+ All Categories
Home > Documents > 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published...

2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published...

Date post: 19-Jun-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
56
ANIMAL GENETIC RESOURCES INFORMATION BULLETIN D’INFORMATION SUR LE RESSOURCES GÉNÉTIQUES ANIMALES BOLETIN DE INFORMACION SOBRE RECURSOS GENETICOS ANIMALES Initiative pour la Diversité des Animaux Domestiques Initiative for Domestic Animal Diversity Iniciativa para la Diversidad de los Animales Domésticos 29 2001 Food and Agriculture Organization of the United Nations Organisation des Nations Unies pour l'alimentation et l'agriculture Organización de las Naciones Unidas para la Agricultura y la Alimentatción
Transcript
Page 1: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

ANIMAL GENETIC RESOURCES INFORMATION

BULLETIND’INFORMATIONSUR LE RESSOURCESGÉNÉTIQUES ANIMALES

BOLETINDE INFORMACIONSOBRE RECURSOSGENETICOS ANIMALES

Initiative pourla Diversitédes AnimauxDomestiques

Initiative for Domestic AnimalDiversity

Iniciativa parala Diversidadde los AnimalesDomésticos

292001

FoodandAgricultureOrganizationoftheUnitedNations

OrganisationdesNationsUniespourl'alimentationetl'agriculture

Organizaciónde lasNacionesUnidaspara laAgriculturay laAlimentatción

Page 2: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

The designations employed and the presentation of the material in thispublication do not imply the expression of any opinion whatsoever onthe part of the Food and Agriculture Organization of the United Nationsconcerning the legal status of any country, territory, city or area or of itsauthorities, or concerning the delimitation of its frontiers or boundaries.

Les appellations employées dans cette publication et la présentation desdonnées qui y figurent n’impliquent de la part de l’ Organisation desNations Unies pour l’alimentation et l’agriculture aucune prise de positionquant au statut juridique des pays, territoires, villes ou zones ou de leursautorités, ni quant au tracé de leurs frontières ou limites.

Las denominaciones empleadas en esta publicación y la forma en queaparecen presentados los datos que contiene no implican, de parte de laOrganización de las Naciones Unidas para la Agricultura y laAlimentación, juicio alguno sobre la condición jurídica de países,territorios, ciudades o zonas, o de sus autoridades, ni respecto de ladelimitación de sus fronteras o límites.

All rights reserved. Reproduction and dissemination of material in thisinformation product for educational or other non-commercial purposesare authorized without any prior written permission from the copyrightholders provided the source is fully acknowledged. Reproduction ofmaterial in this information product for resale or other commercialpurposes is prohibited without written permission of the copyright holders.Applications for such permission should be addressed to the Chief,Publishing and Multimedia Service, Information Division, FAO, Vialedelle Terme di Caracalla, 00100 Rome, Italy or by e-mail [email protected] © FAO 2001

Tous droits réservés. Les informations ci-après peuvent être reproduitesou diffusées à des fins éducatives et non commerciales sans autorisationpréalable du détenteur des droits d’auteur à condition que la source desinformations soit clairement indiquée. Ces informations ne peuventtoutefois pas être reproduites pour la revente ou d’autres finscommerciales sans l’autorisation écrite du détenteur des droits d’auteur.Les demandes d’autorisation devront être adressées au Chef du Servicedes publications et du multimédia, Division de l’information, FAO, Vialedelle Terme di Caracalla, 00100 Rome, Italie ou, par courrier électronique,à [email protected] © FAO 2001

Todos los derechos reservados. Se autoriza la reproducción y difusión dematerial contenido en este producto informativo para fines educativos uotros fines no comerciales sin previa autorización escrita de los titularesde los derechos de autor, siempre que se especifique claramente la fuente.Se prohíbe la reproducción de material contenido en este productoinformativo para reventa u otros fines comerciales sin previa autorizaciónescrita de los titulares de los derechos de autor. Las peticiones para obtenertal autorización deberán dirigirse al Jefe del Servicio de Publicaciones yMultimedia de la Dirección de Información de la FAO, Viale delle Termedi Caracalla, 00100 Roma, Italia, o por correo electrónico [email protected] © FAO 2001

Page 3: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

Editors - Editeurs - Editores:S. Galal & J. Boyazoglu

Viale delle Terme di Caracalla 1, 00100 Rome,Italy

Animal Genetic Resources Information ispublished under the joint auspices of theFood and Agriculture Organization of theUnited Nations (FAO) and the UnitedNations Environment Programme (UNEP).It is edited in the Animal Genetic ResourcesGroup of the Animal Production and HealthDivision of FAO. It is available direct fromFAO or through the usual FAO sales agents.

ANIMAL GENETIC RESOURCESINFORMATION will be sent free of chargeto those concerned with the sustainabledevelopment conservation of domesticlivestock. Anyone wishing to receive itregularly should send their name andaddress to the Editor, at the address shownabove.AGRI can also be found in the “Library” ofDAD-IS at URL http://www.fao.org/dad-is.

Le Bulletin d’information sur les ressourcesgénétiques animales est publié sous lesauspices conjoints de l’Organisation desNations Unies pour l’Alimentation etl’Agriculture (FAO) et du Programme desNations Unies pour l’Environnement(UNEP). Cette publication est éditée par leGroupe des Ressources Génétiques de laDivision de la Production et de la SantéAnimales de la FAO. On peut se le procurerdirectement au siège de la FAO ou auprèsdes dépositaires et agents habituels de ventede publication de l’Organisation.

LE BULLETIN D’INFORMATION SUR LESRESSOURCES GÉNÉTIQUES ANIMALESsera envoyé gratuitement aux personnes intéresséespar le développement durable et la conservationdu bétail domestique. Les personnes souhaitantrecevoir cette publication régulièrement voudrontbien faire parvenir leurs nom et adresse à l’éditeur,à l’adresse sus-indiquée.AGRI peut être consulté également sur la“Librairie” de DAD-IS de URLhttp://www.fao.org/dad-is.

El Boletín de Información sobre RecursosGenéticos Animales se publica bajo les auspiciosde la Organización de las Naciones Unidas para laAgricultura y la Alimentación (FAO) y delPrograma de la Naciones Unidas para el MedioAmbiente (UNEP). Se edita en el Grupo deRecursos Genéticos de la Dirección de Produccióny Sanidad Animal de la FAO. Se puede obtenerdirectamente de la FAO o a través de sus agentesde venta habituales.

El BOLETIN DE INFORMACION SOBRERECURSOS GENETICOS ANIMALES seráenviado gratuitamente a quienes estén interesadosen el desarrollo sostenible y la conservación delganado doméstico. Si se desea recibirloregularmente, se ruega comunicar nombre, apellidoy dirección al editor a la dirección arriba indicada.AGRI puede consultarse también en la“Librería” de DAD-IS de URLhttp://www.fao.org/dad-is.

ANIMAL GENETIC

RESOURCES INFORMATION

BULLETIN

D’INFORMATION SUR LES

RESSOURCES GÉNÉTIQUES

ANIMALES

BOLETÍN DE

INFORMACIÓN SOBRE RECURSOS

GENÉTICOS ANIMALES

CONTENTS Page

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

292001

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

ORGANISATION DES NATIONS UNIES POUR L’A LIMENTATION ET L ’A GRICULTURE

ORGANIZACION DE LAS NACIONES UNIDAS PARA LA AGRICULTURA Y LA ALIMENTACION

UNITED NATIONS ENVIRONMENT PROGRAMME

PROGRAMME DES NATIONS UNIES POUR L’ENVIRONNEMENT

PROGRAMA DE LAS NACIONES UNIDAS PARA EL MEDIO AMBIENTE

Editorial i

Why should we become involved in the State of World Process?A view from Asia 1P.N. Bhat

Caracterización de los animales domésticos en España 7J.V. Delgado, C. Barba, M.E. Camacho, F.T.P.S. Sereno, A. Martínez & J.L. Vega-Pla

Characteristics of the American Polypay: A review 19G.D. Snowder

Genetic diversity between Italian and Greek buffalo populations 31B. Moioli, A. Georgoudis, F. Napolitano, G. Catillo,S. Lucioli, Ch. Ligda & J. Boyazoglu

The Jakhrana Goat in India 41B. Rai, S. Tiwari & B.U. Khan

Productivité des ovins et des caprins de Race Locale élevésdans des conditions semi-intensives aux Antilles françaises 49G. Alexandre, M. Mahieu & G. Aumont

A propos d’un rapport sur la Chèvre du Rove en Provence 61F. Poey d’Avant

Phenotypic characterisation of native chicken lines in South Africa 71E. van Marle-Köster & N.H. Casey

Origin and characteristics of the Maltese Black-Bronze Turkey 79J.G. Mallia

Reports of selected meetings 91

Recent publications 97

Editorial policies and procedures 105

Page 4: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

i

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

International stakeholders, national andregional coordinators, professional colleaguesin animal genetic resources have workedintensively since last September to put allnecessary arrangements in place to make theState of the World’s Animal Genetic Resourcesreporting process a success. Following theintergovernmental working group meeting inFAO in September 2000, the Secretariat and acore team of professionals from all over theworld have invested a tremendous amount oftime and effort to prepare the documentationand other tools for the necessary man-powertraining at all levels. In late February 2001, aglobal training workshop of trainers wasorganized at FAO Headquarters in Rome, inorder to establish a pool of outstanding AnGRprofessionals to assist countries in thepreparation of the country reports, analyzethe global situation and prepare the firstreport on the State of Animal GeneticResources.

An important milestone was the issuanceof the formal letter of invitation to MemberNations and Organizations by the Director-General of FAO. An official “circular stateletter” was sent to 180 member nations, onemember organization (EU) and some of thenon-FAO member nations, such as theRussian Federation, Belorussia, Ukraine andthe FR of Yugoslavia. Governments wereinvited to participate in the preparation of TheState of the World’s Animal Genetic Resources,through an assessment of national animalgenetic resources in the form of countryreports, using the approved guidelines. Asexpressed by the Director-General of FAO,reports should constitute an officialgovernment document, which will clearlyidentify national priorities and set out a planof action for the sustainable utilisation andconservation of farm animal geneticresources. The Commission on Genetic

Resources for Food and Agriculture urgedthat the State of the World on Animal GeneticResources process be country-driven, whichwill require the full political, financial andhuman resources commitment ofgovernments and national stakeholders.

The Director-General of FAO firmlyassured member nations that the Secretariatwas willing to co-ordinate donor support andassist Member Nations in implementing theirnational assessment whenever required. TheDirector-General of FAO also called onparticipating nations that, the globalassessment was to be completed by theestablished deadline.

As a response to the above mentionedinvitation, so far more than 50 membernations confirmed their participation in thepreparation of the First Report on the State ofthe World’s Animal Genetic Resources, togetherwith details of the official title and address ofthe designated national authority responsiblefor co-ordinating the preparatory process incollaboration with FAO.

The Animal Production and HealthDivision (AGA) of FAO is the Organisation’sfocal point at the global level for thepreparatory process. The Animal GeneticResources Group of AGA, in close co-operation with national and regional partnerinstitutions and organisations is nowpreparing the necessary regional training forcountry-nominated experts who will play keyroles in preparing country reports for theState of the World process. Comprehensivetraining packs and DAD-IS modules havebeen prepared for this training to assistcountry stakeholders operationalise theGuidelines. Training workshops arescheduled to take place in Addis Ababa,Ethiopia in July 2001 for participatingcountries from Eastern and Southern Africa,followed by courses in Brasilia, Brazil (for

EditorialMaking the Report on the State of the World’sAnimal Genetic Resources a Success

Page 5: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

iiEditorial

South America) in August, in Mexico City (forCentral and North American countries), inNew Delhi (for India and West Asiancountries) in October and so on. Otherregional training courses will be held forNorth European and Baltic sates, as well assouth-eastern European countries in Denmarkand Hungary respectively, for south-eastAsian countries in Bangkok, Thailand, forWest-African countries and countries of theSouth Pacific.

It is well understood that such animportant undertaking requires adequatefinancial support. Therefore FAO is allocatingsubstantial share of its resources from theRegular Programme budget, which needs tobe supplemented by extrabudgetaryresources. The SoW Secretariat is workingclosely with countries and organisations, inorder to secure funding of the core operation.

It should be underlined that the financialand technical assistance is part of a globalinitiative to enhance national capacities inorder to prepare country reports in animalgenetic resources. Funding of activities in thetarget countries under this project iscomplementary to similar projects (trust fundsupport from the Netherlands to West Asia,South America; support from Finland tosouth-east Europe and East Africa; fromFrance to the European Regional Focal Pointof the AnGR co-ordinators network; from theNordic countries to countries in the BalticRegion; from the United States to theCaribbean etc.). Projects are identified andintended to last six to twelve months and thedonor inputs will provide the fundingnecessary for the training of the AnGRCountry Focal Points and for carrying out thepreparation for a follow-up project to developcountry-based inventories and plans of action.

These will include provision for relatedconsultancy services and computer hardwareand software for information managementand reporting.

Consequently, the direct involvement inthe SoW process of the range of internationalstakeholders is necessary for success. TheSecond Ad-Hoc Session of InternationalStakeholders was held in Rome, 5-6 June2001, to provide further opportunity forstakeholder involvement and support of theSoW-AnGR process

The most important objective of theSoW-AnGR process is to develop nationalcapacities and promote regional andinternational co-operation for sustainableintensification of livestock productionsystems at country level. The SoW-AnGRprocess will enhance the wise use anddevelopment of locally adapted animalgenetic resources in target counties, whilsttaking into consideration the constraints andopportunities of a country’s livestock sectordriven by growing food demands, changingclimate, disease status and technologies.

The SoW-AnGR process is the opportunityto prepare for cost-effective action on betterunderstanding the roles and values of farmanimal genetic resources, better using andsustainably developing adapted resources, aswell as better conserving and accessinggenetic material for future benefit of localcommunities and the environment. Membersof the animal genetic resources professionalcommunity should take the lead to developquality country and regional reports as astrategic policy document and bring AnGR totheir right place in food security, sustainabledevelopment, while maintaining agriculturalbiodiversity for beneficiaries today and in thefuture.

Page 6: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

iii

Animal Genetic Resources Information, No. 29, 2001

Les intéressés au niveau international, lescoordonateurs nationaux et régionaux, et lescollègues du domaine des ressourcesgénétiques animales ont travaillé intensivementdepuis le mois de septembre dernier pour quele rapport sur le déroulement de la SituationMondiale (SM) des Ressources GénétiquesAnimales soit un succès. Suite à la réunion dugroupe de travail inter-gouvernemental quis’est tenue à la FAO en septembre 2000, leSecrétariat SM et une équipe restreinte deprofessionnels venant de toutes les parties dumonde ont investi une enorme quantité detemps et d’effort pour préparer ladocumentation et les outils nécessaires à laformation d’experts à tous les niveaux. Vers lafin février 2001 un atelier de formation pour lesformateurs a été organisé au Siège de la FAO àRome pour établir un groupe de professionnelsdu domaine des Ressources GénétiquesAnimales qui doivent assister les pays dans lapréparation de leurs rapports nationaux,analyser la situation mondiale et préparer lepremier rapport sur la Situation des RessourcesGénétiques Animales.

Un point déterminant a été l’envoi officiel dela lettre d’invitation aux Etats Membres et auxOrganisations intéressées de la part duDirecteur Général de la FAO. Une “lettrecirculaire aux Etats” a été envoyée à 180 pays,une organisation membre (UE) et certains despays non membres de la FAO, tels que laFédération Russe, la Bélorussie, l’Ucraine et l’exRépublique Yugoslave. Les gouvernements ontété invités à prendre part à la préparation sur laSituation Mondiale des Ressources GénétiquesAnimales, à travers une enquête nationale surles ressources génétiques animales et surprésentation d’un rapport national en utilisantles directives approuvées. Tel que l’a exprimé leDirecteur Général de la FAO, les rapportsdevraient constituer un document officiel quiidentifiera clairement les priorités nationales etsoulignera un plan d’action à suivre pour unemeilleure utilisation durable et la conservation

des ressources génétiques d’animauxdomestiques. La Commission des RessourcesGénétiques pour l’Alimentation et l’Agriculturea insisté pour que le processus sur la SituationMondiale des Ressources Génétiques Animalessoit développé dans chaque pays, ce quiimplique, de la part des gouvernements et despersonnes au niveau national directementintéressées, un compromis total politique etfinancier ainsi que de ressources humaines.

Le Directeur Général de la FAO a assuréfermement les pays membres que le Secrétariatsera a disposition pour coordonner l’apport desdonateurs et pour assister les Etats Membres àmettre en oeuvre leur enquête nationale, sinécessaire. Le Directeur Général de la FAO aaussi fait appel aux pays participants pour quel’enquête mondiale soit menée à terme dans lesdélais prévus.

En réponse à l’invitation ci-dessus, plus de50 pays membres ont confirmé leurparticipation à la préparation du PremierRapport sur la Situation Mondiale des RessourcesGénétiques Animales, tout en communiquant lesdétails relatifs au titre officiel, nom et adressecomplète des personnes désignées parmi lesauthorités responsables au niveau national pourcoordonner le processus de préparation encollaboration avec la FAO.

La Division de la Production et de la SantéAnimale de la FAO (AGA) est le Point Focal del’Organisation au niveau mondial pour lapréparation du processus. Le Groupe deRessources Génétiques Animales de AGA, enétroite collaboration avec les institutions etorganisations partenaires nationales etrégionales, prépare en ce moment au niveaurégionale la formation des experts només danschaque pays et qui joueront un rôle importantdans la préparation des rapports nationaux surle processus de la Situation Mondiale. Une sériede documents de formation et formulairesDAD-IS ont été préparés pour cette formationafin d’assister les pays intéressés dans la miseen oeuvre des Directives. Des ateliers de

EditorialAssurer le Succès du Rapport sur la SituationMondiale des Ressources Génétiques Animales

Page 7: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

ivEditorial

formation ont été programmés pour les paysparticipants, de l’Est et du Sud de l’Afrique àAddis Abeba, en Ethiopie, en juillet 2001. Cesateliers seront suivi d’une série de cours àBrasilia (Brésil) au mois d’août, pourl’Amérique du Sud, à Mexico City (Mexique)pour les pays de l’Amérique Centrale et duNord, puis en Nouvelle Delhi (Inde) au moisd’octobre pour les pays de l’ouest asiatique, etc.D’autres cours de formation au niveau régionalse tiendront au Danemark et en Hongrierespectivement, pour les pays de l’Europe dunord et les pays baltiques, ainsi que pour lespays du sud-est de l’Europe. Ensuite, pour lespays du sud-est asiatique à Bangkok(Tahilande), ainsi que d’autres pour les pays del’Afrique de l’ouest et ceux du Pacific sud.

