+ All Categories
Home > Documents > 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of...

173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of...

Date post: 16-Mar-2019
Category:
Upload: vanlien
View: 217 times
Download: 0 times
Share this document with a friend
19
CHAPTER 173 Pathogenesis and pathology of osteoarthritis OSTEOARTHRITIS AND RELATED DISORDERS Pathogenesis and pathology of osteoarthritis SECTION 13 OSTEOARTHRITIS AND RELATED DISORDERS 1741 progression, research in OA pathogenesis, biomarkers, and treatment has broadened immensely and many new potential therapeutic targets have emerged over the past years. THE NORMAL JOINT: ANATOMY— PHYSIOLOGY—FUNCTION Understanding of joint dysfunction requires some knowledge of nor- mality and the comparison of the diseased state to the physiologic situ- ation (Fig. 173.2). The most important requirements for normal joint function are the freedom of the opposed articular surfaces to move pain free—and largely frictionlessly—over each other within the required range of motion as well as the correct distribution of load across joint tissues. Thus, pathology in many cases might be caused by acute or chronic mechanical overloading, systematic mal-loading, or habitual underloading, leading to disuse atrophy. The correct functioning of the joint is largely dependent on its design. Joints are highly specialized organs whose properties are pro- vided by the articular cartilage and its extracellular matrix that, under physiologic conditions, is capable of sustaining high cyclic loading. Articular cartilage covers the joint surfaces and is mainly responsible for the unique biomechanical properties of the joints. Joints are, however, complex composites of different types of connective tissue, including subchondral bone, cartilage surfaces, ligaments, and the joint capsule. The bony backbone defines the shape of the joint and the articulating surfaces—in combination with the articular cartilage— determine the absorption properties during movement. Also, the syno- vial capsule and, in particular, the synovial membrane (i.e., the synovial lining cell layer) vastly contribute to the physiologic functioning of the articulating joints. It is the synovial capsule together with the liga- ments that provides the mechanical stability of the joints and ulti- mately determines their flexibility and range of motion. The synovial membrane, containing high metabolically active surface cells, the synoviocytes, plays a crucial role in nourishing the chondrocytes as well as maintaining the normal metabolic milieu within the joints by removing metabolites and matrix degradation products from the syno- vial space. Also, synoviocytes produce large amounts of important mediators (cytokines and growth factors), matrix degrading enzymes, as well as hyaluronic acid and other factors such as lubricin/superficial zone protein, which provide the joint surfaces with its lubrication capacity. All these factors enable maintaining the local milieu of the synovioarticular joint organ. Together all different tissues with their own functional capacities permit correct functioning and integrity of the joints. PATHOLOGY Macroscopically, normal hyaline articular cartilage is a rather unruffled white to yellowish overlay coating the articulating joint surface (Figs. 173.3e and 173.4a). The synovial fluid makes it to appear slippery and provides its gliding properties. Microscopically, hyaline cartilage con- sists of evenly stained (“hyaline”) collagen- and proteoglycan-rich extra- cellular matrix with sparsely distributed cartilage cells (“chondrocytes”). The cells represent less than 5% of the total volume of articular carti- lage but are of obvious importance for the maintenance of the tissue. Chondrocytes are surrounded in most parts by a specialized pericellular matrix forming a biomechanical and biochemical interface between the rigid interterritorial matrix and the cells. The mechanical properties of Pathogenesis and pathology of osteoarthritis Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily characterized by focal cartilage damage, bone sclerosis, and some sort of synoviopathy. Osteoarthritic changes within the articular cartilage can be categorized by typing, staging, and grading of the lesions. OA is strongly associated with age, but bone and cartilage changes in OA are different from those of normal aging. There are many different hypotheses trying to explain cartilage and joint degeneration, including chronic mechanical (over)load, matrix proteolysis, age-induced changes of the cartilage matrix and the chondrocytes, as well as increasing damage to the genomic DNA of the chondrocytes, leading to a deranged cellular phenotype. Proinflammatory cytokines as well as the activation of cellular inflammatory signaling pathways including interleukin-1 and the MAP kinases likely play an important role in OA pathogenesis. Biomechanical factors are essential in the pathogenesis of OA. Altered joint biomechanics are generated by joint incongruity, laxity, muscle weakness, and impaired proprioception in addition to trauma and heavy physical load. Despite the fact that presumably a high variety of different phenomena contribute to the pathogenesis of OA, premature aging of the chondrocytes and the matrix presumably plays a crucial role in its initiation and progression; thus, OA might be in analogy the “Morbus Alzheimer” of the joint. INTRODUCTION Osteoarthritis (OA), also known as degenerative joint disease or osteo- arthrosis, is the most common form of arthritis and the leading source of physical disability with severely impaired quality of life in people in industrialized nations. Although derived from the Greek words osteon for bone, arthron for joint, and the suffix -itis for inflammation, the site of most pronounced structural alterations is not the bone but the joint cartilage, and severe inflammation is seen in only few patients. OA is generally considered as a disease of the elderly, progressively causing loss of joint function, but although it is true that OA preva- lence increases sharply with age it is not part of normal aging. Very little is known about the underlying causes of OA, and many hypoth- eses regarding its pathogenesis have been proposed over time. Genetic defects causing malfunction of structural genes give rise to premature and often severe OA in certain families, but in the majority of OA cases no such defects have been identified. A number of risk factors are known that apart from age include heredity, malalignment of the articulating surfaces, obesity, metabolic diseases, and joint trauma. Each can make contributions to the initiation and progress of the disease in different compartments of the joint. Biochemical processes involving cartilage, bone, and synovium eventually intertwine and col- lectively damage all three joint compartments. This results in articular cartilage breakdown, osteophyte formation, subchondral bone sclerosis, bone marrow lesions, and alterations of the synovium on both mor- phologic and biochemical levels, often causing, for example, episodic synovitis (Fig. 173.1). Advances in molecular biology raise hopes that new therapeutic targets will be identified that will allow more than just symptomatic therapy. Joint replacement is still the unsurpassed therapy for advanced and incapacitating OA. However, with increasing appre- ciation of the contribution of all three joint compartments to disease 173
Transcript
Page 1: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

CHA

PTER 173 ● Pathogenesis and pathology of osteoarthritis

OSTEO

ARTH

RITIS AN

D RELATED

DISO

RDERS

 Pathogenesis and pathology of osteoarthritis

SECTION 13 OSTEOARTHRITIS AND RELATED DISORDERS

1741

progression, research in OA pathogenesis, biomarkers, and treatment has broadened immensely and many new potential therapeutic targets have emerged over the past years.

THE NORMAL JOINT: ANATOMY— PHYSIOLOGY—FUNCTIONUnderstanding of  joint dysfunction  requires  some knowledge of nor-mality and the comparison of the diseased state to the physiologic situ-ation (Fig. 173.2). The most important requirements for normal joint function are the freedom of the opposed articular surfaces to move pain free—and  largely  frictionlessly—over  each  other  within  the  required range of motion as well as the correct distribution of load across joint tissues. Thus, pathology  in many cases might be caused by acute or chronic  mechanical  overloading,  systematic  mal-loading,  or  habitual underloading, leading to disuse atrophy.

The  correct  functioning  of  the  joint  is  largely  dependent  on  its design. Joints are highly specialized organs whose properties are pro-vided by the articular cartilage and its extracellular matrix that, under physiologic  conditions,  is  capable  of  sustaining  high  cyclic  loading. Articular cartilage covers the joint surfaces and is mainly responsible for  the  unique  biomechanical  properties  of  the  joints.  Joints  are, however,  complex  composites  of  different  types  of  connective  tissue, including subchondral bone, cartilage surfaces, ligaments, and the joint capsule.  The  bony  backbone  defines  the  shape  of  the  joint  and  the articulating  surfaces—in  combination  with  the  articular  cartilage—determine the absorption properties during movement. Also, the syno-vial capsule and, in particular, the synovial membrane (i.e., the synovial lining cell layer) vastly contribute to the physiologic functioning of the articulating  joints.  It  is  the  synovial  capsule  together  with  the  liga-ments  that  provides  the  mechanical  stability  of  the  joints  and  ulti-mately determines their flexibility and range of motion. The synovial membrane,  containing  high  metabolically  active  surface  cells,  the  synoviocytes,  plays  a  crucial  role  in  nourishing  the  chondrocytes  as well as maintaining the normal metabolic milieu within the joints by removing metabolites and matrix degradation products from the syno-vial  space.  Also,  synoviocytes  produce  large  amounts  of  important mediators  (cytokines and growth factors), matrix degrading enzymes, as well as hyaluronic acid and other factors such as lubricin/superficial zone  protein,  which  provide  the  joint  surfaces  with  its  lubrication capacity. All  these  factors enable maintaining  the  local milieu of  the synovioarticular joint organ.

Together  all  different  tissues  with  their  own  functional  capacities permit correct functioning and integrity of the joints.

PATHOLOGYMacroscopically, normal hyaline articular cartilage is a rather unruffled white to yellowish overlay coating the articulating joint surface (Figs. 173.3e and 173.4a). The synovial fluid makes it to appear slippery and provides  its gliding properties. Microscopically, hyaline cartilage con-sists of evenly stained (“hyaline”) collagen- and proteoglycan-rich extra-cellular matrix with sparsely distributed cartilage cells (“chondrocytes”). The cells represent less than 5% of the total volume of articular carti-lage but are of obvious importance for the maintenance of the tissue. Chondrocytes are surrounded in most parts by a specialized pericellular matrix forming a biomechanical and biochemical interface between the rigid interterritorial matrix and the cells. The mechanical properties of 

Pathogenesis and pathology of osteoarthritisThomas Aigner and Nicole Schmitz

Osteoarthritis (OA) is pathologically primarily characterized by focal cartilage damage, bone sclerosis, and some sort of synoviopathy.

Osteoarthritic changes within the articular cartilage can be categorized by typing, staging, and grading of the lesions.

OA is strongly associated with age, but bone and cartilage changes in OA are different from those of normal aging.

There are many different hypotheses trying to explain cartilage and joint degeneration, including chronic mechanical (over)load, matrix proteolysis, age-induced changes of the cartilage matrix and the chondrocytes, as well as increasing damage to the genomic DNA of the chondrocytes, leading to a deranged cellular phenotype.

Proinflammatory cytokines as well as the activation of cellular inflammatory signaling pathways including interleukin-1 and the MAP kinases likely play an important role in OA pathogenesis.

Biomechanical factors are essential in the pathogenesis of OA. Altered joint biomechanics are generated by joint incongruity, laxity, muscle weakness, and impaired proprioception in addition to trauma and heavy physical load.

Despite the fact that presumably a high variety of different phenomena contribute to the pathogenesis of OA, premature aging of the chondrocytes and the matrix presumably plays a crucial role in its initiation and progression; thus, OA might be in analogy the “Morbus Alzheimer” of the joint.

INTRODUCTIONOsteoarthritis (OA), also known as degenerative joint disease or osteo-arthrosis, is the most common form of arthritis and the leading source of physical disability with severely impaired quality of life in people in industrialized nations. Although derived from the Greek words osteon for bone, arthron  for  joint,  and  the  suffix  -itis  for  inflammation,  the site of most pronounced structural alterations is not the bone but the joint cartilage, and severe inflammation is seen in only few patients. OA  is  generally  considered  as  a  disease  of  the  elderly,  progressively causing  loss of  joint  function, but although it  is  true that OA preva-lence  increases  sharply with age  it  is not part of normal  aging. Very little is known about the underlying causes of OA, and many hypoth-eses regarding its pathogenesis have been proposed over time. Genetic defects causing malfunction of structural genes give rise to premature and often severe OA in certain families, but in the majority of OA cases no  such  defects  have  been  identified.  A  number  of  risk  factors  are known  that  apart  from  age  include  heredity,  malalignment  of  the articulating  surfaces,  obesity,  metabolic  diseases,  and  joint  trauma. Each  can  make  contributions  to  the  initiation  and  progress  of  the disease in different compartments of the joint. Biochemical processes involving cartilage, bone, and synovium eventually intertwine and col-lectively damage all three joint compartments. This results in articular cartilage breakdown, osteophyte formation, subchondral bone sclerosis, bone marrow  lesions, and alterations of  the  synovium on both mor-phologic and biochemical  levels, often causing,  for example, episodic synovitis (Fig. 173.1). Advances in molecular biology raise hopes that new therapeutic targets will be identified that will allow more than just symptomatic therapy. Joint replacement is still the unsurpassed therapy for advanced and incapacitating OA. However, with increasing appre-ciation of the contribution of all three joint compartments to disease 

173

Page 2: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

SEC

TIO

N 1

3 ●

OST

EOA

RTH

RITI

S A

ND

REL

ATED

DIS

ORD

ERS

1742

Articular cartilage

SCHEMATIC VIEW OF THE MAIN STRUCTURES OF A HEALTHY (LEFT) AND DEGENERATE OA (RIGHT) JOINT

Joint capsule

Synovialmembrane

(Subchondral) bone

Destructed cartilage

Capsular fibrosis

Synovial hyperplasia

Osteophyteformation

(Subchondral)bone remodellingand sclerosis

Fig. 173.1 Schematic view of the main structures of a healthy (left) and degenerated OA (right) joint. In OA the articular cartilage is lost or severely thinned, the (subchondral) bone is sclerotic, the joint capsule is thickened, and the synovial membrane is activated. (Courtesy of E. Bartnik, Frankfurt.)

