+ All Categories
Home > Documents > 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good...

2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good...

Date post: 25-Apr-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
25
  1 The Use of Additives to Enhance Properties of Pre-formed Foamed Concrete Ameer A. Hilal*, Nicholas Howard Thom, Andrew Robert Dawson School of Civil Engineering, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK Tel: +44 (0) 115 846 8427, Fax: +44 (0) 115 951 3909, E-mail: [email protected] *corresponding author Abstract: This paper describes an experimental study of an enhancement of pre-formed 10 foamed concrete, 1300-1900 kg/m 3 , by utilising two types of additives, silica 11 fume and fly ash, to partially replace Portland cement and fine sand. It focuses 12 on consistency, mechanical and thermal properties as well as presenting a 13 comparison with normal weight, lightweight and foamed concretes from the 14 literature. In addition to conventional foamed concrete mixes (FC), foamed 15 concrete mixes with high flowability and strength (FCa) were also 16 manufactured in this study. The FC mixes had 28-day compressive strengths 17 from 6 to 23 MPa and corresponding thermal conductivities in the dry state 18 from 0.475 to 0.951 W/mK, whereas for the same density range, the FCa 19 mixes gave 19-47 MPa and 0.498-0.962 W/mK, respectively. Compared to 20 other studies on foamed concrete, the results from the mixes investigated in 21 this study showed higher strengths (for a given density), higher tensile to 22 compressive strength ratios and higher moduli of elasticity. 23 Keywords: Foamed concrete; Fly ash; Silica Fume; Mechanical properties; Thermal 24 conductivity. 25 26 27 28 29 
Transcript
Page 1: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  1

The Use of Additives to Enhance Properties of Pre-formed 1 

Foamed Concrete 2 

Ameer A. Hilal*, Nicholas Howard Thom, Andrew Robert Dawson 3 

School of Civil Engineering, Faculty of Engineering, University of Nottingham, University 4 

Park, Nottingham NG7 2RD, UK Tel: +44 (0) 115 846 8427, Fax: +44 (0) 115 951 3909, 5 

E-mail: [email protected]

*corresponding author 7 

Abstract: 9 

This paper describes an experimental study of an enhancement of pre-formed 10 

foamed concrete, 1300-1900 kg/m3, by utilising two types of additives, silica 11 

fume and fly ash, to partially replace Portland cement and fine sand. It focuses 12 

on consistency, mechanical and thermal properties as well as presenting a 13 

comparison with normal weight, lightweight and foamed concretes from the 14 

literature. In addition to conventional foamed concrete mixes (FC), foamed 15 

concrete mixes with high flowability and strength (FCa) were also 16 

manufactured in this study. The FC mixes had 28-day compressive strengths 17 

from 6 to 23 MPa and corresponding thermal conductivities in the dry state 18 

from 0.475 to 0.951 W/mK, whereas for the same density range, the FCa 19 

mixes gave 19-47 MPa and 0.498-0.962 W/mK, respectively. Compared to 20 

other studies on foamed concrete, the results from the mixes investigated in 21 

this study showed higher strengths (for a given density), higher tensile to 22 

compressive strength ratios and higher moduli of elasticity. 23 

Keywords: Foamed concrete; Fly ash; Silica Fume; Mechanical properties; Thermal 24 

conductivity. 25 

26 

27 

28 

29 

Page 2: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  2

1. Introduction: 30 

In construction projects, the main use of lightweight concrete is to reduce the 31 

dead load of concrete structures resulting in reduction in the size of columns, 32 

beams, foundations and other load bearing elements [1]. Cellular (aerated) 33 

concrete is a lightweight material composed of cementitious mortar 34 

surrounding disconnected bubbles which are a result of either physical or 35 

chemical processes during which either air is introduced into the mortar 36 

mixture or gas is formed within it [2]. Although aerated concrete is known as 37 

an insulation material, its structural features are also of considerable interest 38 

[3]. 39 

Indeed, the future need for construction materials which are light, durable, 40 

economic and environmentally sustainable has been identified by many groups 41 

around the world [4]. With the possibility of producing a wide range of 42 

densities (400-1600) kg/m3 and also of achieving a strength of at least 25 43 

MPa, foamed concrete has the potential to fulfil these requirements and it is 44 

now widely used in the construction industry [4, 5]. Furthermore, with foamed 45 

concrete, sustainability can be enhanced because no coarse aggregate is 46 

required in its manufacturing and there is also the possibility of partially or 47 

fully replacing fine aggregate with recycled or secondary materials [6]. 48 

The most available supplementary cementing materials are silica fume, a by- 49 

product of the reduction of high-purity quartz with coal in electric furnaces in 50 

the production of silicon and ferrosilicon alloys, and fly ash, a by-product of 51 

the burning of coal in thermal power stations [7-10]. Fly ash has the potential 52 

to enhance properties by reducing heat of hydration and giving the material 53 

good thermal insulation [4], while silica fume is usually added to improve 54 

cement paste/aggregate bonds [11]. However, in a study of the effect of 55 

mineral admixtures in lightweight concrete with high strength and workability, 56 

