bettge/Bäßler/Kranzmann

FeCrCr

Folie 28ICEPE 20.6.2011

Page 29: 17.05h_Bettge

COORAL – MINIRISK

1.4162 (X2CrMnNiN22-5-2) in CO2 saturated saline brine

220

X2CrMnNiN22-5-2 150

-100

200

210

cm2

-250

-200

-150

mV

180

190

R

pol, k

Ω •

c

-350

-300 E

Ag/

AgC

l, m

150

160

170

R

500

-450

-400

0 2 4 6 8 10 12 14 16150

Time, days

-500

Bettge/Bäßler/Kranzmann Folie 29ICEPE 20.6.2011

Page 30: 17.05h_Bettge

COORAL – MINIRISK

700

8001.4162 (X2CrMnNiN22-5-2) in CO2 saturated saline brine

400

500

600

h, µ

m

200

300

400

Pit

dept

h

150 V-190 -180 -170 -160 -150

0

100

E V-190 mV -150 mVE, VAg/AgCl-170 mV -160 mV

Bettge/Bäßler/Kranzmann Folie 30ICEPE 20.6.2011

Page 31: 17.05h_Bettge

COORAL – MINIRISK

C CConclusions EC Experiments

• In CO2 saturated saline brine material 1.4021 is not resistant to pittingcorrosion, 1.7225 shows uniform corrosion, alloy 1.4162 is resistant topitting corrosion

• Cl- ions concentration controlls the corrosion kinetics

Outlook

• Corrosion of piping steels in a circulating supercritical impure CO2environment

Bettge/Bäßler/Kranzmann Folie 31ICEPE 20.6.2011

Page 32: 17.05h_Bettge

COORAL – MINIRISK

Laminary Flow

Outlook: High Pressure Tests

Laminary Flow• Autoclaves with CO2 circuit, max. 120 bar, max. 200 °C• Installed, first experiments launched

Turbulent Flow• Max. 200 bar, 200 °C, Turbulent gas stream, max. 10 m/s, , g ,• Mechanical stress (ball on ring)• To be assembled

Bettge/Bäßler/Kranzmann Folie 32ICEPE 20.6.2011