Fig. 173.2 The images show coronal magnetic resonance imaging datasets of the knee acquired using a fast low-angle shot (FLASH) or spoiled gradient-recalled-echo sequence (SPGR). This imaging sequence has been extensively validated for detecting cartilage lesions and for performing quantitative measures of cartilage volume and thickness. The left image shows a healthy knee with normal cartilage thickness, the right image a knee with OA. Note the osteophytes and the extensive cartilage loss in the lateral femorotibial compartment. (Courtesy of Felix Eckstein, Salzburg, Austria.)

articular  cartilage  largely  depend  on  the  biochemical  composition  of the extensive interterritorial (extracellular) cartilage matrix.

Macroscopically,  OA  cartilage  is  often  yellowish  or  brownish,  is typically soft, and is often swollen. The surface shows roughening in the early stages and overt fibrillation and matrix loss in the later stages until the eburnated subchondral bone plate is visible (see Fig. 173.3f, g).  These  changes  can  be  seen  and  graded  radiographically  (see  Fig. 173.3a-d) and can be visualized in more detail on the histologic level (see Fig. 173.4). Thus, microscopically, the surface shows undulations (roughening) in the early and overt fissures and splits as well as matrix loss in the later disease stages (see Fig. 173.4b) until the subchondral bone plate becomes visible (see Fig. 173.4e). Besides the total destruc-tion of matrix areas, also the degradation of matrix molecules plays an important  role  preceding  and  driving  the  final  loss  of  the  respective 

matrix areas (see Fig. 173.4d, e: loss of toluidine blue staining reflecting the loss of proteoglycans in damaged cartilage areas). Apart  from the degradation of molecular components, destabilization of supramolecu-lar structures also takes place. For example, destabilization of the col-lagen network results in microscopically and, finally, macroscopically visible matrix destruction. Both mechanical wear and enzymatic deg-radation  appear  to  play  a  pivotal  role  during  the  disease  process. Together,  these  cause  the  destruction  of  the  cartilage  matrix  on  the molecular (e.g., proteoglycan depletion) and the macromolecular (e.g., network  loosening),  explaining  the  changes  observed  on  the  micro-scopic (e.g., fissures) and the macroscopic level (e.g., cartilage tear).

At the margins of joints frequently (osteo)cartilaginous outgrowths appear (chondro-osteophytes). They are best considered as a process of secondary  chondroneogenesis  in  the  adult.  Osteophytes  derive  from mesenchymal precursor cells within periosteal or synovial tissue and often merge with or overgrow the original articular cartilage. Thus, in this process, mesenchymal precursor cells differentiate into chondro-cytes. A similar, but less structured process is observed in the areas of the eburnated bone, in which the articular cartilage is completely torn off. Here, mesenchymal multipotential stem cells of the bone marrow undergo  also  chondrogenic  differentiation:  metaplastic  cartilage  in forms of nodules or “tufts” is found either within the bone marrow or at the naked bone surface.

Osteophytes could be considered as endogenous repair attempts in degenerating joints and might be a physiologic response to mechanical overloading by increasing the articulating joint surface, thus having a supportive  function. However,  they are mainly  found in non–weight-bearing  areas  and  their  mechanical  stability  and  biologic  benefit  are questionable. To date, the molecular mechanisms in the development of osteophytes are largely unknown. Mechanical or biochemical stimuli could play a central role. However, most osteophytes do not take part in the articulating process and are subsequently not exposed to major mechanical  load.  Thus,  it  is  more  likely  that  growth  factors  play  a dominant  role  in  the  induction and promotion of osteophyte  forma-tion. For example,  the exogenous application of  transforming growth factor-β (TGF-β) and bone morphogenetic protein-2 (BMP-2) into knee joints of adult mice leads to significant osteophyte formation.

TYPING, STAGING, AND GRADING OF JOINT CARTILAGE ALTERATIONS IN OSTEOARTHRITISOverall,  the  classification  of  OA  cartilage  degeneration  is  rather complex because all patients present with at least to some extent dif-ferent histories, symptoms, and morphologic changes. Common to all 

Page 3: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

CHA

PTER 173 ● Pathogenesis and pathology of osteoarthritis

1743

a

e f g

b c d

Fig. 173.3 Knee: (a) grade 0 normal, (b) grade 1 lateral tibiofemoral narrowing, (c) grade 3 lateral tibiofemoral narrowing, and (d) grade 3 lateral tibiofemoral narrowing. (e, f ) Macroscopic appearance of femoral condyles of a normal (e) and severely damaged (f ) knee. (g) Arthroscopic image of a cartilage defect of the femoral condyle within the knee joint. (a-d, from Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised. Osteoarthritis Cartilage 2007;15[Suppl A]:A1-A56; g, courtesy of Dr. W. Eger, Rummelsberg.)

of them is some sort of structural  joint (cartilage) damage, pain, and limitation in joint movement.

Obviously, many other tissues apart from the articular cartilage are involved in this process, but, traditionally, the cartilage has been used to score OA severity (at least as long as structural changes are assessed). In general, the process of joint destruction can always be evaluated for the pathogenesis (“typing”), for its extent (“staging”), and for the degree of the most extensive focal damage (“grading”).

“Typing”  is mostly related to “primary”  (i.e.,  idiopathic) and “sec-ondary” (i.e., “caused by”) OA. Primary OA is most frequently observed. Whereas the addition “primary” implies that there is no obvious cause, still minor preexisting conditions also exist in this condition (i.e., “pre-conditions” or “risk factors”). The major causes leading to secondary OA  joint  degeneration  are  listed  in  Table  173.1.  “Grading”  and “staging” have been much more under debate, also regarding the basic meaning  of  both  words:  “grading”  should  refer  to  the  evaluation  of histologic  changes  at  one  (or  the  worst)  site  of  joint  destruction, whereas “staging” should refer to the overall disease process (in analogy to  “grading”  and  “staging”  in  tumor  pathology).  Both  represent  an attempt to score processes relevant to the disease.

The grading system most commonly used (partly with minor modi-fications)  is  the  histochemical-histologic  grading  system  by  Mankin and  coworkers  in  1971  (Table  173.2;  Fig.  173.5).1  Despite  repetitive criticism that the Mankin score shows a high interindividual variabil-ity, this might be related to the training status of the involved scoring people. However, clearly some of the subcategories of the Mankin score do not belong to primary cartilage degeneration but describe  features observed in secondary cartilage formation (i.e., osteophyte formation: see Table 173.3) and should be excluded in future scoring attempts. A staging  system  used  internationally  is  that  of  Outerbridge  (Table 173.4), while another has been established in Germany by Otte (Table 173.5; see Fig. 173.5).2 The Outerbridge system was primarily described for  the patella but  later successfully applied  to other  joints. Whereas Mankin  addresses  the  piece  of  cartilage  under  the  microscope,  the 

TABLE 173.1 TYPING OF JOINT DESTRUCTION

PrimaryNo (major) causative reason known

SecondaryArticular goutBone infarctionEndocrine disorders (e.g., hyperparathyroidism)HemophiliaIntra-articular infectionsJoint instability (e.g., meniscus lesions)Neuropathy (e.g., Charcot’s joint)Overload causing excessive wear (work, sport, varus or valgus deformity)Paget’s diseasePsoriatic arthritisRheumatic diseaseTrauma

staging systems look at the whole joint surface mostly macroscopically (but if needed the worst lesion can be evaluated histologically). At the site  of  the  highest  cartilage  damage,  grading  and  staging  are  closely correlated. Clearly, a pure macroscopic staging system is too rough for scientific purposes and, thus, a new staging system has been proposed by  Pritzker  and  colleagues  (Table  173.6)3  that  combines  histopatho-logic grading parameters with the extension of the lesions. Doubtless, along  with  new  scientific  insights  and  more  extensive  and  specified medical options, we will need more elaborated and validated “grading” and “scoring” systems, and this will be a major task in the near future.

Of  crucial  importance  will  be  the  use  of  a  defined  and  unified nomenclature  to make studies, descriptions, and results comparable, whereas  at  the  moment  many  similar-sounding  terms  are  used  for partly  different  phenomena  and  differently  sounding  words  for  the 

Page 4: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

SEC

TIO

N 1

3 ●

OST

EOA

RTH

RITI

S A

ND

REL

ATED

DIS

ORD

ERS

1744

NormalMankin 0–2 Mankin 3–5

OAMankin 6–7 Mankin 8–10 Mankin >10

Stage 0 Stage I Stage II Stage III Stage IV

Grading according to Mankin

Staging according to Otte

Sup. zone

Mid. zone

Deep zone

Calc. zone

Bone

Tolu

idin

e bl

ue

Tolu

idin

e bl

ue

Tolu

idin

e bl

ue

Tolu

idin

e bl

ue

Tolu

idin

e bl

ue

Fig. 173.5 The grading system according to Mankin and colleagues (1971)1 compared with the staging system according to Otte (1969).2

a

e f

b c

d

Fig. 173.4 Conventional histology shows fibrillation and matrix loss in OA cartilage (b) compared with normal cartilage (a). In severely damaged areas nearly all articular cartilage is destroyed (e). Also a moderate (d) to severe (e) loss of proteoglycans is found, as visualized by toluidine blue staining. Besides changes in articular cartilage, also changes in the subchondral bone are prominent, namely, thickening of the subchondral bone plate (f, OA; c, normal).

Page 5: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

CHA

PTER 173 ● Pathogenesis and pathology of osteoarthritis

1745

TABLE 173.2 GRADING OF OSTEOARTHRITIS ACCORDING TO MANKIN AND COLLEAGUES (1971)

Feature Score Histologic feature

Cartilage structure 0 Normal

1 Superficial fibrillation

2 Pannus and superficial fibrillation*

3 Fissures to the middle zone

4 Fissures to the deep zone

5 Fissures to the calcified zone

Chondrocytes 0 Normal

1 Diffuse hypercellularity

2 Cell clusters

3 Hypocellularity

Safranin-O staining 0 Normal

1 Slight reduction

2 Moderate reduction

3 Severe reduction

4 No staining

5 Total disorganization*

Tidemark 0 Intact

1 Tidemark penetrated by vessels†

*Might best be removed (relates to osteophyte formation).†Might best be supplemented with “or duplicated tidemark.”From Mankin HJ, Dorfman H, Lippiello L, et al. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritic human hips. J Bone Joint Surg Am 1971;53:523-537.

TABLE 173.3 STAGING OF OSTEOPHYTE DEVELOPMENT ACCORDING TO GELSE AND AIGNER (2003)

Stage 0 (normal)

Normal periosteum

Stage I Slight thickening of the periosteumIncipient formation of fibrocartilage (some round cells, some

metachromatic tissue staining of the extracellular matrix)No/slight active bone formationMolecular markers:

Focal collagen type II expressionNo collagen type X

Stage II Pronounced thickening of the periosteal layersWell-established formation of fibrocartilage (many round cells,

strong metachromatic tissue staining of the extracellular matrix)Some/moderate bone formationMolecular markers:

Distinct collagen type II expressionNo collagen type X

Stage III Pronounced thickening of the periosteal layersWell-established formation of fibrocartilage (many round cells,

strong metachromatic tissue staining of the extracellular matrix, formation of lacunae)

Strong active bone formationMolecular markers:

Distinct collagen type II expressionCollagen type X expression in basal areasCollagen type VI: intermixed with collagen types I, III, and V in

the intercellular matrix

Stage IV Significant thickening of the periosteal layerApparent formation of fibrocartilage with partial hyalinization of

the extracellular matrix (chondrocyte-like cells in lacunae, strong metachromatic tissue staining of the extracellular matrix)

Some active bone formationMolecular markers:

Ubiquitous presence of collagen type IICollagen type X in basal areasCollagen type VI: mostly pericellular

From Gelse K, Soeder S, Eger W, et al. Osteophyte development-molecular characterization of differentiation stages. Osteoarthritis Cartilage 2003;11:141-148.

TABLE 173.4 GRADING SCHEME ORIGINALLY SUGGESTED BY OUTERBRIDGE FOR MACROSCOPIC CHANGES SEEN ON THE PATELLA

Grade I Softening and swelling of the cartilage

Grade II Fragmentation and fissuring in an area ≤ 0.5 inch in diameter

Grade III Area more than half an inch in diameter is involved

Grade IV Erosion of cartilage down to bone

From Outerbridge RE. The etiology of chondromalacia patellae. J Bone Joint Surg Br 1961;43:752-757.

TABLE 173.5 STAGING OF JOINT DESTRUCTION ACCORDING TO OTTE (1969)

Grade Morphology

0 Normal

I Superficial fibrillation, no cartilage loss

II Cartilage lesions (without full-thickness defects): deep fibrillation, fissures to middle zone and/or partial cartilage matrix loss

III Cartilage lesions (without full thickness defects): fissures to deep zone and partial cartilage matrix loss

IV Complete cartilage loss (at least focally)

From Otte P. Die konservative Behandlung der Hüft-und Kniearthrose und ihre Gefahren. Dtsch Med Jahresschr 1969;20:604-609.

TABLE 173.6 SCORING OF OSTEOARTHRITIS ACCORDING TO PRITZKER AND COLLEAGUES (2006)

Grade Histologic properties

0 Matrix: surface intact (normal architecture)Cells: intact, appropriate orientation

1 Matrix: superficial zone intact, edema and/or superficial fibrillation (abrasion), focal superficial matrix condensation

Cells: cell death, proliferation (cluster formation), hypertrophy

2 As above:Matrix: discontinuity at superficial zone (deep fibrillation)± Loss of proteoglycan staining in upper third of cartilage± Focal perichondral increased proteoglycan stain in middle zone± Disorientation of chondron columns

3 As above:Matrix: vertical fissures into middle zone and branched fissures± Loss of proteoglycan staining into lower two thirds of cartilage± New collagen formation cells: cell death, regeneration,

hypertrophy in cartilage domains adjacent to fissures

4 As above:Cartilage matrix loss with delamination of superficial zoneExcavation with matrix loss from superficial to middle zone± Formation of cysts in the middle layer

5 Complete matrix loss with denudation of the sclerotic subchondral bone or fibrocartilage

± Microfracture with repair limited to bone surface

6 Bone remodeling (more than osteophyte formation only) with microfracture, fibrocartilage, and osseous repair above the previous surface

From Pritzker KP, Gay S, Jimenez SA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 2006;14:13-29.