Il est évident que cette importante initiativedemande un soutien financier substantiel. Dansce sens, la FAO a destiné à cet effet une grandepartie de ses ressources provenant du budgetdu Programme Ordinaire, mais qui devra êtreaugmentée par des ressources extra-budgétaires. Le Secrétariat du SM travaille enétroite collaboration avec les pays et lesorganisations intéressées afin d’assurer lesfonds nécessaires pour la partie centrale del’opération.

On doit souligner que l’assistance financièreet technique est une partie de l’initiative globalequi permet de faire ressortir les capacitésnationales afin de pouvoir préparer les rapportsnationaux sur les ressources génétiquesanimales. Le financement des activités dans lespays retenus pour ce projet est complémentaireà d’autres projets similaires (fonds fiduciaire desupport des Pays-Bas pour l’Asie de l’ouest etl’Amérique du Sud; soutien de la Finlande auxpays du sud-est de l’Europe et de l’Afrique del’est; de la France pour le Point Focal RégionalEuropéen pour les coordonnateurs du réseauAnGR; des pays du nord européen pour lespays de la région baltique; des Etats-Unis versla région des Caraïbes). Des projets ont étéidentifiés et se réfèrent aux derniers six à douzemois et les intrants des donateurs apporterontles fonds nécessaires pour la formation despoints focaux Nationaux et pour mener à termela préparation d’un projet de suivi pourdévelopper pour chaque pays des inventaires et

des plans d’action. Ceux-ci comprendront aussiles provisions pour les services des consultantsimpliqués et l’achat d’ordinateurs et deprogrammes pour la gestion de l’information etl’élaboration des rapports.

En conséquence, l’implication directe dans leprocessus SM d’un grand nombre d’intéressésau niveau international est nécessaire pourobtenir le succès désiré. La Deuxième Séancead-hoc d’Experts Internationaux dans cedomaine s’est tenue à Rome les 5 et 6 juin 2001afin de donner une autre occasion d’implicationet de soutien de la part des intéressés auprocessus SM.

L’objectif principal du processus SM-AnGRest de développer des capacités nationales et depromouvoir la coopération régionale etinternationale pour une intensification durabledes systèmes de production animales danschaque pays. Le processus SM-AnGRsoulignera la large utilisation et ledéveloppement des ressources génétiquesanimales adaptées localement dans des paysdéterminés; tout en gardant à l’esprit lescontraintes et les opportunités du secteur deproduction animale au niveau national, poussépar la demande croissante d’aliments, leschangements climatiques, l’état sanitaire etl’évolution technologique.

Le processus SM-AnGR représentel’occasion de préparer, à un coût intéressant,une action dans laquelle les rôles et les valeursdes ressources génétiques animales seront plusclaires, avec une meilleure utilisation etdéveloppement durable des ressourcesadaptées au milieu, ainsi qu’une meilleureconservation et accès au matériel génétique afinde favoriser dans le futur les communautéslocales et l’environnement. Les professionnelschargés des ressources génétiques animales dechaque communauté devraient prendre enmain la direction pour développer des rapportsnationaux et régionaux de qualité en tant quedocument de politique stratégique et porterainsi les ressources génétiques animales à laplace qui leur revient vis-à-vis de la sécuritéalimentaire et le développement durable, touten conservant la biodiversité en agriculture,pour les bénéficiaires d’aujourd’hui et dedemain.

Page 8: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

v

Animal Genetic Resources Information, No. 29, 2001

Los interesados a nivel internacional, loscoordinadores nacionales y regionales, así comolos colegas del sector de los recursos genéticosanimales han trabajado de forma intensivadesde el pasado mes de septiembre para que elinforme sobre el desarrollo de la SituaciónMundial (SM) de los Recursos GenéticosAnimales sea un éxito. Tras la reunión delgrupo de trabajo inter-gubernamental que tuvolugar en la FAO en septiembre del 2000, laSecretaría SM y un equipo restringido deprofesionales provenientes de todas las partesdel mundo, han invertido una cantidad enormede tiempo y esfuerzo para preparar ladocumentación y las herramientas necesariaspara la formación de expertos a todos losniveles. Hacia finales de febrero del 2001 seorganizó en la Sede de la FAO en Roma untaller de formación para extensionistas, con elfin de establecer un grupo de profesionales delsector de los Recursos Genéticos Animales quedeberá asistir a los países en la preparación desus informes nacionales, analizar la situaciónmundial y preparar el primer informe sobre laSituación de los Recursos Genéticos Animales.

Un punto determinante ha sido el envíooficial de la invitación a los Estados Miembros ya las Organizaciones interesadas por parte delDirector General de la FAO. También ha sidoenvíada a 180 países, a una organizaciónmiembro (UE) y a un cierto número de paísesno miembros de la FAO, tales como laFederación Rusa, Belorusia, Ucraina y la exRepública Yugoslava, una “circular a losEstados”. Los gobiernos han sido invitados atomar parte en la preparación de la SituaciónMundial de los Recursos Genéticos Animales através de una encuesta nacional sobre recursosgenéticos animales y de la presentación de uninforme nacional conforme a las directricesaprobadas. Tal como sugirió el Director Generalde la FAO, los informes deberían constituir undocumento oficial que identificará claramentelas prioridades nacionales y subrayará un plande acción a seguir para una mejor utilización

sostenible y conservación de los recursosgenéticos de animales domésticos. La Comisiónpara los Recrusos Genéticos para laAlimentación y la Agricultura ha insistido paraque el proceso sobre la Situación Mundial de losRecursos Genéticos Animales sea desarrolladoen cada país, lo que conlleva, por parte de losgobiernos y de las personas directamenteinteresadas a nivel nacional, un compromisototal político y financiero, así como de recursoshumanos.

El Director General de la FAO ha aseguradofirmemente a los países miembros que laSecretaría estará a disposición para coordinar elaporte de los donantes y para asistir a losEstados Miembros si es necesario en laimplementación de su encuesta nacional. ElDirector General de la FAO también ha hechoun llamamiento a los países participantes paraque la encuesta mundial quede concluida en lostiempos previstos.

En respuesta a la invitación mencionadaanteriormente, más de 50 países miembros hanconfirmado su participación a la preparacióndel Primer Informe sobre la Situación Mundial delos Recursos Genéticos Animales, comunicandoasimismo los detalles relativos a títulos oficiales,nombres y direcciones completas de laspersonas nombradas entre las autoridadesresponsables a nivel nacional para coordinar elproceso de preparación en colaboración con laFAO.

La División de Producción e Higiene Animalde la FAO (AGA) es el Punto Focal de laOrganización a nivel mundial en la preparaciónde dicho proceso. El Grupo de RecursosGenéticos Animales de AGA, en estrechacolaboración con las instituciones yorganizaciones asociadas nacionales yregionales, prepara en estos momentos a nivelregional la formación de los expertosnombrados en cada país que jugaran luego unpapel importante en la preparación de losinformes nacionales sobre el proceso de laSituación Mundial. Una serie de documentos de

EditorialAsegurar el éxito del Informe sobre la SituaciónMundial de los Recursos Genéticos Animales

Page 9: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

viEditorial

formación y formularios DAD-IS han sidopreparados en vistas de esta formación con elfin de asistir a los países interesados en laimplementación de las Directrices. Ha sidoprogramado un taller de formación para lospaíses participantes del Este y Sur de Africa enAdis Abeba, Etiopia, en julio 2001. A este tallerseguirán una serie de cursos en Brasilia (Brasil)en el mes de agosto, para América del Sur; enCiudad de Méjico (México) para los países deAmérica Central y del Norte; luego en NuevaDelhi (India) en el mes de octubre para lospaíses del Oeste asiático, etc. Otros cursos deformación a nivel regional vendrán organizadosen Dinamarca y en Hungría respectivamente,para los países del Norte de Europa y Bálticos,así como para los países del Sur Este de Europa.Más adelante, se organizarán para los países delSur Este asiático en Bangkok (Tailandia), y otrospaíses del Oeste africano y del Sur del Pacífico.

Es evidente que esta importante iniciativanecesita de un aporte financiario consistente. Eneste sentido, la FAO ha destinado para ello unaparte substancial de sus recursos provenientesdel presupuesto del Programa Ordinario, peroeste monto deberá ser aumentado con recursosextra presupuestarios. La Secretaría de la SMtrabaja en estrecha colaboración con los países ylas organizaciones interesadas con el fin deasegurar los fondos necesarios para cubrir laparte central de la operación.

Se debe subrayar que la asistencia financieray técnica es parte de la iniciativa global quepermitirá resaltar las capacidades nacionales ypreparar los informes nacionales sobre losrecursos genéticos animales. El financiamientode las actividades en los países seleccionadospara este proyecto es complementario al deotros proyectos similares (fondos de fideicomisode apoyo de los Países Bajos para el Oeste deAsia y América del Sur; apoyo de Finlandia alos países del Sur-Este de Europa y del Este deAfrica; de Francia para el punto focal RegionalEuropeo para los coordinadores de la redAnGR; de los países del Norte de Europa hacialos países de la región del Báltico; de EstadosUnidos hacia la región del Caribe). En los seis adoce últimos meses se han identificadoproyectos y los aportes de los donantes serviránpara cubrir los fondos necesarios para laformación de Puntos Focales Nacionales y para

llevar a cabo la preparación de un proyecto deseguimiento para desarrollar en cada país losinventarios y los planes de acción oportunos.Estos incluirán también las provisiones para losservicios de los expertos implicados y para lacompra de ordenadores y programas para lagestión de la información y la elaboración de losinformes.

Por consiguiente, la implicación directa en elproceso SM de un gran número de interesadosa nivel nacional es necesaria para alcanzar eléxito deseado. La Segunda Session ad-hoc deExpertos Internacionales en este sector tuvolugar en Roma el 5 y 6 junio 2001 con el fin deproporcionar otra ocasión para una mayorimplicación y apoyo por parte de losinteresados en el proceso SM.

El objetivo principal del proceso SM-AnGRes desarrollar las capacidades nacionales ypromover la cooperación regional einternacional para una intensificación sosteniblede los sistemas de producción animal en cadapaís. El proceso SM-AnGR resaltará la ampliautilización y el desarrollo de los recursosgenéticos animales adaptados localmente enciertos países; teniendo en cuenta siempre laslimitaciones y oportunidades del sector de laproducción animal a nivel nacional que seencuentra sujeto a la demanda creciente dealimentos, a los cambios climáticos y a lasituación sanitaria y la evolución tecnológica.

El proceso SM-AnGR representa la ocasiónde preparar, a un costo interesante, una acciónen la que el papel y el valor de los recursosgenéticos animales sean más claros, con unamejor utilización y desarrollo sostenible de losrecursos adaptados al ambiente, así como unamejor conservación y acceso al materialgenético con el fin de favorecer en el futuro lascomunidades locales y el ambiente. Losprofesionales encargados de los recursosgenéticos animales de cada comunidaddeberían tomar en mano la dirección para eldesarrollo de informes nacionales y regionalesde calidad, como documento de políticaestratégica, y llevar así los recursos genéticosanimales al lugar que les corresponde enrelación con la seguridad alimentaria y eldesarrollo sostenible, conservado al mismotiempo la biodiversidad en la agricultura parabeneficio de hoy y mañana.

Page 10: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

1

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2001, 29: 1-6

Biological diversity is the vital organicresource on which the present and futuresustenance of humankind depends. The farmanimal genetic resource (AnGR) sector of thisdiversity provides the variety and variabilityof species, breeds and populations includingunique genotypes which underpin anessential component of food and agricultureproduction. Judicious use and enhancementof these living resources must be ensured,also with their conservation, so that we maymeet the increasing demands for food.

The Asian sub-continent is one of theworld’s mega biodiversity centres. It was inthis region that domestication of flora andfauna was carried out in ancient times. Withrespect to domesticated mammals and birds,ranges of species encountered are astounding.From Vedic to British times, the improvementin livestock has been made in response tocommunity utilities, which have changedfrom time to time. In cattle for example, theprimary thrust in Europe has been on bullockpower as opposed to horsepower. The mainemphasis was on the development of breeds,which produced the most effective motivepower for agricultural operations.

Now, the relative importance of animalenergy has considerably decreased, due tomechanization in agriculture. Bullocks, withinthe next 50 years, will be phased out from theagricultural operations, even from smallholders’ farms, effecting a major shift in theutilities of bullocks, the backbone of atraditional system for almost 5000 years. Ourdevelopment objectives for cattle are to beredefined. India has a bovine population ofabout 200 million, far too many than requiredfor a pulsating and vibrant milk economy.

Why should we become involved in the State ofthe World of Animal Genetic Resources process?

A view from Asia

P.N. Bhat

World Buffalo Trust, Flat No.205, No.F64-C/9, Sector 40, Noida,Gautam Budh Nagar, UP 201 303, India

Technological challenges, e.g. cross-breedingversus selection within local breeds, totalreplacement of populations versus a balance ofstable mixes in context with the environmentof performance, relative cost of producinganimal products and shifts betweenperi-urban and rural production, need newthinking and policy shifts.

The management requirements anddemands for animal foods and ways to meetthese with the human population growth of1-2 percent per annum and technologiesavailable, need to be taken into considerationwhen developing new strategies andframeworks, practical policies and decisionsto move forward.

There are groups of countries which havecommon resources, (Zebu cattle, buffaloes,tropical sheep and goats), production systemsand interdependence of institutions. In thiscontext, there is a need to look at theproblems regionally so that resources inpeople and material are put to the best use.

It would be desirable for each of thecountries involved to concentrate on whatthey have in terms of animal geneticresources, their strengths and weaknesses,what are they likely to do with them and howthey propose to handle these resources so thatwealth and food security is assured.

If for example, the nations want to alleviatepoverty and convert small and marginallivestock holders into livestock entrepreneursto increase their production of food from thepresent 20 to 40 percent in the next 25 years,they will need to assess and analyze theavailable AnGR and based on thisassessment, develop strategies for wealth andemployment generation. FAO’s State of the

Page 11: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

2Why become involved inSoW?

World Process for AnGR is a most importantopportunity to develop an effective countrystrategy, with realistic priorities and needs tobe firmly identified for each of its elementsand to become part of the global action plan.

The reasons for most countries becominginvolved in the State of the World of AnimalGenetic Resources (SoW-AnGR) process aretwo-fold. The primary interest in mostcountries in South and South-Eastern Asia isto make an objective assessment of the kindof resources which exist in each country andthroughout the region. It will be necessary forthem to assess food requirement and plan toproduce food sustainability within theavailable ecosystems. It will assist in countriesevaluating the kind of breeding strategiesintroduced over the past 50 years. If weexamine one particular aspect for cattle, wewill broadly notice that breeds of temperateorigin were inducted for introducing highmilk yield and fast growth in the indigenouslocally adapted cattle, without bringing in thetechnology used in developed countries tosustain high milk production in theseinducted breeds. Consequently, althoughthese crossbreds did well under enhancedinputs, they were unable to produce due topoor sustainability of the production systemand were invariably reduced to mongrels. Itwould have been more correct in the firstplace before these introductions were made,for the country to have comparativelyevaluated various parameters of theindigenous and temperate cattle and madecareful analysis and judgement of thestrengths, weaknesses, opportunities andthreats caused by these high producingtemperate new breeds when directlycompared to local breeds in the perspective ofinitial and perhaps on-going cross-breeding asa technology input.

It is therefore necessary, that each of usshould become seriously involved inproducing a State of the World report for thecountry, thus allowing countries to clarifythese issues and develop the priorities in astrategic manner and to provide cleardirections for action. A cadre of global levelexpertise is being developed to train and

assist countries in the development of theirState of the World report. It would also benecessary to take action to train a cadrewithin the country and provide directassistance for development of a highlyeffective country report with the assistance ofa package of tools developed by FAO so thatthe country system can be efficiently built up.

Objectives of the Sow-AnGRProcess

The basic purpose of the SoW–AnGRprocess is essentially to assist countries tosubstantially improve understanding, use,improvement as well as conservation of theirAnGR and to develop a common structureacross the countries for the country reportswhich will identify priorities and analyzeinformation on the state of management ofAnGR. To develop coherence to the commonstructure, it is necessary to develop basicformats which can cover major issues whichneed to be addressed. This is the firstrequirement which has been undertaken andcompleted with satisfaction by FAOHeadquarters, with substantial input fromcountry expertise of all regions of the world.The global cadre of expertise developed byFAO will support the SoW-AnGR process to:1) conduct regional training workshops for

key country operatives, and2) provide for direct in-country assistance in

the development of a country report.For this, it is necessary that uniform

training materials be developed. Thesematerials have also been drafted and will betested at regional training workshops.

At the global and country levels it isimportant that the necessary additional fundsbe provided, to complement the substantialinputs by FAO and to ensure the success ofthe country-driven SoW-AnGR Process. Letus hope that major international collaboratorswill also want this important SoW-AnGRactivity for the livestock sector globally andwill also want to help to ensure its successand contribute to the international

Page 12: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

3

Animal Genetic Resources Information, No. 29, 2001

Bhat

stakeholders and donors mechanism whichFAO is further developing to facilitate theSoW-AnGR work.

At country level, the process has suggesteda number of enabling activities recommendedby FAO to progress the capacity building andcountry report developments are stronglysupported. Following government acceptanceof the FAO Director-General’s invitation toparticipate in the SoW-AnGR Process, it isfirmly recommended that the governmentestablish a balanced working group and anational consultative committee (NCC),which is capable of being highly effective andwhich begins work immediately, with termsof reference for developing in a step-by-stepapproach the entire country report followingthe plan of action chalked out and acceptedglobally. The NCC’s work to frame thecountry report is recommended to beginimmediately, whilst action is also beginningin parallel on the in-country training, networkdevelopment and involvement ofstakeholders, support data gathering,mobilization of funds and special budget tofollow up steps of preparing the variouselements of the country report.

