+ All Categories
Home > Documents > 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration,...

2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration,...

Date post: 11-Jan-2016
Category:
Upload: dorcas-sullivan
View: 213 times
Download: 0 times
Share this document with a friend
28
2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université Blaise Pascal, Clermont-Ferrand, France S. T. McCormick Faculty of Commerce, Vancouver, Canada P. Pesneau LIMOS, CNRS, Université Blaise Pascal, Clermont-Ferrand, France
Transcript
Page 1: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

2-edge connected subgraphswith bounded rings

B. FortzInstitut de Gestion et d’Administration, Louvain la Neuve, Belgique

A. R. MahjoubLIMOS, CNRS, Université Blaise Pascal, Clermont-Ferrand, France

S. T. McCormickFaculty of Commerce, Vancouver, Canada

P. PesneauLIMOS, CNRS, Université Blaise Pascal, Clermont-Ferrand, France

Page 2: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 2

Outline

• Presentation of the problem

• Polyhedral study

• Branch&Cut algorithm

• Computational results

Page 3: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 3

Network design

• Designing the network topology• Network survivability

2-edge connectivity

• Network performance in case of failure

bounded ring constraints

• Problem :

Find a 2-edge connected subgraph at minimum cost such that each edge belong to a cycle of length bounded by an integer K.

Page 4: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 4

2-node connectivity(Fortz, Labbé, Maffioli 2000)

• Formulation in terms of edges and cycles• Valid inequalities and necessary and sufficient

conditions to be facet defining• Separation algorithms• Branch&Cut algorithm• Heuristics.

Page 5: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 5

Cut inequalities

Let . Pose

Let

EF

V.W ,VW

.

F, e exF

otherwise0

if1)(

2))(( Wx W W\V

)(W

Page 6: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 6

Cycle inequalities

e

T

• Let be a partition

such that ,• let ,

• let

• Every solution must verify :

p10 V , ,V ,V K p

p,VVe 0

.1

1

0

e,VV\ ET ii

p

i

0 x(e) x(T) Cycle configuration

1V

0V

2V

pV

Page 7: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 7

Formulation

., 0,1

,1, 0

ion,configurat cycle ) ,(,0 )( )(

,,2 ))((

Eex(e)

Eex(e)

eTexTx

VWV WWx

cx Minimize

Page 8: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 8

Cycle inequalities : facets

• Let G=(V,E) be a complete graph.• Let be a partition of V and• The associated cycle inequality is facet defining if

and only if :– ,– and

– for all

p, V, , VV 10 . ,VV e p0

Kp 10 V ,1KV

31 ii VV .1,,0 Ki

Page 9: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 9

Cycle inequalities : separation

Let x be a solution.

The separation problem of cycle inequalities

for an edge e=st

The bounded (s,t)-path cut problem with B=K-1.

Page 10: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 10

Bounded path cut problem

• Let G=(V,E) be a graph, s and t two nodes and B an integer.

• Bounded (s,t)-path cut : set of edges that cut all (s,t)-path of length

• Problem : Find a minimum cost bounded (s,t)-path cut (BPCP).

.B

Page 11: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 11t

vtw ztw

' N'u 'v

'z

uvw

uvw

N u v z

suw szw

BPCP• If B=2 the problem is trivial.• If B=3 :

– The problem is polynomial.– It can be reduced to find a minimum cut in a particular

directed graph.s

t

N u v z

suw szw

vtw ztw

uvw

s

G 'G

Page 12: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 12

BPCP

• If :Heuristic based on the Primal-Dual method :

While C is not a bounded (s,t)-path cut do

Find an (s,t)-path P of bounded length

Increase until an edge verifies

Improve C by removing useless edges of C

4B

;;0 Cy

Py Pf .

:f

QfQQ wy

;fCC

Page 13: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 13

Cycle inequalities : separation

• Let G=(V,E) be a graph and e=st be an edge.• Calculate a bounded (s,t)-path cut C with B=K-1.• If x(C) < x(e), the we get a violated cycle

inequality and the associated partition is obtained by a breadth-first search from s in the graph G\C.