Page 6: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

SEC

TIO

N 1

3 ●

OST

EOA

RTH

RITI

S A

ND

REL

ATED

DIS

ORD

ERS

1746

TABLE 173.7 OARSI TERMINOLOGY OF OSTEOARTHRITIC JOINT DEGENERATION—A PROPOSAL FOR A CONSENSUS

Preferred term Definition Synonym

Superficial zone Includes the surface and upper zones

Surface zone Cartilage zone immediately subjacent to the joint surface.Collagen fibers are aligned parallel to surface (without cells)This zone might be not present in normal cartilage samples/in some species.

Lamina splendens

Upper zone Collagen fibers are aligned parallel to surface. Chondrocytes, elongated and flattened, are aligned parallel to collagen fibers and to joint surface.

Horizontal zone/layerTangential zone/layerSuperficial zone/layer

Middle zone Zone subjacent to upper zone.Collagen fibers are aligned intermediately between upper and deep zone alignments. Chondrocytes present in groups (chondrons) aligned parallel to collagen fibers.

Transitional zone/layerIntermediate zone/layerMiddle zone

Deep zone Zone subjacent to mid zone and above calcified cartilage. Radial zone/layer

Upper deep Collagen fibers are aligned predominantly perpendicular to joint surface.

Lower deep Chondrocytes within chondrons are aligned parallel to collagen fibers and perpendicular to joint surface.

TidemarkPenetrationAdvancementDuplication/multiplication

Zone of increased calcification at border of uncalcified and calcified cartilage Calcification frontLigne bordant (increased basophilic stain)

Calcified cartilage Zone between tidemark and the subarticular bone plate Calcified zone

Surface undulations Surface irregularities that do not involve discontinuity of articular surface RougheningUnevenness

Fissure Vertical cracks, irregularities or discontinuities of cartilage matrix CleftCrack

Superficial Restricted to surface and the superficial zone FlakingFraying

Middle Restricted down to the middle zone Fibrillation

Deep Restricted down to the deep zone Fissuring

Simple Unbranched fissure

Complex Branched fissure

Split/Splitting Horizontal (0°-60° to cartilage surface) matrix cleft/separation

ErosionSurfaceInto the superficial zoneInto the middle zoneInto the deep zoneFull depth

Loss of articular cartilage tissue including superficial and at least portions of deeper cartilage layers

LossUlcerationAbrasionDelaminationFlakingSpallationExcavation

Eburnation Smooth shiny bone surface indicative of exposed bone at articular surface Denudation

From Pritzker K, Aigner T, in press.

same (e.g., fissuring, clefting, flaking). Therefore, a consensus nomen-clature is proposed by the Osteoarthritis Research Society International (OARSI) (Table 173.7).4

TYPING AND GRADING OF SYNOVIAL MEMBRANE ALTERATIONS IN OSTEOARTHRITISClinically relevant OA joint disease is invariably associated with some sort of synovial pathology. This reflects the notion that there is a direct relation between clinical  symptoms and  the  synovial  reaction  in OA and most likely these changes in the synovial membrane are at  least partly involved in the progression of the disease. In OA synovial speci-mens, in principle, four different types of OA synoviopathies are found: hyperplastic,  inflammatory,  fibrotic,  and  detritus-rich  synoviopathy (Table 173.8).5

Detritus-rich synovitis, which is found in end-stage OA disease, is due to abundant macromolecular cartilage and bone detritus (i.e., bone and cartilage  fragments attached to or  incorporated  into the synovial 

membrane;  Fig.  173.6h,  i)  in  addition  to  abundant  molecular  debris that  is  not  visible  microscopically.  Besides  the  debris,  a  significant amount  of  fibrinous  exudate  is  found  at  the  surface  of  the  synovial membrane. This exudate may be combined with  incorporated fibrin, reflecting  longer ongoing fibrinous exudation already being organized (i.e.,  resorbed).  Detritus-rich  synoviopathy  usually  contains  a  minor inflammatory cell infiltrate consisting of lymphocytes and granulocytes as well as some foreign-body giant cells.

Another  form  of  OA  synoviopathy  found  in  late-stage  disease, fibrotic OA synoviopathy (capsular fibrosis) (see Fig. 173.6e),5 is mainly characterized  by  the  shortening  and  thickening  of  the  joint  capsule, which  is  partly  responsible  for  some  symptoms,  in  particular  joint stiffness, seen in OA patients.

The most interesting of the OA synoviopathies in terms of patho-genesis is the inflammatory OA synoviopathy, which displays moder-ately extensive lymphocytic infiltrates (see Fig. 173.6f, g). It is intriguing to speculate whether this condition reflects some kind of autoimmune aspect  that may be occurring, at  least  in  this  subset of OA patients. Interestingly,  the  lymphocytic  infiltrate  in  the  subsynovial  stroma 

Page 7: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

CHA

PTER 173 ● Pathogenesis and pathology of osteoarthritis

1747

although  it  is  clear  that  osteophyte  development  is  a  continuous process and many osteophytes show different steps in various portions at  the  same  time,  one  can  define  basic  steps  based  on  the  cellular phenotype  and  the  matrix  composition  of  the  predominating  tissue (Fig. 173.7; see Table 173.3).7,8 Initially, mesenchymal precursor cells derived either from periosteum or synovium initiate chondrogenic dif-ferentiation. This results in fibrocartilage composed of both fibrous and cartilaginous matrix components. In early osteophytes, endochondral ossification  is  initiated. The deepest  cell  layer  becomes hypertrophic and  resembles  very  much  the  lowest  cells  found  in  the  fetal  growth plate. Mature osteophytes are characterized by the predominance of a hyaline-cartilage-like  extracellular  matrix.  At  a  first  glance,  mature osteophytes can, macroscopically and histologically, easily be mistaken for original articular cartilage. Although hyaline zones in osteophytes resemble articular cartilage  in  terms of structural composition,  there are, nevertheless,  certain differences such as a more  random cellular arrangement,  the  lack  of  a  distinct  tidemark,  and  a  missing  linear subchondral bone plate.

Understanding osteophyte formation and classifying its maturation stage is on the one hand interesting per se for understanding changes going on  in the chondro-osseous department  in OA joints, but addi-tionally osteophyte formation represents an interesting in-vivo model system  to  understand  and  evaluate  processes  occurring  after  many modern cartilage  repair  strategies  (e.g.,  transplantation of mesenchy-mal precursor cells for filling up cartilage defects).

ANIMAL MODELS OF OSTEOARTHRITISAnimal model systems represent an important adjunct and substitute for studies of OA in humans. They provide means to study OA patho-physiology as well  as assist  in  the development of disease-modifying therapeutic agents and biologic markers for diagnosing and construct-ing a prognosis for the disease. OA is a heterogeneous condition leading to pain and reduced joint function due to a structurally damaged joint. Not  surprisingly,  for  such  a  heterogeneous  disorder,  identification  of an optimal model system for the human disease is difficult or impos-sible and a number of models employing various species are currently in use. These include spontaneous as well as induced (surgically, enzy-matically/chemically,  mechanically,  and  genetically)  models  (see Chapter  172).  Unfortunately,  all  the  models  differ  somehow  and  no gold  standard  has  yet  been  identified.  Different  subsets  of  human patients have disease etiologies that vary, for instance, genetic versus traumatic  causes,  and,  in  this  regard,  can manifest  different mecha-nisms of disease. Given this heterogeneity of the OA disease process, identification  of  an  appropriate  disease-mechanism–oriented  model may be a more realistic goal and better suited to a particular investiga-tion  than  the  “universal  model”  that  has  not  yet  been  identified. Rather, as a consequence of this disease heterogeneity in the human, a plethora of models is required.

appears  to  correlate  directly  with  interleukin  (IL)-1β  in  the  synovial fluid  as  well  as  matrix  metalloproteinase-1  (MMP-1)  expression  by synoviocytes, suggesting a direct stimulatory role of the inflammatory cells on the activity of the synovial lining cells. In any case, the pres-ence  of  inflammation  in  a  significant  portion  of  OA  patients  clearly points  to  the  option  of  anti-inflammatory  therapy  at  least  for  some subsets of OA patients.

In early OA, mostly hyperplastic OA synoviopathy is found (see Fig. 173.6d). This pattern shows only moderate synovial hyperplasia with or without cellular activation but without significant capsular fibrosis or thickening and without significant inflammatory infiltrates or mac-romolecular detritus. Overall, three forms of alterations of the synovial surface can be observed:

1.  Increased cytoplasmic volume of the usually flat synovial lining cells. These cells may even become cuboidal or even cylindrical, suggesting that they have been activated  in some way (see Fig. 173.6c).

2.  The under normal conditions single  (flat) cell  layer of synovial lining cells (see Fig. 173.6a, b) can proliferate to form as many as five cell layers

3.  The  whole  synovial  surface,  including  the  underlying  stroma, can become hyperplastic and form the classic synovial villi.

Synovial hyperplasia per se can be found in all forms of OA synovi-opathy and in chronic synovitis. Thus, villous hyperplasia is largely a non-specific feature of chronic synovial alteration and activation.

So  far,  no  well-established  scoring  system  is  available  for  human OA synoviopathy. Recently, a simple scoring system was proposed by Krenn and colleagues to separate inflammatory and non-inflammatory synovial  alterations  mainly  based  on  the  intensity  of  inflammatory infiltrates,  synovial  and  stromal  activation.6  In  2002  we  proposed  a scoring system specifically for OA synoviopathy basically dividing the OA-associated  synoviopathies  into  four  categories  (see  Table  173.7): hypertrophic,  fibrotic,  inflammatory,  and  detritus-rich.  These  can always  be  subdivided  into  mild,  moderate,  and  strong  depending  on the intensity of changes present.5 This presumably reflects the different roles of OA synoviopathy and its implications for the clinical picture. Whatever scoring system is used, importantly one should average the changes present in the overall joint and not just rely on one particular region, because synovial changes are notoriously heterogenous within affected joints.

EVALUATION OF REGENERATIVE CARTILAGE FORMATION IN OSTEOARTHRITIC JOINTS (CHONDRO-OSTEOPHYTE FORMATION)Central for the basic understanding of osteophytic tissue is the analysis of  the  developmental  steps  during  osteophyte  formation.  Thus, 

TABLE 173.8 MAJOR HISTOPATHOLOGIC FEATURES OF THE FOUR PATTERNS OF OA-ASSOCIATED SYNOVIOPATHY IN COMPARISON TO EACH OTHER AND TO NORMAL SYNOVIAL MEMBRANE

NormalHyperplastic synoviopathy

Inflammatory synoviopathy

Fibrotic synoviopathy

Detritus-rich synoviopathy

Villous hyperplasia − ++(+) ++(+) ++(+) ++(+)

Synovial lining—proliferation − + ++ ++ ++(+)

Synovial lining—activation − + ++ + +

Fibrinous exudate − − (+) + ++(+)

Capsular fibrosis − − (+) +++ +++

(Macromolecular) cartilage and bone debris − − (+) − +++

Granulocytic infiltrate − − − − +

Lymphoplasmocellular infiltrate—diffuse − − ++ (+) +(+)

Lymphoplasmocellular infiltrate—Aggregates/follicles − − ++ (+) (+)

Bold italics = key diagnostic criteria.From Oehler S, Neureiter D, Meyer-Scholten C, et al. Subtyping of osteoarthritic synoviopathy. Clin Exp Rheumatol 2002;20:633-640.

Page 8: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

SEC

TIO

N 1

3 ●

OST

EOA

RTH

RITI

S A

ND

REL

ATED

DIS

ORD

ERS

1748

a b c

d e f

g h i

Fig. 173.6 (a, b) Normal synovial membrane shows a rather flat surface with a flat layer of inactive, non-proliferated layer of synoviocytes. In contrast, OA synoviocytes are at least in some cases severely activated and proliferated (c) similar to the situation found in rheumatoid arthritis. Most cases of late-stage OA synovial specimens show a moderate to abundant synovial hyperplasia (d, e) and often some sort of capsule thickening (e). A minority of cases of OA synovial membranes show mild to moderate (f, g) inflammatory infiltrates usually lying in aggregates around blood vessels (f ). In part of the cases lymphoid follicles also are found (g). End-stage rapid progressive cartilage destruction leads to detritus-rich synovitis with cartilage and bone fragments incorporated in fibrinous exudate (i, van Gieson stain) or the synovial stroma (h). (Reprinted with permission from Aigner T, van der Kraan P, van den Berg W. Osteoarthritis and inflammation—inflammatory changes in osteoarthritic synoviopathy. In: Buckwalter JA, Lotz M, Stoltz JF, eds. Osteoarthritis, inflammation and degradation: a continuum. Amsterdam: IOS Press, 2007:219-230.)

