+ All Categories
Home > Documents > 19890016190

19890016190

Date post: 02-Mar-2018
Category:
Upload: shrikantmsd
View: 216 times
Download: 0 times
Share this document with a friend

of 53

Transcript
  • 7/26/2019 19890016190

    1/53

    N A S A C o n t r a c t o r NCC

    2-501

    C h a r a c t e r i z a t i o n

    o f

    Spirul ina Biomass

    for CELSS D ie t

    Potential

    / f l & - < Z

    1.

  • 7/26/2019 19890016190

    2/53

    NASA Contractor NCC 2-501

    Tit le: Character izat ion o f Spirulino Biomass

    fo r CELSS Diet Potential

    Pr ncipa

    I I

    nvest igator

    Alabama A &M Uni ver si ty

    Normal, A L 35762

    Mahasin

    G o

    adros,

    Ph-D-

    Techni cal Monitor Robert D o MacElroy, PhoDo

    NASA/AMES

    MOffet Field, CA 94035

    Period

    Covered 11/01/87

    -

    10/31/88

    NASA Cooperative Agreement CELSS Program

    October 1988

  • 7/26/2019 19890016190

    3/53

    TABLE OF CONTENTS

    Page

    i

    ACKNOWLEDGMENT

    AND PERSONNEL ...........................

    ABSTRACT

    ...............................................

    ii

    INTRODUCTION AND BACKGROUND ............................

    1

    Objectives ............................................. 3

    Significance ........................................... 3

    MATERJALS

    AND METHODS .................................. 4

    Culturing ..............................................

    4

    Growth Conditions

    ......................................

    5

    Analysis

    ...............................................

    7

    EXPERIMENTAL

    DESIGN

    .................................... 9

    Protocol ...............................................

    9

    Growth Parameters Characterization ..................... 9

    Physiological Characterization

    of

    Spirulina

    in Batch Cultures ...................................

    11

    RESULTS

    AND

    DISCUSSIONS

    ................................

    13

    Temperature

    and

    Light

    13

    Aeration Rate .......................................... 13

    Air Enrichment with Carbon Dioxide

    17

    pH Effect ..............................................

    17

    physiological Characterization

    of

    Spirulina

    ..................................

    .....................

    Nutrient Requirement ................................... 20

    28

    in

    Batch Cultures ...................................

    37

    CONCLUSIONS ............................................

    40

    FuT[TRE RESEARCH

    ........................................

    REFERENCES .............................................

    42

    APPENDIX

    ...............................................

    44

  • 7/26/2019 19890016190

    4/53

    LIST OF FIGURES

    Page

    Figure

    1.

    Flow Diagram for Experimental Design

    ............. 10

    Figure 2. Growth Rate and Yield

    of

    S. maxima(a)

    and S. platensis (b) as a Function of

    Temperature and Light Irradiance.. ................

    14915

    Figure 3. Growth Rate and Yield of S. maxima

    and S. platensis as a Function of

    Aeration Rate..................................... 16

    Figure

    4.

    Growth Rate and Yield

    of S.

    maxima

    and S. platensis as

    a

    Function of

    Carbon Dioxide Concentration in Air .............. 18

    Figure 5. Growth Rate and Yield of

    S.

    maxima

    and

    S.

    platensis as

    a

    Function

    of

    pH

    ...............................................

    19

    Figure 6. Growth Rate and Yield of S. maxima

    and S. platensis as

    a

    Function

    of

    21

    itrogen Concentration ...........................

    Figure

    7.

    Growth Rate and Yield of S. maxima

    and S. platensis as a Function

    of

    Phosphate Concentration

    ..........................

    22

    Figure

    8.

    Growth Rate and Yield

    of S.

    maxima

    and

    S.

    platensis as a Function of

    Sodium Chloride Concentration

    ....................

    24

    Figure 9.

    Growth Rate and Yield of

    S.

    maxima

    and

    S. platensis as a Function of

    Iron Concentration

    25

    ...............................

    Figure

    10.

    Growth Rate and Yield of

    S.

    maxima (a)

    and S. platensis

    (b)

    as a Function

    of

    Bicarbonate Concentration ........................ 26,27

    Figure

    11.

    Optical Density versus Dry Weight

    S.

    maxima

    (a), S. plantensis (b) ...................

    29

    Figure 12. Physiological Characteristics, under

    Op tbum Growth Conditions

    ........................

    31,32

    Figure 13. Physiological Characterization

    of

    Cultures, under Stress Conditions

    ................

    35,36

    Figure 14. Cells

    of S.

    maxima grown under

    Optimum Conditions (a) and (b) ...................

    39

  • 7/26/2019 19890016190

    5/53

    LIST

    OF

    TABLES

    Page

    Table 1. Molecular Composition of Spirulina strains

    .........

    33

  • 7/26/2019 19890016190

    6/53

    ACKNOWLEDGEMENT

    Appreciation is extended to N A S A - A M E S for their support

    of th is proje ct.

    As the NASA Technical Monitor Dr . Robert MacEIroy has

    made invaluable guidance and assistance to the project.

    him, we are especially gra tef ul.

    To

    PERSONNEL

    The following personnel has been employed on this contract.

    Mahasin G . Tadros, Ph.D.,

    P . I .

    Woodrow Smith, B. Sc ., M.Sc.

    Peter Mabuthi, B.Sc.

    Bever ly Joseph, B. Sc.

    i

  • 7/26/2019 19890016190

    7/53

    ABSTRACT

    Spi r ul i na sp. as a bi oregenerat i ve phot osynt het i c and an edi bl e al ga

    f or space cr af t cr ew i n a CELSS, was char act er i zed f or gr owt h r at e

    and bi omass yi el d i n bat ch cul t ur es, under var i ous envi r onment al

    condi t i ons. The cel l char acter i st i cs wer e i dent i f i ed f or t wo st r ai ns

    of Spi rul i na: S . maxi ma and S . pl at ensi s. Fast growt h r ate and hi gh

    yi el d of bot h st r ai ns wer e obt ai ned under t he f ol l owi n condi t i ons:

    t emper at ur e ( 30C- 350C) , l i ght i r r adi ance 60-100 uE ms s-l, ni t r ate

    30mM, phosphat e 2mM, aer at i on300 m / m n, and pH 9-10. The par t i t i oni ng

    of t he assi mal at or y pr oduct s ( pr ot ei ns, carbohydr ates, l i pi ds) wer e

    mani pul at ed by var yi ng t he envi r onment al gr owt h condi t i ons. Our

    exper i ment s wi t h Spi r ul i na have demonst r ated t hat under st r ess

    condi t i ons ( i .e. hi gh l i ght

    ni t r ogen or phosphat e l i m t at i on;

    0.1

    M sodi um chl or i de) car bohydr at e

    i ncr eased at t he expense of pr ot ei n. I n ot her exper i ment s, wher e the

    gr owt h medi a were suf f i ci ent i n nut r i ent s and i ncubated under opt i mum

    gr owt h condi t i ons, t he t ot al pr ot ei ns wer e i ncr eased up

    t o

    al most 70%

    of

    t he or gani c wei ght .

    120 uE m 2 s- l , t emperat ur e 38OC,

    I n ot her wor ds t he nut r i t i onal qual i t y of t he al ga coul d be mani pul at ed

    by gr owt h condi t i ons. These r esul t s suppor t t he f easi bi l i t y of con-

    si deri ng Spi r ul i na as a subsyst em i n CELSS because of t he ease wi t h

    whi ch i t s nut r i ent cont ent can be mani pul ated.

    i i

  • 7/26/2019 19890016190

    8/53

    INTRODUCTION AND

    BACKGROUND

    Cert ai n basi c physi ol ogi cal needs must be met

    i n or der f or human bei ngs

    t o st ay al i ve. On ear t h, t hese needs ar e met by ot her l i f e f orms i n

    conj unct i on wi t h geochemci al pr ocesses t hat ef f ect i vel y use human wast e

    pr oduct s i n conj unct i on wi t h ener gy f r om t he sun t o produce f r esh

    suppl i es of f ood, oxygen and cl ean wat er . I n t he ar t i f i ci al envi r onment

    of a spacecraf t ,

    t hese mat er i al s must be pr ovi ded, and human wast es r e-

    moved, wi t hout r el yi ng on t he nat ur al r esour ces of t he ear t h' s bi ospher e.

    Pur sui t of our nat i onal goal s i n space expl or at i on wi l l event ual l y

    r equi r e man' s l ong- dur at i on t enancy of cel est i al vehi cl es and pl anet ar y

    bases. Requi r ement s f or l i f e suppor t coul d be met t hrough expendi t ure

    of st ored suppl i es and by r egenerat i on and r euse of t he wast e pr oduct s

    of human metabol i sm The l ogi st i cs necessar y of r egenerat i on f or

    ext ended space m ssi ons ar e wel l document ed.

    The use of bi ol ogi cal component s Cont r ol l ed Ecol ogi cal Li f e Suppor t

    Syst em ( CELSS) pr ogr am as subsyst ems f or t he revi t al i zat i on of ai r ,

    wast e pr ocessi ng,

    and f or t he pr oduct i on of f ood has been proposed

    f or t he l ong t er m

    -

    space f l i ght ( MacEl r oy, Br edt , 1 9 8 5 ) . St udi es of

    bi ogener at i ve l i f e suppor t syst ems f or use i n space i ndi cat ed t hat

    t hey ar e sci ent i f i cal l y f easi bl e. Suppor t of a cr ew i n space, whet her

    i n an orbi t er or on t he sur f ace of a pl anetar y body r equi r es that oxygen,

    pot abl e wat er and f ood be suppl i ed and t hat wast e mat er i al be r emoved.

    Empl oyment of phot osynt het i c or gani sms ( hi gher pl ant s, gr een al gae,

    cyanobact eri a)

    al l ows bi omass pr oduct i on f r om r el at i vel y si mpl e com

    ponent s whi ch ar e r eadi l y r ecycl ed i n a CELSS sys t em namel y car bon

    di oxi de, m ner al s ( NO3- , PO4- 3, K+ Na+, et c. ) and m cr onut r i ent s.

    The pr i mar y s our ce of al l man' s f ood and or gani c r aw mat er i al s i s

    sol ar ener gy. Convent i onal f ood sour ces consi st of hi gher pl ant s

    and ani mal s. Unconvent i onal f ood sour ces f or human consumpt i on ar e

    phot osynt het i c al gae and bact er i a and non- phot osynt het i c bact er i a,

    yeast s and f ungi . Convent i onal f ood sour ces are hi ghl y pal atabl e,

    but r equi r e

    a

    l ong t i me t o pr oduce. The phot osynt het i c energy

    ef f i c i ency of hi gher pl ant s i s l ess than 3 % . Al gae, on t he other

    hand, gr ow r api dl y; t hei r met abol i sm can be cont r ol l ed; t hey pr oduce

    a hi gh r at i o of edi bl e to nonedi bl e bi omass; and t hei r gas- exchange

    char acter i s t i cs ar e

    compat i bl e wi t h human requi r ement s.