• We strengthen the partition by reducing to a single node.

KV

Page 14: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 14

Cyclomatic inequalities

• Introduced by Fortz, Labbé (1999).• Let be a partition of V.• Every solution must verify :

pVV ,, 0

.KKp))VV((x p

1 ,, 0

Page 15: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 15

Cyclomatic inequalities : separation

1st heuristic :Based on the separation of partition inequalities (Cunningham) :

Consider :

1)) ,, (( 0

KKpVVx p

.100with V

p

pVVx p )),,(( 0

We apply Barahona’s algorithm for the separation of the partition inequalities.

Page 16: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 16

Cyclomatic inequalities : separation

2nd heuristic :Let G=(V,E) be a graph and x a solution

While and |V|>2 do

Find an edge e with the greatest value in x

Contract edge e in the graph G

If |V|>2 then we have a violated cyclomatic inequality and each element of the associated partition is given by the expansion of the nodes of the graph.

1

)(KpKEx

Page 17: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 17

Cycle partition inequalities

• Let be a partition of V such that• Let T be the chords of the partition and C be the

other edges of the partition.• Every solution must verify :

p, V , V 0

.p)C(x)T(xK

pp 2 1

1

.Kp

Page 18: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 18

Cycle partition inequalities : facets

• Let G=(V,E) be a complete graph.• Let be a partition of V.• The cycle partition inequality is facet defining if

and only if :– – there is at most one such that

– for

p, V , V 0

,Kp p...,,i 0 ,VV ii 11

2iV .p...,,i 0

Page 19: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 19

Cycle partition inequalities : separation

Same idea than the separation of cyclomatic inequalities :

Let G=(V,E) be a graph and x be a solution

While |V|>K+1 do

Contract edge e with the greatest value in x

Search the order of the nodes of the final graph such that

is minimum.

If this value is <2K then, the expansion of the nodes of the final graph give a paretition inducing violated cycle partition inequality.

)()( 1

1 CxTxK

pp

Page 20: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 20

Computational results

• Branch&Cut algorithm.• Tree manager : BCP (IBM).• Linear solver : CPLEX 7.1.• PC PIV 1,7 GHz, 1 Go RAM.• Random and real data.• • Complete graphs.• Time limit : 2 hours.

.103 K

Page 21: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 21

Results : random instancesNode K Cut Cycle Metric Subset Cyclom. Cycle P Gap ro Gap

finCPU (s)

20 3 13.0 27.4 19.8 11.0 9.0 7.0 0.15 0.00 0.28

20 4 40.2 1000.4 496.8 118.2 56.8 28.8 3.46 0.00 54.28

20 5 52.0 2487.8 709.6 1068.6 81.8 28.0 4.36 0.00 276.30

20 6 61.6 1838.8 419.4 1656.0 62.8 20.6 4.47 0.00 173.64

20 10 38.8 484.2 124.4 1953.6 26.2 1.4 2.50 0.00 42.86

30 3 28.2 98.2 59.8 20.6 33.4 14.8 0.83 0.00 8.50

30 4 97.611029.

84768.2 646.4 457.8 125.0 5.99 1.97 7200.00

30 5 94.812905.

22462.0 2893.2 380.2 51.6 6.41 2.00 7200.00

30 6104.

412738.

01704.4 6560.8 207.4 18.0 7.86 3.85 7200.00

30 10121.

27326.4 647.8

23070.0

103.4 0.8 4.33 0.96 5504.88

40 3 53.4 311.0 175.8 40.0 192.4 53.6 1.31 0.00 362.92

40 4108.

87140.6 2824.2 453.0 658.4 109.0 5.98 3.12 7200.00

40 5120.

88141.8 1369.2 1540.6 395.2 41.0 8.21 5.54 7200.00

40 6118.

68776.6 932.6 3227.4 254.6 34.0 9.26 6.73 7200.00

40 10152.