Initiation of Activities at FAO

In the mid-nineties a major decision wastaken by the FAO Council of CountryMembership to prepare a Global Strategy forAnGR management. This was followed bymeetings of a panel of experts and theregionally-balanced IntergovernmentalTechnical Working Group on AnGR(ITWG-AnGR) which is developing theframework for the Global Strategy. As afurther step and within the Global Strategyframework the ITWG-AnGR developed theguidelines for country use in preparing theSoW-AnGR. In addition, FAO has developedan informatics package called DomesticAnimal Diversity Information System(DAD-IS) which is a unique system of toolswhich can be used by each country to gatherand store, retrieve information on AnGR inelectronic format, to use in further developingthe Country Network for AnGR and for

developing and delivering the SoW-AnGRCountry Report as a strategic policydocument. The ITWG-AnGR recommendedthat the SoW-AnGR Process should beconsultative and cost-effective and it isimpressive to learn of the efforts being madeby FAO to realize consultation and cost-effectiveness.

It is also obvious that this country-drivenSoW-AnGR Process has outstanding potentialto build up the so badly needed additionalcountry capacity in policy, technical andoperational aspects required for effectiveAnGR management - the lack of understanding,poor use and development and very poorconservation action on these irreplaceableresources cannot be permitted to continue if we areto realize sustainable food security for all!

The Global Strategy

Presently, farm AnGR accounts for 30-40percent of total agricultural outputs. There isan increasing demand in animal productsfuelled by population growth, urbanizationand a rise in income, also intensification andindustrialization of livestock productionsystems with uniform breeds. In developedcountries with high availability of allproduction inputs, concentration is on highinput/high output breeds and replacement oflocally adapted breeds. While in thedeveloping world traditional productionsystems are transforming and the use ofexotic breeds is promoted leading to dilutionor loss of locally adapted breeds.Environmental stress factors will however,remain in most parts of the world for themedium-term future. There is a need forfarmers to have access to a diversified genepool and to all available knowledge andtechnology, only global action can make thispossible.

The Convention of Biological Diversity(CBD) came into force in 1993 and170 Member Governments of FAO accepted in1995 the further development of the GlobalStrategy, to provide a framework for use inestablishing effective national, regional andglobal policies, strategies and actions. It was

Page 13: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

4Why become involved inSoW?

decided that FAO would facilitate andcoordinate the activities of organizationsinterested in AnGR within sustainableagriculture and rural development and assistcountries in developing the capacity tomanage AnGR through planning, designingand implementing sustainable livestockproduction systems and promoting theestablishment of cost-effective approaches forconserving AnGR.

This was to be driven through theinstitution of a Global Focal Point (GFP) atFAO Headquarters in Rome and RegionalFocal Points (RFP) at the regional levelthroughout the world to help ensure thatcountries of the region are well supported inestablishing sustainable programmes of actionwithin country and regionally and to bestutilize the region’s capacity. The responsibilityof GFP is to develop the framework for theGlobal Strategy and to detail the constituentparts of this framework, for country use, acountry-based global infrastructure, includingregional and national focal points and theDAD-IS, a technical programme of workdeveloping guidelines for sound managementof AnGR and an early warning and earlyreaction system, a reporting, progressevaluation and priority action developmentcomponent, including the SoW-AnGR Processand an intergovernmental mechanism toreview and guide the Strategy’s developmentand to serve as a forum for harmonizingcountry policy and as necessary to develop aninternational policy for AnGR.

The FAO Commission on GeneticResources for Food and Agriculture (CGRFA)with advice from its ITWG-AnGR,coordinates policy and sectoral mattersrelated to sustainable use and conservation ofAnGR. It is important in terms of driving theSoW-AnGR Process that this be guided bythis important global Commission and thatthe Commission debate the acceptance in2003 of the Strategic Priority Actions Reportand in 2005, the first full Report on the SoW-AnGR. These two major reports will bedrafted by the FAO Secretariat using theCountry Reports on the Sow-AnGR.Therefore, countries can expect to benefit

substantially within-country and internationallyby agreeing to be directly involved in the SoW-AnGR from the outset!

National and state governments wouldimplement national policy and strategies forsustainable development and conservation ofAnGR enabled by the country reportingprocess and also draft such legal instrumentsidentified as required. While GFP would leadplanning, development and implementationof the Global Strategy, international policydevelopment, development and maintenanceof DAD-IS and AnGR managementguidelines and decision-support tools forcountry use, assist with mobilizing donorresources, etc., the RFP would facilitatecommunication, initiate development ofregional policy, assist in identification ofpriorities and interact with government,donors and NGOs.

National Focal Points (NFP) wouldcoordinate country activities, identify capacitybuilding needs of the country network, assistdevelopment and implementation of policyand interface with stakeholders, RFP andGFP. It is also ensured that the donor andstakeholder involvement mechanism,provides a means for donors andstakeholders to have opportunities toinfluence design and implementation ofregional and global work.

DAD-IS

DAD-IS provides countries with advancedcommunication and information tools,country secure storage and communication ofAnGR data and information, it is the basis forearly warning and is a reaction system forAnGR. This will help countries prepare theirnational management plans for AnGR,characterize their breeds and productionsystems and advance AnGR sustainable useand development.

The DAD-IS SoW-AnGR module has beendeveloped to support the in-countrypreparatory process. It has eight elements.The SoW Manager assists in the building ofthe National Consultative Committee, theCountry Network. The SoW data enables

Page 14: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

5

Animal Genetic Resources Information, No. 29, 2001

Bhat

countries to develop their NationalSoW-AnGR Databank for on-going use inplanning, the reviewing progress and action.The SoW Report assists the NCC inmethodically stepping through thedevelopment of a strong country report onstrategic policy for AnGR management. Eachof the eight elements has specific operationaltasks which function on three distinct levels,the NCC, national coordination and thesupporting data contributor, all of whomcontribute to the development of theappropriate preparation of the country report.

Country Report

The country report should be a strategicpolicy document which gives the country anopportunity to create a vision and strategicplan for better management of AnGR on:1) where are we in terms of management of

AnGR?2) where do we want to be? and3) how do we get to where we want to be?

Its objectives are to establish essentialbaseline data and information on the status ofanimal genetic diversity in the country, toassess roles and values of local andintroduced breeds and the impacts oftraditional agricultural systems on AnGR. Itshould include improved understanding ofthe status of breeds that are currently not ofvalue to farmers and of wild relatives ofdomesticated animals, the capacities of publicand private institutions and farmers andtribal communities in the management ofAnGR. It should also examine themethodologies being used, to understand thevalue of AnGR, to better use, develop andconserve them in a sustainable manner.

Once the national priorities are identifiedfor action on sustainable conservation andutilization of AnGR, requirements ininternational or regional cooperation ingermplasm exchange and management canalso be stated such that networking ofstakeholders (NGOs, farmers’ group,breeders’ association, etc.) can be developedto increase awareness of the many roles andvalues of AnGR, promoting their better

utilization, development and conservation,enhancing existing networking betweencountries with shared or common AnGRand/or common production systems or issuesand promoting communication andcollaboration within and between networksand among government and NGOs involvedin the management of AnGR.

Once the Country Report is prepared, itsimportance becomes clear as it becomes thebasic document for use in establishing aneffective short-, medium- and long-term planfor development of AnGR and to commitnational resources. It will also identify maindirections for future national policies andprogrammes, determine priorities for actionfor government and stakeholders, identifyemerging issues directly related to themanagement of AnGR in relation to animalwelfare, animal health and impact on theenvironment, etc. It will assist farmers,indigenous and local communities in theidentification of AnGR that can increaseproduction, productivity and product quality.

It will enhance the capacity to bothmanage and report on AnGR throughimproved communication and organizationcapacity and identify situations where anemergency response could be required toprevent the loss of AnGR.

The country report will in addition to theAnGR themselves, also take intoconsideration:1) agricultural biodiversity;2) production systems and environments in

which AnGR are used;3) range of animal products and services

which they provide;4) consumption patterns and socio-cultural

practices associated;5) ecosystems functions which they sustain;

and6) their role in the agricultural production

and food security of the country.The range of activities to be addressed in

the report should include:1) in-situ and ex-situ conservation;2) characterization; and3) use and development.

Page 15: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

6Why become involved inSoW?

Regional Coordination

Regions with common problems in terms ofcommon assets, breeds and species will needto develop a regional approach to problemsolving. A regional report or plan of actionshould be prepared which will take intoaccount the inter-dependence between thecountries to optimally utilize their resourcesand provide a framework for coordination ofregional activities and collaboration anddevelop a regional constituency forconservation and sustainable use of AnGR.

Coordination mechanisms should facilitatecommunication, information sharing,networking and collaboration, facilitatesharing of technical expertise and resourcesamongst countries, capacity sharing andinitiate cross-cutting activities such asfacilitating development of regional policies.

It would be highly desirable thatcollaboration amongst the involved countriesidentifies regional priorities forimplementation, mobilizes support andresources for regional and country activities,assists development of regional informationfor the SoW-AnGR process and commitssupport and directs the countries involved.

It is therefore, in the interest of each country,regardless of its status or the capacity inmanpower to quickly get involved in thisSoW-AnGR process and be a partner in thebuilding of a better world. The animal geneticresources group at FAO has developed a vision fora new world where they have taken into accounteveryone’s needs and plans accordingly. We willall share in this vision.

Page 16: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

7

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2001, 29: 7-18

Caracterización de los animales domésticos en España

J.V. Delgado1, C. Barba1, M.E. Camacho2, F.T.P.S. Sereno1, A. Martínez1 & J.L. Vega-Pla3

1Unidad de veterinaria, Departamento de Genética, Universidad de Córdoba,

Av. Medina Azahara, 9, 14005 Córdoba España2Laboratorio de Sanidad y Producción Animal, Consejería de Agricultura, Junta de

Andalucía, Carretera Córdoba-Alcolea, Córdoba, España3Laboratorio de Grupos Sanguíneos,

Apartado Oficial Sucursal 2, 14071 Córdoba, España

Resumen

La expansión actual de los criteriosconservacionistas han promovido lautilización de las modernas metodologías quebrinda la genética molecular para lacaracterización de las razas, aunque lacaracterización genética clásica basada enmarcadores bioquímicos e inmunogenéticosse ha aplicado durante muchos años sobretodo en rumiantes y equinos en pruebas deidentidad y control de filiación. El estudio delpolimorfismo de los microsatélites del ADNhan ofrecido muy buenos resultados, aunquetambién se ha trabajado con éxito en lainvestigación del ADN mitocondrial y defragmentos de ADN amplificadosaleatoriamente. En España estos métodos hansido utilizados en las especies bovina, ovina,caprina, porcina, equina y canina.

De cualquier forma, es importanteconsiderar que la obtención de perfilesgenéticos poblacionales para los caracteresmorfológicos y productivos, es obligada enuna aplicación práctica de los resultadosobtenidos con los marcadores genéticos.En el presente trabajo se describen lasprincipales iniciativas desarrolladas en losaspectos mencionados, ubicando los equiposespañoles especializados.

Summary

The present expansion of the conservationismhas stimulated the use of the modernmethodologies based on the moleculargenetics for the breed characterization.Characterization based on biochemical andimmunogenetics markers has been usedintensely, especially in ruminants and equinesfor identification and paternity control.Microsatellites of DNA have given very goodresults as has the study of the mitochondrialDNA and random amplified polymorphismof DNA. In Spain these methods have beenused in cattle, sheep, goats, equines and dogs.

It is important to consider that theinvestigation on population genetic profiles ofmorphological and productive characters isnecessary to apply the results obtained fromthe genetic markers.

This paper describes the principal Spanishinitiatives in the above-mentioned subject, theSpanish teams specialized in these types ofresearch.

Key words: Genetic resources, Conservationism,Genetic markers, Polymorphism.

Introducción

Hasta mediados del presente siglo no sealcanzó en España una implantación total delos criterios zootécnicos modernos basados enla gestión genética de poblaciones cerradas,

Page 17: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

8Animales domésticos en España

con fines de cría en pureza o bien con destinoal cruzamiento. Estos criterios nacieron conBakewell en Inglaterra durante el siglo XVIIIy fueron impulsados por ilustres genetistascomo Lush ya en épocas más recientes,cuando se contó con los fundamentos degenética cuantitativa necesarios para dotar decontenido los métodos intuitivos de losgrandes zootecnistas del XVIII.

Por tanto, la unidad de trabajo en lazootecnia actual es la raza, o bien otrasestructuras intraraciales de menor rangogenético como son la variedad, la estirpe o lalínea. Por esta razón es imprescindibleconocer los límites que definen a las mismascon respecto al resto de unidades de sumismo nivel, es decir, una línea frente a otraslíneas de la misma raza, o una raza frente alresto de razas de la misma especie. Esa es larazón por la cual la caracterización de estasestructuras biológicas tan vital importanciadentro de la Producción Animal, al menos enlos países desarrollados.

Hoy en día aparte de la importancia defundamento mencionada anteriormente,surgen otras de tipo aplicativo y comercial,como es el caso de la necesidad de definir losproductos catalogados dentro de las marcasde calidad y denominaciones de origen de losalimentos. También la efervescencia de losnacionalismos está induciendo a los distintospueblos que forman el viejo continente areclamar las razas como un patrimoniocultural, y por ello, demandan su totaldefinición frente a las razas de otros pueblos.Ambos apuntes tienen una especial relevanciaen la España del siglo XXI.

Asimismo es de destacar la presión a laque se asiste en el ámbito mundial a favor dela conservación de los recursos genéticos convistas a su utilización racional y al repartojusto de los beneficios por ellos producido.Especialmente, después de la cumbre de Ríode Janeiro, estos conceptos se han introducidoen las legislaciones de muchos países, y porsupuesto en la Unión Europea yconsecuentemente en España.

Lo descrito nos sitúa en un presente dondeel concepto de raza está totalmente asumido,como base de trabajo en Producción Animal, y

como reservorio de la variabilidad genética delas especies, pero en España esto no siemprefue así. En nuestro país, desde los años 20 secreó una corriente de importantes etnólogosque estudiaron y divulgaron las característicasde las razas españolas. Entre ellos destacaronD. Rafael Castejón y D. Gumersindo Aparicio.Esta base teórica creo escuela prolongándosehasta la actualidad con insignes figuras deesta disciplina como los Dres. Sánchez Belda,Tejón, Aparicio Macarro, Sierra, Herrera ySotillo, todos ellos continuadores en ladescripción fenotípica de las razas españolas,esfuerzo que se ha visto plasmado enmúltiples publicaciones de relevancia(Sánchez Belda y col. 1974, 1981, 1984, 1986;Tejón. 1986; Herrera y col. 1986, 1988, 1990;Herrera y col., 1988, 1991).

Más recientemente la encomiable labor delos etnólogos se vio apoyada por losgenetistas que se incorporaron al estudio delas razas dotándolo de nuevas perspectivas,fundamentalmente basadas en la búsquedadel perfil genético de las poblaciones (razas,variedades, estirpes o líneas). Laincorporación de los genetistas, que aconteceen los años setenta, supuso un cisma en elque resultaron dos corrientes. La“etnoexcéptica” anidada en las escuelas deAgronomía, en la que se interpretaba a la razacomo un artificio que no se correspondía conuna realidad biología como era el propioconcepto de especies. Y otra corrientedefensora de las razas como unidadfundamental de la zootecnia, asentada estavez en las Facultades de Veterinaria. En estecaso, se observaba a las razas como unarealidad biológica dotada de algunosfundamentos antropológicos, como es lafijación de sus características en un patrónracial, su delimitación en el seno de un librogenealógico y su gestión por parte de unaasociación de criadores.

En la actualidad el etnoexcepticismo hadesaparecido ante el indiscutiblereconocimiento internacional de las razasapoyado por estructuras como la FederaciónEuropea de Zootecnia (EAAP) y laOrganización para la Alimentación y laAgricultura (FAO).

Page 18: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

9

Animal Genetic Resources Information, No. 29, 2001

Delgado et al.

Una vez que admitimos la existencia derazas, no sólo desde el punto de vistaetnológico, sino también desde la ópticagenética, el primer y más importante paso esla caracterización de las mismas, ya que estainformación nos permite establecer el patrónracial, sobre el que se desarrollara elreconocimiento oficial de las razas plasmadoen las normas gestoras de su librogenealógico; y por supuesto, ofrecerá unabase para el trabajo de las asociacionesespecíficas de las razas.

Caracterización de las Razasen España

En este epígrafe haremos una brevedescripción de la metodología de trabajo quese sigue en España para la caracterización denuestras razas.

La caracterización se consigue a través dela obtención del perfil genético de lapoblación (Figura 1), para ello se trabaja entres vertientes, dos de ellas comunes con lostrabajos desarrollados a este respecto en elmundo salvaje y una tercera exclusiva de losanimales domésticos. Las dos primeras seríanla caracterización morfológica y lacaracterización basada en marcadoresgenéticos. La tercera, al tratarse de animalesde renta sería la caracterización productiva yreproductiva.

La caracterización morfológica se basa laobtención de los valores promediopoblacionales para una serie de caracteresexternos de naturaleza cuantitativa (peso,alzadas, perímetros y diámetros) bien a travésde la medición de todos los animales de lapoblación, cuando esto es posible, o biendesde una muestra estadísticamenterepresentativa. También se realizan recuentosde las frecuencias de aparición de distintasvariantes de caracteres exteriores denaturaleza cualitativa (color de la capa, formade cuerno, perfil cefálico, etc.).

La caracterización basada en marcadoresgenéticos utiliza características genéticasestructurales de naturaleza cualitativa de nuloo escaso interés productivo, detectablesmediante análisis laboratoriales más o menos

complejos. En este caso se buscan expresionesgenéticas directas en forma de proteínas comolos polimorfismos bioquímicos (Figura 2), elfuncionamiento de la bomba de sodio ypotasio, o formas antigénicas ligadas a loshematies (grupos sanguíneos) o a losleucocitos y resto de células somáticas(sistema mayor de histocompatibilidad). Ymás recientemente se utilizan los avances dela genética molecular para detectarvariaciones en regiones hipervariables delADN, siendo los más usados hoy en día losmicrosatélites (Figura 3). En esta faceta de lacaracterización genética de las razasprofundizaremos en un epígrafe posterior.