Page 9: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

CHA

PTER 173 ● Pathogenesis and pathology of osteoarthritis

1749

a b c d e

f

GAGs

Stage 0 Stage I Stage II

OsteophyteNormal

Stage IIIArticularcartilage

GrowthplateStage IV

Aggrecan

Col1

Col2a

Col2B, Col11

Col 10

Col6pericellular

Col6interterritorial

g h i j

Fig. 173.7 Osteophyte development can be subdivided into four stages with different structural organization although many osteophytes show different stages simultaneously in different areas. Stage I (early chondrophytes) shows first chondrocytic differentiation of previously undifferentiated mesenchymal precursor cells (b, g, k). Stage II (chondrophytes) shows extensive areas of newly formed cartilage, but no (endochondral) bone formation is observed (c, h, k). Stage III (early osteophytes) shows an arrangement as the fetal growth plate cartilage with hypertrophic differentiation in the deepest cartilage layers and active bone formation underneath (d, i, k). Stage IV (mature osteophytes) shows a structure most resembling hyaline articular cartilage physiologically covering the joint surfaces (e, j, k). Normal periosteum is shown in a and f (a to e, H&E; f to j, toluidine blue staining). (Reprinted with permission from Gelse K, Soeder S, Eger W, et al. Osteophyte development-molecular characterization of differentiation stages. Osteoarthritis Cartilage 2003;11:141-148.)

Extracellular matrixfunctional element

Chondracytesreactive elementArticular cartilage

Fig. 173.8 Articular cartilage mainly consists of extracellular matrix (more than 95% of tissue volume), its functional element. Interspersed in between the abundant matrix are the cells, the chondrocytes, which are, however, the living (i.e., reacting) element of the articular cartilage tissue. (Reprinted with permission from Aigner T, Sachse A, Gebhard PM, et al. Osteoarthritis: pathobiology—targets and ways for therapeutic intervention. Adv Drug Deliv Rev 2006;58:128-149.)

PATHOGENETIC CONCEPTS OF OSTEOARTHRITISOA is a heterogeneous condition and most likely many different causes exist  that  initiate  or  at  least  promote  the  disease  process.  Conse-quently, many different hypotheses  for  the  pathogenesis  of OA have been  brought  forward.  Presumably,  many  of  them  reflect  part  of  the mechanisms  important  for  the  initiation  and  progression  of  joint degeneration. Here a rough overview of the relevant pathogenetic con-cepts is provided.

The articular cartilage and the extracellular matrixArticular cartilage is a highly specialized and uniquely designed bioma-terial (see Chapter 8). It is largely an avascular, aneural, and alymphatic matrix that is synthesized by the sparsely distributed resident cells—the chondrocytes. The cartilage matrix can be subdivided according to different cartilage zones based on the arrangement of the cells and the matrix  fibrils  (i.e.,  superficial,  radial,  deep,  and  calcified).  Also,  the cartilage matrix can be split up in different compartments depending on its relationship to the cells: whereas the pericellular matrix is imme-diate  to  the  cells,  the  interterritorial matrix  compartment  represents the major portion of the cartilage matrix far off the cells and the territo-rial matrix  the  (not  really well defined and characterized) cell-associ-ated compartment in between (Fig. 173.8).

At  the  supramolecular  level,  the  interterritorial  cartilage  matrix consists of two basic components: a fibrillar and an extrafibrillar matrix (see Fig. 173.8). The fibrillar matrix is a network consisting mainly of collagen  II  together with  other  collagens,  predominantly  IX, XI,  and XVI (Fig. 173.9). Collagen XI is located in the core of the collagen II fibrils  and  is  thought  to  be  involved  in  fibril  initiation  and  limiting fibril diameter. Collagen IX is located periodically along the surface of collagen II fibrils in antiparallel direction and might be responsible for crosslinking  the  collagen network with  itself  but  also  to  the noncol-lagenous matrix. The function of collagen XVI, which is also present in  articular  cartilage,  is  so  far  unknown.  Of  note,  the  so-called  type 

collagen II fibrils also contain many non-collagenous protein compo-nents such as small proteoglycans and cartilage matrix proteins. The non-fibrillar component of hyaline articular cartilage consists predomi-nantly of highly sulfated aggrecan monomers (Fig. 173.10), which are attached to hyaluronic acid and form very large aggregates. In terms of the physical properties of the cartilage matrix, tensile strength comes from the collagen network, which hinders expansion of the viscoelastic aggrecan component and,  thus, provides compressive stiffness of  the tissue.  On  the  other  hand,  the  aggrecan-hyaluronan  aggregates  bind high  amounts  of  intercellular  water  owing  to  their  extensive  fixed 

Page 10: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

SEC

TIO

N 1

3 ●

OST

EOA

RTH

RITI

S A

ND

REL

ATED

DIS

ORD

ERS

1750

COOH

Type II

Type XI

Type IX

Type X

Type VI

NH2Chondrocyte

CARTILAGE COLLAGENS

Fig. 173.9 Cartilage collagens. The different collagen types synthesized by chondrocytes. The chondrocyte, depicted on the left side of the figure, constitutively produces three collagen types: type II, type XI, and type IX. These three collagens, shown inside the bracket, are incorporated into the same collagen fibril. The proportions of these collagens in the fibrils change with age. The other two collagen types, type X and type VI (marked with dashed arrows), are not made by all chondrocytes. Type X collagen is synthesized only by the hypertrophic chondrocytes in growth-plate cartilage or in articular cartilage near the tidemark and through the calcified cartilage. Type VI collagen is not synthesized in embryonic cartilage but appears in mature cartilage. The levels of both type X and type VI collagen in articular cartilage appear to increase in OA. All the cartilage collagens are synthesized as molecules containing at least two different kinds of domains, triple helical and non-helical. The helical regions are depicted as three-chained coils, and the non-helical regions are contiguous small boxes. In some collagen types (II and XI) the non-helical regions (yellow) are removed as fibrils are formed. The other collagen types (IX, X, and VI) retain their non-helical regions and are shown as one solid color through the entire molecule. Type IX collagen is also a proteoglycan and contains one glycosaminoglycan chain (small orange kinked chain). Disulfide bonds between two collagen chains are shown as red boxes. All the molecules and their domains are drawn approximately to scale as a linear representation of their respective molecular weights.

THE STRUCTURE OF AGGRECAN

Proteoglycantandem repeat

G1 E1 G2KS- richdomain E2 (C5- rich domain) G3

Link protein

Keratan sulfate O-linked oligosaccharides

N-linked oligosaccharides Chondroitin sulfate

Lectinbinding

NH2

NH2 COOH

Ig fold

Fig. 173.10 The structure of aggrecan. In aggrecan the three globular domains (G1, G2, and G3) are separated by two extended segments (E1 and E2), which carry the glycosaminoglycans chondroitin sulfate (CS, in the CS-rich domain) and keratan sulfate (KS, in the KS-rich domain, but some also in the E1 segment and within the CS-rich domain). Furthermore, the core protein is substituted with N- and O-linked oligosaccharides. The G1 and G2 domains, as well as the link protein (LP), contain a double loop structure (proteoglycan tandem repeat [PTR]). In addition, both G1 and LP show an additional loop structure (immunoglobulin fold [Ig fold]) that can selectively interact with H hyaluronic acid to form aggregates. The G3 domain contains a lectin-binding region.

charges and are responsible for the elasticity of the tissue. Thus, under compression, the cartilage matrix is compliant but rapidly regains its elasticity as water molecules are drawn back into the matrix on unload-ing by the strongly hydrophilic aggrecan aggregates.

The territorial matrix is defined as the cell-associated matrix located between the pericellular and the interterritorial matrix compartments, but  no  real  specific  biochemical  characterization  is  available  so  far. 

Clearly, it shares most of its basic composition with the interterritorial matrix to which it shows no clear border separating them from each other.

The pericellular cartilage matrix demonstrates  in many respects a very distinct  composition compared with  the  territorial  and  interter-ritorial  cartilage  matrices.  In  terms  of  structural  collagens,  type  VI collagen (see Fig. 173.9) is the predominant collagen present, which in hyaline  articular  cartilage  is  concentrated  within  the  pericellular matrix. Ultrastructural  studies have  shown a physical overlap of  the type  VI  collagen  network  with  the  type  II  collagen  positive  matrix, which supports the concept that type VI collagen is a central molecular component  forming a mechanical  interface between  the  rigid  type  II matrix and the (softer) cells. Additionally, type VI collagen presumably plays some role in cell anchoring and cell-matrix interaction and signal-ing together with other molecules present in the pericellular cartilage matrix.

Most of the cartilage matrix is formed during fetal development and the phase of skeletal growth until the closure of the growth plates at the end of adolescence. In fact, the collagen backbone appears to show virtually no turnover during life at least in the (inter)territorial matrix compartments. However, other matrix components, namely, the large aggregating proteoglycan aggrecan and the small proteoglycans as well as some collagen types (e.g., types VI and IX) show a significant turn-over  throughout  life. This physiologic  turnover  is highly  relevant  for the maintenance of the cartilage matrix integrity on the molecular, and in particular also the macromolecular, level.

Pathologic matrix degradationOne major threat to the cartilage matrix and thus to the  integrity of articular cartilage are matrix-degrading enzymes destroying the colla-gen  network  as  well  as  the  interlying  proteoglycans  (Fig.  173.11). Besides direct degradation of molecular components, destabilization of the supramolecular structures also takes place and plays an important role in the loosening of the overall matrix architecture.

The destruction of articular cartilage and the loss of its biomechani-cal  function  is  largely  due  to  the  destruction  and  loss  of  the  (inter)territorial cartilage matrix. So far, our knowledge focuses on degrada-tion  processes  of  the  two  major  components  of  the  interterritorial cartilage matrix, the collagen network and the interwoven proteoglycan aggregates. Loss of aggrecan and its fixed (negative) charges is charac-teristic of the early stages of cartilage degeneration, whereas the overall content  of  collagen  remains  rather  constant  nearly  throughout  the disease  process.  Still,  loosening  of  the  collagen  network  is  a  major feature also in early cartilage degeneration. So far, it is unknown what happens first—the loss of proteoglycans or the loosening of the collagen network—because both do eventually influence the other as well. Loos-ening of  the collagen network  leads to a  loss of proteoglycans, and a loss of proteoglycans leads to a mechanical overload and, thus, damage and loosening of the collagen network. In particular, the latter appears to  be  responsible  for  the  hyperhydration  of  articular  cartilage  in  the early phases of the disease process, macroscopically visible as softening 

Page 11: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

CHA

PTER 173 ● Pathogenesis and pathology of osteoarthritis

1751

microfracturing  during  compression  and,  thus,  molecular  disintegra-tion. Also,  the aggrecan molecules change over age. Aggrecan mono-mers  and  polymers  get  smaller  and  have  fewer  sugar  side  chains. Interestingly,  this  is not only related to accumulating molecular deg-radation but also newly synthesized aggrecan aggregates appear to be smaller in the aged tissue, thus carrying less fixed charges. Although the  molecular  mechanisms  driving  this  decline  are  so  far  unclear, severely  reduced  sugar  side  chains  significantly  limit  the  ability  of aggrecan  to  bind  water  and,  thus,  to  maintain  the  elasticity  of  the articular cartilage matrix.

The time-dependent formation of advanced glycation end products is another interesting phenomenon involving post-translational, non-enzymatic protein and lipid modifications that contribute to changes in matrix biochemistry and chondrocyte biology in aging cartilage. The accumulation of advanced glycation end products has been shown to increase the stiffness of the collagen network and can downregulate the anabolic activity of chondrocytes, further imbalancing cartilage tissue homeostasis.

Crystal deposition diseaseOne interesting phenomenon frequently observed within the articular tissues of degenerated joints is the deposition of anorganic crystals. In general, there are two major forms of crystal deposition disease in the articulating joints: deposition of sodium urate crystals (i.e., gout [see Chapter 183]) and the deposition of basic calcium phosphate (BCP) or calcium  pyrophosphate  dihydrate  (CPPD)  (so-called  pseudogout  or chondrocalcinosis [see Chapters 186 and 187]). Both forms can cause significant  symptomatic  disease,  but  gout  is  clearly  usually  sympto-matic and pseudogout, in most cases, a clinically silent process. Pseu-dogout is strongly associated with (OA) cartilage degeneration and can be  detected  on  routine  radiography  and  by  conventional  polarizing microscopy. Several studies have demonstrated a relation between the prevalence of crystal occurrence and severity as well as progression of OA. So far four factors have been identified that play a role in this type of  crystal  formation:  (1)  overproduction  of  the  anionic  component pyrophosphate by the chondrocytes,  (2)  increased calcium concentra-tion  in  the  cartilage  of  OA  patients,  (3)  changes  in  the  pericellular matrix  milieu,  and  (4)  the  involvement  of  matrix  vesicles  that  have been shown to produce CPPD crystals in vitro.10 Overall, the cause and the relevance of chondrocalcinosis continue to be ambiguous: clearly, it is well correlated to the degeneration of the articular cartilage and it is thought to be related to a metabolic imbalance within the cells and the  tissue,  most  likely  the  articular  cartilage  and  the  chondrocytes. However, so  far  it  remains  largely unclear what comes first—the cell and  matrix  degradation  or  the  crystal  formation.  Most  likely  they promote  each  other  with  metabolic  disturbance  leading  to  cellular degeneration and vice versa.

Role of biochemical differencesAn interesting feature of OA is that not all joints are affected equally. Although knee and hip joints are most often involved, ankles are gener-ally spared in symptomatic OA. Although it is obvious that there are anatomic differences between the ankle and knee joint, this alone does not explain why the knee is more susceptible to OA. Studies comparing knee and ankle cartilage have identified several biochemical differences that might be of additional relevance (Table 173.9):  (1) differences in biochemical composition and biomechanical properties of  the matrix resulting in higher dynamic stiffness of the ankle cartilage, (2) decreased response to catabolic factors such as interleukin-1 (IL-1), and (3) more efficient  synthetic  matrix  repair  with  an  increase  in  collagen  type  II synthesis and aggrecan turnover seen in ankle lesions.11 Taken together it seems that there are differences not only in the anatomy and mor-phology of the joints and its cartilage but also in the cellular phenotype chondrocytes themselves, which may explain why some joints are less prone to develop OA than others.