08886.8 607.8

15942.2

127.0 0.5 4.32 2.04 7200.00

50 3 78.8 701.4 414.8 92.6 631.0 179.8 2.01 0.26 3522.34

50 4112.

24475.4 1592.6 253.6 902.6 83.6 7.21 5.54 7200.00

50 5111.

24982.6 787.0 928.4 497.4 45.0 9.34 7.55 7200.00

50 6112.

05420.2 527.4 1726.4 277.2 17.4 10.89 9.27 7200.00

50 10139.

47298.4 259.4

10923.2

102.6 1.6 6.23 4.58 7200.00

Page 22: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 22

Results : real instancesNode K Cut Cycle Metric Subset Cyclom. Cycle P Gap ro Gap

finCPU (s)

12 3 2 4 6 2 1 1 0.00 0.00 0.01

12 4 10 22 22 12 9 0 0.52 0.00 0.13

12 5 14 28 28 43 4 0 1.77 0.00 0.29

12 6 8 8 17 38 5 0 0.72 0.00 0.15

12 10 4 0 20 0 6 0 0.83 0.00 0.09

17 3 13 43 41 15 11 6 0.51 0.00 0.52

17 4 18 159 111 40 16 3 1.73 0.00 2.81

17 5 28 97 42 103 16 2 2.21 0.00 1.47

17 6 9 7 11 26 6 2 0.00 0.00 0.08

17 10 2 0 0 0 2 0 0.00 0.00 0.03

30 3 30 91 50 18 49 17 0.58 0.00 9.96

30 4 110 11373 5768 816 443 102 4.59 1.12 7200.00

30 5 161 13161 2835 4185 405 76 4.72 0.98 7200.00

30 6 144 12874 2415 7987 264 24 5.50 1.92 7200.00

30 10 69 617 164 1668 27 0 1.41 0.00 58.40

52 3 87 584 358 73 837 108 1.31 0.00 2092.77

52 4 107 3656 1398 175 867 60 6.15 4.60 7200.00

52 5 130 3867 728 745 607 40 9.11 7.88 7200.00

52 6 128 4506 477 1400 308 8 8.09 6.72 7200.00

52 10 110 3552 118 7273 90 1 7.60 6.42 7200.00

Page 23: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 23

Example of a solution

52 nodes

3K

35 minutes2047 constraints

Page 24: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 24

Perspectives

• Solve bigger instances

(particularly for K=3,4 and 5).• Improve separation routines.• Find new classes of valid inequalities.

Page 25: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 25

Subset inequalities

• Let T be an edge set such that G\T does not contain a feasible solution.

• We have :

• Separation : when we separate cycle inequalities, if two consecutive elements of the partition are reduced to a single node, then T induced a violated subset inequality.

.1)( Tx

Page 26: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 26

Cut inequalities : facets

• Let G=(V,E) be a complete graph.• Let • The cut inequality is facet defining if and only if :

– either and

– or and

.VW,VW

2 4 W,K

32 3 ,W,K ,W\V 2

.,W\V 32

Page 27: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 27

Cyclomatic inequalities : facets

• Let G=(V,E) be a complete graph.• Let be a partition of V.• The cyclomatic inequality is facet defining if and

only if and :– either and or and

for

– or for

pV,...,V 0

4K 2iV,p,...,i 0

32 3 ,V,K i .p,...,i 0

3iV 11 mod)1( Kp

Kp

Page 28: 2-edge connected subgraphs with bounded rings B. Fortz Institut de Gestion et d’Administration, Louvain la Neuve, Belgique A. R. Mahjoub LIMOS, CNRS, Université.

Pierre Pesneau 28

Metric inequalities• Introduced by Fortz, Labbé, Maffioli (2000).• Let G=(V,E) be a graph and• Let be a set of node potential satisfying :

• Every solution must verify :

where

Separation : heuristic of Fortz et al. (2000).

.Eije Vkk

.Kji 1

eeEf

ff xxv

. allfor 1

1,0max,1min eEklf

Kv

ji

klf


Recommended