Finalmente, tenemos la caracterizaciónproductiva, que de manera similar a ladescrita para los caracteres morfológicos, sebasa en la obtención de valores promedioraciales para distintas variables de interéseconómico que se expresan en los animales derenta, variables cuantitativas que casi siempretienen naturaleza continua, pero en ocasionesaparecen como discontinuas. En este caso ysegún la especialización de la raza enconcreto, medimos caracteres lácteos(cantidad y composición de la leche), cárnicosligados a la productividad individual (pesos ycrecimientos a distintas edades) y a laproductividad numérica (prolificidad ytamaño de la camada al destete), y en otrafuncionalidad caracteres laneros, peleteros,hueveros e incluso comportamentales ydeportivas (perros, toro de lidia, caballos).

Cuando observamos la expresiónindividual en cada animal de los caracteresmorfológicos y productivos, se trata deexpresiones fenotípicas fuertemente influidaspor los efectos ambientales, que meimposibilitan la definición genética de eseindividuo. Pero cuando se accede al valorpromedio del carácter en la población, bien através de la medición de toda ella, o bien através de un muestreo estadísticamenteadecuado, la expresión poblacional delcarácter cuantitativo se trasforma en unaexpresión directa del genotipo medio de lapoblación, ya que las desviacionesambientales en sentido positivo y negativo sehan neutralizado entre sí. Por tanto, la

Page 19: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

10Animales domésticos en España

Caracterización genética de los animales domésticos en españa

MORFOLOGÍA:

V. Cuantitativas

V. Cualitativas

PRODUCCIÓN:

V. Continuas

V. Discretas

MARCADORES - Polimorfismos

- Grupos Sanguíneos

- Histocompatibilidad

- ADN

PERFILGENÉTICO RAZA

Figura 1. Esquema general de caracterización genética.

caracterización morfológica y productiva esuna caracterización genética de la poblaciónbasada en caracteres de naturalezacuantitativa y por tanto poligénica. Hacemosesta aclaración ya que con frecuencia seentiende como caracterización genética sólo aaquella basada en marcadores genéticos,mientras que en realidad toda aproximaciónal genotipo medio de la población nos es deutilidad en la definición de las poblaciones(razas, variedades, estirpes o líneas).

El procedimiento que se sigue en lacaracterización morfológica y productiva sepuede resumir en el siguiente protocolo(Herrera y col., 1996; Capote y col, 1998;Delgado y col., 1998 y 2000; y Barba, 1999):• Diseño del muestreo y plan de mediciones.• Creación de bases de datos• Calculo de estadísticos descriptivos• Análisis de la varianza para cada variable

entre poblaciones.• Análisis Discriminante Canónico• Establecimiento de distancias de

Mahalanobis entre poblaciones• Construcción de clusters con las relaciones

filogenéticas estimadas mediante lasdistancias.

Page 20: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

11

Animal Genetic Resources Information, No. 29, 2001

Delgado et al.

Caraterización genética basada enmarcadores en España

La caracterización basada en marcadores tienecomo fundamento el polimorfismo en laexpresión genética de fragmentos activos delADN en forma de proteínas o enzimas ytambién en la observación directa delpolimorfismo en fragmentos hipervariablesdel ADN. Entendemos el polimorfismo comoun cambio en la forma, pero no en lanaturaleza de las estructuras mencionadas,cambios que han ocurrido por mutacionesestabilizadas en la población (Fernández-Piqueras, 1993). Según Lucotte (1977) undeterminado locus se considera polimórficocuando el alelo más común se encuentra conuna frecuencia igual o inferior a 0.99.

Polimorfismos bioquímicos enEspaña

Los distintos métodos electroforéticospermiten separar las distintas formasmoleculares que pueda tener una proteínapresente en todos los individuos de unaespecie. La influencia del campo eléctricosobre las proteínas disueltas en soluciónacuosa hace que sus distintas formas migren avelocidad distinta desde un polo al otro enfunción de su carga y masa, separándose deesta forma en fracciones sencillas.

En España estas técnicas se imponen aprincipios de los ochenta con un triple fin, enprimer lugar el apoyo al control genealógicode los animales con el propósito de la mejora;el segundo buscar ligazones de estoscaracteres relativamente fáciles de medir conalgunos caracteres de tipo cuantitativo dedifícil medida y gran interés económico. Yfinalmente la propia caracterización genéticade las poblaciones.

Estas técnicas se desarrollan en tresfacultades de Veterinaria de las cuatro queexistían en España en aquellas fechas; elgrupo de Zaragoza dirigido por el Prof.Zarazaga; el equipo de León coordinado enprincipio por el Prof. Vallejo y después por elProf. San Primitivo y el equipo de Córdobacuyo responsable era el Prof. Rodero. Estosequipos por separado y en ocasionestrabajando conjuntamente desarrollaronprofundos estudios en el bovino español(González y col., 1987; Vallejo y col., 1977; yVallejo y col., 1990) donde se caracterizabantrece razas bovinas españolas al mismotiempo que se establecían las relacionesfilogenéticas entre ellas.

En España los polimorfismos másprofusamente estudiados en la especie bovinahan sido el de la Hemoglobina, la AnhidrasaCarbónica, la Ceruloplamina, la Transferrina yla Albúmina.

Los pequeños rumiantes quizás por lacomplejidad de los controles genealógicos ensus sistemas de cría fueron las especies másestudiadas desde este punto de vista. En elovino se abordó la caracterización de distintasrazas individuales como fue el caso de la raza

Figura 2. Electroforesis en gel depoliacrilamida de proteínas del suero.

Page 21: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

12Animales domésticos en España

Merina (Llanes, 1979, Morera y col., 1983;Garzón y col., 1976), la raza Rasa Aragonesa(Lasierra, 1974, Lamuela, 1974) y la Churra(San Primitivo y col., 1976; y Ordas y SanPrimitivo, 1986) y estudios conjuntos sobredistanciamiento genético basado en lainformación polimórfica (Rodero y col.,1982;Vallejo y col., 1977).

Algo similar ocurrió con los caprinos,donde también fueron profusos los trabajosde este tipo destacando en este caso losanálisis conjuntos realizados sobre múltiplesrazas (Barbancho, 1979; Tuñón y col.,1984;Tuñón y col., 1989; Moreno y col., 1991; yGarzón 1975) sobre estudios individuales

sobre razas concretas como la Murciano-Granadina (Garzón y col., 1976), laMalagueña (De la Haba y col. 1991) y laCanaria (Baena, 1990).

En el caso de los pequeños rumiantes laHemoglobina, Anhidrasa Carbónica, laProteína X, la Transferrina, la Esterasa, laactividad de la Glutation Peroxidasa y laCatalasa, además de los niveles de sodio ypotasio.

Otra especie muy estudiada a este nivel hasido la equina, manteniéndose aún unservicio de control genealógico en elLaboratorio de Grupos Sanguíneos,desarrollado mediante un convenio de

Figura 3. Electroforesis de productos de amplificación con PCR demicrosatélites de ADN equino teñidos con plata.

Page 22: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

13

Animal Genetic Resources Information, No. 29, 2001

Delgado et al.

colaboración entre el Ministerio de Defensa yla Universidad de Córdoba que aplica tantoesta metodología de los grupos sanguíneoscomo los microsatélites del ADN. Aunque elfin primordial de este grupo no era lacaracterización, la fuente de informacióndisponible les ha permitido desarrollarimportantes estudios centrados en la PuraRaza Española en comparación con otrosgrupos raciales (De Andrés, 1982; Rodríguezy col., 1992).

En esta especie los polimorfismos másestudiados corresponden a la Hemoglobina,Esterasa, Transferrina, glicoproteína A1B,Albúmina, Proteína ligada a la vitamina D,G-fosfogluconatodeshidrogenasa,fosfoglucomutasa, alfa-1-antitripsina yglucosafosfatoisomerasa.

El procedimiento de trabajo es común yconsiste de los siguientes pasos:• Obtención de la solución acuosa de la

proteína tras su extracción de la muestra,generalmente suero y células sanguíneas osuero lácteo.

• Electroforesis en distintos substratos• Tinción de los geles• Identificación de alelos e interpretación de

resultados.• Cálculo de frecuencias genotípicas y

alélicas• Establecimiento de distancias genéticas

entre poblaciones• Diseño de clusters con las relaciones

filogenéticas establecidas con lasdistancias.Las actividades enzimáticas precisan del

contacto del enzima con un substrato paradeterminar la alta o baja actividad. Para elestudio de la bomba de sodio y potasio seutiliza la espectrofotometría.

Grupos sanguíneos en España

Existen unas estructuras proteicas en loshematíes que actúan como sustanciasantigénicas produciendo reaccionesinmunológicas específicas cuando sonintroducidos en individuos que carecen de lasmismas. La utilidad de este fenómeno para lacaracterización y para el control genealógicoradica en la existencia de polimorfismo en

dichos antígenos, constituyendo caracteresque desde el punto de vista genético secomportan como series alélicas, que dan unimportante grado de variabilidad individual,si bien en el ámbito poblacional susaportaciones son más limitadas que en el casode los polimorfismos bioquímicos.

La identificación de los alelos y genotiposindividuales se lleva a cabo a través de unareacción antígeno-anticuerpo aglutinante ohemolítica, utilizando sueros reactivospreviamente tipificados y obtenidos deindividuos sensibilizados con el antígenoespecífico.

En España se han utilizado los grupossanguíneos en las especies ovina y equinafundamentalmente aunque escasamente en elámbito de caracterización. En ovinos sondestacables los trabajos desarrollados en laFacultad de Veterinaria de León (SanPrimitivo, 1976; San Primitivo y col., 1976, SanPrimitivo y col., 1977). Aunque debemosapuntar algunos trabajos desarrollados en laUniversidad de Córdoba (Morera, 1982).

En la especie equina, al igual que ocurríaen los polimorfismos bioquímicos, el estudiode los grupos sanguíneos ha sido liderado porel Laboratorio de Grupos Sanguíneos(Aguilar, 1985).

Complejo mayor dehistocompatibilidad en España

Desde el punto de vista genético losfundamentos y utilidades de este sistema sonsimilares a las descritas para los grupossanguíneos. En este caso los antígenos seencuentran en las membranas celulares de lascélulas nucleadas, como los linfocitos. Por estarazón la identificación de alelos y genotipos selleva a cabo mediante reaccionesantígeno-anticuerpo. Tras la relevanciaobservada por el estudio de este complejo enhumanos como consecuencia de la evoluciónde los transplantes, se trató de implementarestas técnicas en las especies domésticas conlos mismos fines que los grupos sanguíneos,pero además tratando de encontrar ligazonescon algunas resistencias genéticas aenfermedades infecciosas y parasitarias.

Page 23: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

14Animales domésticos en España

En España se desarrollaron trabajos de estanaturaleza en Córdoba y el País Vasco, peronunca con fines de caracterización.

Polimorfismo del ADN en España

Con el advenimiento de la tecnología delADN recombinante en los años setenta seconsiguió una nueva oportunidad para laidentificación de marcadores genéticos, estavez el polimorfismo se detectaba directamentesobre las propias moléculas del ADN.Estos polimorfismos eran fundamentalmentede tres tipos:• Fragmentos de restricción polimórficos

(RFLP). Cuya variabilidad se debía amutaciones en la secuencia dereconocimiento de una endonucleasa derestricción. La consecuencia de esto era elcambio en los patrones electroforéticos deestos fragmentos.

• Polimorfismos debidos a mutacionespuntuales que no afectan a dianas ni a lalongitud del fragmento. Se detectan deforma indirecta como los Single StrandConformation Polymorphism, SSCP, queaprovechan los cambios en la movilidadelectroforética que presentan dos cadenassencillas de ADN cuando se diferencian enuna única sustitución de bases. También sedetectan mediante secuenciación del ADNde la zona de interés o con técnicas dehibridación alelo-específicas.

• Repeticiones en tandem. El polimorfismose debe a las repeticiones en tandem de unfragmento de ADN formado por unnúmero variable de pares bases.Dependiendo del tamaño de la unidad quese repite nos encontramos conmacrosatélites, en los que la secuenciarepetida contiene entre 500 y varios milesde pares de bases. Los midisatélites, en losque la secuencia solo tiene entre 100 y 500pares de bases. Los minisatélites, consecuencias entre 6 y 100 pares de bases.Finalmente los microsatélites, que repitenuna pequeña secuencia de entre 1 y 6 paresde bases.

De todos estos polimorfismos, son losmicrosatélites los que presentan una mayorvariabilidad y son muy fáciles de tipificar. Poresta razón son los más empleados para lacaracterización genética de las poblaciones ypara la identificación individual, de ahí que acontinuación nos centraremos en ellos.

El protocolo de trabajo con losmicrosatélites se puede reducir a lossiguientes pasos,• Extracción del ADN de la muestra de

sangre u otros tejidos (piel, pelo, músculo,etc.).

• Cuantificación del ADN extraído,utilizando generalmente laespectrofotometría.

• Amplificación mediante la reacción encadena de la polimerasa (PCR).

• Evidenciación del producto amplificadomediante electroforesis en gel de agarosapara observar la eficiencia y rendimientodel proceso.

• Detección de alelos mediante electroforesisen gel de poliacrilamida.

• Visualización de los microsatélitesmediante tinción con sales de plata,utilizando sales de plata o mediantecebadores marcados con fluorocromosempleando secuenciadores automáticos.

• Identificación de los alelos.La metodología de análisis estadísticoutilizada es como sigue:

a) Cálculo de frecuencia alélicas ygenotípicas.

b) Cálculo de distancias genéticasc) Diseño de clusters filogenéticos entre

poblaciones utilizando las distancias.En España, la utilización de los

microsatélites como herramienta para lacaracterización de poblaciones ha desplazadocasi por completo al resto de marcadoresgenéticos descritos en el presente trabajo. Ennuestro país debido a la estructuraciónpolítica regional se han transferido a lascomunidades autónomas las competencias eninvestigación agraria, y además se haincrementado el número de universidades asícomo las dotaciones de las mismas. Esta

Page 24: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

15

Animal Genetic Resources Information, No. 29, 2001

Delgado et al.

situación ha contribuido a que los equiposque trabajan en caracterización se hanincrementado ampliamente.

La sensibilización por la conservación delos recursos genéticos animales también hacontribuido a que cada vez más equiposespañoles se dediquen a la caracterización denuestras razas autóctonas. Este interés haafectado prácticamente a todas les especies deinterés zootécnico.

En bovinos destacan los interesantestrabajos realizados por el equipo de lafacultad de Veterinaria de León (Arranz, 1996;Arranz y col., 1997), aunque se han publicadootros trabajos de interés como los de Ruiz(1997) centrado en cinco razas bovinas, el deZamorano (1998), que incluyó algunas razascriollas argentinas junto a los Berrendosespañoles, y los trabajos del equipo de Vianaen razas bovinas gallegas (Viana y col., 1998a,1998b y 1998c).

En ovinos debemos destacar los trabajos deArranz y col. (1995) en la raza Churra y deZamorano y col. (1998) en el Merino deGrazalema y el Churro Lebrijano yMonteagudo y col. (1993) en la RasaAragonesa. Otros equipos trabajan en estaespecie aunque sus resultados aun no hansido publicados, como es el caso del equipode Valdepeñas que se ocupa del ovinoManchego.

En el caprino Canario, Mata y col.(Enviado) han empleado los microsatélitespara clarificar la compleja estructurapoblacional de la Agrupación CaprinaCanaria, aunque sus resultados aun no hansido publicados.

En el Porcino, nuestro equipo ha utilizadola batería de 30 microsatélites propuesta porla ISAG y la FAO para la caracterizaciónporcina para definir la estructura poblacionaldel cerdo ibérico y el Manchado de Jabugo(Delgado y col., 1998; Martínez y col., 2000a;Martínez y col., 2000b), estando en proceso lamisma aplicación el Cerdo Negro Canario y elChato Murciano. Otros equipos de Baleares yZaragoza han trabajado sobre el Chato y elcerdo Negro Mallorquín. Así mismo elCIT/INIA de Madrid ha realizadointeresantes estudios para la caracterizacióndel cerdo ibérico.

En equinos son fundamentalmente tresequipos los que se ocupan de la aplicación delos microsatélites en estas especies. ElLaboratorio de Grupos Sanguíneos deCórdoba (Vega-Pla, 1996) aportando inclusotres nuevos microsatélites de aplicación (Vegay col. , 1996). El equipo del Departamento deProducción Animal de la UniversidadComplutense de Madrid que se ha ocupadodel estudio de los ponies españoles (Checa ycol., 1998, Cañón y col., 2000). Y el equipo dela Facultad de Veterinaria de Zaragoza que hacentrado su estudio en el poni vasco Pottoka.

En la especie canina también se hanaplicado los microsatélites con intensidadpara estudios de caracterización racial.Morera y col. (1999) han aplicado una bateríade microsatélites en el análisis comparativo decuatro razas autóctonas españolas de perros.También es de interés el trabajo realizado porGómez y col. (1998) con ADN mitocondrial encuatro razas caninas.

Finalmente queremos destacar que cadavez se introduce mas en la bibliografíainternacional la aplicación de los RAPD(Random Amplified Polymorphic DNA) confines caracterizadores. Esta técnica se basa enla creación de conjuntos de ADN racialesdesde la mezcla de muestras de animalesaleatoriamente escogidos en la población. Trasla amplificación con cebadores inespecíficos ysometimiento a electroforesis, se detectanpolimorfismos poblacionales a modo depatrón. Este método ha sido utilizado enEspaña por Parejo y col. (1998) en la razabovina Blanca Cacereña, si bien se estánaplicando en la actualidad por otros equiposen la especie porcina.

Referencias

Aguilar, P. 1984. Grupos sanguíneos enel caballo español. Tesis Doctoral.Universidad de Córdoba, pp. 179.

Arranz, J.J. 1994. Estudio genético enpoblaciones bovinas mediante polimorfismosbioquímicos y de DNA (variaciones puntualesy microsatélites). Tesis Doctoral. Universidadde León, pp. 176.

Page 25: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

16Animales domésticos en España

Arranz, J.J, Ftirich, C.D., Tascón, C.D.Bayón, Y. & San Primitivo, F. 1995. Utilidadde los microsatélites en el control deparentesco en ganado ovino. ITEA. 16 (1),303-305.

Arranz, J.J., Bayón, Y. &San Primitivo, F. 1997. Variabilidad genéticaen razas bovinas españolas mediante análisisde polimorfismos bioquímicos y de DNA.Arch. Zootec., 46, 249-258.

Baena, C. 1993. Caracterización de laAgrupación Caprina Canaria en base adeterminados polimorfismos bioquímicos.Tesis de Licenciatura. Universidad deCórdoba, pp. 132.