    The sem - m cr oscopi c bl ue- gr een al gae

    ( Cyanophyt a; Cyanobact er i a)

    occupy a uni que t axonom c posi t i on, si nce t hey combi ne an aut or ophi c

    mode of growt h that i s common t o eukaryot i c pl ant cel l s wi t h a

    met abol i c syst em t hat i s gener al l y regar ded as bact er i al , r at her t han

    pl ant - l i ke.

    1

  • 7/26/2019 19890016190

    9/53

    Cyanobacter i a s i ngl e cel l pr ot ei n

    (SCP)

    has been used as a f ood source

    i n var i ous par t s of t he wor l d (e.g. Mexi co, Chi na and Af r i ca) si nce

    anci ent t i mes; i n f act , dri ed cyanobact er i a and cyanobact er i al t abl et s .

    are now sol d i n heal t h f ood st ores i n J apan, Nort h Amer i ca and Eur ope

    because t hey are r ecogni zed f or t hei r nut r i t i onal val ue. The nut r i -

    t i onal qual i t y of al l cyanobact eri a whi ch have been t est ed ( See

    Appendi x) appear s to be ver y hi gh. For exampl e, Spi r ul i na, i n

    addi t i on t o bei ng t he

    r i chest known sour ce of vi t am n Bi z, al so

    cont ai ns s i gni f i cant amount s of vi t am ns

    B1

    and B2. Si m l arl y, one

    gr am of Spi r ul i na cont ai ns one- hal f of t he adul t dai l y r equi r ement s

    of v i t am n

    A

    ( B- carot ene) . The t r ace el ement s and i odi ne f ound i n

    cyanobact er i a ar e al so i mpor t ant when consi der i ng t he nut r i t i onal

    qual i t y cyanobact er i a. The pr otei n of

    S.

    maxi ma and Anabaena

    cyl i ndr i ca i s easi l y di gest i bl e and appr oxi mat el y 65 of t he pr ot ei n

    i s assi m l at i bl e.

    Changes i n t he suppl y of consumpt i on of met abol i t es may have con-

    si derabl e ef f ect s on met abol i c pat t er ns. The accumul at i on of phot o-

    synt het i c pr oduct s i n al gae can be i nduced by mani pul at i ng t he

    envi r onment al condi t i ons under whi ch t he al gae are gr own ( Fogg, 1956) .

    Physi ol ogi cal changes have been i ndi cat i ve

    of

    par t i cul ar changes i n

    nut r i ent def i c i ency (Heal ey, 1975) . St udi es have shown t hat l i m t at i on

    of ni t r ogen, phosphorus, and i r on i n cul t ur e medi a, af f ect s t he gr owt h

    and physi ol ogy of cyanobact er i a. Agi t at i onof t he cul t ur e wi t h ai r

    l eads to bi omass i ncr ease.

    Enr i chment wi t h

    5

    C02 i n the bubbl i ng

    ai r was

    an ef f i ci ent way of obt ai ni ng a good pr oduct i vi t y

    (DE

    l a Noue

    et . al . ,

    1984 ) .

    Packer , et . al . ,

    ( 1986 ) ,

    have shown t hat wi t h proper

    mani pul at i on of t he osmot i c envi r onment , macr omol ecul es of car bohydr at es

    can be pr oduced by N2- f i xi ng cyanobact er i a.

    The most di f f i cul t pr obl em i n usi ng al gae as f ood i s t he conver si on

    of al gal bi omass i nt o pr oduct s t hat a space cr ew coul d act ual l y eat

    over a l ong per i od of t i me. I f al gae are t o be consi dered as a pr i -

    mar y f ood sourc e, i t wi l l be necessar y to det erm ne t hat t hey can

    be

    conver t ed i nt o a wi de enough range of a pal at abl e compl et e di et.

    Theref ore, Spi r ul i na, an edi bl e al ga wi t h l ess nucl ei c aci ds and no

    cel l wal l s , of f er s a gaod

    pr ospect f or f ur t her st udi es by mani pul at i ng

    growt h par amet er s.

    I n or der t o eval uat e

    the pot ent i al of Spi r ul i na f or a

    CELSS

    d i e t , i t

    i s essent i al t o have backgr ound i nf ormat i on on t he envi r onment al

    t ol er ances of t he speci es and event ual l y the responses of physi ol ogi cal

    charact er i s t i cs.

    speci es i n bat ch and cont i nuous cul t ur es.

    Thi s backgr ound wi l l be obt ai ned f r om st udyi ng t he

    The pur pose of t hi s pr oj ect was t o eval uat e t he gr owt h and chemci al

    composi t i on of t wo st r ai ns of Spi r ul i na under di f f er ent gr owt h

    condi t i ons .

    2

  • 7/26/2019 19890016190

    10/53

    OBJECTIVES

    To charact er i ze bat ch cul t ur es

    of

    Spi r ul i na: Gr owt h, Bi omass Yi el d,

    and Chem cal Composi t on under var yi ng:

    .

    Temper at ur e

    .

    Li ght i nt ens i t y

    .

    Aer at i on r at e

    . Nut r i ent concent r at i ons

    SIGNIFICANCE:

    . Devel opment of CELSS r el i es, i n par t , on the abi l i t y t o

    mani pul at e and cont r ol t he or gani sms whi ch ar e a par t of t he

    syst em

    . Bi ol ogi cal r egener at i on of suppl i es consumed i n CELSS.

    . Di r ect ut i l i zat i on of al gae i n space craf t crew di et .

    Thi s pr oj ect st art ed i n November

    1987.

    The accompl i shment s i n t he

    per i od November 1987 t o Oct ober 1988 ar e descri bed i n t hi s repor t .

    3

  • 7/26/2019 19890016190

    11/53

    MATERIALS AND HETEODS

    Culturing

    Or gani sm

    Two

    st r ai ns of cyanobact er i a Spi r ul i na:

    . S.

    Maxi ma: ( UTEXLB 2342) was obt ai ned f r om Ut ex Al gal

    Col l ec t i on

    . S . Pl atensi s: was obt ai ned f r om Dr . Becker W Ger many

    . S.

    Maxi ma f i l ament s have t ur ns, whi l e

    S.

    Pl ant es i s f i l ament s

    ar e str ai ght ones.

    Gr owt h Medi um Zar r ouk medi um ( 1966) was used as f ol l ows:

    NaHC03 16. 0g; K2HP04 0. 5g; NaN03 2. 5g; K2SO4 1. Og; NaCl 1. Og;

    MgS04. 7H20 0- 2g ; CaC12 0. 4g; FeS04 0. 01g; EDTA 0. 08g; Sol ut i on

    A5 1mL; Sol ut i on B6 1mL; i n 1L di st i l l ed wat er .

    Sol ut i on A5 i n gr ams per l i t r e

    of

    di st i l l ed wat er : H3BO3, 2. 86;

    MnC12. 4H20, 1. 81; ZnS04. 7H20, 0. 222; CuS04. 5H20, 0. 079; and

    MoO3, 0. 015.

    Sol ut i on B6, i n m l l i gr ams per l i t r e

    of

    di st i l l ed wat er : NH4V03,

    22* 96; KCr

    (s04)2. 12H20, 192. 0; Ni S04. 6H20,

    44. 8;

    Na2W04. 2H20,

    17. 94; Ti OSOq. H2S04, 8H20, 61. 1; and Co(N03) 2. 6H20, 43. 98.

    The medi um was aut ocl aved wi t hout t he bi carbonat e sal t s. The

    bi car bonat e sol ut i ons wer e st er i l i zed by f i l t r at i on t hr ough 0. 2 mm

    pore s i ze f i l t e r s.

    The cul t ur e medi um was modi f i ed f or nut r i ent l i m t at i on st udi es:

    . For N2 l i m t ed cul t ur es, NaN03 was r epl aced

    by

    KC1, and ni t r ate

    ammoni a, and ur ea were t ested i n di f f er ent concent r at i ons as

    ni t r ogen sour ces.

    .

    For P- l i m t ed medi um t he P was r epl aced

    by

    NaCl and

    H3P04

    was

    used as P- sour ce, i n di f f er ent concent r at i ons.

    . For sal i ni t y st udi es, NaCl was used i n di f f er ent concent r at i ons.

    4

  • 7/26/2019 19890016190

    12/53

    .

    FeSO4 was used i n di f f er ent concent r at i ons.

    .

    pH was mai nt ai ned i n al l cases at 9 wi t h 2N NaOH

    Cont am nat i on: The st andard pl at e- count met hod was used t o det erm ne

    t he number of bact eri a pr esent i n t he cul t ur e. Al i quot s wer e pl at ed

    usi ng a bent gl ass r od on an agar medi um whi ch i s pr epared f r om

    Zar r ouk (1966) medi um ( al gae medi umment i oned pr evi ousl y) enr i ched

    wi t h t he f ol l owi ng i ngr edi ent s:

    Trypt one gl ucose yeast agar : Trypt one, 5. 0g; Yeast ext r act , 2. 5g;

    Gl ucose,

    1. Og;

    Agar, 15. 0g; i n 1L di st i l l ed wat er , pH 7 .

    0.1 m f i l t r at e was spr ead on t he agar s ur f ace and i ncubat ed.

    Col oni es were count ed, di l ut i on was made i f necessar y. Pl at es

    wer e i ncubat ed at 30C and count ed af t er

    48

    hour s or l onger t o

    det ect al l or gani sms.

    Pur i f i cat i on

    of

    Spi r ul i na Cul t ure: The or i gi nal cul t ures of Spi r ul i na

    were cont am nat ed wi t h bact eri a. Di f f erent pr ocedur es were used to

    pur i f y t he cul t ur es. However , t he f ol l owi ng pr ocedur e was t he most

    successf ul one:

    Cel l s wer e col l ect ed, f i l t er ed wi t h 8mm f i l t er ( Gel man) , washed

    wi t h basal medi um and homogeni zed. Cel l s wer e spr ead i n a pl at e,

    exposed to UV 5 m n (20 W UV l amp,

    30

    cm di st ance) and i nocul ated

    i n t est t ube cul t ur es cont ai ni ng t he basal medi um One dr op

    si ze, i nocul um per tube. From 100 cul t ur e t ubes,

    10

    t ubes wer e

    bacter i a f ree.

    Growth Conditions:

    Cul t ur e Room A smal l r oom ( 3m D x 2. 45m W2 x 2. l m H), was avai l abl e

    f or t hi s proj ect . I t was provi ded wi t h shel ves, whi ch have been

    illuminated with cool white fluorescent tubes. Light intensity

    var i ed f r om

    80-100

    uE m 2

    was kept at 25C.

    on t he shel ves. The r oom t emperat ur e

    Li ght Measurement s: Li ght i r r adi at i on measur ement s wer e made wi t h a

    Li - Cor Model Li - 185 M ( Lambda I nst r ument s) Met er equi pped wi t h a

    spher i cal quant um sensor .