Chen [8] investigated both rheological (improving the workability) and 57 

strength (deceasing the early-age strength) properties, and recommended 58 

that fly ash (FA) should not be added to lightweight concrete on its own. In 59 

relation to silica fume (SF), he found that it significantly improved early-age 60 

strength and increased the bonding of the concrete mixtures, but that it 61 

caused rapid reduction in the workability. Bearing these conflicting finding in 62 

mind, both FA (as a fine aggregate replacement) and SF (as a cement 63 

Page 3: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  3

replacement) were investigated in this study. The ultimate aim was to push 64 

back the limits of foamed concrete achieving strengths suitable for semi-65 

structural or structural purposes but with enhanced strength/weight ratio and 66 

excellent thermal properties. For this purpose, properties of enhanced foamed 67 

concrete will be compared to normal weight, lightweight and foamed concretes 68 

produced in other studies. 69 

70 

2. Experimental details 71 

2.1 Materials 72 

Combinations of the following constituent materials were used to produce 73 

foamed concrete in this study. 74 

Portland cement CEM I-52,5 N (3.15 S.G.) conforming to BS EN 197-75 

1:2011 [12]. 76 

Natural fine aggregate (sand) (2.65 S.G.) conforming to BS 882:1992 77 

[13] with additional sieving to remove particles greater than 2.36 mm, 78 

to help improve the flow characteristics and stability of the final product 79 

[4, 14]. 80 

Fresh, clean and drinkable water 81 

Foam: the quality of foam is critical to the stability of foamed concrete 82 

and will affect the strength and stiffness of the final product; therefore, 83 

good quality foam (45 kg/m3) was produced by blending the foaming 84 

agent, EABASSOC (1.05 S.G.), water and compressed air in 85 

predetermined proportions (45 g water to 0.8 ml foaming agent) in a 86 

foam generator, STONFOAMM-4. 87 

Superplasticizer: MIGHTY 21 EG made by Kao Chemical GmbH of 88 

density (1.1 g/cm3), was used as a water-reducing agent to maintain 89 

sufficient workability of the premixed mortar (without foam) and to 90 

produce a high strength foamed concrete with low water/binder ratio. In 91 

addition, this superplasticizer has been proved to be compatible with 92 

the EABASSOC foaming agent [15]. 93 

Silica fume: Elkem Microsilica (2.2 S.G., 92% SiO2, mean particle size 94 

0.15 μm and specific surface 20 m2/g) made by Elkem A Bluestar 95 

Company was used to fill the space between cement particles making 96 

Page 4: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  4

the cement matrix denser and stronger, to gain early age strength and 97 

to improve cement/aggregate bonds. 98 

Fly Ash: to gain high strength and achieve more uniform distribution of 99 

air voids, CEMEX fly ash-class S (2.09 S.G.) conforming to BS EN 405-100 

1:2005 [16], was used instead of part of the fine sand in the production 101 

of foamed concrete. 102 

103 

2.2 Mix proportions 104 

In this study, mix proportioning began with the selection of the unit weight 105 

(wet density), the cement content and the water to cement ratio. The mix was 106 

then proportioned by the method of absolute volumes.  107 

It has been reported that mix proportions of concrete should be chosen 108 

according to particular requirements such as strength, shrinkage, thermal 109 

conductivity etc. For this reason and based on the best findings from the 110 

literature, the constituent materials selected for this project have been chosen 111 

to produce foamed concrete with relatively high strength and good thermal 112 

properties. 113 

Ruiwen [15] stated that based on previous studies, (Indian concrete Journal, 114 

1989; ACI, 1993; Valore, 1954), cement content in conventional foamed 115 

concrete with or without sand should be between 250 and 500 kg/m3; in this 116 

project, to produce foamed concrete with high strength it was chosen to be 117 

500 kg/m3. 118 

The stability, the state of the mix at a density ratio (measured fresh density 119 

divided by design density) close to unity, and consistency, spreadability and 120 

flowability measurements, of foamed concrete are affected by the volume of 121 

foam and water-solid ratio [17, 18]. Therefore, in this study for each mix the 122 

water/binder ratio required to produce a stable mix (density ratio close to 123 

unity) was determined by trials while the required foam volume was 124 

determined from the mix design. 125 

It is accepted that to achieve the target flow value, the proper dosage of 126 

superplasticizer should be determined by trial and error. Noting that in this 127 

study there is no target flow value but there is a target density which is 128 

affected by water content and foam volume, therefore a single dosage of 129 

Page 5: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  5

superplasticizer (1.5%) was obtained from trials and adopted for all relevant 130 

mixes. 131 

It has been well documented that the use of silica fume as a partial 132 

replacement of cement in combination with superplasticizer provides a 133 

significant increase in the strength and decrease in the permeability of 134 

concrete [19], and proportions up to 10% by mass of cement have been 135 

reported [18]. Moreover and according to Giaccio, et al. [20], when silica fume 136 

is used (usually no more than 10% of cement weight), there is no reduction in 137 

the fracture energy. In addition, based on the Taguchi method, Tanyildizi [21] 138 

concluded that at 20˚C the optimum for both compressive and flexural 139 

strength is 10% silica fume by mass; therefore, where used in this project, 140 

silica fume has been added to the mix at 10% of the cement weight. 141 

Nambiar and Ramamurthy [22] stated that, in foamed concrete, because fly 142 

ash is a reactive material, replacement of sand with fly ash leads to increased 143 

strength. On the other hand, this will also lead to increased water absorption. 144 

In addition, according to Ramamurthy et al. [18], mixes with fly ash exhibit 145 

higher carbonation than those with sand. Furthermore, using sand may lead to 146 

improved shear capacity between its particles and the paste resulting in higher 147 

tensile strength. For these reasons and to make the lightest mix (1300 kg/m3) 148 

suitable for structural purposes, in addition to adding silica fume and 149 

superplasticizer, fly ash replacement was limited to 20% by weight of fine 150 

sand (Table 1), giving a strength of over 17 MPa (see section 3.1) and 151 

thereby bringing it into the range where it may be considered a structural 152 

concrete [23]. To enable sensible comparisons, this ratio was also adopted for 153 

the 1600 and 1900 kg/m3 mixes with additives (FCa6 and FCa9), see Table 154 

(2). 155 

156 

157 

158 

159 

160 

Page 6: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  6

2.3 Production 161 

To produce foamed concrete, the equipment used in this study comprised: an 162 

ordinary mixer for mixing the raw materials, a foam generator (STONEFOAM-163 

4) running on a 12 Vdc (40-50 A) battery for generating stable foam by 164 

blending a foaming agent, EABASSOC (1.05 S.G.), water and compressed air 165 

of predetermined proportions (45 g water to 0.8 ml foaming agent) in it, and 166 

moulds for casting the specimens. In this study, six differently proportioned 167 