The articular cartilage and chondrocytesThe  articular  cartilage  consists  mostly  of  extracellular  matrix.  This matrix  is  the  functional  element  of  the  cartilage  tissue,  that  is,  the 

and  swelling  of  the  OA  articular  cartilage.  Degradation  processes appear to be specifically prominent in the surface zone and around the chondrocytes in OA cartilage. Enhanced levels of many metalloprotein-ases including matrix metalloproteinases (MMPs), as well as adamaly-sins  such  as  ADAMs  (a  disintegrin  and  metalloproteinase)  and ADAMTSs (a disintegrin and metalloproteinase with thrombospondin type-1 motifs) are  the most  likely candidate enzymes  responsible  for the  increased matrix degradation  in OA cartilage.9 So  far  it  is  rather enigmatic which proteases are really crucial for the degradation of the various cartilage matrix components, although MMP-13 is certainly a top  candidate  for primary  collagen  type  II fibril  degradation, MMP-2 (gelatinase A) is a good candidate for subsequent cleavage of denatured collagen fibrils (“gelatins”), whereas ADAMTS-4 and ADAMTS-5 are favored to be the major aggrecanases responsible for the proteoglycan breakdown.

Age-induced degenerative changes of the cartilage matrixClearly, the extracellular cartilage matrix is different depending on the age of  the  individual. One obvious  reason  for  this  is  the  continuous loading and intermittent overloading during life. Thus, damaged matrix molecules due  to continuous mechanical  forces, but also degradative enzymatic  activity,  which  are  not  sufficiently  replaced  as  part  of  a permanent physiological turnover, accumulate over time in any tissue, but in particular in the mechanically heavily challenged articular car-tilage. These damaged components threaten the functional integrity of the extracellular matrix and the articular cartilage, in particular if chal-lenged by further mechanical stress. However, beyond the classic wear and tear concept, which certainly holds true for some aspects of OA, a second theory for explaining the association between cartilage degen-eration  and  aging  of  its  matrix  focuses  on  well-known  age-related changes  in  the  extracellular matrix  of  articular  cartilage, modulating its biomechanical properties and integrity.

Besides  pure  degradation  of  matrix  components,  also  molecular modifications are of high relevance for the functional integrity of the cartilage matrix:  thus,  the collagen network stiffens due to  increased covalent cross-linking of the single collagen chains (pyridinium cross-linking). This makes the fibrillar network more rigid and less flexible for physiologic deformation occurring during (physiologic) joint loading and  movement.  In  consequence,  the  collagen  network  is  prone  to 

THE HALLMARK OF OA CARTILAGE DEGENERATION ISA LOSS OF CARTILAGE MATRIX HOMEOSTASIS

Osteoarthritis:Imbalance of cartilage matrix turnover

IGFBMP...

Il-2βTNFa...

AnabolismAggrecan(collagen type II)Collagen type VICollagen type IXLink protein...

CatabolismCollagenasesMMP-1(MMP-8)MMP-13

AggrecanasesMMP-3MMP-14ADAMTS-1ADAMTS-4ADAMTS-5

GelatinaseMMP-2MMP-9

Fig. 173.11 The hallmark of OA cartilage degeneration is a loss of cartilage matrix homeostasis. The insufficiency of anabolic factors such as insulin-like growth factor-I (IGF-I) and BMPs in combination with an increased influence of catabolic factors such as IL-1β and TNF-α result in an overexpression of matrix degrading proteases (collagenases, aggrecanases, and gelatinases). The catabolic activity of these enzymes cannot be compensated by the concurrent increase in anabolic activity (i.e., expression of aggrecan and collagen types II, VI, and others).

Page 12: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

SEC

TIO

N 1

3 ●

OST

EOA

RTH

RITI

S A

ND

REL

ATED

DIS

ORD

ERS

1752

TABLE 173.9 DIFFERENCES BETWEEN KNEE AND ANKLE JOINT STABILITY, MOTION, AND CARTILAGE

Feature Knee Ankle

Joint stability Relatively unstable Highly stable

Non-congruent Highly congruent

Joint motion Flexion/extension Flexion/extensor

Rotation

Cartilage

Cellularity Same Same

Cartilage thickness 2-6 mm 1-1.5 mm

Superficial chondrons Single cells Clusters of 2-4 cells

Sulfated glycosaminoglycan content

Lower Higher

Water content Higher Lower

Collagen content Same Same

Dynamic stiffness Lower Higher

Hydraulic permeability Higher Lower

Peak stress with 65% final strain

11 MPs 16 MPs

Glycosaminoglycan synthesis

In explants Higher Lower

In alginate Same Same

Proteoglycan half-life 22.68 days 16.58 days

Protein synthesis Lower Higher

IC30 for IL-1 reduction of proteoglycan synthesis

In alginate 11 pg/mL 56 pg/mL

In explants 6 pg/mL 35 pg/mL

Influence of Fn-fs on

Proteoglycan synthesis (anti-anabolic)

Low dose (1 nM) High dose (100 nM)

Proteoglycan loss (catabolic)

Significant at 7 days Not significant after 28 days

Attempted repair No significant rebound Significant rebound

(Response to anabolic factors after catabolic stimulation)

Response to degeneration Upregulation of collagen degradation

Upregulation of matrix synthesis

From Eger W, Schumacher BL, Mollenhauer J, et al. Human knee and ankle cartilage explants: catabolic differences. J Orthop Res 2002;20:526-534.

matrix  provides  the  mechanical  properties  of  the  cartilage  tissue. However,  the  cells  (i.e.,  the  chondrocytes)  represent  the  only  vital element of the cartilage tissue, although they represent only about two to three volume percent of  the articular cartilage  in the adult. Thus, besides  changes  in  the  extracellular  matrix  changes  within  the  cells also are obviously potential causes of the OA disease process and the study  of  the  chondrocyte  cell  phenotype/behavior  (Fig.  173.12)  can provide  substantial  scientific  insights  into  the  disease  mechanisms  of OA.

The developmental history as a model of chondrocyte reactivity in the adultA very important and interesting aspect of cellular behavior in the adult organism is the recapitulation of molecular mechanisms that occurred during fetal development (Fig. 173.13). This phenomenon is also true 

for OA chondrocytes. In fact, many of the biologic changes that occur in OA cells mimic a differentiation pattern characteristic of fetal skel-etogenesis. This includes changes not only in cellular phenotypes and in anabolic and catabolic events but also  in other basic mechanisms during the disease process such as matrix calcification, apoptosis, and proliferation.  Thus  these  (evolutionary  and  developmental)  compari-sons  are  attractive  for  explaining  chondrocyte  behavior  and  disease pathways in the adult, but uncoordinated degenerative events should not  be  mistaken  for  tightly  regulated  developmental  processes  (Fig. 173.14).  Both  scenarios  presumably  involve  similar  molecular  and regulatory  events,  but  just  as  in  a  jigsaw puzzle  the  assembly  is  the challenge.

The OA chondrocyte phenotypeChondrocytes  in  normal  adult  articular  cartilage  are  stable,  postmi-totic, differentiated cells that maintain tissue homeostasis by synthe-sizing  very  low  levels  of  extracellular  matrix  components  to  replace damaged  molecules,  thus  preserving  the  structural  integrity  of  the cartilage matrix. The cells are the major regulators of matrix anabolism and catabolism of articular cartilage. One well-documented change in OA cartilage is the induction of an activated cellular phenotype within the  chondrocytes  whereby  matrix  anabolism  is  strongly  stimulated. Nevertheless, the chondrocytes fail to compensate for matrix damage induced externally (e.g., by mechanical stress or enzymatic degradation through synovial proteases). Additionally, the chondrocytes do play an active  role  in  the  degradative  process  themselves,  a  phenomenon termed chondrocytic chondrolysis.12 During chondrocytic chondrolysis, OA chondrocytes activate or upregulate the expression of many matrix-degrading proteases such as the MMPs, which are largely responsible for  the  breakdown  of  the  collagenous  and  non-collagenous  cartilage matrix components. This elevated proteolytic activity is not sufficiently counterbalanced by an increase of  the chrondrocyte anabolic activity. This is particularly true for the upper zones of damaged cartilage (the “progression  zone”),  in which  the  anabolic  activity  even drops  again severely.13

Activation of inflammatory signalingIn addition to local and/or general inflammatory responses within the synovial membrane,  the activation of  inflammatory  (signaling) path-ways within the chondrocytes themselves appears to play a crucial role in OA disease progression. Activation of such processes is independent of direct inflammatory cell infiltrates (i.e., lymphocytes, granulocytes, plasma cells), which are not present in OA articular cartilage. Activated inflammatory signaling pathways have been shown to induce catabolic responses  in  chondrocytes,  namely,  matrix  degrading  proteases  such as MMP-13, MMP-1, and others. One of the most prominent catabolic cytokines in OA is the proinflammatory cytokine IL-1. Elevated levels of IL-1 are found in synovial fluids of patients suffering from rheuma-toid arthritis and, to a lesser extent, in synovial fluid from OA patients. Although  polymerase  chain  reaction  (PCR)-based  studies  could  not confirm an increased expression of IL-1 mRNA in OA chondrocytes,14 there might still be increased levels of IL-1 protein diffused into carti-lage from the synovial space. IL-1 significantly affects gene expression patterns within articular chondrocytes via multiple intracellular path-ways, particularly the MAP kinases and NF-κB pathways (Fig. 173.15).15 IL-1 downregulates the expression of the major cartilage matrix com-ponents,  aggrecan  and  collagen  type  II,  and,  thus,  counteracts  the effects  of  anabolic  factors  on  matrix  synthesis.  Additionally,  IL-1 induces the expression of matrix degrading enzymes such as MMP-1, MMP-3,  MMP-13,  or  ADAMTS-4,  which  are  all  potential  major players  in  the  destruction  of  cartilage  matrix  components.  Besides these direct effects, IL-1 also induces other cytokines with synergistic (catabolic)  effects  such  as  IL-6  and  leukemia  inducing  factor  (LIF), further expanding its versatile effects on cartilage tissue homeostasis.

Oxygen, reactive oxygen species, and reactive nitrogen speciesArticular  cartilage  is  an  avascular  tissue  and  its  nutrition  is  mainly supplied  by  the  synovial  fluid.  Because  of  the  rather  long  diffusion 

Page 13: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

CHA

PTER 173 ● Pathogenesis and pathology of osteoarthritis

1753

CELL BIOLOGY OF OA

Synovial factors Matrix alterations

• Dedifferentiated cells• Hypertrophic cells• Precursor cells

Changes in phenotype to:

Autocrine andparacrine factors

Proliferation and/or(apoptotic) death

(Pre)senescence

Anabolicactivation

Catabolic activation

Chondrocyte

Aggrecan

S–S

Link proteinFibronectin

Type II collagen

Fig. 173.12 Cell biology of OA: how do chondrocytes react? OA chondrocytes are exposed to severely abnormal extracellular stimuli, including autocrine and paracrine factors, synovial factors, and altered matrix constituents, that induce a plethora of abnormal cellular responses made apparent by the changes in anabolism, catabolism, and phenotype that have been demonstrated in the cells. Also, chondrocyte numbers are modified by proliferation or apoptosis. In addition, cells might become presenescent, leading to an overall loss of chondrocyte function. In this schematic, an OA chondrocyte is embedded in a cartilaginous extracellular matrix of type II collagen, aggrecan, and fibronectin, for simplicity. Other collagens, proteoglycans, and noncollagenous proteins are also present at varying levels. (Reprinted with permission from Aigner T, Soder S, Gebhard PM, et al. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis—structure, chaos and senescence. Nat Clin Pract Rheumatol 2007;3:391-399.)

THE DEVELOPMENTAL MODEL OF CHONDROCYTE BEHAVIORAPPLIED TO OA IN THE ADULT

Osteoarthritis Developmental model: endochondral ossification

Pathomechanisms Development steps Marker genes

Differentiation Chondrogenesis

Proliferation Proliferation

Catabolism Matrix degradation

Calcification Calcification

Cell death/apoptosis Cell death/apoptosis

Hypertrophy

AnabolismMatrix synthesis

COL2AEpichondral

Resting

Proliferative

Hypertrophic

Bone

COL10

SOX9

COL2/9/11aggrecan

Ki-67ssDNA

MMP-13

Fig. 173.13 The developmental model of chondrocyte behavior applied to OA in the adult. One way to interpret cellular behavior in adult disease is to investigate whether it shows similarities to developmental or evolutionary processes. Several processes that occur in OA are also known to have occurred during fetal chondroneogenesis, including changes in the chondrocytic phenotype (differentiation), matrix anabolism and catabolism, (apoptotic) cell death, proliferation, and matrix calcification. The analysis of events during fetal development allows us to identify marker genes that can assist in the identification of the molecular context of a gene in the adult chondrocyte. For example, expression of Sox9 indicates differentiation to the chondrocyte phenotype, type IIA collagen (COL2A) is a chondroprogenitor cell marker, and type X collagen (COL10) is a marker of hypertrophic chondrocytes. Ki-67 indicates cell proliferation whereas the onset of MMP-13 expression suggests increased matrix catabolism potentially linked to hypertrophic differentiation. ssDNA indicates apoptotic DNA fragmentation, whereas aggrecan, COL2, COL9, and COL11 indicate anabolic cell activity (the synthesis of new cartilage matrix). Despite the appeal of a comparative approach, one should be cautious not to mistake uncoordinated degenerative processes for highly structured developmental processes. COL2/2A/9/10/11, collagen type II/IIA/IX/X/XI; MMP, matrix metalloproteinase; ssDNA, single-stranded DNA. (Reprinted with permission from Aigner T, Soder S, Gebhard PM, et al. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis-structure, chaos and senescence. Nat Clin Pract Rheumatol 2007;3:391-399.)