    Al l experi ment s wer e i ncubat ed i n cont i nuous l i ght .

    Culturing Techniques:

    a. Cul t ur i ng bot t l es: Smal l bot t l es (60 m capaci t y) cont ai ni ng

    3 m gr owt h medi um wer e i nocul at ed f r om st ock cul t ur e i n t he

    5

  • 7/26/2019 19890016190

    13/53

    exponent i al phase and bubbl ed wi t h ai r . These cul t ur es wer e

    used f or eval uat i ng t he gr owt h par amet er s of t he al ga.

    b. Roux bot t l es: Exper i ment al amount s of al gal cel l s wer e gr own i n

    r oux bot t l es , cont ai ni ng 800 m st er i l e gr owt h medi um by i n-

    ocul at i ng t hemwi t h

    50

    m of pr eadapt ed r api dl y gr owi ng cul t ur e

    i n a

    125

    m er l enmeyer f l ask. Cul t ur es wer e i l l um nat ed con-

    t i nuousl y by pl aci ng them i n f r ont of a bank of t wo cool whi t e

    f l uorescent l amps ( 4 0 W. Li ght i r r adi at i on, measur ed at t he

    sur f ace of cul t ur e bot t l es was

    80

    uE m 2 s l .

    gr own i n a wat er bat h kept at 29- 30C by t he use of a heat er -

    t her most at combi nat i on.

    The cul t ures wer e

    c. Aer at i on: The cul t ur es were aer at ed wi t h ai r (0.03%C02)

    or

    ai r

    enr i ched wi t h car bon di oxi de. The ai r was del i ver ed by an oi l -

    l ess compr essor . The ai r was passed f i r st t hr ough concent r at ed

    sul f ur i c aci d, a sat ur at ed ZnC12 sol ut i on and t hen di s t i l l ed

    wat er . The ai r was t hen passed t hr ough a cot t on f i l l ed er l enmeyer

    f ol l owed by a gl ass wool f i l l ed er l enmeyer pr ef i l t er . F i nal l y ,

    t he ai r was st er i l i zed by f l owi ng t hr ough st er i l e f i l t er 0. 22 um

    (Gel man) . The ai r f l ow r at e was moni t or ed by a f l ow met er . The

    sour ce of car bon di oxi de was f r oma pr essur i zed t ank (50 l b)

    whi ch was provi ded wi t h a r egul at or and sol enoi d val ve t o shut

    of f t he gas aut omat i cal l y t hr ough an el ect r i c ti mer . The car bon

    di oxi de f l ow was moni t or ed by a f l ow met er and was s t er i l i zed by

    passi ng t hr ough st er i l e 0. 22 um f i l t er (Gel man). M xtur es of ai r

    ( 0. 36% C02) and car bon di oxi de wer e obt ai ned by bl endi ng gases t o

    a desi r ed m xtur e i n a t wo- gas pr opor t i oner . The f l ow r at e of

    t he m xed gas del i ver ed t o t he cul t ur e was mai nt ai ned at 300 m / m n.

    6

  • 7/26/2019 19890016190

    14/53

    Anal ysi s :

    Gr owt h Rat e: Gr owt h was measured by moni t or i ng change i n absor bance

    (O D. )

    at

    560

    nm wi t h spect r ophot omet er ( Per ki n El mer Lambda

    I )

    and

    expr essed as doubl i ngs dayl. The mean dai l y di vi si on r at e t , K , i s

    cal cul at ed f rom

    Wher e,

    t

    = days si nce i nocul at i on

    ODt = opt i cal dens i t y af t er

    t

    days

    OD, = opt i cal densi t y when

    t

    = 0.

    Har vest i ng of Cel l s: Cel l s wer e col l ect ed

    by

    f i l t r at i on usi ng f i l t er

    paper

    10

    mm

    por e si ze (Gel man) . Cel l s were washed wi t h buf f er sol ut i on

    ( pH

    8),

    di l ut ed t o known vol ume and pr ocessed f or f ur t her anal ysi s.

    Cul t ures wer e har vest ed at O. D.

    0.1

    uni t s , to avoi d l i ght l i m tat i on.

    Tr i pl i cat e sampl es

    of

    t he al gal suspensi on wer e t aken f or each

    det erm nat i on. The mean val ue of t hese t r i pl i cat es was r ecor ded.

    The f ol l woi ng det er m nat i ons wer e car r i ed out :

    Tot al Chl or ophyl l : An al i quot f r om t he cul t ur e was cent r i f uged f or

    2

    m n at 2000g. The pr eci pi t at e was suspended i n

    5 ml

    met hanol f or

    5

    m n i n a wat er bath at 7OoC, and t hereaf t er cent r i f uged.

    opt i cal densi t y of t he supernat ant was det erm ned

    655

    nm.

    The

    Dr y Wei ght Measur ement s (DW: A vol ume f r om t he cul t ure was f i l t ered

    t hrough a f i l t er 10 um pore s i ze, dr i ed i n pr evi ous l y dr i ed, pre-

    wei ghed f i l t er paper f or

    4

    h at 80C, and t hen wei ghed af t er cool i ng

    i n a desi ccat or .

    Ash- Free Dr y Wei ght (AFDW: Af t er r ecor di ng t he dr ywei ght , t he dr i ed

    cel l s wer e ashed at

    500C

    f or 2hr s. Then t he ash wt . was recor ded.

    The di f f er ence bet ween dr y wei ght and ash wei ght gave t he organi c

    wei ght of t he sampl e.

    Tot al Carbohydr ates: The ant hr one sul phur i c aci d method was f ol l owed

    ( St r i ckl and, Pears ons, 1972). The pr i nci pl e of t hi s met hod i s t he

    f ormat i on of a bl ue- gr een col or whi ch i s t he pr oduct of ant hr one and

    t he f ur f ur al der i vat i ves pr oduced by aci d decomposi t i on of t he sugar .

    The ant hr one r eagent consi st s of 0. 2g ant hr one,

    8

    m et hyl al cohol ,

    10 m di s t i l l ed water .

    one m of al gal suspensi on

    ( cont ai ni ng known wei ght of al ga)

    and

    heat ed i n a wat er bat h f or seven m nut es and cool ed.

    Then

    ml

    of t he ant hrone reagent was added t o

    7

  • 7/26/2019 19890016190

    15/53

    The bl ue- gr een col or was measur ed by a spect r ophot omet er at wave

    l engt h of

    620

    nm The val ue of t he r eadi ng was cal cul at ed as

    m cr ogr ams of gl ucose f r oma st andard cur ve f or gl ucose whi ch has

    been pr epared by t he same met hod.

    Tot al l i pi ds: Cel l ul ar l i pi ds wer e sol ubi l i zed by r epeat ed ext r act i on

    wi t h met hanol and met hanol - chl or of or m ( l : l ) , t hen phase separ at ed

    af t er adj ust ment of t he sol vent r at i os t o

    10:10:9

    ( met hanol : chl oro-

    f orm wat er, v/ v) ( Bl i gh and Dyer

    1959).

    The chl orof or m phase was

    col l ec ted,

    evapor at ed to dr yness under

    N2,

    and the wei ght of t he l i pi d

    was det erm ned. Li pi d cont ent was cal cul at ed as t he wei ght of t he

    l i pi d extr act di vi ded by t he ash f r ee dr y wei ght of t he or i gi nal

    sampl e.

    Tot al Ni t r ogen and Prot ei n ( Kj el dahl ) : One m of al gal suspensi on

    cont ai ni ng

    a gi ven wei ght was di gest ed i n a Kj el dahl di gest i on f l ask

    cont ai ni ng 0.3, sel eni umm xtur e and one m sul f ur i c aci d.

    cont ent s became col orl ess, t hey were t r ansf er r ed to t he Kj el dahl

    appar at us wi t h

    10

    m of

    50

    sodi umhydr oxi de sol ut i on. A st r ong

    current of st eamwas passed f or

    7

    m nut es dur i ng whi ch t he l i ber at ed

    ammoni a was r ecei ved i n a 100 m f l ask cont ai ni ng

    5

    m of 2% bor i c

    aci d sol ut i on and 4 drops

    of

    i ndi cat or . The i ndi cat or was composed

    of 0. 016g met hyl r ed and 0. 83g br omocr esol gr een i n 100 m of alcohol.

    The di s t i l l at e i n t he bor i c aci d sol ut i on was back t i t r at ed wi t h

    0.1

    N

    sul phur i c ac i d, unt i l the col or of the i ndi cat or t ur ned pal e pi nk.

    A bl ank sampl e was done f or each seri es of ni t r ogen est i mati on, usi ng

    D .W . The val ue of t he readi ngs was cal cul at ed i n ug

    N,

    f r om a

    st andard cur ve f or ni t r ogen sour ce as ammoni ums ul f at e, whi ch has

    been t r eat ed by t he same met hod.

    t ot al N x

    6.25.

    When t he

    Tot al pr ot ei n was cal cul at ed f r om

    8

  • 7/26/2019 19890016190

    16/53

    EXPERIMENTAL

    DESIGN

    Pr ot ocol : Fl ow di agr am f or t he exper i ment al desi gn was f ol l owed

    (Fi g.

    1 .

    A

    Gr ovt h par amet er s char act er i zat i on:

    I . Temperat ur e, Li ght :

    The al gal gr owt h was eval uated f or t emper at ure and l i ght

    t ol erance on a gr adi ent pl at e. Temper at ure coul d be adj ust ed

    i n r ange f r om 10C t o 50C. I l l um nat i on was pr ovi ded by

    ei ght cool whi t e f l uor escent t ubes

    ( 4 0

    W. Di f f erent l i ght

    i nt ensi t i es were obt ai ned by var yi ng t he di st ance bet ween

    t he cul t ur es and l i ght sour ce. The al gal speci es wer e

    cul t ur ed i n smal l bot t l es (60 m capaci t y) cont ai ni ng 30 m

    gr owt h medi um Tri pl i cate cul t ur es wer e pl aced on t he

    gr adi ent pl at e, at t emperat ur es: 20C, 25 C, 35OC and 40C.

    The cul t ur es wer e exposed t o t wo l i ght i nt ensi t i es and wer e

    aer at ed wi t h ai r (0. 03%C02).

    11.

    pH

    E f fec t :

    The al ga was i ncubat ed i n smal l bot t l es as descr i bed i n

    sect i on A(1) at 35C on a t emper at ur e gradi ent pl at e and

    80 uE ml

    s - ~

    r r adi ance.

    cul t ur i ng, except t he pH used f or cul t ur i ng was var i ed by

    usi ng NaOH or HC1. The pH of cul t ures was adj ust ed dai l y t o

    t he or i gi nal pH. The cul t ur es wer e aer at ed wi t h ai r

    (0. 03%C02).