mixes were designed and divided into two groups, conventional mixes (FC) 168 

and mixes with additives (FCa), each one at three densities, 1300 (FC3 and 169 

FCa3), 1600 (FC6 and FCa6) and 1900 (FC9 and FCa9) kg/m3. In moulding the 170 

specimens [12 cubes (100×100×100 mm), 6 prisms (100×100×500mm), 2 171 

cylinders (150×300mm) and 1 slab (305×305×50mm) for each mix], the 172 

foamed concrete mix was placed in two approximately equal layers. The sides 173 

of the moulds were lightly tapped after placing each layer until the surface of 174 

the layer had subsided approximately to level [24]. After filling the moulds, 175 

the surfaces of the specimens were levelled by using a trowel. All specimens 176 

were covered with thick nylon to prevent evaporation.  All specimens were 177 

removed from moulds after 24 hours. After de-moulding, the specimens were 178 

sealed-cured (wrapped in cling film) and stored at 20˚C until testing. Note 179 

that sealed-curing reflects a typical industry practice for foamed concrete [4]. 180 

181 

3. Results and discussion 182 

183 

3.1 Effect of additives 184 

As explained above, to develop the selected foamed concrete mixes, 185 

comprising superplasticizer, silica fume and fly ash at specified ratios were 186 

added to a proportion of the mixes. To identify the effect of additives, 187 

individually or together, on the strength, a preliminary experimental 188 

programme was carried out at the lowest material density (1300 kg/m3), see 189 

Table 1. The results are shown in Fig. (1), where it may be seen that adding 190 

silica fume (FC3s) or fly ash (FC3f) individually improved the 28-day 191 

compressive strength by about 10% and 60% respectively. In addition, the 192 

use of superplasticizer (FC3p) improved the compressive strength by 115% 193 

(at 28-day); this increased to 125% with combined of silica fume and 194 

Page 7: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  7

superplasticizer (FC3s+p). However, the further addition of fly ash (FCa3), 195 

helped in achieving a great increase in strength (215%) making even this 196 

lightest mix potentially suitable for structural purposes. 197 

198 

3.2 Consistency 199 

The consistency of both the base mix and foamed concrete was quantified by 200 

measuring the spread diameter of a cylinder of material of initial diameter 75 201 

mm and 150 mm height (Fig. 2) [17, 25]. The spreadability variation with mix 202 

density before and after addition of foam is illustrated in Fig. 3. It seems that 203 

for the three densities adopted, the spreadability of base and foamed concrete 204 

mixes was 200-250 mm and 140-180 mm, respectively, for the conventional 205 

mixes (FC) while it was 400-450 mm and 290-350 mm, respectively, for the 206 

mixes with additives (FCa). It is evident that for a given mix, the spreadability 207 

reduces when the foam is added and for the selected mixes it also reduces 208 

with a reduction in design density; similar behaviour has been reported in the 209 

literature [17, 26]. Nambiar and Ramamurthy [26] suggested that the reason 210 

for this may be that the adhesion between the bubbles and solid particles in 211 

the mixture increases the stability of the paste resulting in reduced 212 

spreadability, noting that there are more bubbles at the lower densities, see 213 

Fig. 4. 214 

215 

3.3 Mechanical Properties 216 

Compressive strength 217 

Compressive strength testing was carried out on 100 mm cubes in accordance 218 

with BS EN 12390-3:2002 [27] and in each case the results quoted are the 219 

average of three specimens. As expected [4, 26, 28], the compressive 220 

strength of foamed concrete decreases dramatically with a reduction in 221 

density, as shown in Fig. 5. As illustrated in Fig. 6, the use of additives (silica 222 

fume (SF), fly ash (FA) and superplasticizer) greatly improved compressive 223 

strength development at all test ages. This is because of the reduction in 224 

water content due to use of a superplasticizer and the pozzolanic 225 

characteristics of both SF and FA, leading to an improved aggregate-matrix 226 

bond associated with the formation of a less porous interfacial zone and a 227 

better interlock between the paste and the aggregate [19], (see Fig. 7.a,b). 228 

Page 8: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  8

In addition, using FA as filler may help in achieving more uniform distribution 229 

of air-voids by providing uniform coating on each bubble thereby preventing 230 

merging of bubbles leading to an increase in strength [18, 29], (Fig. 7.c,d). 231 

In general, it is reported that foamed concrete with fly ash as filler has a 232 

higher strength to density ratio for all densities [26]. A comparison of strength 233 

to density ratios between FC and FCa mixes, at 28 days, with foamed concrete 234 

mixes from the literature [4, 26, 30] is shown in Fig. 8. Based on this 235 

comparison, it would appear that the FCa mixes showed higher strength to 236 

density ratios than any of the foamed concrete mixes in other studies 237 

produced by using sand and/or fly ash as a filler material. Overall, except for 238 

mixes FC3 and FC6, the results suggest that the remaining mixes are all 239 

potentially suitable for use as a lightweight concrete for semi-structural or 240 

structural purposes since their densities to not exceed 2000 kg/m3 and their 241 

28-day compressive strengths are in excess of 17 MPa [1, 23]. 242 

243 

Tensile (flexural and splitting) strength 244 

The structural properties of concrete such as shear resistance, bond strength 245 

and resistance to cracking depend on the tensile strength; the higher the 246 

tensile strength the better the structural properties [31]. Flexural strength 247 