Page 14: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

SEC

TIO

N 1

3 ●

OST

EOA

RTH

RITI

S A

ND

REL

ATED

DIS

ORD

ERS

1754

still hypothetical. NO inhibits actin polymerization, which affects cell adhesion,  signaling  from extracellular matrix,  and phagocytosis. Fur-thermore, it has been found that NO can inhibit matrix synthesis and promote cell death of chondrocytes mediated by caspase-3 and tyrosine kinase activation. However, the concept that NO is a promoter of cell death  itself so  far remains unproven. Thus, RNS as well as ROS are exciting  areas  of  future  research  in  the  pathogenesis  and  molecular biology of OA.

Obesity and adipokinesBeing overweight  is  a  strong  risk  factor  for  the development of knee OA and less so for the hand and the hip. Two main theories have been proposed to explain this association between obesity and OA: the bio-mechanical and the systemic/metabolic.

The  biomechanical  hypothesis  proposes  that  obesity  leads  to  an increased loading of the (knee) joints beyond their capabilities (due to the increased body weight). Although it is known that moderate loading is beneficial for chondrocyte physiology and cartilage (matrix) integrity, excessive stress disrupts the homeostasis of the cartilage matrix. Obvi-ously,  mechanical  overload  represents  a  direct  physical  insult  to  the cartilage matrix. Additionally, mechanical forces are transmitted to the cells and transformed into intracellular signals. Sensitive mechanore-ceptors such as integrins initiate intracellular signaling cascades, trig-gering a variety of cellular responses, including the release of paracrine or  autocrine  factors.  With  increased  mechanical  stress  through,  for example, being overweight, cells are overstrained and  fail  to perform adequately. Although this theory sounds like a straightforward explana-tion,  epidemiologic  studies have also  shown a  significant  correlation between hand OA and obesity, which cannot be completely explained by  mechanical  stress.  Therefore,  the  systemic/metabolic  hypothesis proposes that metabolic factors related to obesity act directly or indi-rectly  on  chondrocytes  leading  to  the  increased  risk  for  developing OA.19 Several studies suggest that so-called adipokines, which are pro-teins  synthesized  and  secreted  mostly  by  adipocytes,  are  the  major factors  linking  obesity  to  OA.  Leptin,  the  prototypic  adipokine,  has been found in cartilage of OA patients and shows biologic activity on chondrocytes. It has been shown to act as a proinflammatory cytokine and a catabolic factor in cartilage metabolism via induction of MMPs. Conversely,  it  might  also  demonstrate  anabolic  effects  through  the 

RNA IN SITU HYBRIDIZATION FOR MARKER GENES ANDOA RELEVANT PROTEASES IN THE TIBIA OF NEWBORN MICE

Cartilagesynthesis

Cartilagematurationand degradation

Restingchondrocytes

Proliferatingchondrocytes

Hypertrophicchondrocytes

Bone

Sox9 Ihh Col10a1 MMP13 MMP9

Fig. 173.14 RNA in-situ hybridization for marker genes and OA relevant proteases in the tibia of newborn mice. Anabolic and catabolic events in the growth plate of the primary ossifying skeleton are at least in part separated. Sox9 mRNA expression marks the zone of proliferation, which differs from the region of terminal chondrocyte maturation characterized by the expression of Ihh as a marker for the prehypertrophic chondrocyte and Col10A1 as a specific marker for the entire hypertrophic cartilage. (Reprinted with permission from Aigner T, Gerwin N. Growth plate cartilage as developmental model in osteoarthritis research—potentials and limitations. Curr Drug Targets 2007;8:377-385.)

distance the partial pressure of oxygen is very low in healthy cartilage and  presumably  even  further  decreased  in  OA.  Thus,  chondrocytes  live  in  a  hypoxic  environment  with  an  O2  tension  around  6%  at the  joint  surface  to  as  low  as  1%  in  the  deep  layers  of  the  articular cartilage. Even though the oxygen level in articular cartilage is physi-ologically very low, a certain level of oxygen availability appears to be essential also for chondrocytes. One major factor in the chondrocytes’ adaption  to  hypoxia  has  been  found  to  be  the  transcription  factor hypoxia-inducible factor-1α (HIF-1α), which has key functions in con-trolling  energy  generation,  cell  survival  and  even  influences  matrix synthesis.16

During  normal  (oxygen)  metabolism  so-called  reactive  oxygen specias (ROS) are formed as natural byproducts.17 They are involved in the control of various aspects of biologic processes, including cell acti-vation, proliferation, and  (apoptotic)  cell death. Especially,  low  levels of ROS have been reported to act as a second messenger in (physiologic) intracellular cell signaling involved in the regulation of the expression of a wide variety of gene products, including cytokines, MMPs, adhe-sion molecules, and matrix components. However, in pathologic condi-tions,  including  inflammatory  joint  diseases,  elevated  production  of ROS in combination with depletion of antioxidants has been observed within  the  cells  and  causally  implicated  in  the  progression  of  these diseases. Such an imbalance between oxidants and antioxidants leading to cellular or  tissular structural and/or  functional changes  is  referred to as “oxidative stress.” At this time, our knowledge on the redox state of cartilage in pathologic circumstances remains fragmented. However, ROS have been implicated—besides metalloproteinases—in the process of matrix  and  cell  component degradation  in OA. ROS may directly oxidize nucleic acids, transcriptional factors, membrane phospholipids, intracellular and extracellular components leading to impaired biologic activity,  cell  death,  and  breakdown  of  matrix  components.  Perhaps most  importantly, ROS are  the major  cause of DNA damage within the genome.

Besides ROS, reactive nitrogen species (RNS) also might be impor-tant  in  the pathogenesis  of OA.18 RNS are  derived  from nitric  oxide (NO),  which  is  produced  in  small  amounts  by  nitric  oxide  synthase (NOS)  and  performs  important  functions  in  many  physiologic  proc-esses. Human chondrocytes cultured from OA patients express induc-ible  NOS  (iNOS)  and  produce  significant  amounts  of  NO.  The mechanisms  by  which  NO  could  contribute  to  OA  pathogenesis  are 

Page 15: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

CHA

PTER 173 ● Pathogenesis and pathology of osteoarthritis

1755

emptying of cellular lacunae (within the cartilage matrix) is a seemingly obvious histologic feature of OA cartilage.21 However, opinions on the prevalence  and  importance  of  chondrocyte  death  for  OA  pathology differ  widely,22  and  most  likely  apoptotic  cell  death  is  a  rather  rare event.23,24  Also,  lacunar  emptying  appears  to  be  largely  a  technical artifact (mainly due to cell shrinkage) except in late-stage disease when in fact there is enhanced cell loss.23

Apoptosis is a complex cellular process, and the factors responsible for  apoptotic  cell  death  in  articular  cartilage  are  largely  unknown.25 Because β1-integrin–mediated cell-matrix interactions provide survival signals for chondrocytes, reduction in extracellular matrix integrity due to degradation may be partly responsible for chondrocyte death in vivo. In cultured chondrocytes, treatment with Fas ligand (or anti-Fas), NO donors, tumor necrosis factor-α (TNF-α) or IL-1, taurosporin, ceramide, or retinoic acid has been shown to induce apoptosis, but it is uncertain to which of these factors articular chondrocytes are sufficiently exposed to in the body. Certainly, chondrocytes become somewhat fragile if the (peri-)cellular matrix  is removed or deranged26 as  in OA cartilage.27,28 In  fact,  degradation  products  of  pericellular  matrix  components  such  as fibronectin might  directly  induce  cellular  death programs  in chondrocytes.

Altogether, the experimental evidence clearly suggests that apopto-sis occurs in OA cartilage, but at a very low rate at least in the earlier stages. The relative contribution of apoptotic cell death to the patho-genesis of OA is difficult to assess because of the chronic nature of the disease  process.  Also,  it  is  difficult  to  assess  whether  apoptosis  is primary or secondary to cartilage matrix destruction. There is a good likelihood that, at  least  in  later-stage disease, chondrocyte death and matrix loss form a vicious cycle, the progression of one having promot-ing effects on the other.

The aging chondrocyte: genomic integrity and the chaotic phenotypeIt has been known for a very long time that age is the most prominent risk  factor  for  OA,  but  the  explanations  for  this  clear  and  strong  association  have  changed  over  time.29  Besides  the  classic  hypothesis of  continuing  wear  and  tear,  the  aging  of  matrix  and  cells  are  pre-sumably  very  important  etiopathogenetic  factors  for  explaining  this relationship.

The  senescence  theory  of  OA  postulates  that  the  chondrocytes become  senescent  due  to  cellular  stress  and/or  (focal)  proliferation, finally leading to a failure of the cells to fulfill their essential functions (e.g.,  in  maintaining  proper  matrix  turnover).  In  general,  cellular  aging is associated with a number of changes that may undermine the ability of cells to maintain tissue homeostasis and culminate in cellular senescence.  Senescence  occurs  in  cultures  of  continuously  dividing somatic  cell  populations,  including  chondrocytes,  after  a  limited number  of  population  doublings  and  is  presumably  due  to  telomere erosion (replicative senescence). In post-mitotic cells such as chondro-cytes in vivo obviously classic cellular (replicative) senescence does not play a role in general. More attractive, however, is the concept of “pro-gressive” cellular senescence, which is precipitated by steadily increas-ing damage to the genomic DNA mostly due to oxidative stress. Thus, oxidatively  damaged  molecules  (DNA,  proteins,  lipids)  accumulate with  aging  and  are  thought  to  gradually  derange  cellular  functions. Accumulation  of  damaged  molecules  is  usually  of  only  limited  rele-vance for cells if they are proliferating, because a large portion of these molecules  are  re-synthesized  during  replication.  However,  this  con-stant molecular  renewal  is missing  in post-mitotic cells. Thus, post-mitotic cells accumulate (oxidatively) damaged molecules significantly with time.

Substantial DNA damage in addition to other cellular degenerative alterations  is  known  to  occur  in  OA  chondrocytes.30  These  effects would be expected to lead to apoptotic cell death in most cell types. As alluded to earlier, however, apoptosis appears to occur rather rarely in OA cartilage.  Instead,  the chondrocytes  remain  in a pre-apoptotic or para-apoptotic state with an uncoordinated pattern of gene expression, as shown in many in-vivo studies of chondrocyte behavior (Fig. 173.16). In  this  respect,  the  downregulation  of  molecules  that  are  usually responsible for regulating cell integrity and/or removal after non-accept-able cell damage may be an important permissive factor at this stage. 

stimulation of proteoglycan and collagen synthesis and the induction of growth factors.

A third (indirect) effect of obesity is certainly also the induction of a  (latent)  diabetic  metabolic  state  in  the  obese  patients  over  time, enhancing,  for  example,  advanced  glycation  end  products  formation within  the  cartilage  matrix  and  leading  to  all  their  detrimental  effects  on  matrix  mechanoproperties  and  cell  behavior  as  discussed earlier.

The concept of progressive (apoptotic) cell lossOne  of  the  most  simple  explanations  for  OA  cartilage  degeneration would be a mere loss of viable chondrocytes due to cell death during the disease process. Because  the chondrocytes are  the only source of matrix component synthesis in articular cartilage, any significant cell loss  would  immediately  result  in  a  distortion  of  cartilage  matrix homeostasis. Cell death can, in principle, be divided into apoptosis and necrosis. Apoptosis has evolved as a mechanism to eliminate surplus, abnormal, or dysfunctional cells whose survival and proliferation would be  detrimental.  Apoptosis  is  thus  normally  a  beneficial  process, although aberrant apoptosis can occur in pathologic states and apop-tosis  is  clearly  disadvantageous  when  it  leads  to  the  elimination  of healthy cells.

Many studies have addressed whether cell death plays a role in the pathology  of  OA,20  because  articular  chondrocytes  cannot  self-renew and  cell  loss  would  therefore  be  permanent  and  detrimental.  Also 

SCHEMATIC REPRESENTATION OF THE INTERLEUKIN-1 (IL-1)SIGNALING PATHWAY

MAPKKKK

NIK

Catabolism

Catabolic genes

MAPKKK/TAK1/TAB1

NFΚB p38

c-jun, ATF, SAP-1, ELK, ...

ERKJNK

IL 1

IL 1-R

MAPKK

Fig. 173.15 Schematic representation of the interleukin-1 (IL-1) signaling pathway. IL-1 signals through four major cellular signaling pathways including the three major MAP kinases (ERK, JUN, and P38) as well as the NF-κB cascade. This explain the high pleomorphism of genes influenced by IL-1 stimulation in chondrocytes. (Reprinted with permission from Aigner T, van der Kraan P, van den Berg W. Osteoarthritis and inflammation—inflammatory changes in osteoarthritic synoviopathy. In: Buckwalter JA, Lotz M, Stoltz JF, eds. Osteoarthritis, inflammation and degradation: a continuum. Amsterdam: IOS Press, 2007:219-230.)