    The ori gi nal medi umwas used f or

    111. Aer at i on Rat e, Carbon Di oxi de Enr i chment , Bi carbonat e Con-

    cent r at i on:

    The alga was incubated in small bottles described in Section

    A(1) at 35C on a t emper at ur e gr adi ent pl at e and 80 uE m l

    s - ~

    i r r adi ance. Thr ee set s of cul t ur es wer e t r eat ed di f f er ent l y:

    a. Cul t ur es wer e aer at ed wi t h di f f er ent f l ow r ates

    ( ai r 0. 03% C02).

    b. The f l ow r at e whi ch gave t he best gr owt h r at e, was

    sel ected f r om ' la ' ' . The cul t ures wer e aer at ed wi t h

    ai r enr i ched wi t h car bon di oxi de i n di f f erent

    concent r at i ons 1% 32, 52,

    10%

    c. Cul t ur es wer e t r eat ed wi t h di f f er ent bi car bonat e

    9

  • 7/26/2019 19890016190

    17/53

    w

    rl

    (d

    u

    l

    B

    a

    rl

    10

  • 7/26/2019 19890016190

    18/53

    concent r at i ons i n whi ch one set was aer at ed wi t h ai r

    ( 0 . 0 3 C 0 2 ) and ot her set was aer ated wi t h ai r

    cont ai ni ng

    1%

    C02.

    The pH of al l cul t ur es was adj ust ed t wi ce dai l y.

    I V.

    Nut r i ent Requi r ement s:

    Cul t ures wer e i ncubated i n smal l bot t l es under t he same

    condi t i ons as descr i bed i n Sect i on A ( 1 ) . The or i gi nal

    growt h medi um was modi f i ed by changi ng t he concent r at i on of

    one nut r i ent . Ni t r ogen, phosphor us, i r on, bi car bonat e and

    sodi um chl or i de wer e studi ed i n suf f i c i ent and l i m t i ng

    concent r at i ons. The bi carbonate ef f ect was st udi ed t oget her

    wi t h the aer at i on ef f ect

    111 .

    I n al l exper i ment s t r i pl i cat e cul t ur e bot t l es were i nocul at ed

    f r oms t ock cul t ur es i n t he exponent i al phase. Gr owt h r esponse

    was measur ed as opt i cal densi t y and t he gr owt h r at e was expressed

    as doubl i ngs per day. The yi el d of cul t ur es was expr essed as t he

    t ot al dr y wei ght af t er 5 days of gr owt h. The t otal day wei ght

    was det erm ned by har vest i ng t he cel l s and dr yi ng i t ( see Met hods).

    B Physi ol ogi cal Char acter i zat i on of Spi r ul i na i n Bat ch Cul t ures:

    For t hi s exper i ment , t he al ga was gr own i n bat ch cul t ur es ( Roux

    bot t l es) as ment i oned i n Met hods . The cul t ures were mai nt ai ned

    under opt i mum gr owt h condi t i ons and moni t or ed i n t he exponent i al

    phase by t he absor pt i on measur ement ( see Met hods) .

    I.

    11.

    O. D.

    of Cel l Suspensi on ver sus

    D. W

    and Chl orophyl l : Both

    speci es gr own i nt r i pl i cate Roux bot t l es under t he same

    condi t i ons descr i bed bef or e ( see Met hods). Twent y m of

    cul t ur e sampl es wer e t aken dai l y f or measur ement s of t heD. W ,

    and chlorophyll. The experiment was continued for one week,

    and

    20

    m of f r esh cul t ure medi um were added to t he Roux

    bot t l es i mmedi atel y af t er each sampl i ng i n order to mai nt ai n

    t he same vol ume of t he cul t ur e medi um dur i ng t he cul t i vat i on.

    Under Opt i mum Gr owt h Condi t i ons:

    Both speci es wer e gr own i n dupl i cat e Roux bot t l es under t he

    same condi t i ons descr i bed bef or e ( see Methods). Cul t ur es

    were anal yzed f or gr owt h paramet ers dur i ng t he ei ght days.

    11

  • 7/26/2019 19890016190

    19/53

    111.

    Var i ous St r ess Condi t i ons:

    Li ght and Temper at ure:

    Bat ch cul t ur es were i ncubat ed under hi gh l i ght i r r adi at i on

    and ot her s at hi gh t emper at ure ( 38C) i n water bat h.

    Nut r i ent s:

    Bot h speci es wer e gr own i n Roux bot t l es under t he same

    condi t i ons descr i bed pr evi ousl y. Bat ch cul t ur es wer e gr own

    i n dupl i cat e unt i l t he exponent i al phase was r eached at 0.1

    OD, t o avoi d l i ght l i m t at i on. One bat ch was anal yzed and

    r epr esent ed t he cul t ur e suf f i ci ent i n nut r i ent s. The

    exponent i al phase l ast ed t hr ee t o f i ve days. Bat ch cul t ur es

    were concent r at ed and di l ut ed t o the or i gi nal bat ch vol ume

    but wi t h a new medi um modi f i ed i n one el ement . The ni t r ogen

    l i m t ed bat ch recei ved

    0.05

    mM

    ni t r at e; t he phosphat e l i m t ed

    batch r ecei ved 0. 01 mM phosphat e; t he bi car bonat e l i m t ed

    bat ch r ecei ved 4g/ L bi car bonat e; and sodi um chl or i de was

    added i n

    t wo

    concent r at i ons;

    0.1

    M and

    0. 5

    M When one

    el ement was l i m t ed, t he ot her s wer e i n suf f i ci ent concen-

    t r at i ons. The cul t ur es were i ncubat ed under st r essed condi -

    t i ons f or t wo days and t en har vest ed f or anal ysi s.

    2

  • 7/26/2019 19890016190

    20/53

    RESULTS

    AND DI SCUSSI ON

    Temper at ue

    and

    Light:

    Fi gur e 2 (a and b) depi ct t he gr owt h and yi el d of bot h st r ai ns of

    Spi r ul i na at t wo l i ght i r r adi at i ons and di f f er ent t emper at ur es rangi ng

    f r om 20C t o 40C.

    gr ow at 25C at ver y s l ow r at e.

    al gal f ast est gr owt h r at e and hi ghest yi el d of cel l s.

    t emperat ur e was r ai sed to 40 C, t he al gal cel l s t ur ned yel l ow and

    Nei t her st r ai ns gr ew at 20C but t hey st ar t ed t o

    Temperat ur es

    30

    and

    35C

    enabl ed the

    When t he

    gave a l ower yi el d. S. pl at ensi s, on t he ot her hand gave opt i mum

    yi el d at l i ght i r r adi at i on- 80 uE m 2 s- l whi l e S. maxi ma t ol er at ed

    l i ght i r r adi ance 120 uE mz s-l.

    Aer at i on Rat e:

    The ef f ect s

    of

    ai r agi t at i on r at e on the gr owt h r at e and cel l yi el d

    aredepi ct ed i n Fi gur e

    3 .

    The gr owt h r at e of bot h Spi r ul i na st r ai ns

    i ncreased wi t h i ncreasi ng t he f l ow r at e of ai r i n r ange of 150 m / m n

    and 500 m / m n. When t he f l ow r at e of aer at i on was i ncr eased t o

    2000 m / m n, t he gr owt h r at e st ar t ed to decl i ne and cel l s t ur ned

    yel l ow. On t he ot her hand the cel l yi el d i n t er ms of dr y wei ght

    was not af f ect ed. The pH of al l cul t ur es i ncreased t o 11. The cel l

    yi el d of bot h st r ai ns showed par al l el f l uct uat i on t o t he gr owt h r at e

    of t he agl a.

    13

  • 7/26/2019 19890016190

    21/53

    rl

    I

    u1

    N

    I

    E

    W

    3

    ea

    d

    I I I

    rl

    I

    rn

    si

    I

    E

    w

    1

    00

    N

    00

    rl

    Q

    In

    m

    m

    Lo

    N

    N

    e

    Lo

    e3

    m

    Lo

    N

    N

    e

    * w

    m

    W

    a

    14

  • 7/26/2019 19890016190

    22/53

    d

    I

    v1

    N

    I

    E

    w

    1

    hl

    d

    *

    D

    CJ rl

    /

    4

    ---?

    I

    I I I

    rl

    I

    n

    N

    I

    E

    w

    s

    I

    /

    0@

    c D

    m

    w

    v

    m

    m

    v

    N

    CJ

    w

    In

    m

    c3

    In

    N

    N

    15

  • 7/26/2019 19890016190

    23/53

    t

    /

    /

    Y

    /

    Y

    /

    ea

    d

    I

    0

    0

    0

    W m

    1 6

  • 7/26/2019 19890016190

    24/53

    Ai r Enr i chment wi t h Carbon Di oxi de:

    Fi gur e

    4

    shows t he ef f ect of ai r enr i ched wi t h di f f er ent concent r at i ons

    of carbon di oxi de on t he gr owt h r ate and yei l d of bot h Spi r ul i na

    s t r ai ns

    :

    .

    Cul t ur es aer at ed wi t h

    10

    C02

    -

    i n ai r , di d not gr ow and

    t ur ned yel l ow. The pH dr opped r api dl y, wi t hi n

    3

    hour s , f r om

    9 . 4

    t o

    7 .

    . When t he C02

    -

    concent r at i on i n ai r was decr eased t o

    5%

    or

    3%

    t he cul t ur es st art ed t o gr ow. The pH of t he cul t ur es were

    mai nt ai ned at

    9 . 4

    by t he addi t i on of s odi um hydr oxi de. How-

    ever, t he pH of cul t ur es aerat ed wi t h 1 C02

    -

    enr i ched ai r

    was mai nt ai ned st abl e.

    .

    Cul t ur es aer at ed wi t h ai r

    ( 0 . 3 %

    C02) gr ew at mor e or l ess

    t he same gr owt h r at e of t hose aerat ed wi t h

    1

    C02

    -

    enr i ched

    ai r . The yei l d of cul t ur es t r eat ed wi t h di f f er ent C02

    concent r at i ons, i n t erms of dr y wei ght , was equi val ent t o t he

    gr owt h r ate.

    The r esul t s of t hi s experi ment are i n agr eement wi t h t hose of Faucher

    and Coupal

    ( 1 9 7 9 ) .

    They r eport ed t hat spar gi ng

    1%

    C02

    -

    ai r i n

    Spi r ul i na cul t ur es coul d mai nt ai n a const ant pH of t he cul t ur e

    medi um and at t he same t i me generat e HCO3 i ons whi ch wer e used as

    carbon sour ce f or

    S

    maxi ma. I n a si m l ar st udy wi t h gr een al gae,

    Gol dman and Gr aham (1981) , r epor t ed t hat i n bat ch cul t ur es, maxi mum

    gr owt h rat es wer e achi eved at t he C02 l evel s pr esent i n at mospher i c

    ai r and at HCO?j concent r at i ons of

    3

    mM.

    pE Effect:

    The gr owt h r at e of

    b o t h

    Spi rul i na st ra i ns

    i s

    cl ear l y af f ect ed by t he

    pH of t he gr owt h medi um as i n shown i n Fi gur e 5. Bot h st r ai ns

    exhi bi t ed hi gher gr owt h rat e i n medi a of pH r ange of

    9

    t o

    10.