testing (two-point loading) was conducted on two 100×100×500 mm prisms 248 

at ages of 7,14 and 28 days to determine the modulus of rupture (ƒr) in 249 

accordance with BS EN 12390-5: 2000 [32]. Splitting tensile strength (ƒsp) 250 

testing was also undertaken, in accordance with BS1881-117: 1983 [33] and 251 

in each case the mean of three tested values at each test age was recorded. 252 

The averaged values of ƒr and ƒsp are summarized in Table 3. Those at 28 253 

days are compared with corresponding 28-day compressive strengths in 254 

Figures 9 and 10, respectively. Note that in Fig. 9 the FC, LWC and NWC 255 

graphs were plotted from equations ƒr=0.31(ƒ’c)0.83, ƒr=0.46(ƒ’c)2/3 and 256 

ƒr=0.438(ƒ’c)2/3 respectively [31, 34, 35]), and that in Fig. 10 the LWC and 257 

NWC graphs were plotted from equations ƒsp=0.28(ƒ’c)0.69 and ƒsp=0.2(ƒc)0.7 258 

respectively [31, 36]. It can be seen from the two figures that, for a given 28-259 

day compressive strength, the conventional mixes (FC) produced higher 260 

indirect tensile strengths, flexural and splitting, than those with additives 261 

(FCa). The reason for this may be the improved shear capacity between the 262 

Page 9: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  9

sand particles and the paste phase [4] noting that, for a given density, the 263 

sand content is lower in the mixes with additives (FCa). However, ƒsp/ƒcu ratios 264 

for both FC and FCa mixes were slightly higher than those reported in most 265 

other studies [4, 34, 36], while, the tensile (ƒr or ƒsp)/compressive strength 266 

(ƒcu) ratios of both FC and FCa mixes were slightly lower than those 267 

investigated by Babu [31], likely to be because of the presence of lightweight 268 

aggregate in these mixes which may lead to improved its tensile strength. As 269 

illustrated in Fig. 11, at an age of 28 days, ƒr values of about 16-23 % and 270 

11-15 % of ƒcu were observed for FC and FCa mixes respectively, while the 271 

ranges for ƒsp were about 10-14 % and 7-9 % of ƒcu. 272 

273 

Modulus of elasticity 274 

The static modulus of elasticity (Es) of the mixtures was determined using 150 275 

× 300 mm cylinder specimens. Two specimens were tested for each mix at an 276 

age of 28 days in accordance with BS 1881-121: 1983 [37]. Each specimen 277 

was fitted with four potentiometers at different quadrants to measure the axial 278 

deformation. Es was determined from the slope of the stress-strain 279 

compression curves. The relationship with corresponding 28-day sealed-cured 280 

cube compressive strengths is given in Fig. 12. Note that the FC-FA, FC-Sand, 281 

LWC and NWC graphs were plotted from equations Ec=0.99(ƒcu)0.67, 282 

Ec=0.42(ƒcu)1.18, Ec=1.7×10-6(ϒ)2(ƒcu)0.33 and Ec=11.71(ƒ’c)0.33-8.355 283 

respectively [4, 38, 39]. It can be seen that for a given compressive strength, 284 

the FCa mixes exhibited lower E-values than the FC mixes, while the Es for 285 

NWC was higher than for both FC and FCa. The same behaviour was observed 286 

by Jones and McCarthy [4] leading then to conclude that a direct substitution 287 

of foamed concrete for the same compressive strength grade of normal 288 

concrete will not in reality give similar structural performance. 289 

The dynamic modulus of elasticity (Ed) was measured according to BS 1881-290 

203: 1986 [40] using a CNS Farnell PUNDIT, Portable Ultrasonic Non-291 

destructive Digital Indicating Tester. The relationships between the static (Es) 292 

and dynamic (Ed) moduli of elasticity for both FC and FCa mixes are shown in 293 

Fig.13. In this study (as in many others), the Ed appears higher than the Es 294 

(secant) in all selected mixes. The reason for this is usually ascribed to the use 295 

of a 100% non-destructive approach for determining Ed which provides very 296 

Page 10: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  10

small applied stress and hence there is neither micro crack formation nor 297 

creep during the test [41]. 298 

299 

3.4 Thermal conductivity 300 

Two classes of method are normally used to measure the thermal conductivity 301 

of building materials; steady-state methods, in which the temperature across 302 

a sample does not change with time, and transient methods, in which a 303 

measurement is performed during the process of heating up [42]. 304 

In this study the Heat Flow Meter (HFM) method, introduced in ISO 8301:1996 305 

[43], was adopted to determine the thermal conductivity of all selected mixes. 306 

In the HFM technique, the specimen (305×305×50 mm) is placed between a 307 

hot plate and the HFM which is attached to a cold plate. A Thermal 308 

Conductivity of Building and Insulating Materials Unit (B480) was used for this 309 

test. The results of thermal conductivity for both dry (λd - oven-dried at 105˚C 310 

until constant weight) and saturated (λs - immersed in water for 7 days) states 311 

are shown in Table 4. As expected, for a given mix, it was found that the 312 

higher the density the higher the thermal conductivity, and that thermal 313 

conductivity increases with increased moisture (λs>λd), since air has lower 314 

thermal conductivity than water. However, despite the fact that adding fly ash 315 

instead of sand leads to an increase in the foam content compared with 316 

conventional mixes (FC), the thermal conductivity in the dry state of mixes 317 

with additives (FCa) is slightly higher than that for conventional mixes, (Fig. 318 