Page 16: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

SEC

TIO

N 1

3 ●

OST

EOA

RTH

RITI

S A

ND

REL

ATED

DIS

ORD

ERS

1756

The synovial membraneThe two main clinical symptoms of OA, pain and joint stiffness, are both significantly related to synovial inflammation and capsular fibro-sis.  However,  although  its  clinical  importance  is  clear,  the  role  of synovial inflammation in the pathogenetic process of cartilage destruc-tion remains largely unknown (Fig. 173.17).32

The synovial (inflammatory) reaction observed in OA joint disease has been primarily considered to be a secondary effect resulting from the release of cartilage debris from the damaged articular cartilage. This is in contrast to the situation found for example in rheumatoid arthri-tis,  which  is  considered  to  originate  from  a  synovial  inflammatory autoimmune reaction with secondary cartilage destruction. However, inflammatory  reactions  in  the  synovial membrane do occur  to  some degree  in all OA joints. Also,  the  fact  that most OA patients display  a  minor  elevation  of  C-reactive  protein  within  the  serum  suggests  that the inflammatory component plays some role within the disease process.

Synoviocyte activation and proliferation as well as synovial hyper-plasia presumably all represent reactive changes responding to increased demands for clearance of molecular debris in the synovial fluid of the joint. This also explains the increase in the amount of CD68-positive type A synoviocytes, which have phagocytic capacity,  in  the synovial lining layer.

Although a cellular inflammatory component is missing in particu-lar cases of early OA, synovial hyperplasia and activation  is  likely  to generate  significant  problems  for  the  articular  cartilage  homeostasis. Synoviocytes  are  able  to  secrete  not  only  matrix-degrading  proteases (e.g., MMPs) but also catabolic cytokines (e.g., IL-1, TNF-α), inducing inflammatory signaling pathways within the chondrocytes themselves (see Fig. 173.15).

Many studies have found elevated MMP levels in synovial fluid of OA patients, namely, collagenase and stromelysin. Davidson and asso-ciates33 showed upregulation in OA synovium compared with synovium from patients with fracture of the femoral neck of MMP-9, MMP-11, MMP-13, MMP-16, and MMP-28 and ADAMTS-2, ADAMTS-10, and ADAMTS-16.

Not  only  proteases,  cytokines,  and  growth  factors  but  also  other factors  are  expressed  by  inflamed  OA  synovium.  OA  synovium  pro-duces  increased  amounts  of  ROS,  such  as  NO,  peroxynitrite,  and superoxide anion.

IL-1  is  also  synthesized  in  substantial  quantities  in  OA  synovial tissues, and this may be a major source of the increased IL-1 levels in 

For  example,  the  expression  of  the  small  GTPase  RhoB,  a  molecule that  is  constitutively  expressed  by  normal  articular  chondrocytes,  is significantly  downregulated  in  OA  cartilage.31  RhoB  is  involved  in cytoskeletal organization, cell transformation, and survival, but, most importantly, appears to be required for the apoptotic response at least in some cell types. One intriguing speculation is that the downregula-tion of RhoB in OA chondrocytes might be a prerequisite for the sus-tained pre-apoptotic or para-apoptotic phenotype of OA chondrocytes despite the substantial DNA damage that in normal cells would lead to apoptotic cell death.

Clearly, aging chondrocytes differ from normal cartilage cells, and, to a greater degree, chondrocytes from OA cartilage are likely to show signs of degeneration. However, aging does not inevitably lead to OA and not all aged chondrocytes show losses of  function. On the other hand, even in “normal” joints of elderly people the cartilage no longer looks juvenile. The major difference between normal aged cartilage and OA cartilage is that lesions do not progress and do not result in symp-tomatic disease  as  in OA cartilage. Although all  individuals  are  sus-ceptible to the same age-related changes, these appear to progress faster in some individuals (i.e., patients with primary OA) than others. Thus, OA shows “premature” or accelerated degeneration of articular carti-lage due to a premature senescence of the chondrocytes that maintain its structural integrity. By analogy to neurodegenerative disorders one could  name  OA  the  “Morbus  Alzheimer”  of  articular  cartilage  and chondrocytes.29

This analogy is particularly intriguing as OA, and to a lesser extent aged  chondrocytes  show  discoordinate  reaction  patterns  (see  Fig. 173.16),  which  are  most  likely  to  be  related  to  a  disturbance  of  the “cellular  brain,”  the  gene  regulation  machinery.  Also,  cartilage  and brain  share  an  important  similarity:  both  have  “(very)  old”  largely postmitotic  cells  (i.e.,  basically  no  cell  supply  and  proliferation  after puberty)  and,  thus,  show hardly  any  regeneration  capacity. However, cartilage has an additional problem in that it lacks the plasticity of the neuronal network. As discussed earlier, a functionally intact chondro-cyte cannot adequately replace a dysfunctional chondrocyte located at a  distance  from  it.  Obviously,  additional  research  will  be  needed  to determine  whether  accelerated  cell  aging  processes  account  for  the phenotype of the disease or, as is the case in Alzheimer’s disease, there are additional  features  that would allow one to  take new therapeutic approaches. Even if cell aging is an inevitable feature of OA (e.g.,  for limiting tumorigenic capacity), these processes can be used to identify and manipulate the causes of premature chondrocyte degeneration.

CHONDROCYTE BEHAVIOR

Coordinated processes

Functional Dysfunctional

Matrixturnover – repair

Cellular dysfunctionCell death/apoptosis

Un-coordinated

Fig. 173.16 Chondrocyte behavior. Articular chondrocytes in the normal joint behave in a very structured manner: they react to extracellular stimuli (e.g., joint loading, matrix changes, and exposure to cytokines and growth factors) according to their internal, predetermined program. In OA cartilage degeneration, chondrocytes are exposed to abnormal stimuli such as non-physiologic loading conditions, byproducts of matrix destruction (e.g., fibronectin and collagen fragments), and cytokines and growth factors that are not normally expressed in normal cartilage. This exposure leads to structured/deterministic cellular reactions, some of which are functionally positive for the tissue (e.g., anabolism), others of which are dysfunctional/detrimental (e.g., increased matrix catabolism and cell death). Potentially even more problematic for preserving tissue homeostasis are the unstructured/stochastic reaction patterns typically seen in OA chondrocytes, which lead to a significant microheterogeneity of cellular reaction patterns.

Page 17: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

CHA

PTER 173 ● Pathogenesis and pathology of osteoarthritis

1757

formation  as  well  as  subchondral  stiffening,  which  as  such  has  the potential to enhance the progression of cartilage destruction.

One interesting notion that would fit the mechanical interrelation between cartilage and subchondral bone outlined earlier is the inverse correlation  of  osteoporotic  bone  changes  and  OA.  Whereas  this  was supported by data of several initial studies, more recent work reported partly contradicting (supporting and rejecting) data. Therefore, future more  extensive  studies  have  to  be  done  to  further  elucidate  this phenomenon.

Continuous loading and mechanic stress?The  most  long-standing  theory  in  the  pathogenesis  of  primary  OA involves the cumulative (detrimental) effects of continuous mechanical wear and tear on articular cartilage. Joints and, in particular, the articu-lar  cartilage  are  always  exposed  to  mechanical  stress  from  loading, shearing, stretching, or hydrostatic pressure. This results in continu-ous microtrauma to the cartilage and repetitive damage to the cartilage extracellular matrix (see Chapter 6). Actually, pathologically increased mechanical stress has been linked to decreased matrix synthesis and the  induction of proinflammatory genes. This might be explained by the fact that mechanical signals are directly transmitted to the chon-drocytes via mechanoreceptors (e.g., integrins) and thus transmitted to the intracellular compartment. Here they can trigger a variety of cel-lular  responses  by modulation of  gene  expression. One  factor  in  the pathogenesis  might  be  oxidants  produced  by  chondrocytes  in  that process  that  causes  oxidative  damage  accumulating  over  a  lifetime. Thus, either cellular overstress or just continuous loading cycles might result in the loss of extracellular matrix integrity and function and in slowly progressing destruction of the tissue and the cells.

A more sophisticated explanation of the involvement of loading in the  degeneration  process  is  based  on  the  fact  that  joints  and  joint geometry are remodeled over one’s lifetime and a redistribution of load might  lead  to  increased  stress  in  formerly  unloaded  and,  therefore, atrophic cartilage areas. This age-related load redistribution could also explain  why  cartilage  in  the  elderly  is  incapable  of  withstanding mechanical forces.

Neuromuscular function and proprioception—roles in joint homeostasisJoint stability is dependent on several neuromuscular factors, including strength and coordination of  the  joint-related muscles as well as  the ability to sense the position and movement of the limb, the so called proprioception.35 The quadriceps femoris is one of the major muscles 

OA synovial fluid. The fact that TNF-α is less abundant is in line with the observation that TNF-α can be found only in a limited number of OA cases. Also, members of the TGF-β superfamily are found in OA synovium. Synovial tissues from patients with OA express and secrete TGF-β, mainly TGF-β1. Expression of BMP-2 and BMP-4 was reduced in  OA  synovial  tissue  compared  with  controls.  Vascular  endothelial growth factor (VEGF) as well as basic fibroblast growth factor (bFGF) have been detected in OA synovium, and immunoreactivity increased with higher histologic inflammation grade.

Altogether, the synovial reaction is clearly of major  importance to the symptoms of OA but also  involved  in  its progression. The  latter effect is presumably most of all mediated by the secretion of cartilage matrix  degrading  proteases  as  well  as  chondrocyte-modulating  cata-bolic cytokines.

The subchondral boneAnother important tissue, which is often neglected in OA research, is the subchondral bone,34 which undergoes severe thickening (sclerosis), in particular in the subchondral bone plate (compare Fig. 173.4f with normal bone shown in Fig. 173.4c). Although it is not yet clear whether changes  within  this  tissue  precede  changes  in  the  articular  cartilage (i.e., increased subchondral bone mass or stiffness as a risk factor for OA)  or whether  subchondral  bone  changes  are  secondary  adaptation processes after changes in the biomechanical properties of the overlying articular cartilage. That both are closely related is suggested by the fact that the cartilage marker cartilage oligomeric matrix protein (COMP) and the bone marker bone sialoprotein (BSP) increased concomitantly in persons with early stages of what later developed into radiographic OA. Already in early stages this tissue compartment shows significant changes in terms of increased thickness of the subchondral bone plate as well as of adjacent bone trabeculae. In later stages, severe remodeling processes take place in particular in areas of advanced cartilage destruc-tion:  apart  from  extensive  bone  sclerosis,  significant  aseptic  bone necrosis is a common feature of late-stage OA joints. In areas of total cartilage destruction (i.e., the eburnated bone plate), synovial fluid gets access  to  the  bone  marrow  and  presumably  leads  to  the  bone  cysts frequently seen in late stage disease. Growth factors from the synovial fluid  are  probably  involved  in  inducing fibrocytic  and  even  chondro-metaplastic changes, which  lead  to  the “cartilage nodules” or “tufts” characteristic for  late-stage disease. At least  in moderate to advanced lesions,  the  changes  in  the  subchondral  bone  represent  one  tissue responsible for the joint pain and, thus, are an interesting target tissue for  symptomatic  treatment  in  these  patients.  Also,  modification  of bone  remodeling  might  be  an  interesting  way  to  prevent  osteophyte 

INTERACTION ACTION BETWEEN SYNOVIUM AND CARTILAGE IN OA

Synovium

Cytokines

Growthfactors

e.g., IL-1, TNF

e.g., TGF betaBMP

TIMP

MMP, ADAMTS

Activation

Degradation products

Activeenzymes

Latentenzymes

Synovialactivation

Joint space Cartilage

Chondrocyte

Matrixdegradation

Early Late

Synthesisof matrix

molecules

Synthesisof matrix

molecules↑ ↓

Fig. 173.17 Interaction action between synovium and cartilage in OA. Molecular detritus from the cartilage activates the synovial lining cells. The synovial lining cells produce cytokines, growth factors, and (latent) enzymes. Synoviocyte-derived cytokines and growth factors further activate the chondrocytes. Enzymes produced by the synovial lining cells can directly degrade matrix molecules if not inactivated by inhibitors in the synovial fluid. Latent enzymes can be activated in the milieu of the OA cartilage. (Reprinted with permission from Aigner T, van der Kraan P, van den Berg W. Osteoarthritis and inflammation—inflammatory changes in osteoarthritic synoviopathy. In: Buckwalter JA, Lotz M, Stoltz JF, eds. Osteoarthritis, inflammation and degradation: a continuum. Amsterdam: IOS Press, 2007:219-230.)

Page 18: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

SEC

TIO

N 1

3 ●

OST

EOA

RTH

RITI

S A

ND

REL

ATED

DIS

ORD

ERS

1758

process. It is the molecular phenotype of the resident chondrocytes that determines the homeostasis of the cartilage matrix. The cellular reac-tion pattern of the chondrocytes in OA cartilage degeneration, however, is poorly understood, mainly because many of the involved genes are not yet identified and characterized. This exactly is one of the strengths of the gene expression chip technology.41,42 In fact, a lot of studies have been performed during the past decade using the array-chip technology and quite a few interesting genes and gene clusters were found42: this included in addition to known candidate gene groups such as anabolic and catabolic genes also new gene networks, such as a cluster of oxida-tive  defense  genes  (e.g.,  superoxide  dismutase-2  [SOD2]—the  major mitochondrial  ROS  scavenger)  and  others.  Further  studies  have  to validate the relevance of these findings for understanding and manipu-lating these molecular networks in the context of OA.