Barbancho, M.J. 1979. Estructura yrelaciones genéticas entre algunas razascaprinas españolas en razón a determinadospolimorfismos sanguíneos. Tesis Doctoral.Universidad de Córdoba, pp. 232.

Cañón, J., Checa, M.L., Vega-Pla, J.L.,Vallejo, M. & Dunner, S. 2000 The geneticstructure of Spanish Celtic horse breedsinferred from microsatellite data. AnimalGenetics 31, 39-48

Capote, J.F., Delgado, J.V.,Fresno, M.R., Camacho M.E., & Molina, A.1998. Morphological variability in the CanaryGoat Population. Small Ruminant Research.Vol. 27, 167-172.

De Andrés Cara, D.F. 1982 Pura RazaEspañola de Caballos. Comparación con otrasrazas mediante sus polimorfismosenzimáticos sanguíneos. Tesis Doctoral.Servicio de Publicaciones. Universidad deCórdoba, pp. 258.

De la Haba, M.R., Moreno, A. &Morera, L. 1991. Erythocyte GSH,hemoglobin and potassium concentracionsduring the postnatal period in Granadinagoats. Small Rumin. Res., 4, 189-196.

De la Haba, M.R. 1989. Polimorfismoenzimático relacionado con la bomba depotasio en ovinos. Tesis Doctoral.Universidad de Córdoba,pp. 186.

Delgado, J.V., Barba, C., Diéguez, E.,Cañuelo, P., Herrera, M. & Rodero, A. 1998.Caracterización exteriorista de las variedadesdel cerdo Ibérico basada en caracterescualitativos. Arch. Zootec., 49, 201-207.

Delgado, J.V., Barba, C., Diéguez, E.,Cañuelo, P., Herrera, M. & Rodero, A. 2000Caracterización morfológica de las variedadesdel tronco ibérico basada en caracterescuantitativos. En, IV Simposio Internacionaldo Porco Mediterranico. Evora. Portugal.Options Méditerranéennes Serie A(41): 63-66.

Delgado, J.V., Vega-Pla, J.L., Barba, C.,Martínez, A. M. & Zamorano, M.J. 1998.Caracterización morfológica y genética de lasvariedades del Tronco ibérico. Sólo CerdoIbérico. AECERIBER. Nº 1, Zafra, Badajoz, 27-44.

Fernández Piqueras, J. 1993.Polimorfismos en el ADN humano. I Reunióncientífica en Biología Celular y Molecular.Ed. Universidade da Coruña, pp. 24.

Garzón, R. 1975. Contribución alestudio del polimorfismo bioquímico de loscaprinos españoles. Tesis Doctoral.Universidad de Córdoba, pp. 213.

Garzón, R., Zarazaga, I., Vallejo, M. &Rodero, A. 1976. Polimorfismo bioquímico dela raza caprina Granadina. Arch. Zootec., 25(98), 147-170.

González, F. 1986. Estructura einterrelaciones genéticas de siete razasbovinas autóctonas españolas estimadasmediante diez sistemas genéticos sanguíneos.Tesis Doctoral. Universidad de León, pp. 176.

Herrera, M. & Subires, J. 1988. La cabramalagueña Ed. Excma. Diputación de Málaga.Servicios de Actividades Agropecuarias,pp. 127.

Page 26: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

17

Animal Genetic Resources Information, No. 29, 2001

Delgado et al.

Herrera, M., Rodero, E., Gutiérrez,M.J., Peña J. & Rodero J.M. 1996. Applicationof multififactorial discriminant analysis in themorphostructural differentiation ofAndalusian caprine breeds. Small RuminantResearch. 22, 39-47.

Herrera, M., Sánchez, M., Alvarez, J.J.& Sánchez, S.A. 1991. Raza caprina FloridaSevillana. Ed. Patronato de AsesoramientoEconómico. Diputación de Sevilla, pp. 120.

Lamuela, J.M. 1978. Estructuracióngenética mediante polimorfismos bioquímicos(albúminas y transferrinas) con vistas alestudio filogénetico de los ecotipos de la razaRasa Aragonesa. Avances Alim. Mej. Anim.,XIX, 1-2

Lasierra, J.M. 1974. Aportaciones alestudio de los polimorfismos bioquímicos enlas razas ovinas españolas. Hemoglobina encinco ecotipos de la raza Rasa Aragonesa. An.Fac. Vet. Zaragoza, IX, 9, 349-375.

Lucotte, G. 1977. Le polymorphismebioquimique et les facteurs de son maintein.Masson. Paris. Francia, pp. 245.

Llanes, D. 1979. Polimorfismosenzimáticos en ovinos. Tesis Doctoral.Universidad de Córdoba, pp. 215.

Martínez, A.M., Rodero, A. &Vega-Pla, J.L. 2000a. Estudio conmicrosatélites de las principales variedades deganado porcino del tronco ibérico.Comunicación II Congreso SERGA.Mallorca.Arch Zoot. 49 (185-186): 45-52.

Martínez, A.M., Delgado, J.V.,Rodero, A. & Vega-Pla, J.L. 2000b. Geneticstructure of the iberian pig breed usingmicrosatellites. Animal Genetics 31, 295-301.

Monteagudo, L.V., Ferreira, E.,Tejedor, M.T. & Arruga, M.V. 1993.Exclusión de parentesco en la raza ovina Rasamediante genética molecular. ITEA, 12 (1),227-229.

Moreno, A., de la Haba, M.R.,Morera, L. & Rodero, A. 1991. Enzymeactivity and electrophoretic phenotypes oferythrocytes catalase in goats. Small Rumin.Res. 4, 39-46.

Morera, L., Llanes, D., Barbancho, M.& Rodero, A. 1983. Genetic polymorfism inSpanish Merino Sheep. Anim. Blood GrpsBiochem. Genet. 14, 77-82.

Ordás, J.V. & San Primitivo, F. 1986.Genetic variation in blood proteins within andbetween Spanish dairy sheep. AnimalGenetics, 17, 255-266.

Rodríguez-Gallardo P.P., Aguilar, P.,Vega, J.L. & De Andrés, D.F., 1992 Bloodgroup and protein polymorphism genefrecuencies for the Andalusian horse breed. Acomparison with four American horse breeds.Arch. Zoot. 41, 433-442

Rodero, A., Garzón, R., Llanes, D.,Zarazaga, I., Vallejo M., & Monje, E. 1982.Genetic distances between Spanish breeds.Arch. Zootec., 31, 97-108.

Rodero, E. 1994. Uso de marcadoresgenéticos en la caracterización de poblacionesraciales ovinas y caprinas autóctonas deAndalucía en peligro de extinción. TesisDoctoral. Universidad de Córdoba, pp. 234.

Ruiz, B.M. 1997. Análisis de laestructura genética de cinco razas bovinasmediante polimorfismos de ADN. FEAGAS,11,25-29.

San Primitivo, F., Vallejo, M. &Zarazaga, I. 1976. Grupos sanguíneos,hemoglobinas, albúminas y transferrinas en laraza Churra. Zootechnia, 25, 10-12, 525-565.

San Primitivo, F., Vallejo, M. &Zarazaga, I. 1976. Grupos sanguíneos,hemoglobinas, albúminas y transferrinas en laraza Churra. Zootechnia, 25 (10), 462-468.

San Primitivo, F., Vallejo, M. &Zarazaga, I. 1977. Blood groups,hemoglobins, transferrins and albumins of the

Page 27: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

18Animales domésticos en España

Churra breed sheep. XV Int. Conf. Anim.Blood Grps Biochem. Polymorph. Dublín,Irlanda, 1976. Anim. Blood Grps Biochem.Genet., 8 (suppl,1), 38.

San Primitivo, F. 1976. Obtención desueros reactivos en la determinación degrupos sanguíneos ovinos y su aplicación conlos polimorfismos bioquímicos al estudioinmunogenético de la oveja Churra. An. Fac.Vet. León. 22 (2), 525-565.

Sánchez Belda, A. 1974. Conservaciónde razas ovinas. Libro de actas del I Congresode Genética aplicada a la producciónganadera, 53-59.

Sánchez Belda, A. 1981. Catálogo derazas autóctonas españolas. II. Especiebovina, pp. 219.

Sánchez Belda, A. 1984. Razas bovinasespañolas. Publi. Extensión Agraria pp. 257.

Sánchez Belda, A. 1986. Razas ovinasespañolas. MAPA, pp. 887.

Tejón, D. 1986. Catálogo de razasautóctonas españolas. I. Especies ovina ycaprina. Edit. MAPA, pp. 250.

Tuñón, M.J., González, P. & Vallejo,M. 1989. Genetic relationship between 14native Spanish breeds of goats. AnimalGenetics, 20, 205-212.

Tuñón M.J., González, P., Díaz, M., &Vallejo, M. 1984. Distribución del sodio ensangre, plasma y eritrocitos en doceagrupaciones autóctonas españolas. An. Fac.Vet. León, 30, 127-135.

Vallejo, M., Iglesias A.,Sánchez García, L., González P. &Tuñón, M.J. 1990. Variabilidad genética yrelaciones filogenéticas de trece razas bovinasautóctonas españolas. Archivos deZootecnicia, 39, 197-210.

Vallejo, M., Monje, E., Rodero, A.,Zarazaga, I., Garzón, R. & Lamuela, J.M.1977. Polimorfismos bioquímicos en razasvacunas españolas. I. Rubia gallega, pirenáica,retinta y morenas del n.o. Trab. Cient. Univ.Córdoba, pp. 24.

Vallejo, M., Zarazaga, I.,San Primitivo, F., Monje, E., Lamuela, J.M.& Lasierra, J.M. 1977. Clasificación etnológicade ovinos españoles. I. Primeras aportacionesmediante polimorfismos bioquímicos. Av.Alim. Mej. Anim. 18, 73-83.

Vega-Pla J.L., J.J.Garrido, G. Dorado,de Andrés-Cara, D.F. 1996 Three newpolymophic equine microsatellites: HLM2,HLM3, HLM5. Animal Genetics 27, 215

Vega-Pla, J.L. 1996. Polimorfismo deADN equino. Obtención de marcadoresmoleculares y su aplicación al control defiliación. Tesis Doctoral. Universidad deCórdoba, pp. 103.

Viana, J.L., Fernández, A., Sánchez, L.,Rodríguez-Calvo, M.S. & Iglesias, A. 1998(a).Análisis del locus microsatelite ILST002 en laraza bovina Barrosa. Archivos de Zootecnia 47(178-179): 157-162.

Viana, J.L., Fernández, A., Sánchez, L.,Rodríguez-Calvo, M.S. & Iglesias. A. 1998(b).Análisis del locus microsatelite bovribo (BBR)en la raza bovina Maronesa. Archivos deZootecnia 47 (178-179): 163-168

Viana, J.L., Fernández, M.,Rivero, C.S., Fernández, A. & Sánchez, L.1998 (c) Utilización de la biotecnología delADN en el programa de conservación de lasrazas bovinas Morenas del Noroeste.Archivos de Zootecnia 47 (178-179): 294

Zamorano, M.J. 1998. Utilización demedidas genéticas coadyuvantes a los planesde mejora del vacuno de carne. Tesis Doctoral.Universidad de Córdoba, pp. 191.

Page 28: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

19

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2001, 29: 19-30

Characteristics of the American Polypay: A review

G.D. Snowder

USDA, ARS, U. S. Sheep Experiment Station, Dubois, Idaho 83423, USA

Summary

The Polypay sheep breed was developed atthe U.S. Sheep Experiment Station with areproductive capacity markedly superior tothat of domestic US western range breeds.The Polypay is a four breed composite ofTarghee, Rambouillet, Dorset and FinnishLandrace breeds. It is a medium-sized woolsheep (average mature ewe weight of 72 kg)with a smooth body free of excessive skinwrinkles on the neck and body and a pollhead. Comparative studies with other USdomestic breeds have shown the Polypay tohave earlier sexual maturity, higher fertilityand prolificacy rates. Mature ewes give birthto an average of 2.4 lambs and wean anaverage total litter weight of 63.8 kg per eweat 120 days post partum. Lamb survival ratesto 21 and 120 days are greater than those ofother breeds compared. Average individuallamb weaning weight at 120 days (36.1 kg)exceeded that for Rambouillet and Targheelambs (34.5 and 33.8 kg, respectively).Polypay carcasses are similar to those ofRambouillet and Targhee for dressingpercentage, body wall thickness, kidney andpelvic fat, and ribeye area. Measures ofcarcass fat are less in the Polypay whencompared to the Rambouillet and Targheewhile qualitative leg scores for the Polypaywere more favorable. Productive longevityunder western range herded conditions doesnot differ among Polypay, Rambouillet,Targhee and Columbia sheep. In a farm flockproduction system, the average number ofproductive years for Polypay ewes exceededthat of most crossbred types. Woolcharacteristics are defined as a coarse tomedium grade wool with a fiber diameterranging from 24 to 33 µm. Fiber staple lengthranges from 7.6 to 12.7 cm with a common

mean of approximately 10 cm. Raw fleeceweights are considered light and range from2.7 to 4.5 kg. Yield of clean wool isapproximately 57 percent. Economicevaluations favored the Polypay in allproduction systems considered with 15 to36 percent increase in sales or profitscompared to other US domestic breeds. Whenconsidering the Polypay breed forimportation, some prudence should beexercised because it may not be suitable to allenvironments and production systems in theworld, especially where nutritional andmanagement resources are not sufficient tosupport lactating ewes rearing twins.

Resumen

La raza ovina Polypay fue desarrollada en laEstación Experimental Ovina de EE.UU. conuna capacidad de reproducción claramentesuperior a la media de las razas locales de lazona oeste de EE.UU. La raza Polypay estácompuesta por cuatro razas: la Targhee, laRambouillet, la Dorset y la Finnish Landrace.Se trata de una raza de lana de medianaestatura (el peso medio de la oveja en edadmadura es de 72 kg), con un cuerpo suave sinexceso de piel arrugada en la nuca y en elcuerpo y ausencia de cuernos. Estudioscomparativos con otras razas localesestaduinenses han mostrado que la Polypayposee una madurez sexual precoz, y mayorgrado de fertilidad y prolificidad. Las ovejasmaduras paren una media de 2,4 corderos ylos crian hasta un peso medio de 63,8 kg a los120 días del parto. La supervivencia de loscorderos de 21 a 120 días es superior a la deotras razas comparadas. La media individualde peso al destete a los 120 días (36,1 kg) esmayor que para la raza Rambouillet y Targhee(34,5 y 33,8 kg, respectivamente). Las canalesde Polypay son semejantes a las de

Page 29: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

20American Polypay sheep

Rambouillet y Targhee en cuanto al porcentajede manto, espesor corporal, grasa entorno ariñones y zona pélvica, y área del músculodorsal. Las cantidades de graso de la canalson inferiores en la Polypay comparadas conla Rambouillet y la Targhee, mientras que losíndices cualitativos de las patas son másfavorables en la Polypay. La longevidadproductiva en condiciones de rebaño en lasregiones del oeste no es diferente entre laPolypay y las razas Rambouillet, Targhee yColumbia. En un sistema de producción engranja la media de años productivos en lasovejas Polypay no excede la media de lamayor parte de tipos de razas cruzadas. Lascaracterísticas de la lana vienen definidas degruesa a media con un diámetro de fibra queva de 24 a 33 µm. La longitud de la fibra a laraíz va de 7,6 a 12,7 cm con una mediaaproximada de 10 cm. Los pesos de vellóncrudo están considerados como bajos y vande 2,7 a 4,5 kg. La superficie de lana limpiarepresenta aproximadamente el 57%. Lasevaluaciones económicas favorecen a la razaPolypay en todos los sistemas de producciónconsiderados, con un porcentaje de 15 a 30%de aumento en la venta o en las ganancias encomparación con las demás razas locales enEE.UU. Si consideramos la raza Polypay parala importación debemos tener ciertaprudencia, ya que no resulta adecuada atodos los medios y a todos los sistemas deproducción en el mundo, en particular allídonde los recursos nutricionales y de manejoson insuficientes para consentir la lactación deovejas con partos gemelares.

Key words: Polypay sheep, Reproduction,Genetics, Wool, Lamb.

Introduction

A new synthetic breed is usually created tomeet a need not currently met by existingbreeds and may be developed more quicklythan by waiting over a longer period for theslower selection response of existing breeds.The Polypay breed is perhaps the bestexample of a successful new breed withincreasing popularity in the USA and Canada.

The breed was developed as a four-breedcomposite at the U.S. Sheep ExperimentStation, Dubois, Idaho during the 1970’s. ThePolypay breed was originally developed as arange breed with superior reproductiveperformance compared to traditional sheepbreeds under herded grazing conditions ofthe Rocky Mountain region of the northwestUSA. However, the breed was quicklyaccepted by many farm flock producersbecause of its high prolificacy rate,out-of-season breeding ability, and capabilityto produce two lamb crops annually. Theprofitability of the Polypay has beendemonstrated to exceed that of otherAmerican range breeds (Knight and Snowder,1995). This paper reviews the characteristicsof the Polypay breed.

Discussion

Characterization of the Polypay must bebased on research findings and in comparisonwith known reference breeds. Research on thePolypay breed has generally been performedat the U.S. Sheep Experiment Station underextensive range management. Limitedresearch has been reported under intensivefarm flock production. The Polypay breed hasbeen compared with reference breedsincluding the Rambouillet, Columbia andTarghee. The Rambouillet is a wool breed ofMerino descent and a common US westernrange breed. The Columbia and Targheebreeds were developed at the U.S. SheepExperiment Station and are less knownabroad. The Columbia was developed about1912 from mating Rambouillet ewes toLincoln rams (Marshall, 1949) to produce alarge-frame ewe that would produce lambswith the potential for heavier carcasses. TheTarghee was developed in 1926 bybackcrossing the Lincoln-Rambouilletcrossbred to the Rambouillet (Terrill, 1947)with the breeding objective of improved woolcharacteristics. The acceptance of the Polypaydepends on its ability to improve profitabilitywhen compared with these traditional breedsunder similar management and productionsystems.