    The

    growt h r at e decr eased wi t h i ncr easi ng pH above

    10

    and the cel l s

    t ur ned yel l ow i n case of S. maxi ma whi l e i n S pl at ens i s t he cel l s

    r emai ned i n bl ui sh gr een i n col or . The cel l concent r at i on i ncr eased

    when i ncr easi ng t he pH of t he medi um f r om 8 t o

    10

    and t hen decr eased

    above pH

    1 0 .

    1 7

  • 7/26/2019 19890016190

    25/53

    /

    /

    I

    /

    W

    0

    0

    0

    4

    0 0 0

    W

    m

    0

    0

    rl

    0

    m

    0

    m

    rl

    m

    0

    0

    d

    m

    0

    m

    m

    0

    0

    18

  • 7/26/2019 19890016190

    26/53

    R

    f

    2

    c r

    f

    I

    \

    \

    \

    \

    \

    L

    v

    co m

    co

    d

    v

    b

    cp

    e3

    w

    0

    19

  • 7/26/2019 19890016190

    27/53

    Nut r i ent Requi r ement :

    Ni t r ogen:

    Ni t r ogen sour ces i n t he f or m of ni t r at e, ur ea and ammoni a were t est ed

    i n

    di f f er ent concent r at i ons i n or der t o det er m ne t hei r ef f ect i veness

    as N- sour ces. Ammoni a i nhi bi t ed t he gr owt h of both st r ai ns and t here-

    f ore the dat a were del et ed. The r esul t s of ni t r at e- N and ur ea- N are

    r epr esent ed ( Fi gur e 6 ) . The gr owt h r at e of bot h Spi r ul i na st r ai ns

    was i nhanced wi t h i ncr easi ng t he concent r at i on

    of

    ur ea- N and ni t r at e-

    N. The urea- N at

    20 mM

    concent r at i on enhanced t he gr owt h r at e, whi l e

    f ur t her i ncrease i n i t s concent r at i on l i m t ed t he gr owt h of bot h

    st r ai ns. On t he ot her hand, ni t r at e- N at concent r at i on

    30

    mM, enabl ed

    bot h st r ai ns t o reach f ast gr owt h r at e and hi gh yi el d

    i n

    t er ms of dry

    wei ght .

    t he gr owt h of bot h st r ai ns t o some ext ent , t he st r ai ns bl eached and

    l ost t hei r pi gment s. Thi s experi ment demonst r at ed t hat t he l east

    amount

    of

    ni t r at e- N necessar y t o mai nt ai n t he gr owt h

    of

    Spi ru l i na

    i n

    cul t ur e was

    10 mM.

    M cr oscopi cal l y, t he t r i chomes became shor t er

    i n bot h st r ai ns and wi t h aver age 6 t ur ns/ t r i chome, i n medi a l i m t ed

    i n ni t r ogen concent r at i on. I n agr eement wi t h our r esul t s, Faucher

    et . al .

    ( 1 9 7 9 ) ,

    r eport ed

    t h a t

    urea- N i n l ow concent r at i on coul d

    suppor t t he gr owt h of

    S.

    maxi ma, at hi gh concent r at i on of ni t ate- N.

    Al t hough l ower concent r at i on of ni t r at e- N

    (10mM)

    suppor t ed

    Phosphat e:

    I ncr easi ng t he phoshat e- P concent r at i on i n t he cul t ur i ng medi a t o

    1 mM

    and 5 mM, enhanced t he gr owt h rat e of bot h st r ai ns ( Fi gur e 7) . But as

    t he concent r at i on i ncr eased t o

    10 mM,

    t he gr owt h r at e of bot h st r ai ns

    decl i ned. The mass yi el d of bot h st r ai ns showed si m l ar r esponses

    coi nci di ng wi t h t hei r gr owt h rate. M cr oscopi cal l y, the t r i chomes

    became shor t er

    i n

    medi a of phosphat e- P concent r at i on bel ow

    1 mM

    and

    wi t h f ew number of t urns i n case of S. maxi ma

    5

    t ur ns/ t r i chome) .

    General l y, cyanobact eri a r equi r e smal l concent r ati ons of phosphat e- P

    f or gr owt h. They can grow i nphosphor us- l i m t ed medi a ( Lang and Br own,

    1981).

    20

  • 7/26/2019 19890016190

    28/53

    w

    c

    I

    \\\

    \\\

    \ \ \ \

    c

    n:

    a

    v

    3

    k

    yO< \

    \ \

    w

    b

    e

    w

    a:

    c

    p:

    5

    w

    N

    W

    d

    3

    1

    *

    m

    el

    d

    w

    m

    hl

    d

    rb

    a

    rb

    n

    s Q

    E 4

    2 1

  • 7/26/2019 19890016190

    29/53

    2.25

    1.5

    0 . 7 5

    0 . 0

    6 0

    30

    0

    -

    -

    -

    -

    -

    2

    I

    I

    I

    S P I R U L I N A m a x i m a

    .

    0.0 2.0 5.0

    10.0

    S P I RU L I N A p l a t e n s i s

    P,

    I '

    I

    0

    \

    \

    I

    I

    /

    i

    \

    \

    \

    b

    C O N C E N T R A T IO N

    (mM)

    PHOSPHATE

    Figure

    7.

    Growth Rate

    and

    Yield

    of

    S.

    maxima

    and

    S. platensis as a Function

    of

    Phosphate Con-

    centration

    22

  • 7/26/2019 19890016190

    30/53

    Sodi um Chl or i de:

    Bot h Spi r ul i na st r ai ns gr ew i n medi a l acki ng sodi um chl or i de ( Fi gur e

    8).

    They showed r esponse i n gr owt h r ate as t he sodi um chl or i de

    concent r at i on i ncr eased to

    10

    mM. Fur t her i ncrease i n sodi um chl or i de

    concent r at i on (100 mM) af f ect ed t he gr owt h r at e of bot h st r ai ns and

    r esul t ed i n l ower y i el d of cel l s . I n addi t i on, m croscopi c exam nat i on

    of bot h st r ai ns i ndi cat ed t hat i n medi a t r eat ed wi t h a hi gh concent at i on

    of sodi um chl or i de 100

    mM,

    t he t r i chomes were shor t and wi t h l ess t ur ns

    i n case of

    S.

    maxi ma

    (6

    t ur ns/ t r i chome) . The r esul t s of t hi s exper i -

    ment , i ndi cat e t hat Spi r ul i na t ol er at e i ncreases i n sodi um chl or i de

    concent r at i on up t o

    100 mM.

    Spi r ul i na t ol er ance t o sal t had been

    pr evi ousl y r epor t ed ( Faucher , et . al . , 1979).

    I ron:

    I r on concent r at i ons ( FeS04) i nf l uenced

    t he

    growt h and yi el d of both

    st r ai ns ( Fi g. 9). Concent r at i on of 0. 05mMwas suf f i ci ent f or

    t he

    gr owt h of bot h st r ai ns, al t hough medi a def i ci ent i n i r on di d not show

    any growt h r esponse. I ncr easi ng t he concent r at i on of i r on beyond

    0.1

    mM l ower ed t he yi el d

    of t he

    al ga and cel l s t ur ned yel l ow.

    Bi car bonate Concent r at i on:

    Fi gur e 10 a shows t hat S. maxi ma gr ows i n t he medi um even wi t hout

    bi car bonat e sal t , pr ovi di ng t hat t he cul t ur e was aer at ed wi t h ai r

    (0.03%CO2).

    A s

    t he bi car bonat e concent r at i on i ncr eased, t he gr owt h

    r at e as wel l as pr oduct i vi t y i ncr eased. Fur t her i ncr ease i n bi car bonat e

    concent r at i on above 16g/ L ( 190

    mM)

    di d not af f ect t he gr owt h r at e.

    When t he car bon di oxi de concent r ati on i n t he ai r i ncr eased f r om 0. 03%

    t o 1% as s hown i n Fi gur e

    10

    b , t he growt h r ate i ncr eased r emarkabl y

    by decr easi ng t he bi car bonate concent r at i on i n t he medi um as l ow as

    4g/ L (48

    mM

    i . e. one quar t er of t he concent r ati on i n t he Zarr ouk

    medi um ( see Met hods) . Spi r ul i na pl at ensi s, does not show much var i at i on

    i n i t s r esponse t o i ncreasi ng

    CO2

    concent r at i on i n ai r , when compar ed t o

    S. maxi ma ( Fi gur e 10 b ). The cel l concent r at i on based on dry/ wei ght

    measur ement was r el at ed t o t he gr owt h r ate i n bot h st r ai ns, i n al l

    t r eat ment s. The r esul t s of t hi s exper i ment i ndi cat e t hat bot h st r ai ns

    can ut i l i ze at mospher i c car bon di oxi de when t he medi a bi car bonat e

    concent r at i on i s m ni mum i n t he cul t ur e medi um

    was adj ust ed dai l y t o 9.4.

    The pH

    of

    al l cul t ur es

    2 3

  • 7/26/2019 19890016190

    31/53

    S P I R U L I N A maxima S P I RU L I NA platensis

    0 . 0

    0.01

    0.1

    0 . 5

    I I

    I

    0 . 0 0.01

    0.1 0 .5

    CONCENTRATION M )

    SODIUM CHLORIDE

    Figure 8.

    Growth Rate and Yield of S.

    m a x i m a and

    S.

    platensis

    as a

    Function

    of

    Sodium Chloride

    Concentration

    2 4

  • 7/26/2019 19890016190

    32/53

    n

    i2

    n

    Q

    s

    70

    n

    c

    H

    U

    w

    t.c

    4

    p:

    3:

    w

    5

    0

    p:

    c3

    n

    4

    4

    E

    M

    E

    w

    X

    c3

    w

    5

    *

    p:

    U

    Y

    n

    2 . 2 5

    1.50

    0 .75

    0.0

    60

    30

    0

    S P I R U L I N A maxima

    S P I R U L I N A platensis

    -

    7

    I

    ?--

    \

    I

    I

    \

    - I

    \

    I

    \

    I \

    i

    -I

    -

    -

    1 I I I

    I

    I

    I

    L

    .0

    0.05 0.1 0 .2

    0.0 0 . 0 5

    0.1

    0 .2

    CONCENTRATI ON (mM)

    IRON

    Figure 9.