EpigeneticsClearly, one major issue during disease progression is a severe altera-tion of  the  gene  expression phenotype  of  the  articular  chondrocytes. Besides  gene  regulation  by  ordinary  transcription  factors,  epigenetic gene regulation may play an important role in determining gene expres-sion levels, namely, methylation of genes coding for cytokines, growth factors, and so on.43 In fact, first experimental data indicate that dif-ferences  in  the methylation status within disease-relevant promoters are  likely  to  induce/repress  respective  gene  expression.44,45  This  is, however, not true for all genes. Thus, for example, no changes in the methylation levels of the aggrecan gene in aged and diseased chondro-cytes were  found.46 Also, no de novo methylation of  the p21(WAF1/CIP1)-promoter-CpG  island  is  involved  in  this  process,  although p21(WAF1/CIP1) is known to be regulated by methylation, for example, in oncogenesis.47 The overall genome-wide methylation level remains unchanged  between  normal  and  diseased  and  aged  chondrocytes, although  this  does  not  exclude  differences  in  methylation  levels  for selected promoter  regions. Altogether data  are  sparse  so  far  and  epi-genetic  disregulation  in  OA  chondrocytes  is  clearly  one  potentially important new research topic for understanding the cellular (dis)behav-ior during the disease process.

CONCLUSIONThe  most  common  and  generally  accepted  theory  of  the  pathogenic mechanisms of primary OA involves the cumulative effects of continu-ous mechanical wear and  tear on articular cartilage.  In  the model of biochemical  cartilage  degeneration,  the  initiation  and  progression  of primary  OA  is  linked  to  time/age-related  modifications  of  resident cartilage matrix components as well as age-dependent changes in the properties  of  newly  synthesized  and  secreted  matrix  components, which  together  culminate  in  a  structurally  and  functionally  inferior cartilage matrix.  In addition to the extracellular cartilage matrix,  the chondrocytes are viewed as major contributors to disease, progression and premature aging of  the chondrocytes appears  to be  important  in the pathogenesis of OA. Unfortunately, the underlying causes of pre-mature  aging  are  largely  unknown  at  the  moment  and  are  therefore important areas for future research. Of interest, modern aging research points out that aging is not an inevitable event, at least not with respect to the period between 50 and 70 years of age, but rather an interesting target  for  therapeutic  intervention. Thus,  anti-aging  strategies might well complement present therapeutic approaches related to anabolism, catabolism,  apoptosis,  and  inflammation  processes,  all  of  which  are known to be relevant in OA.

involved in providing knee joint stability. An association of weak quad-riceps and radiographic as well as symptomatic OA has been demon-strated, which most likely results from increased load being applied to articular  cartilage  in  case  of  muscular  weakening.  Thus,  muscle-strengthening seems to have a preventive effect for OA. Whether the knee joint also benefits from quadriceps strengthening after the onset of OA remains so far unclear. Another important factor for joint stabil-ity is the proprioception. It is based on specialized nerve endings known as mechanoreceptors, which are  located  in the muscles and the  liga-ments and are essential  for fine  tuning of muscular movement. Pro-prioception declines with age, and a further decrease is seen in patients with OA. However,  it  is unclear whether  impaired proprioception  in OA contributes or results from the disease.

GENETICS, FUNCTIONAL GENOMICS, AND EPIGENETICSGeneticsNo doubt, OA, like nearly all other diseases, is initiated and progresses dependent on the genetic background of the individual. Therefore, the potential  of  genetics  for  elucidating  the  pathogenesis  of  OA  is  the subject  of  intensive  investigation  at  the  moment  (see  Chapter  174). Clearly, tools have been emerging rapidly in this area of research and the  first  hot  candidate  genes  have  been  identified,  such  as  frizzled related protein 336 and asporin.37 However, clear-cut pathogenetic con-cepts have not  emerged  for  any of  the  suggested  genes. Methods  for dissecting the complex interplay between genes and environment are still  to  be  developed  and  refined. One major  difficulty  is  to  separate genes  that  influence  the development of  the  joints  (thus  leading,  for example, to a mechanical weakness) from genes leading to an insuffi-ciency of the cells to maintain adequate repair and joint homeostasis later in life, which are finally relevant for preventing and treating OA. Another reason for the complexity of the interpretation of genetic data is that many of the genes detected are likely to be linked to other organ systems such as neuronal  crosslinking, muscle  strength, and mental perception. All  these will have  roles  in OA development and disease manifestation  without  being  related  to  cartilage  physiology  and pathobiology.

It has been known for some time that “OA runs in families,” but to what extent this is due to shared genetic influences or shared family environment is still uncertain. The disease is clearly multifactorial and polygenetic, that is, it results from the interaction of several, possibly many, genes. This  fact,  combined with  the  late onset of  the disease, which makes linkage studies almost impossible, has made the task of identifying susceptibility genes very difficult. Classic twin studies have estimated the influence of genetic factors to be 39% to 65% for radio-graphic OA of the hand and knee, about 60% for OA of the hip, and up to 70% for OA of the spine.38 In contrast, the Farmington study, a multigenerational cohort study of hand OA, estimated heritability  to be  only  28%  to  34%.39  Overall,  the  strongly  varying  results  of  these studies  point  to  a  considerable  heterogeneity  of  the  genetics  of  OA. Also,  it  seems  that  different  combinations  of  different  susceptibility genes may apply to different forms of OA.40

Functional genomicsOne major change  in OA research  in recent years has been the shift from investigating primarily biochemical aspects of articular cartilage matrix  destruction  to  studying  the  molecular  aspects  of  the  disease 

REFERENCES1. Mankin HJ, Dorfman H, Lippiello L, et al. Biochemical

and metabolic abnormalities in articular cartilage from osteoarthritic human hips. J Bone Joint Surg Am 1971;53:523-537.

2. Otte P. Die konservative Behandlung der Hüft-und Kniearthrose und ihre Gefahren. Dtsch Med Jahresschr 1969;20:604-609.

3. Pritzker KP, Gay S, Jimenez SA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 2006;14:13-29.

4. Pritzker KP, Aigner T. Osteoarthritis and cartilage, in press.

5. Oehler S, Neureiter D, Meyer-Scholten C, et al. Subtyping of osteoarthritic synoviopathy. Clin Exp Rheumatol 2002;20:633-640.

6. Krenn V, Morawietz L, Burmester GR, et al. Synovitis score: discrimination between chronic low-grade and high-grade synovitis. Histopathology 2006;49:358-364.

7. Gelse K, Soeder S, Eger W, et al. Osteophyte development-molecular characterization of

differentiation stages. Osteoarthritis Cartilage 2003;11:141-148.

8. Aigner T, Dietz U, Stoss H, et al. Differential expression of collagen types I, II, III, and X in human osteophytes. Lab Invest 1995;73:236-243.

9. Burrage PS, Brinckerhoff CE. Molecular targets in osteoarthritis: metalloproteinases and their inhibitors. Curr Drug Targets 2007;8:293-303.

10. Kalya S, Rosenthal AK. Extracellular matrix changes regulate calcium crystal formation in articular

Page 19: 173 - Pathogenesis and pathology of osteoarthritis · Pathogenesis and pathology . of osteoarthritis. Thomas Aigner and Nicole Schmitz Osteoarthritis (OA) is pathologically primarily

CHA

PTER 173 ● Pathogenesis and pathology of osteoarthritis

1759

cartilage. Curr Opin Rheumatol 2005;17: 325-329.

11. Kuettner KE, Cole AA. Cartilage degeneration in different human joints. Osteoarthritis Cartilage 2005;13:93-103.

12. Knudson W, Casey B, Nishida Y, et al. Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis. Arthritis Rheum 2000;43:1165-1174.

13. Aigner T, Vornehm SI, Zeiler G, et al. Suppression of cartilage matrix gene expression in upper zone chondrocytes of osteoarthritic cartilage. Arthritis Rheum 1997;40:562-569.

14. Fan Z, Bau B, Yang H, et al. IL-beta induction of IL-6 and LIF in normal articular human chondrocytes involves the ERK, p38 and NFkB signaling pathways. Cytokine 2004;28:17-24.

15. Saklatvala J. Inflammatory signaling in cartilage: MAPK and NF-kappaB pathways in chondrocytes and the use of inhibitors for research into pathogenesis and therapy of osteoarthritis. Curr Drug Targets 2007;8:305-313.

16. Pfander D, Gelse K. Hypoxia and osteoarthritis—how chondrocytes survive hypoxic environments? Curr Opin Rheumatol 2007;19:457-462.

17. Henrotin Y, Kurz B, Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 2005;13:643-654.

18. Abramson SB. Osteoarthritis and nitric oxide. Osteoarthritis Cartilage 2008;16(Suppl 2):S15-S20.

19. Loeser RF. Systemic and local regulation of articular cartilage metabolism: where does leptin fit in the puzzle? Arthritis Rheum 2003;48:3009-3012.

20. Hashimoto S, Ochs RL, Rosen F, et al. Chondrocyte-derived apoptotic bodies and calcification of articular cartilage. Proc Natl Acad Sci U S A 1998;95:3094-3099.

21. Stockwell RA. The interrelationship of cell density and cartilage thickness in mammalian articular cartilage. J Anat 1971;109:411-421.

22. Aigner T, Kim AH. Apoptosis and cellular vitality—Issues in osteoarthritic cartilage degeneration. Arthritis Rheum 2002;46:1986-1996.

23. Aigner T, Hemmel M, Neureiter D, et al. Apoptotic cell death is not a widespread phenomenon in normal aging and osteoarthritis human articular knee cartilage: a study of proliferation, programmed cell death (apoptosis), and viability of chondrocytes in normal and

osteoarthritic human knee cartilage. Arthritis Rheum 2001;44:1304-1312.

24. Vignon E, Arlot M, Patricot LM, et al. The cell density of human femoral head cartilage. Clin Orthop Relat Res 1976;121:303-308.

25. Kuhn K, D’Lima DD, Hashimoto S, et al. Cell death in cartilage. Osteoarthritis Cartilage 2004;12:1-16.

26. Hirsch MS, Lunsford LE, Trinkaus-Randall V, et al. Chondrocyte survival and differentiation in situ are integrin mediated. Dev Dyn 1997;210:249-263.

27. Poole CA, Matsuoka A, Schofield JR. Chondrons from articular cartilage: III. Morphologic changes in the cellular microenvironment of chondrons isolated from osteoarthritic cartilage. Arthritis Rheum 1991;34:22-35.

28. Hambach L, Neureiter D, Zeiler G, et al. Severe disturbance of the distribution and expression of type VI collagen chains in osteoarthritic articular cartilage. Arthritis Rheum 1998;41:986-996.

29. Aigner T, Rose J, Martin J, et al. Aging theories of primary osteoarthritis: from epidemiology to molecular biology. Rejuvenation Res 2004;7:134-145.

30. Aigner T, Soder S, Gebhard PM, et al. Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis—structure, chaos and senescence. Nat Clin Pract Rheumatol 2007;3:391-399.

31. Gebhard PM, Söder S, Bau B, et al. Down-regulation of the GTPase RhoB might be involved in the pre-apoptotic phenotype of osteoarthritic chondrocytes. Front Biosci 2004;9:827-833.

32. Aigner T, van der Kraan P, van den Berg W. Osteoarthritis and inflammation—Inflammatory changes in osteoarthritic synoviopathy. In: Buckwalter JA, Lotz M, Stoltz JF, eds. Osteoarthritis, inflammation and degradation: a continuum. Amsterdam: IOS Press, 2007:219-230.

33. Davidson RK, Waters JG, Kevorkian L, et al. Expression profiling of metalloproteinases and their inhibitors in synovium and cartilage. Arthritis Res Ther 2006;8:R124.

34. Goldring SR. The role of bone in osteoarthritis pathogenesis. Rheum Dis Clin North Am 2008;34:561-571.

35. Jackson BD, Wluka AE, Teichtahl AJ, et al. Reviewing knee osteoarthritis—a biomechanical perspective. J Sci Med Sport 2004;7:347-357.

36. Loughlin J, Dowling B, Chapman K, et al. Functional variants within the secreted frizzled-related protein 3

gene are associated with hip osteoarthritis in females. Proc Natl Acad Sci U S A 2004;101:9757-9762.

37. Kizawa H, Kou I, Iida A, et al. An aspartic acid repeat polymorphism in asporin inhibits chondrogenesis and increases susceptibility to osteoarthritis. Nat Genet 2005;37:138-144.

38. Spector TD, MacGregor AJ. Risk factors for osteoarthritis: genetics. Osteoarthritis Cartilage 2004;12(Suppl A):39-44.

39. Demissie S, Cupples LA, Myers R, et al. Genome scan for quantity of hand osteoarthritis: The Framingham study. Arthritis Rheum 2002;46:946-952.

40. Peach CA, Carr AJ, Loughlin J. Recent advances in the genetic investigation of osteoarthritis. Trends Mol Med 2005;11:186-191.

41. Aigner T, Fundel K, Saas J, et al. Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 2006;54:3533-3544.

42. Aigner T, Gebhard PM, Kueffner R, et al. cDNA arrays in degenerative arthritis research. Future Rheumatol 2006;1:101-109.

43. Roach HI, Aigner T. DNA methylation in osteoarthritic chondrocytes: a new molecular target. Osteoarthritis Cartilage 2007;15:128-137.

44. Roach HI, Yamada N, Cheung KSC, et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum 2005;52:3110-3124.

45. Roach HI, Inglis S, Partridge KA, et al. Can changes in the DNA methylation pattern explain the clonally inherited altered phenotype of osteoarthritic chondrocytes? In: Landis W, Sodek J, eds. Proceedings of the 8th International Conference on the Chemistry & Biology of Mineralized Tissues. Toronto: University of Toronto, 2005:192-195.

46. Pöschl E, Fidler A, Schmidt B, et al. DNA-methylation is not responsible for aggrecan down-regulation in aged or osteoarthritic cartilage. Ann Rheum Dis 2005;64:477-480.

47. Sesselmann S, Soder S, Voigt R, et al. DNA methylation is not responsible for p21WAF1/CIP1 down-regulation in osteoarthritic chondrocytes. Osteoarthritis Cartilage 2009;17:507-512.

REFERENCESFull references for this chapter can be found on www.expertconsult.com.


Recommended