Page 30: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

21

Animal Genetic Resources Information, No. 29, 2001

Snowder

Breed development

The Polypay breed was developed byDr. Clarence Hulet at the U.S. SheepExperiment Station. Dr. Hulet’s breedingobjective was to develop a breed with areproductive capacity markedly superior tothat of domestic western range breeds (Huletet al., 1984). He selected four breeds withdesirable characteristics to produce thecomposite breed: Finnish Landrace with itshigh prolificacy and early puberty;Rambouillet and Targhee because of theiradaptability to western range conditions,herding instinct, and fleece characteristics;and the Polled Dorset with early puberty,extended breeding season, milking ability,and favorable carcass characteristics. In 1968,six imported Finnish Landrace rams werebred to foundation Rambouillet ewes toproduce Finnish Landrace x Rambouilletcrosses. Four unrelated large-bodied Dorsetrams born as twins from ewes withoutstanding lifetime production records weremated to Targhee ewes to produceDorset x Targhee crosses. In 1970, the first4-breed composites were born from crossingFinnish Landrace x Rambouillet sheep toDorset x Targhee sheep. The 4-breedcomposites were then inter se mated andselected heavily for lamb production.

Evaluation of the 4-breed compositeoccurred for several years with the conclusionthat the composite met the original breedingobjectives. In 1975, Dr. Hulet named thecomposite “Polypay” from ‘poly’ meaningmany or much, and ‘pay’ to indicateprofitability. The first Polypay sheep weresold to the public at the U.S. SheepExperiment Station in 1975. The AmericanPolypay Sheep Association was formed in1980. Today, there are an estimated150 Polypay purebred sheep flocks with anundetermined number of commercial flocksin the USA.

Criticisms of the breed occurred early in itsdevelopment and were based on comparisonwith the more familiar range breeds ofTarghee and Rambouillet. Some criticismswere justified while others were unfounded.

Polypay sheep were smaller in mature bodysize and often exhibited conformationcharacteristics of the Finnish Landrace such asfine bone structure and pink skinpigmentation of the eye, nose, and ear areas.Because of the larger litter sizes born toPolypay ewes, lamb birth weights werelighter and there were concerns about lambsurvival and growth rates. Initially, Polypayfleeces were too variable in fiber diameter andstaple length, and too light weight. Continuedselection and research on the Polypay at theU.S. Sheep Experiment Station and on privatefarms has affirmatively addressed all of theseearly criticisms.

Ewe body size and conformation

During the early stages of the breeddevelopment, a moderate body size thatwould be reproductively efficient wasdesirable. Initial selection criteria alwaysemphasized superior reproductiveperformance with no concurrent selectionpressure applied to increase body size.However, mature body size graduallyincreased among Polypays. During a recentlyconcluded 12 year selection study at theU.S. Sheep Experiment Station in whichselection was based solely on total litterweight weaned at 120 days postpartum underwestern range grazing conditions, total litterweight increased an average of 0.70 kg peryear and the correlated response in ewe bodyweight was an increase of 0.82 kg per year(Ercanbrack and Knight, 1998). Consequently,the mature size of the breed has increasedwith increased lamb production under rangeconditions. Currently, the average bodyweight for a mature Polypay ewe is 72 kg,and in some flocks the average mature eweweight may range from 60 kg to 82 kg. Bycomparison, Polypay ewes are approximately95 percent of the mature size of Rambouilletand Targhee ewes at the U.S. SheepExperiment Station.

The general appearance of the Polypay is amedium sized wool sheep with a smoothbody free of excessive skin wrinkles on theneck and body (Figures 1 and 2). The head is

Page 31: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

22American Polypay sheep

Figure 1. Yearling Polypay ram.

Figure 2. Mature shorn Polypay ewes and lambs.

Page 32: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

23

An

ima

l Ge

ne

tic Re

sou

rces In

form

atio

n, N

o. 2

9, 2

00

1

Snow

der

Table 1. Reproductive performance of Polypay ewes by age.

Age

Number ofobservations

BreedingSeason

Fertility(%)

LambsBorn Weaned Weaningage

Litterweightweaned

(kg) Source

7 to 8 months 98 Fall 95 n/a n/a n/a n/a Hulet et al., 19846 to 18 months 1 921 Fall n/a 1.50 n/a n/a n/a Notter, 20001 year

53 Fall 94n/a 1.17

9026.4 Ramdas et al.,

19931 to 6 years

236 Fall 961.74 n/a

n/an/a Nawaz and

Meyer, 1992Mature, > 2 years

50 Fall 902.07 1.64

120n/a Hulet and

Ercanbrack, 1979Mature, > 30 months 2 392 Fall n/a 2.13 n/a n/a n/a Notter, 2000Mature, > 3 years

789 Fall 962.37 1.73

12063.8 Snowder

(unpublisheddata)

Mature2 031 Fall 95

2.03 1.44120

41.6 Ercanbrack andKnight, 1998

6 to 18 months 45 Spring n/a 1.26 n/a n/a n/a Notter, 20001 year 14 Spring 52 n/a n/a n/a n/a Hulet et al., 198418 to 30 months 225 Spring n/a 1.62 n/a n/a n/a Notter, 2000Mature, > 30 months 697 Spring n/a 1.74 n/a n/a n/a Notter, 2000

Page 33: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

24American Polypay sheep

polled with an open white face. Ears aremedium length and covered with white hair.Mature ewes are 70 to 85 cm tall whenmeasured to the shoulder. Undesirable pinkskin pigmentation on the eye, nose, and earwas frequently observed in the earlygenerations of the breed’s development buthas been largely eliminated by selection.

Reproductive characteristics

The Polypay breed is well known for its earlypuberty and high prolificacy rate.Reproductive performance of the Polypay hasbeen well investigated (Table 1). Hulet et al.(1984) reported a conception rate at fall seasonbreeding of 94 to 97 percent for 7 to 8 monthold Polypay ewes compared to 16 to37 percent for Rambouillet and 57 to73 percent for Targhee ewe lambs. At olderages, conception rates for fall season breedinggenerally average 95 percent. Averagenumber of spring born lambs per yearlingewe exposed is 1.5 (Notter, 2000). Matureewes typically give birth to 1.7 to 2.4 springborn lambs, depending upon managementand production system. By comparison withmost other non-Finnish Landrace crossbredand purebred breeds in the USA, the Polypayhas one of the highest levels of fertility andprolificacy (Hulet et al., 1984; Nawaz andMeyer, 1992; Ramdas et al., 1993; Ercanbrackand Knight, 1998; Notter, 2000).

Also, the Polypay has been reported tohave heavier litter weight weaned per ewe

and adjusted individual lamb weaningweights compared to many differentcrossbred and purebred types (Hulet andErcanbrack, 1979; Hulet et al., 1981;Ercanbrack and Knight, 1985 and 1989;Nawaz et al., 1992; Knight and Snowder,1995). Litter weight weaned at 120 dayspostpartum has steadily increased in selectedPolypay lines at the U.S. Sheep ExperimentStation. The average 120 day litter weightweaned at the U.S. Sheep Experiment Stationfrom 1976 to 1988 was 41.6 kg (Ercanbrackand Knight, 1998) while the present average is63.8 kg (Snowder, unpublished data). Becausedirect and genetic responses to selection forlitter weight weaned in this flock have shownsteady improvement (Ercanbrack and Knight,1998) the biological optimal production levelfor this trait has not been observed under themanagement and production systemevaluated. Litter weight weaned is acomposite trait and genetic improvement inthis trait was attributed to correlatedimprovements of prolificacy, lamb survival,lamb weaning weight, ewe fertility, and eweviability (Snowder et al., 1996; Ercanbrack andKnight, 1998).

Ovulation rate and uterine efficiency of thePolypay exceeded that of numerous crossbredtypes (Nawaz and Meyer, 1991). At 5 and6 years of age, the average ovulation rate forPolypay ewes was observed to be 1.94. Thisresulted in 1.88 lambs born per eweovulating, or uterine efficiency of 96 percent.

Table 2. Average reproductive performance of mature Polypay ewes in once- andtwice-a-year lambing groupsa..

Lambings peryear

Numberexposed

Lambsborn

Lambsweaned

Litter weightweaned (kg)

Once in fall 165 1.83 1.49 46.5TwiceWinter 242 1.74 1.41 47.9Summer 190 0.47 0.37 11.7Total annual 242 2.11 1.70 57.1a Production expressed on a per ewe exposed basis.Source: Hulet et al., 1984.

Page 34: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

25

Animal Genetic Resources Information, No. 29, 2001

Snowder

Nawaz and Meyer (1991) also reported thatthe association between body weight andovulation rate was largest in the Polypaycompared to crossbred types and predicted a10 percent increase in body weight increasesovulation rate by 6 percent. This agrees withthe correlated increase in Polypay bodyweight observed by Ercanbrack and Knight(1998) when selection emphasized total litterweight weaned.

Season of lambing alters the expression ofprolificacy in Polypays. Compared to springlambing, average prolificacy of mature eweswas reduced by 0.24 lambs in the summerand 0.31 lambs in the autumn (Notter, 2000).

Occasionally, the Polypay has beenmanaged in commercial twice-a-year lambingproduction systems. Comparisons of once-and twice-a-year lambings suggest that lambproduction can be increased (Table 2; Hulet etal., 1984). However, the economic parametersfor lambing twice-a-year can varysignificantly and producers should considersuch parameters to estimate the profitabilityof twice-a-year lambing. Twice-a-year lambingis not common in the USA, rather productionsystems with 3 lambings in 2 yearsoccasionally exist.

Reproductive characteristics were reportedon a small sample of Polypay rams (n=4) byFitzgerald and Stellflug (1990). Theyconcluded that two and one-half year oldPolypay rams exhibited greater libido in longseason days, had greater epididymal reservesof sperm and similar scrotal circumferenceswhen compared to Rambouillet andColumbia rams.

Birth and growth characteristics

Polypay lambs weigh less at birth than thoseborn to Rambouillet and Targhee ewes. Thisdifference is due to both a maternal influenceand a result of the higher percentage of lambsborn in multiple birth litters. Average birthweights of twin or triplet born Polypay lambsare 4.1 and 3.7 kg, respectively. Lowerincidences of dystocia or assisted births havebeen observed for both single and multiplebirths in Polypay ewes when compared tocrossbred ewes (Nawaz and Meyer, 1992).

Survival of Polypay lambs exceeds that oftraditional breeds (Snowder and Knight,1995). Table 3 shows the superiority of thePolypay’s survival from both birth to 21 daysof age and from 21 days of age to 120-dayweaning age compared to Rambouillet andTarghee lambs under western rangeconditions of the USA. Increased survivalrates of Polypay lambs may be the result of itsFinnish Landrace genetic component; highersurvival rates for crossbred Finnish Landracelambs have often been reported (Oltenacu andBoylan, 1981; Ercanbrack and Knight, 1985and 1989; Gama et al., 1991).

The maternal influence of the Polypaybreed on lamb survival may also beimportant. Snowder and Knight (1995)investigated the effect of breed of foster damon lamb survival to weaning at 120 dayswhen breed of lamb and foster dam differed.They reported higher rearing success forPolypays (86 percent) than for Rambouillet(84 percent), Targhee (75 percent), orColumbia foster ewes (82 percent).

Table 3. Survival rate (%) of lambs by breed from birth to 21-day ofage and thereafter to 120-day weaning age.

Breed 21-day 120-day

Polypay 96.2 92.8Rambouillet 93.1 89.9Targhee 91.4 86.7

Source: Snowder and Knight, 1995.

Page 35: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

26American Polypay sheep

A production concern associated with thePolypay is inadequate milk production forfirst parity ewes especially those rearing twinlambs (Snowder et al., 2001a and 2001b). Thisis a common production concern among highprolificacy breeds. Generally, commercialproducers will remove one twin lamb from aewe with inadequate milk production andattempt to graft it onto a ewe capable ofraising the orphan, but this is labor intensiveand not always successful. First paritysubjective milk scores are associated withboth lamb survival and pre-weaning growthrate (Snowder et al., 2001a), and milkproduction at first parity can be improved at amoderate rate by selection (Snowder, 2001b).

Because the American Polypay SheepAssociation (Milo, Iowa) maintains an openregistry book which permits the introductionof new germplasm for breed improvement,crossbreeding the Polypay with a milkingsheep breed may be feasible. The U.S. SheepExperiment Station used crossbreeding toproduced ¼ East Friesian ¾ Polypay ewesand is evaluating their first parity milkingperformance when compared to purebredPolypays.

Growth rate of Polypay lambs comparesfavorably to other white-faced westernbreeds. Under western range conditionswhere ewes and lambs are herded in flocks ofapproximately 1 000 ewes on open mountainranges at elevations ranging from 2 000 to

2 900 m, lambs are weaned at approximately120 days of age. Average weaning weight washeavier for Polypay lambs (36.1 kg) than forRambouillet (33.8 kg) or Targhee lambs(34.5 kg) (Snowder and Knight, 1995). Postweaning growth rate of Polypay lambs hasalso been found to be comparable to that ofRambouillet and Targhee lambs, both ingrazing and feedlot situations (unpublisheddata).

Carcass characteristics

During the early years of the Polypaydevelopment, lambs with Finnish Landracebreeding were disliked by the US lambpacking industry because of their lightercarcasses and smaller frames. However,extensive research studies under a widevariety of production conditions found thatwhen ¼ and ½ Finnish Landrace ewes weremated to meat-type terminal rams such as theSuffolk, resulting crossbred lambs were hardyand of acceptable carcass quality (Boylan etal., 1976; Thomas et al., 1976; Dickerson, 1977;Dahmen et al, 1979; Magid et al., 1981;Snowder et al., 1986).

A recent study found lamb carcasses ofpurebred Polypays similar in most respects tothose of Rambouillets, Targhees, andColumbias. (Snowder et al., 1994). Carcassmeasures of Polypay and traditional breed

Table 4. Least squares means for carcass traits of four sheep breedsa.

Trait Polypay Rambouillet Targhee Columbia SEM

Slaughter wt., kg 53.7 53.3 52.3 53.9 0.61Dressing, % 51.5b 50.4b 50.1b 49.3c 0.21Backfat depth, mm 7.2bd 8.6c 7.7bc 6.3d 0.03

Body wall thickness, cm 2.4bd 2.5b 2.7c 2.3d 0.05Kidney and pelvic fat,%

3.9b 4.2b 4.0b 3.1c 0.11

Ribeye area, cm2 12.3 12.9 12.3 12.3 0.18a Source: Snowder and Knight, 1995.b,c,d Values within a row with different superscripts differ (P>.05).

Page 36: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

27

Animal Genetic Resources Information, No. 29, 2001

Snowder

lambs are presented in Table 4. Polypaycarcasses were similar to those of Rambouilletand Targhee for dressing percentage, bodywall thickness, kidney and pelvic fat as apercentage of the carcass weight, and ribeyearea. Measures of fat (back fat depth, bodywall thickness, and kidney and pelvic fatpercentage) were less in the Polypay whencompared to the Rambouillet and Targhee.Visually evaluated qualitative leg scores weremore favorable for the Polypay than the otherthree breeds in the study.

Wool characteristics

Polypay sheep produce coarse to mediumgrade wool with a fiber diameter rangingfrom 24 to 33 µm. Fiber staple length rangesfrom 7.6 to 12.7 cm with a common mean ofapproximately 10 cm. Raw fleece weights areconsidered light and range from 2.7 to 4.5 kg.Polypay ewes at the U.S. Sheep ExperimentStation typically shear 3.6 kg of wool. Theaverage clean wool yield is approximately57 percent. Average lifetime fleece weights for¼ Finnish Landrace crossbred ewes werereported to be 95percent as heavy as those ofpurebred sheep (Columbia, Rambouillet andTarghee; Ercanbrack and Knight, 1989).Yearling fleece weights of first generationPolypay ewes were 8 percent lighter thanthose of Targhees (3.05 vs 3.33 kg; Ramdas etal., 1993). Table 5 summarizes four years (1997to 2000) of Polypay ram wool data collectedfrom the U.S. Sheep Experiment Station. Ramlambs produce lighter fleeces (2.8 kg) withfiner fiber diameters (23.5 µm) wool than2 year old rams (4.1 kg and 26.9 µm,respectively). The Polypay breed has

improved in fleece uniformity during the25 years since its release. Selection forimproved wool characteristics has beenpracticed in private flocks but is lessemphasized since the worldwide decline inwool prices.

Processing characteristics of Polypay woolwere not favorable as a worsted yarn (Stobartet al., 1986). Yield of processed scoured topranged from 77 to 82 percent with a high levelof waste (noils) 18 to 24 percent. The highpercentage of noils was related to a fiberstrength problem caused by breakage duringthe high stresses imposed by the worstedprocessing system. The percentage ofmedullated fibers ranged from 0.2 to1.6 percent across the ages of 1 to 4 years;levels exceeding 0.5 percent decrease theeconomic value of the yarn. Additionally,yarns of Polypay wool did not haveacceptable evenness values (coefficient ofvariation of 16 to 26 percent) when comparedwith Uster standard values. Tenacity values(tensile strength of 4 to 7 cN/tex) were lowerthan the Uster Statistics, indicating fabricsmade of Polypay wool would be of marginalquality for worsted processing. However,Polypay wool would be of similar value tothat of most coarse to medium grade woolbreeds.

Flocking behavior

The flocking behavior of Polypay sheep hasnot been reported; however, the frequent useof Polypay sheep under herded conditions onopen range of the intermountain westernregion of the USA suggests that they have anacceptable herding instinct. Hulet et al. (1992)

Table 5. Fleece and fiber characteristics of Polypay rams.

Age No. oframs

Fleeceweight, kg

Fiber diameter, µmAverage Range

10 to 11months

251 2.8 23.5 ± 1.6 19.3 to 28.9

2 year 105 4.1 26.9 ± 1.8 22.5 to 32.5

Page 37: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

28American Polypay sheep

reported no differences in the flockingbehavior between Rambouillet andRambouillet x Polypay female sheep but didobserve significant differences in flockingbehavior as affected by flock size and agegroups.

Production longevity

Polypay sheep tend to live and produce aslong as Rambouillet, Targhee and Columbiasheep under western range herded conditions(Snowder, unpublished data). In a universityfarm flock production system, the averagenumber of productive years for Polypay eweshas exceeded that of some crossbred types(Nawaz et al., 1992; Ramdas et al., 1993).When observed from 1 to 7 years of age, thelength of time a ewe remained productiveunder range conditions did not differ between¼ Finnish Landrace crossbred ewes andRambouillet, Targhee and Columbia purebredewes (Ercanbrack and Knight,1985 and 1989)although the highest attrition rates occurredin purebreds. Iniguez et al. (1986) reportedthat production longevity ofRambouillet x Finnish Landrace andDorset x Finnish Landrace crossbred ewes ina farm flock fall lambing production systemwas equal to or greater than that ofRambouillet or Dorset ewes.