    Growth Rate and Yield of

    S.

    m a x i m a and

    S. platensis as a Function of

    Iron

    Concentration

    25

  • 7/26/2019 19890016190

    33/53

    ?

    i

    i

    \

    \

    t

    n

    0

    ea

    @a

    d

    CD m

    m

    m

    In

    d

    In

    m

    d

    aa

    m

    e

    rn

    ea

    m

    d

    In

    m

    r

    Q

    In

    *

    26

  • 7/26/2019 19890016190

    34/53

    T

    p:

    2

    i

    4

    \

    t

    1

    I

    1

    I t I

    i

    c3

    4

    0

    Q

    - 0

    m

    *

    0

    n

    0

    u

    do

    m

    0

    0

    I

    00 00

    0

    m

    - m

    d

    0

    0

    Q

    0

    m

    *

    a:

    1 1 :

    0

    0

    0

    W

    m

    n

    -

    E

    0

    0

    d

    M

    z

    t c

    c

    p:

    t c

    z

    W

    u

    z

    u

    W

    27

  • 7/26/2019 19890016190

    35/53

    Physiological Characterization of Spirulina in Batch Cultures:

    Batch Cultures:

    I.

    op

    tical Density (O.D.)

    of

    Cell Suspension versus Dry Weight (D.W.)

    and Chlorophyll:

    Gr owt h can be expr essed as gr owt h r at e or as yi el d. Yi el d, as an

    expr essi on of or gani c pr oduct i on, i s usual l y gi ven i n t erms of

    dr y wei ght of t he organi c mass pr oduced over a per i od of t i me

    per uni t vol ume. A r el at i onshi p bet ween opt i cal densi t y, dr y

    wei ght and chl orophyl l was est abl i shed f or bot h st r ai ns of

    Spi rul i na.

    Resul t s ar e pr esent ed i n Fi gur e 11. For al l sampl es wi t hi n t he

    f i r s t t hree days of cul t i vat i on, whi ch cont ai n r el at i vel y smal l

    concent r at i ons of bi omass ( 4 0 0 mg DW L or l ess), r eadi ngs f el l

    wi t hi n t he accur at e r ange of t he

    O. D.

    scal e and t hey coul d be

    r ead di r ect l y f r om t he spect r ophot omet er wi t hout di l ut i on. How-

    ever , f or al l sampl es dur i ng the l at er cul t i vat i on per i ods whi ch

    cont ai ned hi gh concent r at i on

    of

    bi omass (500

    mg

    DW/L), di l ut i on

    of t he sampl es wi t h di st i l l ed wat er was necessar y pr i or t o

    OD

    r eadi ngs. The gr aphs show l i near i t y bet ween

    OD

    and dr y wei ght .

    Each

    OD

    uni t i s equi val ent t o a concent r at i on of

    700

    mg/ L

    i n

    t he

    case of S. maxi ma and t o

    750

    mg/ L i n t he case of S. pl at ens i s .

    I t i s obvi ous f r om t hi s exper i ment t hat ot her r el i abl e i ndi cat or s

    of

    est i mat i ng al gal pr oduct i vi t y can be comput ed f r om

    OD

    measur e-

    ment s. Theref ore,

    OD

    measur ement s can be t r ansl at ed i nt o bi omass

    yi el d i n t er ms of dr y wei ght or chl or ophyl l .

    28

  • 7/26/2019 19890016190

    36/53

    1.5

    1.0

    E

    c

    (0

    v

    c,

    a

    0.5

    0.0

    0

    250

    400

    550

    700

    850

    n

    0

    1.

    1.

    10

    n

    d

    +

    bn

    E

    W

    0.

    0.

    DRY

    WEIGHT mg/l)

    Figure 11.

    Optical Density

    versus

    D r y Weight S. maxima (a)

    and S. platensis

    (b)

    2 9

    0

    p:

    0

    bJ

    3:

    u

    10

  • 7/26/2019 19890016190

    37/53

    11. Phys i ol ogi cal Char acter i s t i cs

    of

    Cul t ure, under Opt i mum Gr owt h

    Condi t i ons:

    Bot h speci es wer e grown i n dupl i cat e Roux bot t l es under t he same

    condi t i ons descri bed bef ore ( see Met hods) . Cul t ur es were

    assayed f or growt h paramet ers dur i ng

    t he

    ei ght days. ( Fi g.

    12

    a and

    b ).

    I ncr ement s of car bohydr at es, pr ot ei ns, dr y wei ght

    and chl orophyl l ar e expr essed as ug/ m cul t ur e. The r esul t s

    show t hat i ncr eases i n t he synt hesi s of chl or ophyl l , pr ot ei n

    and yi el d of t he cul t ur e are cor r el ated. Gr owt h paramet er s of

    cul t ur es anal yzed af t er 8 days st ar t ed to l evel of f , due the

    nut r i ent exhaust i on and l i ght l i m t at i on caused by i ncreasi ng

    cel l concent r at i on.

    111.

    Phys i ol ogi cal Char acter i zat i on of Cul t ur es, under St r ess

    Condi t i ons:

    The resul t s of anal ysi s were expr essed on t he basi s of organi c

    wei ght ( Ash Fr ee Dr y Wei ght : AFDW and r epr esent ed i n Tabl e 1

    ( Fi gur e 13). Resul t s of cul t ur es gr own under opt i mum condi -

    t i ons ( 11) were used as cont r ol f or al l exper i ment s i ncubated

    under var i ous growt h condi t i ons.

    L i ght I r r adi ance

    and

    Temper ature: I ncr easi ng

    t he

    l i ght

    i r r adi ance to

    120

    uE

    m-2 s-l,

    l ed to an i ncrease i n t he t ot al

    car bohydr at e cont ent and a decr ease i n t ot al pr ot ei n cont ent :

    S.

    maxi ma

    19.58%,29.06%: S.

    pl ant ensi s

    15.222, 27.18%.

    I n -

    cr easi ng

    t he

    t emper at ur e of cul t ur e i ncubat i on t o 38 C, i n-

    f l uenced t he composi t i on of bot h st r ai ns, i n a s i m l ar manner t o

    t he l i ght i r r adi at i on exper i ment : S. maxi ma, 18.75%, 45.28%;

    S.

    pl at ens i s ,

    13.12%, 35.32%;

    f or pr ot ei n and carbohydr at es,

    r espect i vel y. Bot h st r ai ns pr oduced a l ow per cent age of l i pi ds,

    when gr own i n hi gh t emperat ure exper i ment s. Cel l s tur ned yel l ow

    gr een i n col or . St udi es wi t h l i ght - l i m t ed cyanobact er i a

    showed a hi gh l evel of pol ysacchar i de f or mat i on when t hey wer e

    exposed to hi gh l i ght i nt ensi t i es ( Konopka, et . al . ,

    1987).

    Cohen et. al . , (1987) al so repor t ed a r educt i on i n f at cont ent

    of

    19

    st r ai ns of Spi r ul i na by t emper at ur e and hi gh l i ght i nt ensi t y.

    Nut r i ent Li m t at i on: Medi a l i m t ed i n ni t r at e- N and phosphat e- P,

    f avored t he accumul at i on of carbohydr at e r at her t han pr otei n.

    I n ni t r at e and phosphat e

    l i m ted cul tures :

    S.

    maxi ma had 37.52%,

    35.21% car bohydrat e and 21.562, 41.25% pr ot ei n, whi l e S. pl at ens i s

    had

    30.31%, 31.87%

    car bohydr at e, and

    32.81%, 34.683

    pr otei n. When

    t he cul t ur es wer e t r ansf er r ed t o medi a l i m t ed i n ni t r ogen and

    phosphat e, cul t ur es changed i n col or f r om bl ue t o yel l ow- gr een.

    N- l i m t ed cul t ur es of Anacyst i s ni dul ans ( Lehman and Wober,

    1978),

    Anabaena var i abi l i s ( Er nst and Boger,

    1985)

    and P- l i m t ed cul t ur es

    30

  • 7/26/2019 19890016190

    38/53

    S P l R U L I N A maxima

    B

    C A R B O H Y D R A T E

    P R O T E I N

    8oo

    t

    w

    c c

    c

    0 6 0 0 1

    I

    w 2

    c c

    2 400

    *

    X

    0

    200

    eo

    p:

    4

    u

    n u

    0

    1400 c

    DRY W E I GHT

    HL OROP HYL L

    I

    d

    bn 1050

    E

    v

    *

    CG

    n

    700

    350

    0

    0

    48

    96

    144 192

    TIME hrs)

    Figure 12a. Physiological Characteristics of

    S. maxima under Optimum Growth

    Conditions

    31

  • 7/26/2019 19890016190

    39/53

    800

    600

    400

    200

    0

    1600

    1200

    800

    400

    0

    SPI RULI NA platensis

    C A R B O H Y D R A T E

    B

    P R O T E I N

    n

    L

    RY W E I GHT

    A-A

    C H L O R O P H Y L L

    0 4 8 96

    144 192

    TIME (h r s )

    Figure 12b. Physiological Characteristics of

    S. platensis under Optimum Growth

    Conditions

    15

    10

    5

    0

    3 2

  • 7/26/2019 19890016190

    40/53

    Tabl e 1. Mol ecul ar Composi t i on of Spi r ul i na s t r ai ns

    X Or gani c Ut. (AFDW)

    Gr owt h

    Condi t i ons

    peci es

    Pr ot ei n Car bohydr at e Li pi d

    S. maxi ma *Suf f i ci ent

    Nut r i ent s

    69.75 11.5 4.68

    Hi gh Li ght

    (120

    UE m-2

    S-1)

    Hi gh Temperat ur e

    N- l i m t ed

    P- I

    m ed

    Sodi um Chl or i de

    (38C)

    0.1M

    0.5M

    Bi car bonat e

    4 g / L )

    29.06 19.58 3.56

    45.28

    21.56

    41.25

    18.75

    37.52

    35.21

    3.75

    4.68

    5.20

    52.62

    45.64

    26.25

    36.73

    4.68

    7.52

    52.54 15.68

    6.53

    S.

    pl at ensi s

    *

    Suf f i c i ent

    Nut r i ent s

    65.12

    9.37 5.33

    Hi gh Li ght

    ( 1 2 0 UE m-2

    S-1

    Hi gh Temper at ur e

    (38C)

    27.18 15.22

    3.65

    35.32 13.12 3.75

    N- 1 m ed

    32.81 30.31 5.43

    P-limited 34.68 31.87

    4. 68

    Sodi um Chl or i de

    0.1M 51.56 22.52 8.43

    0.5M 37.50 32.10 10.31

    Bi car bonate

    (4g/L)

    41.25 13.25 5.62

    *Exper i ment al condi t i ons wer e:

    t emper at ure 3 O o C; l i ght i r radi ance

    80

    uE I U - ~ s l;

    ai r f l ow rate 300 m / m n;

    The val ues shown are averages

    of

    f our i ndependent det er m nat i ons.

    33

  • 7/26/2019 19890016190

    41/53

    of Osci l l at or i agar dhi i ( Ri egman et. al . , 1985 ) , showed el evated

    l evel s

    o f

    pol ysacchari de st or age.