14). The reason for this is that in the case of foamed concrete, its thermal 319 

conductivity depends not only on the air volumetric fraction but also on the 320 

thermal conductivity of the solid materials (mortar or cement paste) which is 321 

made denser by the physical and chemical contribution of the additives (SF 322 

and FA) as well as having less porosity owing to reduced W/C ratio with the 323 

addition of a superplasticizer, Fig. 15. In addition, the pore structure of a 324 

material plays a dominant role in controlling its thermal conductivity, and it is 325 

noted that adding fly ash may lead to a more uniform voids distribution 326 

resulting in reduced connectivity and consequent increase in thermal 327 

conductivity. In contrast, in the saturated state and for a given density, the 328 

results illustrate that compared to conventional mixes (FC), the thermal 329 

Page 11: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  11

conductivities were slightly lower for FCa mixes. This is because the water 330 

absorption of FCa mixes is less than that for FC mixes leading to the water 331 

content being lower, which results in reduced thermal conductivity. In other 332 

words, the water absorption in foamed concrete is mainly influenced by the 333 

paste phase which is denser in the case of FCa mixes, and not all artificial 334 

pores take part in water absorption since they are not interconnected [18], 335 

(Fig. 7-c). 336 

In concrete construction, it is not only beneficial to reduce the thermal 337 

conductivity of a material, but also to increase its structural efficiency (ƒc /λ). 338 

Fig. 14 illustrates that, for all mixes, there is an increase in the (ƒcu /λd) ratio 339 

with increase of density while, for the same density, this ratio increases with 340 

the presence of additives. These increases are gained as a result of 341 

improvements in the cementitious matrix due to reducing the foam, for the 342 

selected mixes, and/or reducing the W/C ratio by adding a water reducer and 343 

the incorporation of high quality pozzolana (SF and FA), for a given density. A 344 

comparison of thermal conductivity and (ƒcu /λ) for the selected mixes with 345 

other mixes (NWC, LWC and FC) from the literature [30, 42] is shown 346 

schematically in Fig. 16. 347 

348 

349 

350 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

Page 12: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  12

4. Conclusion 361 

From the tests presented in this paper, the following conclusions can be 362 

drawn: 363 

The mineral admixtures (SF and FA) and superplasticizer combination 364 

provides improvement in both the workability and the strength properties of 365 

foamed concrete. 366 

The results for mixes investigated in this study showed higher compressive 367 

strength to density ratios compared to foamed concrete mixes from other 368 

studies produced by using sand and/or fly ash as a filler material. 369 

While indirect tensile, flexural and splitting strengths were significantly 370 

higher for FCa mixes than FC mixes, the tensile/compressive ratios were 371 

higher for FC mixes. 372 

Similarly, while FCa mixes gave higher Es than FC mixes for a given density, 373 

they exhibited lower E-values for a given compressive strength. Es for NWC 374 

was also higher than both at a given compressive strength. 375 

Due to their making the cement paste denser and less porous, addition of 376 

additives and superplasticizer leads to slightly increased thermal 377 

conductivity in the dry state. However, owing to reduced water absorption, 378 

the thermal conductivity in the saturated state was slightly lower for FCa 379 

mixes than FC mixes. 380 

381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 

Page 13: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  13

References 392 

1.  Kosmatka,  S.H.,  W.C.  Panarese,  and  P.C.  Association,  Design  and  control  of  concrete 393 mixtures. Vol. 5420. 2002: Portland Cement Association Skokie, IL. 394 

2.  Tikalsky, P.J., J. Pospisil, and W. MacDonald, A method for assessment of the freeze–thaw 395 resistance  of  preformed  foam  cellular  concrete.  Cement  and  concrete  research,  2004. 396 34(5): p. 889‐893. 397 

3.  Narayanan,  N.  and  K.  Ramamurthy,  Structure  and  properties  of  aerated  concrete:  a 398 review. Cement and Concrete Composites, 2000. 22(5): p. 321‐329. 399 

4.  Jones, M. and A. McCarthy, Preliminary views on  the potential  of  foamed concrete as a 400 structural material. Magazine of concrete research, 2005. 57(1): p. 21‐31. 401 

5.  Tarasov, A., et al., Heat evolution due to cement hydration in foamed concrete. Magazine 402 of concrete research, 2010. 62(12): p. 895‐906. 403 

6.  Jones,  M.R.  and  A.  McCarthy,  Heat  of  hydration  in  foamed  concrete:  Effect  of  mix 404 constituents  and  plastic  density.  Cement  and  concrete  research,  2006.  36(6):  p.  1032‐405 1041. 406 

7.  Tanyildizi, H.  and A.  Coskun, Performance of  lightweight  concrete with  silica  fume after 407 high temperature. Construction and Building Materials, 2008. 22(10): p. 2124‐2129. 408 

8.  Chen, B. and J. Liu, Experimental application of mineral admixtures in lightweight concrete 409 with high  strength and workability.  Construction and Building Materials,  2008. 22(6):  p. 410 1108‐1113. 411 

9.  Agarwal,  S.,  Pozzolanic  activity  of  various  siliceous  materials.  Cement  and  concrete 412 research, 2006. 36(9): p. 1735‐1739. 413 

10.  Kayali, O., Fly ash lightweight aggregates in high performance concrete. Construction and 414 Building Materials, 2008. 22(12): p. 2393‐2399. 415 

11.  Balendran,  R.V.,  et  al.,  Influence  of  steel  fibres  on  strength  and  ductility  of  normal  and 416 lightweight  high  strength  concrete.  Building  and  Environment,  2002.  37(12):  p.  1361‐417 1367. 418 

12.  BS  EN  197‐1,  Cement‐Part  1:  Composition,  Specifications  and  Conformity  Criteria  for 419 Common Cements. British Standards Institution, London, 2011. 420 

13.  BS 882, Specification for aggregates from natural sources for concrete. British Standards 421 Institution, London, 1992. 422 

14.  ASTM C144,  Standard  Specification  for  Aggregate  for Masonry Mortar.  1987,  American 423 Society for Testing and Materials. 424 

15.  Ruiwen, K., Properties of high‐strength foam concrete, in Department of Civil engineering. 425 2004, National University of Singapore. 426 