Economic evaluation

In most sheep producing countries of theworld today, the production trait with thehighest profitability is weight of quality lambmarketed per ewe exposed. This is acomposite trait dependent uponreproduction, maternal ability, lamb survival,lamb growth, and slaughter value. The valueof wool accounts for less than 10 percent ofthe gross income and may even be a costwhen shearing expenses exceed the return.Therefore, sheep producers would be wise toseek out those breeds that enhanceprofitability.

The economic advantage of the Polypaybreed in the USA has been well documented.Hulet et al. (1981) compared gross sales from

wool and lamb production in four breeds andFinnish Landrace crosses under rangeconditions. Gross sales from Polypay andFinnish Landrace cross mature ewes weresignificantly higher than Rambouillet,Targhee, and Columbia mature ewes by 21,30, and 36 percent, respectively. Hulet et al.(1981) concluded that the Polypay’s moderatebody size and increased reproductive ratemade it more profitable. Ercanbrack andKnight (1985 and 1989) reported a 15 to18 percent greater net value of lifetimeproduction from a ¼ Finnish Landracecrossbred compared to adapted domesticbreeds. Knight and Snowder (1995)considered the economic status of productionsystems with reproduction and wool levelsvarying according to traditional breeds(Rambouillet) and Finnish Landrace crosses(Polypay) as affected by increased grazingfees on public range and the loss of thefederal wool incentive program. The earlypuberty and increased lamb production ofPolypay ewes resulted in a profitable rangesheep production system while productionsystems with traditional breeds werepredicted to be unprofitable under mostscenarios studied.

Biological efficiency as defined as theannual litter weight weaned divided by meanewe weight0.75 was reported to be highest inthe Polypay breed compared to variouscrossbred types in a farm flock productionsystem (Nawaz et al., 1992).

Limitations to the environment andproduction systems in which the Polypaymay be profitable probably exist. Some sheepproducers found Polypay or Finnish Landracecrossbreds to be undesirable for theirproduction system (Snowder et al., 1986).These unsuccessful attempts have usuallyoccurred in desert regions whereenvironmental conditions would be expectedto be less conducive to maintaining a lactatingewe rearing twin lambs. Some producers haveobjected to the increased labor required atlambing to assist more new born lambs tosuckle, although this concern may beminimal.

Page 38: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

29

Animal Genetic Resources Information, No. 29, 2001

Snowder

Conclusions

The Polypay breed, by comparison to mostother US sheep breeds, is a highly productivebreed under the range and farm flockproduction systems where it has beenstudied. The breed may also be profitable inother parts of the world where lambproduction is the most economicallyimportant trait. The medium coarse wool isnot of significant value at present wool prices.Also, importation by foreign countries mayexpose the breed to diseases to which it is notimmune. The Polypay breed appears to meetmost criteria to be a profitable breed undercurrent US production systems.

References

Boylan, W.J., Berger, Y.M. &Allen, C.E. 1976. Carcass merit of Finnsheepcrossbred lambs. J. Anim. Sci. 42, 1413-1420.

Dahmen, J.J., Hinman, D.D.,Jacobs, J.A. & Everson, D.O. 1979.Performance and carcass characteristics ofSuffolk sired lambs from Panama and Finn xPanama dams. J. Anim. Sci. 49, 55-62.

Dickerson, G.E. 1977. Crossbreedingevaluation of Finnsheep and some U.S. breedsfor market lamb production. North CentralRegional Publication No. 246. North CentralProject NC-111, USDA, ARS, Beltsville, MD,pp. 30.

Ercanbrack, S.K. & Knight, A.D. 1985.Lifetime (seven years) production of ¼- and½-Finnish Landrace ewes from Rambouillet,Targhee and Columbia dams under rangeconditions. J. Anim. Sci. 61, 66-77.

Ercanbrack, S.K. & Knight, A.D. 1989.Lifetime (seven years) production of ¼- and½-Finnish Landrace ewes from Rambouillet,Targhee and Columbia dams as affected bynatural attrition. J. Anim. Sci. 67, 3258-3265.

Ercanbrack, S.K. & Knight, A.D. 1998.Responses to various selection protocols forlamb production in Rambouillet, Targhee,Columbia, and Polypay sheep. J. Anim. Sci.76, 1311-1325.

Fitzgerald, J.A. & Stellflug, J.N. 1990.Comparison of scrotal circumference, spermoutput and libido of Booroola Merino,Polypay, Rambouillet and Columbia rams in acontrolled photoperiod. SID Sheep Res. J. 6(2),11-14.

Hulet, C.V. & Ercanbrack, S.K. 1979.Polypay sheep on the range. National WoolGrower, June, 17-18.

Hulet, C.V., Ercanbrack, S.K. &Knight, A.D. 1981. The future for newsynthetic breeds or types of sheep. Int. Goatand Sheep Res. 4, 248-257.

Hulet, C.V., Ercanbrack, S.K. &Knight, A.D. 1984. Development of thePolypay breed of sheep. J. Anim. Sci. 58,15-24.

Hulet, C.V., Anderson, D.M.,Shupe, W.L. & Murray, L.W. 1992. Effects ofage and flock size on flocking behavior inRambouillet and Rambouillet x Polypayfemale sheep. Sheep Res. J. 8(3), 112-115.

Iniguez, L.C.,.Bradford, G.E. &Mwai, A.O. 1986. Lambing date and lambproduction of spring-mated Rambouillet,Dorset and Finnsheep ewes and their F1crosses. J. Anim. Sci. 63, 715-728.

Gama, L.T., Dickerson, G.E.,Young, L.D. & Leymaster, K.A. 1991. Effectsof breed, heterosis, age of dam, litter size, andbirth weight on lamb mortality. J. Anim. Sci.69, 2727-2743.

Knight, A.D. & Snowder, G.D. 1995.Genetic alternatives addressing the economicimpact of changes in public lands grazing

Page 39: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

30American Polypay sheep

policy and loss of the wool incentive programon intermountain range sheep productionsystems. Sheep and Goat Res. J. 3, 140-148.

Magid, A.F., Swanson, V.B.,Brinks, J.S., Dicerkson, G.E., Crouse, J.A. &Smith, G.M. 1981. Border Leicester andFinnsheep crosses. III. market lambproduction from crossbred ewes. J. Anim. Sci.52, 1272-1279.

Marshall, F.R. 1949. The making of theColumbia sheep. National Wool Grower 39(4),9-11.

Nawaz, M. & Meyer, H.H. 1991. Effectsof genotype and mating weight on ovulationrate, litter size, and uterine efficiency ofCoopworth, Polypay, and crossbred ewes. J.Anim. Sci. 69, 3925-3930.

Nawaz, M. & Meyer, H.H. 1992.Performance of Polypay, Coopworth, andcrossbred ewes: I. reproduction and lambproduction. J. Anim. Sci. 70, 62-69.

Nawaz M., Meyer, H.H. &Thomas, D.R. 1992. Performance of Polypay,Coopworth, and crossbred ewes: II. survivaland cumulative lamb and wool productionover 4 years. J. Anim. Sci. 70, 70-77.

Notter, D.R. 2000. Effects of ewe ageand season of lambing on prolificacy in USTarghee, Suffolk, and Polypay sheep. SmallRum. Res. 38, 1-7.

Oltenacu, E.A.B. & Boylan, W.J. 1981.Productivity of purebred and crossbredFinnsheep. I. Reproductive traits and lambsurvival. J. Anim. Sci. 52, 989-997.

Ramdas, S., Dally, M., Bradford, E. &Sakul, H. 1993. Lamb and wool production ofTarghee and prolific breed crossbred ewes.Sheep Res. J. 9(2), 62-70.

Snowder, G.D., Shelton, M. &Thompson, P. 1986. Evaluation of Finn-crossand Rambouillet ewes under Texas rangeconditions. SID Research Digest, Winter,31-35.

Snowder, G.D., Glimp, H.A. &Field, R.A. 1994. Carcass characteristics andoptimal slaughter weights in four breeds ofsheep. J. Anim. Sci. 72, 932-937.

Snowder, G.D. & Knight, A.D. 1995.Breed effects of foster lamb and foster dam onlamb viability and growth. J. Anim. Sci. 73,1559-1566.

Snowder, G.D., Hatfield, P.G. &Knight, A.D. 1996. Composite trait for lambproduction. In: Proceedings of the NationalSheep Genetics Symposium, Sept 5-6, 1996.Columbus, OH. American Sheep IndustryAssociation, Engelwood, CO, pp. 137-144.

Snowder, G.D., Knight, A.D., VanVleck, L.D., Bromley, C.M. & Kellom, T.R.2001a. Usefulness of subjective ovine milkscores. I. associations with range ewecharacteristics and lamb production. J. Anim.Sci. 79, 811-818.

Snowder, G.D., Knight, A.D., VanVleck, L.D., Bromley, C.M. & Kellom, T.R.2001b. Usefulness of subjective ovine milkscores. II. genetic parameter estimates. J.Anim. Sci. 79, 869-876.

Stobart, R.H., Gott, N. & Parker, C.F.1986. Processing characteristics of Polypaywool. J. Anim. Sci. 63, 692-699.

Terrill, C.E. 1947. Breed crosses in thedevelopment of Targhee sheep. J. Anim. Sci. 6,83-92.

Thomas, D.L., Whiteman, J.V. &Walters, L.E. 1976. Carcass traits of lambsproduced by crossbred dams of Finnsheep,Dorset and Rambouillet breeding andslaughtered at two weights. J. Anim. Sci. 43,373-379.

Page 40: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

31

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2001, 29: 31-40

Genetic diversity between Italian andGreek buffalo populations

B. Moioli1*, A. Georgoudis2, F. Napolitano1, G. Catillo1,S. Lucioli1, Ch. Ligda2 & J. Boyazoglu2

1Istituto Sperimentale per la Zootecnia, via Salaria 31,00016 Monterotondo, Italy

2Dept. of Animal Production, Aristotle University of Thessaloniki,54006 Thessaloniki, Greece

Summary

The present study is a first step of a globalproject aiming at the estimation of the geneticdistances and relationships among buffalobreeds and sub-populations and theinvestigation of the production potential andadaptability of different buffalo genotypes invarious environments.

Genetic diversity of Italian and Greekbuffalo populations was estimated on thebasis of allele frequencies at nine polymorphicmicrosatellite loci: CSSM43, CSSM38, DRB3,D21S4, CYP21, CSSM47, CSSM60, CSSM36and CSSM33. The number of detected allelesper locus varied from two (D21S4) to thirteen(CSSM47). Allele frequency distribution wassimilar in the two populations, which havethe same alleles at the highest frequency at allloci, except loci CSSM47 and CSSM60.Average gene diversity over all loci was 0.60.Across-loci average gene diversity increasedwith the number of alleles. Observed averageheterozygosity was 0.167 and 0.177 in theItalian and Greek populations, respectively.The degree of differentiation between Italianand Greek buffalo was moderate andestimated at 0.021 ± 0.009.

Resumen

El presente estudio representa un primer pasodentro de un proyecto global orientado a laestimación de las distancias genéticas yrelaciones entre las razas de búfalos y las sub

*Corresponding author.Tel.: +39-06-900901; Fax: +39-06-9061541E-mail address: [email protected]

poblaciones y la investigación sobre laproducción potencial y la adaptabilidad de losdistintos genotipos de búfalos en condicionesambientales diversas.

La diversidad genética de las poblacionesitalianas y griegas de búfalos fue estimada enbase a las frecuencias de alelos en nuevo locimicrosatélites polimórficos: CSSM43,CSSM38, DRB3, D21S4, CYP21, CSSM47,CSSM60, CSSM36 y CSSM33. El número dealelos detectados por locus varió de dos(D21S4) a trece (CSSM47). La distribución dela frecuencia de los alelos fue similar en lasdos poblaciones, que poseen los mismosalelos en la frecuencia más alta en todos losloci, excepto los loci CSSM47 y CSSM60.

La media de diversidad de genes en todoslos loci fue de 0,60. Entre los loci la media dediversidad de genes aumentó con el númerode alelos. La media observada deheterocigosidad fue de 0,167 y 0,177, en laspoblaciones italianas y griegasrespecitvamente. El nivel de diferenciaciónentre el búfalo italiano y griego fue estimadoen 0,021±0,009.

Keywords: Buffalo, Microsatellites, Geneticdiversity.

Page 41: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

32Italian and Greek buffalo populations

Introduction

Domestication of water buffalo occurred5 000 years ago, more recently than thedomestication of Bos taurus and Bos indicus(10 000 years ago) (Loftus et al., 1994).Compared to cattle, buffalo productivity inmeat and milk is generally lower, therefore,buffalo farming was abandoned in manycountries and left to the areas where cattlewere not able to produce efficiently due toclimate, parasites, muddy lands, etc. anddraught power is still needed. Buffaloes arenow raised only in thirty countries in theworld, from which over 96 percent are in Asia(Cockrill, 1974, 1984; Bhat, 1992).

Although in past centuries a worldwideexchange of cattle breeds, together with theadoption of similar management andselection schemes have taken place, everycountry followed their own path in themanagement of their respective populationsas dictated by local conditions. The result of

this process was a wider differentiation ofpopulations and productive traits,accentuated by the non-consistent exchangeof genetic material between countries(Bhat, 1992; Mahadevan, 1992;Boyazoglu, 1996).

The scientific community is aware of thenegative effects produced by the loss ofvariation in animal genetic resources, due tohuman interference. Livestock biodiversity isimportant because the genes and genecombinations they carry may be useful in thefuture for traits that are presently unknown ordifficult to define, e.g. disease and stressresistance, quality and composition ofproducts, adaptation to differentenvironments or farming systems (Boyazogluand Flamant, 1990; Matassino andMoioli, 1996; Hammond, 1998;Boyazoglu, 1999).

In this context, the investigation of geneticrelationships among buffalo populations inorder to study their origin, domestication and

Figure 1. Italian buffalo in Tor Mancina farm, Rome, Italy.

Page 42: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

33

Animal Genetic Resources Information, No. 29, 2001

Moioli et al.

genetic structure, will provide a useful tool insupporting conservation decisions anddesigning of breeding schemes.

The present study is a first step of a globalproject aiming at the evaluation of the geneticdistances and relationships among buffalopopulations and the investigation ofproduction potential and adaptability ofdifferent buffalo genotypes in variousenvironments. The implementation of theproject started with the comparison of Italianand Greek buffalo populations.

In Italy in the past, buffalo was neglected,it was a poor milk producer but able tosurvive in unhealthy swampy lands. It hasnow become a highly desired livestock, whichproduces top quality and thehighest-in-demand cheese (Rossi et al., 1998).There are 150 000 buffaloes in Italy, 85 percentof them concentrated in Central-Southernregions. The average herd size is50-100 animals. The low rate of AI use and thelittle exchange of breeding stocks amongfarms could lead to the independent geneticdevelopment of the herds (Pilla and Moioli,1992).

In Greece, due to the rapidly changingsocio-economic conditions, including themechanization of the agricultural sector andthe introduction of imported dairy cattlebreeds, the number of buffaloes has declineddramatically over the last decades. As aresult, from the 75 000 animals counted at theend of the 1950s, today only 1 000 headsremain in some wetlands in Northern Greece,particularly in the regions of Macedonia andThrace. The population is distributed in12 herds with an average herd size of85 heads. These animals are mainly used formilk and meat production (Georgoudis et al.,1994, 1998).

Recently, the developments in DNAtechnology for identification of genes andQTLs, provide useful tools in analyzing thegenetic diversity and managing farm animalgenetic resources. Microsatellites, which arenow generally considered the most powerfulgenetic markers to describe genetic animalpopulation variability, were proposed for theanalysis of animal genetic diversity by the

Expert Working Group in the SecondaryGuidelines for Development of Farm AnimalGenetic Resources Management Plans,Measurement of Domestic Animal Diversity(FAO, 1998). The protocol in these guidelinesis being followed in the present project,regarding the sampling, markers andstatistical analysis.

Material and Methods

Sampling of animals of the twopopulations and DNA extraction

Buffaloes for genotyping were chosen in orderto assure that they were a representativesample of the two populations. The sample ofthe Italian buffalo population analyzed in thepresent study was composed of 38 animals,28 bulls in progeny testing, from 12 differentfarms located in six provinces and ten cowsfrom different dams and sires of the researchfarm of the Ministry of Agriculture (Rome).The Greek population analyzed in the presenttrial consisted of 32 animals belonging toeight herds between which no exchange ofbreeding stock had occurred. Animals of eachherd were chosen from different years ofbirth, to assure that they were born fromdifferent sires; in fact, it is common practice touse different breeding bulls every year.

DNA was extracted either from semenwith the GENOMIX extraction kit (Talent,Trieste, Italy) or from frozen blood with theQiagen extraction kit (Qiagen Gmbh, HildenGermany).

Microsatellite polymorphismdetection

From the set of microsatellites, which wereshown to be polymorphic in cattle and buffalo(FAO, 1998; Moore et al., 1995), nine,CSSM043, DRB3, CYP21, D21S4, CSSM38,CSSM47, CSSM60, CSSM36 and CSSM33 werepreliminarily amplified with polymerasechain reaction (PCR) using primer sequencesas suggested in literature (Moore et al., 1995).For all microsatellites, except CSSM36, PCR

Page 43: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

34Italian and Greek buffalo populations

products were analyzed with seven percentdenaturing polyacrylamide-sequencing gels.Visualization was achieved by the silverstaining procedure (Comincini et al., 1995).Allele sizes were determined by comparisonwith a ten bp sequencing ladder (LifeTechnologies, TM). Microsatellite CSSM36was analyzed for all samples, with a PerkinElmer ABI Prism 310 Genetic Analyzer,purchased during the trial, using theGenescan software (Perkin Elmer) whichdetects different alleles by comparing sizeswith standard DNA sizes (Tamra, PerkinElmer).

Statistical analyses

Allele frequencies and mean heterozygosityestimates for each population were obtainedusing the FSTAT programme (Goudet, 1995).Average gene diversity at each locus was

calculated according to Nei’s formula (Nei,1973), for each population separately and forthe two populations together. Average genediversity across loci was regressed on thenumber of alleles at each locus, as in Barker etal. (1997).