    Depl et i on o f di ssol ved phosphat e- phosphor us f r om t he cul t ur e

    medi um of Anabaena was accompani ed by a decl i ne

    i n

    chl or ophyl l

    a , pr ot ei n, RNA and an i ncr ease i n car bohydr ate per uni t dr y

    wei ght ( Heal ey, 1 9 7 3 ) .

    1) I I

    Sodium Chloride,

    concentration influenced the storage

    of

    carbohydrates and proteins of both strains.

    As

    medi a ( Zarr ouk,

    see Methods ) , wer e enr i ched wi t h

    0.1 M

    and 0 . 5 M NaC1, t he

    carbohydrat e cont ent of t he cel l s i ncr eased, when compar ed t o

    that

    of

    t he cont r ol ( Zar r ouk:

    0.01

    M NaCl ) ,

    to 2 6 . 2 5 , 3 6 . 7 3

    i n

    S .

    maxi ma and t o

    2 2 . 5 2 , 3 2 . 1 0

    i n S pl at ensi s. On t he

    other hand t he tot al pr ot ei n decr eased r espect i vel y t o: 5 2 . 6 2

    4 5 . 6 4

    i n S maxi ma and

    5 1 . 5 6 , 3 7 . 5 0 2 ,

    i n S pl at ensi s. The

    l i pi d per cent ages showed l i t t l e i ncr ease when compared t o t hose

    of compl et e medi a (cont rol ) . Many cyanobact er i a ar e capabl e of

    adapt i ng to a r ange of sal i ni t y i n t he envi r onment by syt hesi zi ng

    i nt er nal osmot i c suppor t i n t he f or m of car bohydr ates ( Packer et .

    al . 1986).

    Bicarbonate: When bi car bonat e concent r at i on of Zar r ouch medi a

    was reduced t o one quar t er (4. g/ L) , nei t her st r ai ns showed much

    di f f erence i n t he chem cal composi t i on as compar ed wi t h the cont r ol

    medi a except t hei r yi el d was s omewhat bel ow. t he cont r ol .

    3 4

  • 7/26/2019 19890016190

    42/53

    w

    n

    H

    hD

    In

    w

    v

    w

    E

    c

    z

    0

    m

    d

    4

    u

    Y

    m

    w

    d

    X

    u

    E

    n

    n

    H

    j

    0

    u

    dp

    0

    u

    OQ

    m

    E

    In

    E

    rl

    z

    E

    0

    d

    a

    E;

    u

    w

    E

    c

    d

    3.1

    X

    m

    d

    4

    V

    Q

    n

    CJ

    z

    z

    W

    c3

    W

    c3

    ;LHE)IBM 3 I N V E ) U O

    d O

    3 0 V & N 3 3 U 3 d

    35

  • 7/26/2019 19890016190

    43/53

    I I

    I I

    0

    0

    W

    m

    W

    m

    z

    w

    t 1

    p:

    a

    U

    a

    w

    b

    c

    p:

    *

    x

    m

    p:

    c

    V

    61

    n

    n

    U

    U

    pc

    I4

    ; LHE) I 3M 3I NVDHO o 3 3 V , L N 3 3 H 3 d

    3 6

  • 7/26/2019 19890016190

    44/53

    CONCLUSIONS

    I n an at t empt t o opt i m ze t he bi omass of cyanobact er i a

    t he growt h par amet er s 0.f t wo st r ai ns were char act eri zed i n bat ch

    cul t ur es

    to gai n basi c i nf ormati on

    t o

    be consi dered i n a cont i nuous

    cul t ur e syst em

    Spi rul i na ,

    Concl usi ons of

    t he

    f i r st year st udy ar e summar i zed as f ol l owi ng:

    .

    From t he envi r onment al var i abl es st udi ed, opt i mum gr owt h

    t emper at ur e was cl ear l y speci es speci f i c. For S. maxi ma,

    35C and f or S. pl atensi s, 3OOC.

    . Opt i mum l i ght i r r adi at i on f or bot h st r ai ns was 80 uE m 2

    s-1.

    .

    Bot h st r ai ns exhi bi t ed a t ol er ance f or a wi de r ange of pH, f r om

    8 t o 11 wi t h opt i mum pH i n r ange of 9 t o

    10.

    .

    When st udyi ng the

    e f f e c t

    of f l ow r ate of aer ati on and percen-

    age of C02 present i n t he ai r on t he growt h r at e and yi el d

    of t he al ga; i t was concl uded t hat t he

    500

    m / m n f or aerat i on

    r at e and 1%C02 gave opt i mum condi t i ons of gr owt h.

    I t was

    concl uded al so that cul t ur es suppl i ed wi t h ai r

    (0.03%

    C02)

    gave

    t he same r esponsei n t erms of pr oduct i vi t y as wel l as

    t hose suppl i ed wi t h 1% C02 enr i ched ai r , pr ovi di ng t hat t he

    bi car bonat e concent r at i on pr esent i n t he medi um was r educed

    t o 4 g/ L i nst ead of

    16

    g/ L ( Zarr ouk medi um .

    . Var i at i ons i n suppl y of nut r i ent s: Ni t r ate- N, phosphat e- P,

    sodi um chl or i de, bi car bonat e, af f ected the pr oduct i vi t y r at e

    of t he al ga. They not onl y i nf l uenced t he pr oduct i on r at es,

    but al so the qual i t y

    of

    t he produced bi omass as measur ed by

    t he carbohydr at e and t ot al pr ot ei n. I n most of t he cases the

    carbohydr at e cont ent i ncr eased when nut r i ent s were l i m t i ng or

    i n excess as sodi um chl or i de concent r at i on of

    0.1

    M and

    0. 5 M

    ( see Tabl e 1.

    .

    The l i pi d percent age, i n par t i cul ar, di d not show much i ncr ease

    i n di f f er ent cul t ur e t r eat ment s. But , i ncreasi ng t he tern er at ur e

    of cul t ur i ng to 38C or t he l i ght i r r adi ance t o 120 uE m$

    s-l,

    r educed

    t he

    t ot al l i pi ds drast i cal l y. However , i ncreas i ng

    sodi um chl or i de t o

    0.1

    M i n t he cul t ur i ng medi a, t he l i pi ds

    i ncr eased somewhat hi gher t han i n t he cont r ol medi a.

    .

    The abi l i t y of t he al ga to ut i l i ze macr oel ement s and m cr o-

    el ement s, and t o conver t i t i nt o bi omass.

    37

  • 7/26/2019 19890016190

    45/53

    .

    Vari at i on of si ngl e envi r onment al r egul ant s such as l i ght

    i nt ensi t i es or t emper at ur e, dur i ng t he pr esent st udy al so

    r eveal ed t hei r det r i ment al ef f ect even when t he cul t ur es

    cont ai n suf f i ci ent nut r i ent s. Cul t ur es whose gr owt h r at es

    and pr oduct i vi t i es wer e r educed by any f act or , became pr o-

    gr ess i vel y mor e yel l ow ( l i ght , t emper at ur e, nut r i ent l i m t -

    at i on, pH) and changed i n mor phol ogy ( Fi g. 1 4 ) .

    . A sl i ght i nver se r el at i onshi p was obser ved bet ween the pr ot ei n

    cont ent and car bohydrat es whi ch means t hat one i ncreased at

    t he expenses of t he ot her . Thi s suggest s t hat qual i t y of

    bi omass may be mani pul at ed f or di et ary pur poses.

    An

    edequat e

    suppl y of nut r i ent s i s t her ef or e a pr e- r equi s i t e f or pr oduci ng

    a uni f orm qual i t y of bi omass, whi ch i n t ur n coul d t hen be used

    i n t he f or mul at i on of di et s. ( see Suf f i c i ent Nut r i ent s). The

    possi bi l i t y of mani pul at i ng the qual i t y of t he bi omass coul d

    have pot ent i al f or t he NASA/ CELSS Pr ogr am when speci f i c di et

    f or muat i on i s needed (e. g. l ow pr ot ei n cont ent ) .

    . Over al l al gal pr oduct i vi t y and qual i t y coul d be mani pul at ed by

    means of var yi ng nut r i ent concent r at i ons or t emper at ur e and

    l i ght i r r adi ance.

    Fur t her wor k i s needed t o character i ze t he ef f i ci ency of t he al gal

    cel l s under such envi r onment al condi t i ons i n t erms of gas exchange

    and ener gy l oss or gai n i n st eady st at e.

    I t can be concl uded t hat t hr ough mani pul at i ng envi r onment al condi t i ons

    o f

    t he al gal gr owt h, one can modi f y t he phot osynt het i c pr oduct s. Thus,

    Spi r ul i na can be, t hr ough mani pul at i ng gr owt h f act ors , used as pal at abl e

    di et compar abl e t o hi gher pl ant s ( see Appendi x) .

    38

  • 7/26/2019 19890016190

    46/53

    Figure 14a.

    Cells

    of

    S.

    maxima grown under

    Optimum Conditions. Scale:

    1

    cm = 25 u

    Figure

    14b.

    Cells

    of S.

    m a x i m a grown under

    Stress Conditions. Scale:

    1 cm = 40 u

    39

  • 7/26/2019 19890016190

    47/53

    FUTURE

    RESEARCH ( 1 9 8 8 / 1 9 8 9 )

    We pl an to i nvest i gat e t he ef f ect s of : l i ght i r r adi at i on, t emper at ur e,

    car bon di oxi de on par t i t i oni ng of macr omol ecul es ( pr ot ei n, car bohydr ates,

    l i pi ds) and on el ement al composi t i on ( carbon, hydr ogen, oxygen) of

    Spi r ul i na maxi ma. The mani pul at i on of composi t i on

    of

    Spi r ul i na maxi ma

    by t he envi r onment al f act or s wi l l be i nvest i gat ed at st eady stat e.

    Tasks

    :

    I.

    Bi omass ( Dr y Wei ght and Chl orophyl l ) and Cul t i vat i on Ti me

    11. Di l ut i on Rat e and Dr y Wei ght

    111. Product i vi t y and Dr y Wei ght

    IV. Ef f ec t of L i ght I nt ens i t y:

    Thi s exper i ment wi l l be per f or med usi ng t he best t emper at ur e

    and aer at i on obt ai ned f r ombat ch cul t ur i ng. The gr owt h r at e

    as a f unct i on of l i ght i nt ens i t y wi l l be det er m ned at :

    3 0 ,

    60, 100

    uE m 2

    s-l

    and as wel l as 35C t emper at ur es i n

    r el at i on t o t he pr oduct i vi t y and ef f i c i ency o f t he al ga.

    V.

    Aerat i on and Car bon Di oxi de Concent r at i ons

    The f ol l owi ng experi ment s wi l l be perf ormed at st eady stat e:

    . Bubbl i ng wi t h ai r ( 0. 03% C02)

    .

    Bubbl i ng wi t h ai r

    (0.1%

    C02)

    .

    Bubbl i ng wi t h ai r

    (1%

    C02)

    .