16.  BS  EN  405‐1,  Fly  ash  for  concrete‐  Part  1:  Defination,  specifications  and  conformity 427 criteria. 2005. 428 

17.  Nambiar, E.K.K. and K. Ramamurthy, Fresh state characteristics of foam concrete. Journal 429 of materials in civil engineering, 2008. 20: p. 111. 430 

18.  Ramamurthy, K., E.K. Kunhanandan Nambiar, and G. Indu Siva Ranjani, A classification of 431 studies on properties of foam concrete. Cement and Concrete Composites, 2009. 31(6): p. 432 388‐396. 433 

19.  Toutanji, H.A. and T. El‐Korchi, The influence of silica fume on the compressive strength of 434 cement paste and mortar. Cement and concrete research, 1995. 25(7): p. 1591‐1602. 435 

20.  Giaccio,  G.,  G.R.  de  Sensale,  and  R.  Zerbino,  Failure  mechanism  of  normal  and  high‐436 strength  concrete with  rice‐husk ash.  Cement  and Concrete Composites,  2007. 29(7):  p. 437 566‐574. 438 

21.  Tanyildizi,  H.,  Effect  of  temperature,  carbon  fibers,  and  silica  fume  on  the  mechanical 439 properties of lightweight concretes. New Carbon Materials, 2008. 23(4): p. 339‐344. 440 

Page 14: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  14

22.  Nambiar,  E.K.K.  and  K.  Ramamurthy,  Sorption  characteristics  of  foam  concrete.  Cement 441 and concrete research, 2007. 37(9): p. 1341‐1347. 442 

23.  Neville,  A.M., Properties  of  concrete.  5th  ed.  2011,  London  Pearson  Education  Limited. 443 846. 444 

24.  ASTM  C796,  Standard  test  method  for  foaming  agent  for  use  in  producing  cellular 445 concrete using preformed foam. 1997, American Society for Testing and Materials. 446 

25.  Brady,  K.,  G. Watts,  and M.  Jones,  Specification  for  foamed  concrete.  Highways Agency 447 and TRL Application Guide AG, 2001. 39. 448 

26.  Nambiar,  E.  and  K.  Ramamurthy,  Influence  of  filler  type  on  the  properties  of  foam 449 concrete. Cement and Concrete Composites, 2006. 28(5): p. 475‐480. 450 

27.  BS  EN  12390‐3,  Testing  hardened  concrete—Compressive  strength  of  test  specimens. 451 British European Standards Specifications, 2002. 452 

28.  Kearsley,  E.  and  P.  Wainwright,  The  effect  of  high  fly  ash  content  on  the  compressive 453 strength of foamed concrete. Cement and concrete research, 2001. 31(1): p. 105‐112. 454 

29.  Jitchaiyaphum, K., T. Sinsiri, and P. Chindaprasirt, Cellular Lightweight Concrete Containing 455 Pozzolan Materials. Procedia Engineering, 2011. 14(0): p. 1157‐1164. 456 

30.  Pan,  Z.,  F. Hiromi,  and  T. Wee, Preparation of  high performance  foamed  concrete  from 457 cement,  sand  and  mineral  admixtures.  Journal  of  Wuhan  University  of  Technology‐‐458 Materials Science Edition, 2007. 22(2): p. 295‐298. 459 

31.  Babu, D.S., mechanical and Deformational Properties, and Shrinkage Cracking Behaviour 460 of Lightweight Concretes, in Department of Civil Engineering. 2008, National University of 461 Singapore. 462 

32.  BS  EN  12390‐5,  Testing  hardend  concrete‐  Part  5:  Flexural  strength  of  test  specimens. 463 British Standards Institution, London, 2000. 464 

33.  BS  1881‐117,  Testing  concrete‐  Part  117:  Method  for  determination  of  tensile  splitting 465 strength. British Standards Institution, London, 1983. 466 

34.  Fédération  internationale  de  la  précontrainte,  FIP  manual  of  lightweight  aggregate 467 concrete. 2 ed. 1983, Glasgow: Surrey University Press. 468 

35.  Ahmad,  S.H.  and  S.P.  Shah,  Structural  properties  of  high  strength  concrete  and  its 469 implications for precast prestressed concrete. PCI Journal, 1985. 30(6): p. 92‐119. 470 

36.  Oluokun,  F.,  Prediction  of  concrete  tensile  strength  from  its  compressive  strength:  an 471 evaluation of existing  relations  for normal weight concrete. ACI Materials  Journal, 1991. 472 88(3). 473 

37.  BS 1881‐121, Testing  concrete‐  Part  121: Method of  derermination of  static modulus of 474 elasticity in compression. British Standards Institution, London, 1983. 475 

38.  BS 8110, Structural use of concrete. Part 1: Code of practice for densign and construction. 476 British Standards Institution, London, 1985. 477 

39.  Rashid, M., M. Mansur, and P. Paramasivam, Correlations between mechanical properties 478 of  high‐strength  concrete.  Journal  of materials  in  civil  engineering,  2002. 14(3):  p.  230‐479 238. 480 

40.  BS  1881‐203,  Recommendations  for  measurement  of  velocity  of  ultrasonic  pulses  in 481 concrete, in British Standards Institution, London, 1986. 482 

41.  Najim, K.B. and M.R. Hall, Mechanical and dynamic properties of  self‐compacting crumb 483 rubber modified concrete. Construction and Building Materials, 2012. 27(1): p. 521‐530. 484 

42.  Keikhaei Dehdezi, P., Enhancing pavements  for  thermal applications. 2012, University of 485 Nottingham. 486 

43.  ISO  8301,  Thermal  Insulation  –  Determination  of  Steady‐State  Thermal  Resistance  and 487 Related  Properties  –  Heat  Flow  Meter  Apparatus,  in  International  Organization  for 488 tandardization. 1996: Genève, Switzerland. 489 

 490 

Page 15: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  15

Figures Captions 491 

Fig. 1. Effect of used additives on the compressive strength of 1300 kg/m3 492 

mix. 493 

Fig. 2. Test of the spreadability of the base mix and foamed concrete. 494 

Fig. 3. Variation of spreadability with density of the base and foamed concrete 495 

mixes. 496 

Fig. 4. Air voids in foamed concrete: (a) 1300 kg/m3 density (b) 1900 kg/m3 497 

density.  498 

Fig. 5. 28 day compressive strength density variation for FC and FCa mixes. 499 

Fig. 6. Development of 100mm cube sealed-cured compressive strength. 500 

Fig. 7. Scanning Electron Microscopy images of 1300 kg/m3 foamed concrete 501 

(a, b and c) with additives (FCa3), (d) conventional.  502 

Fig. 8. Strength to density ratios for different foamed concrete mixes. 503 

Fig. 9. Relationship between flexural strength and 28 day compressive 504 

strength of foamed, LW and NW concretes. 505 

Fig. 10. Relationship between splitting tensile strength and 28 day 506 

compressive strength of foamed, LW and NW concretes. 507 

Fig. 11. The ratios of tensile strength (ƒr and ƒsp) to compressive strength of 508 

the selected mixes at 28 day. 509 

Fig. 12. Relationship between E-values and 28 day compressive strength of 510 

foamed, LWC and NWC concretes. 511 

Fig. 13. Relationship between static and dynamic modulus of elasticity at 28 512 

day of foamed concrete mixes. 513 

Fig. 14. The variation of (λd) and (ƒcu /λd) for the selected mixes. 514 

Fig. 15. Microstructure of two 1600 kg/m3 foamed concrete (a) Conventional, 515 

FC6 (b) with additives, FCa6. 516 

Fig. 16. The comparison of (λd) and (ƒcu /λd) for the selected mixes with 517 

other mixes (NWC, LWC and FC) [29,41].. 518 

519 

520 

521 

522 

Page 16: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  16

523 

Table1. Mix proportions of 1300 kg/m3 foamed concrete mixes. 524 

Mixes

FC3 FC3s FC3f FC3p FC3p+s FCa3

Target density (kg/m3) 1300 1300 1300 1300 1900 1300 Cement content (kg/m3) 500 450 500 500 450 450

Silica Fume (kg/m3) - 50 - - 50 50

W/b ratio* 0.475 0.475 0.475 0.3 0.3 0.3

Superplasticizer (kg/m3) - - - 7.5 7.5 7.5

Water content (kg/m3) 237.5 237.5 237.5 150 150 150

Sand content (kg/m3) 562 562 450 625 625 500

Fly Ash (kg/m3) - - 112 - - 125

Foam (kg/m3) 19.1 19.1 19.1 19.1 19.1 19.1

Foam (m3) 0.424 0.424 0.424 0.424 0.424 0.424

525 

526 

Table2. Mix proportions of selected foamed concrete mixes. 527 

Mixes

FC3 FCa3 FC6 FCa6 FC9 FCa9

Target density (kg/m3) 1300 1300 1600 1600 1900 1900 Cement content (kg/m3) 500 450 500 450 500 450

Silica Fume (kg/m3) - 50 - 50 - 50

W/b ratio* 0.475 0.3 0.5 0.325 0.525 0.35

Superplasticizer (kg/m3) - 7.5 - 7.5 - 7.5

Water content (kg/m3) 237.5 150 249.9 162.5 262.5 175

Sand content (kg/m3) 562 514 850 744 1137.5 974

Fly Ash (kg/m3) - 128.5 - 186 - 243.5

Foam (kg/m3) 19.1 19.1 13.3 13.3 7.5 7.5

Foaming agent (kg/m3) 0.35 0.35 0.24 0.24 0.14 0.14

Foam (m3) 0.424 0.424 0.295 0.295 0.166 0.166

*w/b ratios required to achieve a density ratio of unity for the selected mixes 528 

 529 

 530 

 531 

 532 

 533 

 534 

Page 17: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  17

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

545 

546 

547 

548 

549 

550 

551 

552 

553 

554 

555 

556 

557 

558 Fig. 2. Test of the spreadability of the base mix and foamed concrete. 

FC (Base)FC (Concrete)

FCa (Base) FCa (Concrete)

FC3FC3s

FC3fFC3p

FC3s+pFCa3

02468

101214161820

7 14 28

Compressive Strength (MPa)

Age (day)

Fig. 1. Effect of used additives on the compressive strength of 1300 kg/m3 mix. 

Page 18: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  18

559 

560 

561 

562 

563 

564 

565 

566 

567 

568 

569 

570 

571 

572 

573 

0

50

100

150

200

250

300

350

400

450

500

1000 1300 1600 1900 2200

Spread

 Diameter (m

m)

Density (kg/m3)

FC (Base) FC (Concrete)FCa (Base) FCa (Concrete)

Fig. 3. Variation of spreadability with density of the base and foamed concrete mixes. 

Fig. 4. Air voids in foamed concrete: (a) 1300 kg/m3 density (b) 1900 kg/m3 density.  

a  b

Page 19: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  19

574 

575 

576 

577 

578 

579 

580 

581 

582 

583 

584 

585 

586 

587 

588 

589 

590 

591 

0

5

10

15

20

25

30

35

40

45

50

1000 1300 1600 1900 2200

Compressive Strength (MPa)

Density (Kg/m3)

FC

FCa

Power (FC)

Power (FCa)

Fig. 5. 28 day compressive strength density variation for FC and FCa mixes.  

Fig. 6. Development of 100mm cube sealed-cured compressive strength.