    Bubbl i ng wi t h ai r

    (5%

    C02)

    Exper i ment s IV and

    V

    wi l l be anal yzed f or t he f ol l owi ng:

    . Dr y Wei ght

    .

    Chl or ophyl l

    Pr oduct i vi t y

    .

    Li ght ef f eci ency

    . Par t i cul at e car bon

    . Par t i cul at e ni t r ogen

    , I nor gani c ni t r ogen and car bon

    .

    Tot al phosphorus

    .

    Pr ot ei ns

    .

    Car bohydr at es

    .

    02 - evol ut i on

    . C02 measur ed i n f l ux i n and out of cul t ur e

    40

  • 7/26/2019 19890016190

    48/53

    EXPECTED OUTCOMES

    . Rel at i onhsi p between di l ut i on r at e ( gr owt h r at e) and dr y wei ght

    .

    Gr owt h r at e as f unct i on of l i ght i nt ensi t y e. g. 30 60, 100 uE m2 s- l

    . Pr oduct i vi t y and chem cal anal ysi s i n r el at i on to three l i ght

    i nt ensi t i es wi l l be det er m ned i n or der t o det er m ne ef f i ci ency of

    t he al ga

    . Rel at i onshi p bet ween C02 mass f l ux i n ( mg C. dayl) and al gal car bon

    mass f l ux out (mg C. dayl) at f i xed di l ut i on r ate.

    . Rel ati onshi p bet wen C02 mass f l ux ( i n- out) at di f f er ent concent r at i ons

    and al gal car bon f l ux out (mg C. dayl) at f i xed di l ut i on r at e

    . Rel at i onshi p bet ween C02 mass f l ux i n ( mg C. dayl) and al gal carbon:

    ni t r ogen mass f l ux out ( mg C. dayl)

    . Ral at i onshi p bet ween C02 mass f l ux i n ( mg. C. dayl) and al gal com

    posi t i on ( car bohydr at e, pr ot ei n, l i pi d)

    . Rel at i onshi p bet ween 02 evol ved by t he cul t ure and C02 f l ux

    . Ef f i ci ency eval uat i on of Spi r ul i na bi omass f or CELSS, i n t er ms of

    l i ght , C02 and nut r i ent par amet er s.

    4 1

  • 7/26/2019 19890016190

    49/53

    FERERENCES

    Cohen, Z., Vonshak,

    A,

    Richard, A.: 1987. Fatty acids Composition

    of Spirulina strains grown under various environmental conditions.

    Phytochen. 26: 2255-2258.

    De la Noue,

    J.,

    Cloutier-Plantha, L., Walsh, P., Picard, G.: 1984.

    Influence of agitation

    and

    aeration modes on biomass production by

    Oocystis. Sp. grown on wastewaters. Biomass 4: 43-58.

    Ernst, A., Boger, P.: 1985. glycogen accumulation and the induction

    of nitrogenase activity in the heterocystforming cyanobacterium

    Anabaena variabilis.

    J.

    of Gen. Hicrobio. 131: 3147-3153.

    Faucher, O., Coupal, B., Ledny, A.: 1979. Utlization of Seawater -

    urea as a culture medium for Spirulina maxima. Can. J. Microbiol.

    25: 752-759.

    Fogg, G.

    E.:

    1956. Phytosynthesis and formation of fats in a diatom.

    Ann.

    Bot (Loud.) 20: 265-285.

    Goldman J. C., Graham,

    S.

    J.: 1981. Inorganic carbon limitation and

    chemical composition of tvo freshwater green microalgae. Appl. Environ.

    Microbiol. 41: 60-70.

    Healey, F. P.: 1973. Characteristics of phosphorus deficiency in

    Anabaena. J. Phycol. 9: 383-394.

    Healey, F. P.: 1975. Physiological indicators of nutrient deficiency

    in

    algae. Can. Fish. Xar. Serv. Res. Dev. Tech. Rep. 585: 30.

    Konopka, A. Kromkamp, J., Mur, L. R.:

    vesicle content and buoyancy in light or phosphate-limited cultures

    of Aphanizomenon flos-aquae (Cyanophyceae).

    J.

    Phycol. 23: 70-78.

    Lang, D. S., Brown, E. S.: 1981. Phosphorus-limited growth of a

    green alga and a bluejgreen alga.

    1987. Regulation of gas

    Appl. Environ. Hicrobiol. 42:

    1002-1009.

    Le-, M., Wober,

    G.:

    1976. Accumulation, mobilization

    and

    turn-

    over of glycogen in the blue-green bacterium Anacystis nidulans.

    Archiv

    of

    Microbiol. 111: 93-97.

    IkcElroy, B. D., Bredt, J.: 1985. Current concepts

    and

    future

    directions of CELSS, pp. 1-9, In: Controlled Ecological Life

    Support System, NASA CP-2378,

    Xgp

    COSPAR meeting, Graz, Austria, July

    1984 (MacElroy, B. C., Smeroff, D. T., Klein, H. P., eds.).

    42

  • 7/26/2019 19890016190

    50/53

    Packer, L.,

    F r y , I.,

    Belkin, S.: 1986. Application of photosynthetic

    N2-fixing cyanobacteria to the CELSS program p.

    339-352, In:

    Controlled

    Ecological Life Support Syste: CELSS 1985. Workshop NASA TM 88215.

    Riegman, R., Rutgers,

    M.,

    Mur,

    L.

    R.: 1985. Effects

    of

    photoperiodicity

    and light irradiance

    on

    phosphate-limited Oscillatoria agardhii in

    chemostat cultures.

    I.

    Photosynthesis and carbohydrrate storage.

    Archiv. of Microbiol. 142: 66-71.

    Strickland, J. D., Parsons, T. R.: 1972, A practical handbook of

    seawater analysis. Bull. Fish. Res, Bd. CAn. 167.

    Zarrouk,

    C.

    1966. Contribution a 1 etude d'une cyanophycee. In-

    fluence de divers facteurs physiques sur la crossance et la

    photosynthesis de Spirulina

    m a x i m a .

    (France).

    Thesis, University of Paris

    4 3

  • 7/26/2019 19890016190

    51/53

    A P P E N D I X

    4 4

  • 7/26/2019 19890016190

    52/53

    45

  • 7/26/2019 19890016190

    53/53

    ORfG1FUAL PAGE

    tS

    OF

    POUR QUALtTY

    Three billion Year old exoert

    grants

    immunity

    "I

    am the

    immortal

    descendant of the original

    life

    form.

    Over 3 billion years

    ago. blue-green algae produced our

    Dxygen atmosphere

    so

    life could

    :valve. Today,

    I

    offer your life

    imely health benefits.

    Your own technology and life-

    style threaten you. Pollution. toxic

    :hemicals. radiation. disease , stress.

    irugs and processed foods anack

    your immune system. Damage to

    your body and its cells can cause

    premature aging and cancer.

    Natural Life Preserver

    Vitamin supplements help

    out.

    but with two limitations. First.

    synthetic mega-doses are wasted if

    your b o d y can't absorb them and may

    even be toxic. But my whole food

    spirulina vitamins and minerals arc

    casily absorbed.

    Second, because your bod is not

    simply a mechanism, it needs

    more

    than isolated nuuicnts. Living cells

    need specific information to remem-

    ber their function.

    DNA

    molecular

    codes

    i n

    natural foods contain genet-

    ic memories of successful life forms

    for millions of years. I have reju-

    venated myself since the beginning.

    My

    3

    billion years

    of

    cell memories

    can help your body remember iu

    powers and renew itself. When

    y ou

    need a natural life preserver. put mc

    IOwork inside your body.

    Unusually Concentrated

    Within me is a powerful concen.

    tmtion of nutrients, unlike any

    other single plant. p i n . food or

    herb. 1 flourished in the nutrients of

    the original primordial soup. Many

    of these nutrients arc strongly

    recommended by scientists to build

    the immune system. New medical

    research has focused on

    my

    effects

    0

    choles.ternl reduction. cancer and

    immune system reaponse.

    Protective Nutrients

    I

    have more

    beta

    carotene than

    chlorella algae and ten times more

    than any other food. Beta carotene is

    known

    to

    lower the incidence of

    cancer and protect against UV radia-

    tion.

    l

    am the only food that con-

    tains significant amounts of gamma

    linolenic acid (GLA). the beneficial

    numcnt in evening primrose oil. 1

    am the best source of vitamin B-12.

    Extra iron and trace minerals added

    to my ponds make Eanhrise Spiru-

    lina the best iron food.

    My living cells are dehydrated in

    seconds by low temperature spray

    drying, best preserving valuable

    nutrients. Then I'm freshly scaled in

    anti-oxidant containers.

    Eanhrise

    is

    the only company that can guarantee

    quality from my living ponds to my

    consumers.

    sometimes deficient in vegetarian

    diets. I am rich in iron, essential for

    healthy red blood cells and a strong

    immune system.

    I

    have the highest protein content

    (60-70'70). ll the essential amino

    acids. and RNA and DNA nucleic

    acids I'm

    1

    cleansing chlorophyll ~ ~ b , , h ~

    and 15 sfrenethenine Dhvcocvanin.

    a unique blue &ynen;fouAd only in

    blue-green algae.

    Clean

    Green nergy

    Enjoy my energy every day- p a t

    between meals and before swenuous

    aturattv Diaestible

    1

    am so old ;hat IFvolved betore

    hard cellulose cell walls. My cell

    walls are naturally soft proteins.

    My younger cousin. chlorella.

    requirch additional factory procehh-

    ing

    to

    break down its hard cell

    walls. But I'm already perfect

    -

    95%

    digestible. The most digestible food.

    Many people say the feel my

    energy within minutes.

    activity for quick nutrition without

    feeling too full.

    I'm

    also helpful

    for dieting and cleansing your body.

    Once known as

    il

    / nod o/ [he

    /rtrurc.

    I

    ani already growing in

    villages in the developing world.

    I'm

    called 'green medicine' food by

    the children.

    So. panake of my immortal body

    each dav. Eat 3 billion

    wars

    of cell

    memory' and a conccntrihon of pro-

    tective nutrients. Reneu your own

    health. reneu your connection with

    your SISICN and brothers in the third

    world. and with the ongins of life."

    1

    S p i ~ l i ~

    t healtn tood stores

    1

    I

    1 m m 1 m 1 1 1 1

    You

    can

    iind

    best

    selling Earthw e

    I or order 11direct

    from

    Earthrise. I

    Earthrise Quality Standard I Please send

    me

    f r ee literature on: I

    introduced as a health food supple- I Name

    I

    ment in

    1979

    by Earthrise. Now I'm

    enjoyed by millions world wide-

    athletes. vegetarians, dieters, health

    praciitioners. and people of all ages.

    Earthrise i s one o my most ad-

    vanced farms. Here. I'm grown free

    of

    pcsticidcs. hcrhicides. additives

    and prcacrvalivca. and 100% purc.

    L L ~ J

    an Ralaei CA 94915

    Earthrise Spirulina - nature's most protective

    food