0

10

20

30

40

50

60

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

Compressive Strength (MPa)

Age (Day)

FC3 FC6 FC9

FCa3 FCa6 FCa9

Page 20: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  20

592 

593 

594 

595 

596 

597 

598 

599 

600 

601 

602 

603 

604 

605 

606 

  607 

608 

609 

0

4.5

9

13.5

18

22.5

27

700 1000 1300 1600 1900 2200

Compressive Strength /density (MPa per 

kg/m

3*1

000)

Density (Kg/m3)

FC

FCa

Sand [26]

50% FA [26]

Sand [29]

Minerals [29]

Sand [4]

100% FA [4]

Fig. 8. Strength to density ratios for different foamed concrete mixes.  

Fig. 7. Scanning Electron Microscopy images of 1300 kg/m3 foamed concrete (a, b and c) with additives (FCa3), (d) conventional.  

a  b

c  d

Fine Sand 

FA in the ITZ 

Fine Sand 

Fine Sand Voids 

Connected Voids 

Page 21: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  21

Table 3. Flexural strength and prism splitting tensile strength results 610 

Mixes 

Test Age (day) 

7  14 28 

Density (kg/m3) 

ƒr (MPa) ƒsp 

(MPa) Density (kg/m3) 

ƒr (MPa) ƒsp 

(MPa) Density (kg/m3) 

ƒr (MPa) ƒsp 

(MPa) 

FC3  1280  1.2  0.65  1295  1.3  0.75  1285  1.4  0.85 FCa3  1320  2.1  0.85  1323  2.6  1.35  1316  2.8  1.65 FC6  1615  2.3  0.9  1620  2.7  1.5  1625  2.9  1.8 FCa6  1605  3.4  1.7 1620 3.8 2.35 1630  4.1  2.65FC9  1870  2.9  1.5 1880 3.2 2.15 1865  3.7  2.35FCa9  1870  4.1  2.5  1875  4.5  3.1  1880  5.3  3.5 

  611 

612 

 613 

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50

Flexu

ral Strength (MPa)

Compressive Strength (MPa)

NWC [34]

LWC [33]

FC [30]

FC

FCa

Power (FC)

Power (FCa)

Fig. 9. Relationship between flexural strength and 28 day compressive strength of foamed, LW and NW concretes.

Page 22: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  22

  614 

 615 

 616 

 617 

   618 

 619 

0

0.5

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50

Splitting Te

nsile Strength (MPa)

Compressive Strength (MPa)

NWC [35]

LWA [30]

FC‐sand [4]

FC‐FA [4]

FC

FCa

Power (FC)

Power (FCa)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

1300 1600 1900

fr and fsp/fcu (%)

Density (Kg/m3)

FC (fr) FCa (fr) FC (fsp) FCa (fsp)

Fig. 10. Relationship between splitting tensile strength and 28 day compressive strength of foamed, LW and NW concretes.  

Fig. 11. The ratios of tensile strength (ƒr and ƒsp) to compressive strength of the selected mixes at 28 day.  

Page 23: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  23

 620 

   621 

               622 

                       623 

                         624 

 625 

626  627  628  629  630  631  632  633  634  635  636  637  638  639  640  641  642  643  644 

0

5

10

15

20

25

30

35

0 10 20 30 40 50

Static M

odulus of Elasticity (KN/m

m2)

Compressive Strength (MPa)

NWC [38]

LWC [37]

FC‐FA [4]

FC‐Sand [4]

FC

FCa

Power (FC)

Power (FCa)

Fig. 12. Relationship between E-values and 28 day compressive strength of foamed, LWC and NWC concretes.

Fig. 13. Relationship between static and dynamic modulus of elasticity at 28 day of foamed concrete mixes.  

y = 0.7474x ‐ 0.3607R² = 0.9333

y = 0.8026x ‐ 2.1375R² = 0.974

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25

Es  (GN/m

2)

Ed (GN/m2)

FC

FCa

Linear (FC)

Linear (FCa)

Page 24: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  24

645 Table 4. The results of thermal conductivity for both of dry and saturated 646 states 647  648 

Mixes  FC3  FCa3  FC6  FCa6  FC9  FCa9 

λ ( W/mK) Dry  0.475  0.498  0.775  0.789  0.951  0.962 

Saturated  0.635 0.599 1.08 0.986 1.185  1.112

649  650  651 

 652 

   653 

   654 

   655 

 656 

 657 

                     658 

 659 

 660 

 661 

 662 

 663 

 664 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0

0.2

0.4

0.6

0.8

1

1.2

FC3 FCa3 FC6 FCa6 FC9 FCa9ƒcu/ϒd (MPa/ (W/m

K))

λd (W/m

 K)

Mixes

λd ƒcu/ϒd 

Fig. 14. The variation of (λd) and (ƒcu /λd) for the selected mixes.

concretes (a) Conventional, foamed 3mMicrostructure of two 1600 kg/ Fig. 15.FC6 (b) with additives, FCa6.

a  b

Page 25: 2 Foamed Concreteeprints.nottingham.ac.uk/44579/1/The Use of Additives to Enhance... · 54 good thermal insulation [4], while silica fume is usually added to improve 55 cement paste/aggregate

 

  25

 665 

  666 

 667 

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.000

0.500

1.000

1.500

2.000

2.500

3.000

NWC [41]

LWC [41]

FC9

FCa9

LWC [41]

FC [29]

FC+add. [29]

FC6

FCa6

FC [29]

FC+add. [29]

FC3

FCa3

ƒcu/ϒd (MPa/ (W/m

K))

λd(W

/m K)

Mixes

λd ƒcu/ϒd 

2300  1900  1600 1300 ϒ (kg/m3) 

Fig. 16. The comparison of (λd) and (ƒcu /λd) for the selected mixes with other mixes (NWC, LWC and FC) [29,41].


Recommended