Wright’s fixation indices (Wright, 1943 and1951) were computed using the FSTATprogramme to assess genetic differentiation ofpopulations. They represent the probabilitythat two alleles chosen at random within thesame population in generation t are identicalby descent. Fit is the fixation index calculatedfor the total population, a measure of theglobal heterozygosity deficit (total inbreeding)(Barker et al., 1997); Fst is the fixation indexcalculated for each of the twosub-populations, a measure of the betweenpopulations heterozygosity deficit and Fis is ameasure of the within populationheterozygosity deficit (inbreeding).

Figure 2. Italian lactating buffaloes at the paddock.

Page 44: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

35

Animal Genetic Resources Information, No. 29, 2001

Moioli et al.

Table 1. Number of microsatellite alleles at each locus in Italian and Greek buffaloes,and number of shared alleles between the two populations.

Numbers of alleles

Locus TotalItalian

populationGreek

populationShared

CSSM43 4 2 4 2DRB3 9 9 5 5CYP21 4 4 4 4D21S4 2 2 2 2CSSM38 6 5 5 4CSSM47 13 7 12 6CSSM60 8 6 7 5CSSM36 6 4 6 4CSSM33 3 3 3 3Mean 6.1 4.6 5.3 3.9

Figure 3. Allele frequencies at locus DRB3.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9

Alleles

Fre

quen

cy (

%)

Italian

Greek

Figure 4. Allele frequencies at locus CSSM47.

0

15

30

45

1 2 3 4 5 6 7 8 9 10 11 12 13

Alleles

Fre

quen

cy (

%)

Italian

Greek

Page 45: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

○○

36

Italia

n a

nd

Gre

ek b

uffa

lo p

op

ula

tion

s

Table 2. Allele frequencies (%) of the anaysed microsatellites in the two populations.

AllelesLocus Population 1 2 3 4 5 6 7 8 9 10 11 12 13

Italian 9.2 90.8CSSM43

Greek 10.9 15.6 3.1 70.4Italian 43.2 13.5 18.9 2.7 12.2 2.7 2.7 1.4 2.7

DRB3Greek 53.1 17.2 17.2 9.4 3.1Italian 45.0 30.00 20.0 5.0

CYP21Greek 33.3 26.2 38.1 2.4Italian 32.3 67.7

D21S4Greek 34.5 65.5Italian 13.2 11.8 2.6 21.1 51.3

CSSM38Greek 25.8 1.6 1.6 33.9 37.1Italian 3.0 1.5 13.6 4.5 19.7 39.5 18.2

CSSM47Greek 1.9 7.4 11.1 3.7 9.3 3.7 11.1 3.7 14.8 25.9 3.7 3.7Italian 12.1 3.0 18.2 4.5 34.9 27.3

CSSM60Greek 24.2 8.1 14.5 9.7 16.1 25.8 1.6Italian 14.9 6.8 56.8 21.5

CSSM36Greek 20.7 5.2 10.3 48.3 13.8 1.7Italian 81.7 5.0 13.3

CSSM33Greek 80.7 4.8 14.5

Page 46: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

37

Animal Genetic Resources Information, No. 29, 2001

Moioli et al.

Results

In table 1, allele frequencies for each of thenine microsatellite loci in each of the twopopulations are reported. The number ofalleles per locus varied from two (D21S4) tothirteen (CSSM47). Only for three loci, CYP21,D21S4 and CSSM33, were all detected allelesfound in both Italian and Greek buffaloes. Themean number of alleles per locus is slightlylower in the Italian groups (4.6) than in theGreek (5.3). In DRB3 locus, nine alleles werefound in the Italian population, while in theGreek samples four of them were not detected(Figure 3). Conversely, in CSSM43 locus, fouralleles were found in the Greek population ofwhich only two were detected in the Italianone.

Allele frequency distribution at the nineanalyzed loci is given in table 2. For six loci(CSSM43, CSSM38, DRB3, D21S4, CSSM36and CSSM33) the same alleles are at thehighest frequency in the Italian and Greekpopulations. At locus CYP21, the twopopulations showed consistent frequencies,although different, at loci 1, 2 and 3, whileboth of them have a very low frequency atlocus 4. Locus CSSM47 is the mostpolymorphic, especially in the Greekpopulation (Figure 4), followed by DRB3(Figure 3) and CSSM60 (Figure 5).

Average gene diversity (Nei, 1973) over allloci in the two populations was 0.605, whilefor individual loci average gene diversityranged between 0.320 (CSSM43; CSSM33) and0.835 (CSSM47) (Table 2). Across loci, average

Table 3. Average gene diversity.

Locus Italian Population Greek Population TotalCSSM43 0.167 0.469 0.320DRB3 0.741 0.649 0.712CYP21 0.665 0.675 0.682D21S4 0.437 0.452 0.444CSSM38 0.660 0.680 0.686CSSM47 0.751 0.866 0.835CSSM60 0.754 0.812 0.801CSSM36 0.603 0.691 0.650CSSM33 0.312 0.327 0.320Mean/locus 0.565 0.624 0.605

Figure 5. Allele frequencies at locus CSSM60.

05

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

Alleles

Fre

quen

cy (

%)

Italian

Greek

Page 47: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

38Italian and Greek buffalo populations

gene diversity increases by the number ofalleles (regression co-efficient = 0.03±0.01,P<0.05).

Observed heterozygosity averaged on allloci was 0.167 for the Italian and 0.177 for theGreek population. It was insignificantly lowerthan the expected heterozygosity (0.222 and0.247, respectively for the Italian and theGreek).

Estimated means of the total fixation indexseparately for the two populations were0.350 for the Italian and 0.242 for the Greek,indicating that the Italian population is moreinbred.

Estimated mean for Fst (differentiationbetween Italian and Greek buffalo) was0.021±0.009. The overall estimate ofinbreeding co-efficient was 0.313±0.054.

Discussion

This is the first study on the genetic diversityof buffalo populations in Europe and the NearEast, which are all considered to be of theMediterranean type on the basis of theirphenotype and performances where theresults provide an indication on the feasibilityof the methodology and give a preliminarydescription of some loci.

Observed heterozygosity (0.167 for theItalian and 0.177 for the Greek buffaloes) wasnot significantly different from the expectedunder the random mating assumption ineither population (0.222 for the Italian and0.247 for the Greek buffaloes). The lowervalues of the observed and expectedheterozygosities, compared to the valuesfound by Barker (1997) for river buffaloes inAsia (0.558 and 0.579), confirm that aconsiderable loss of biodiversity in buffalo hasoccurred in Europe, as a consequence of thedecline in numbers and increased inbreeding.

Differentiation of the Italian and Greekbuffaloes (0.021) resulted in even lower thanthe average differentiation (0.038) that Barker(1997) found between three different riverbuffalo populations, South Sri Lankan, SriLankan Murrah and Malaysian Murrah.Considering that the value of differentiationbetween swamp type buffalo obtained by

Barker (1997) was much higher (0.178) andthat rates up to 0.15 indicate moderatedifferentiation between populations (Hartl,1980), the obtained results (0.021) suggest thatthere is a need to investigate more thoroughlythe genetic differences between the twopopulations through the analysis of furtherloci.

The Greek population seems to have alower rate of inbreeding (0.242) in spite of itssmall size compared to the Italian (0.350),which may be explained by the absence ofany directional selection. In addition, theexpected heterozygosity in the Greekpopulation is higher than in the Italian,indicating that the population has retainedthe presence of several alleles, although at asmall frequency. This implies a higheramount of genetic variability that might beused in planning breeding strategies and canbe exploited particularly in populations ofsmall size. Furthermore, such variabilitycould also be employed to detect geneticmarkers that might be linked to quantitativetrait loci (QTL).

In order to have a better picture of thegenetic diversity of the consideredpopulations and to accurately estimate thediversity parameters when more than twopopulations are analyzed, FAO (1998)suggested that the number of polymorphicloci to be analyzed should not be less than 20.The present work will therefore be extendedto include more microsatellite loci as well asother river buffalo populations.

References

Barker, J.S.F., Moore, S.S.,Hetzel, D.J.S., Evans, D., Tan, S.G. &Byrne, K. 1997. Genetic diversity of Asianwater buffalo: microsatellite variation and acomparison with protein-coding loci. Anim.Genet. 28, 103-115.

Bhat, P.N. 1992. Genetics of RiverBuffaloes. In Tulloh, N.M. & Holmes, J.H.G.(Eds), "Buffalo Production", Elsevier,pp. 13-58.

Page 48: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

39

Animal Genetic Resources Information, No. 29, 2001

Moioli et al.

Boyazoglu, J. 1996. Growing interest inthe Water Buffalo: A short bibliographicupdate. Animal Genetic ResourcesInformation 19, 7-16.

Boyazoglu, J. 1999. Mediterraneansystems of production. In “The world ofpastoralism”. Guilford Press, new York(USA), pp. 353-393.

Boyazoglu, J. & Flamant, J. C. 1990.Livestock production systems and localanimal genetic resources with specialreference to the Mediterranean Region, 7th

Congress of the Mediterranean Federation forRuminant Health & Production, Santarem,Portugal, 22-24 April, 1999, 31-40.

Cockrill, W. Ross (Ed.), 1974. TheHusbandry and Health of Domestic Buffalo.FAO, Rome, pp. 650.

Cockrill, W. Ross, 1984. Water Buffalo.In Mason, I.L. (Eds), Evolution ofDomesticated Animals, Longman, pp. 52-63.

Comincini S., Leone, P., Redaelli, L.,DeGiuli, L., Zhang, Y. & Ferretti, L. 1995.Characterization of bovine microsatellites bysilver staining. J. Anim. Breed. Genet. 112,415-420.

FAO. 1998. Secondary Guidelines forDevelopment of Farm Animal GeneticResources Management Plans, Measurementof Domestic Animal Diversity (MoDAD),Rome, 25-29.

Georgoudis, A.G., Ligda, Ch. &Boyazoglu, J. 1994. Population characteristicsof water buffaloes in Greek wetlands. Anim.Genet. Res. 14, 83-95.

Georgoudis, A.G., Papanastasis, V.P. &Boyazoglu, J.G. 1998. Use of water buffalo forthe environmental conservation of waterland.Review. 8th World Conference on AnimalProduction, Seoul, Korea, 341-350.

Goudet, J. 1995. FSTAT, Version 1.2: Acomputer program to calculate F-statistics.J. Heredity 86, 485-486.

Hammond, K. 1998. Development ofthe global strategy for the management offarm animal genetic resources. Proc. of the 6th

World Congress on Genetics Applied toLivestock Production. Armidale, Australia,11-16 January 1998. Vol 28, 43-50 .

Hartl, D. 1980. Principles of populationgenetics. Sinauer Associates Inc., Sunderland,Massachusset, USA, 164-165.

Loftus, R.T., Machugh, D.E., Bradley,D.G., Sharp, P.M. & Cunningham, P. 1994.Evidence for two independent domesticationsof cattle. Proc. Natl. Acad. Sci., 91: 2757-2761.

Mahadevan, P. 1992. Distribution,Ecology and Adaptation. In “BuffaloProduction”, Tulloh, N.M. and Holmes, J.H.G.(Eds), Elsevier, pp. 1-12.

Matassino, D. & Moioli, B. 1996. Thegenetic improvement and the germplasmconservation for quality. Proc. Int. Symp. onBuffalo Products. Paestum, 1-4 December1994. EAAP Publication no. 82, 131-144.

Moore, S., Evans, D. & Byrne, K. 1995.A set of polymorphic DNA microsatellitesuseful in swamp and river buffalo. AnimalGenetics 26, 355-359.

Nei, M. 1973. Analysis of gene diversityin subdivided populations. Proc. Nat. Ac. Sci.USA 70, 3321-3323.

Pilla, A. & Moioli, B.M. 1992. Geneticevaluation of buffalo for milk production withan Animal Model. Zoot. Nutr. Anim., 18,207-218.

Rossi, G., Moioli, B.M. & Borghese, A.1998. Buffalo farming: present situation andperspectives. I Georgofili, Quaderni, IV,Studio Editoriale Fiorentino, Firenze,Italy, 37-69

Page 49: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

40Italian and Greek buffalo populations

Vaz Portugal, A. , Pires da Costa, J.,Mira, J.F. & Cortes Martins, L. (Eds). Proc. ofthe 7th Congress of the MediterraneanFederation for Ruminant Health andProduction, Santarem, Portugal, 22-24 April1999, 19-26.

Wright, S. 1943. Isolation by distance.Genetics 28, 114-138.

Wright, S. 1951. The genetical structureof populations. Ann. Eugen. 15, 323-354.

Page 50: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

41

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

AGRI 2001, 29: 41-47

The Jakhrana Goat in India

B. Rai, S. Tiwari & B.U. Khan

Central Institute for Research on Goats, Makhdoom, P.O. Farah-281 122, Mathura, India

Summary

Jakhrana is an important dairy breed of thesemi-arid tract of the Rajasthan State of India.The habitat of this breed is a small hamlet inthe Aravali hill ranges. The breed is spreadover a limited area and the population size issmall. The breed is of medium size, with apredominantly black coloured coat with whitespots on ears and muzzle. Body weight, bodylength, punch girth, heart girth and bodyheight at 12 months of age were respectively,30.9±1.7 kg, 69.5±1.9 cm, and 69.1±1.4 cm,61.9±0.6 cm and 77.2±1.6 cm in males and22.6±0.7 kg, 62.1±0.8 cm and 63.3±0.6 cm,60.1±0.6 cm and 69.1±0.7 cm for the females.Pre-weaning and post-weaning body weightgains were higher in males. Overall milk yieldin 181 days was 116 kg. Kidding rate was75 percent in field conditions with a twinningpercentage of 79.1 percent. The field surveyon this breed indicated that the goats weremanaged in a traditional system. The goatswere kept by the farmers to meet theirnutritional as well as economic needs. Themarketing of live goats and goat products hadlimitations. There is no breedconservation/improvement programme atthe moment, this is urgently needed toimprove this goat breed.

Resumen

La Jakhrana es una importante raza caprinade leche de la zona semi árida del Estado deRajasthan en la India. El habitat de esta razase encuentra en una pequeña aldea de lascolinas de Aravali. La raza se extiende poruna zona limitada y el tamaño de la poblaciónes bastante reducido. Esta raza es de tamañomedio, el color del manto es prevalentemente

negro con manchas blancas en las orejas yhocico. El peso corporal, largura, cinchera,circunferencia torácica, y altura a los 12 mesesson, respectivamente, de 30,9±1,7 kg,69,5±1,9 cm, y 69,1±1,4 cm, 61,9±0,6 cm y77,2±1,6 cm para los machos, y 22,6±0,7 kg,62,1±0,8 cm y 63,3±0,6 cm, 60,1±0,6 cm y69,1±0,7 cm para las hembras. La ganancia depeso corporal pre y post destete es elevada enlos machos. La producción total por lactaciónde 181 días fue de 116 kg. Los partos tienenlugar en condiciones de campo en 75% de loscasos, con una incidencia gemelar del 79,1%.Una encuesta realizada sobre el terreno sobreesta raza indicó que normalmente el sistemade conducción era tradicional. Losagricultores crian a los animales para cubrirsus necesidades nutricionales así comoeconómicas. El mercado de animales vivos yde productos caprinos presenta ciertaslimitaciones. No existe actualmente unprograma de conservación/mejora de la raza;por lo que resulta urgente tomar medidas aeste respecto.

Key Words: Jakhrana goat, Managementpractices, Production performance.

Introduction

Goats have played a very vital role for mansince prehistoric times. They were probablyamong the first animals to be domesticatedaround 9000-7000 BC (Zeuner, 1963). Thereare 20 defined goat breeds in India whichconstitute 20-25 percent of the total goatpopulation and the remaining 75-80 percentare of a non- descript type with variablefeatures. Goats are one of the dependablesources of income and provide nutritionalsupport to the people living in the arid and

Page 51: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

42Jakhrana Goat in India

semi-arid, hilly and tribal areas. Seventeenpercent of the world and 26 percent of theAsian goat population are found in Indiaalone (FAO, 1997), which contributesignificantly to the income of poor farmers byproduction of meat, milk, skins and otherby-products.

The Jakhrana breed of goats found in theRajasthan Province of the country, is wellknown for their production potential all overthe country. This breed is well-recognized as adairy breed with a good record of milkproduction. The name of the breed derivesfrom the name of a village called ‘Jakhrana’where the goat with the highest concentrationis found. Jakhrana village is located in BehrorTehsil region of the Alwar district inRajasthan, however, the breed is also found inneighbouring areas. Due to its dark blackcolour, the breed is locally known as ‘Kalikotri’. A survey conducted in the breedingarea of Jakhrana indicated that the averageherd size was 5.5 does and 4.1 kids per herd.Almost 50 percent of the herds was keptunder extensive systems of management. Thegoats are mainly kept in improvised thatchedhouses with mud floors (76 percent farmers).Grazing was mostly dependent on poor rangelands and lopping of trees (P. cinreria,Z. numularia) due to the shortage of biomassin the grazing area most of the time. Cropstubbles and residues are the potential sourceof seasonal grazing. During inclementweather goats are also fed on straw, dryfodder and tree leaves along with smallquantity of grains.

Population and Distribution

Rajasthan with 13 percent of the total goatpopulation of India had 5.56 million goats in1951 which increased to 15.31 million in 1992as per the Livestock Census of India (1992).Jakhrana is a hardy goat breed well adaptedto the semi-arid climatic conditions ofRajasthan. The breed is found in Jakhranavillage and neighbouring areas near Behror inthe Alwar districts of Rajasthan(Acharya, 1982). However, cross goats of thisbreed are also found in neighbouring areas.

According to a rough estimate, the number ofgoats which are true to the breed is no morethan 6 000. The total goat population of theAlwar district was 480 000 heads during theyear 1988 (Census Report, 1988).

Climate/Adaptability

The agro-climatic conditions in the naturalhabitat of this breed is semi-arid with verylow and erratic rain-fall. The Rajasthan Statenormally experiences an annual rainfall of20 to 40 cm. However, in the home tract of thebreed the average annual rainfall is 64.81 cm.The average temperature ranges between8.3 and 40.6°C in this area (Acharya, 1982).During the rainy season good pastures areavailable whereas during the dry season onlypoor quality grazing is available and Jakhranagoats are well adapted to the semi-aridclimatic conditions and thrive on such poorquality grazing. The natural habitat of thisbreed has sandy soil, lower water level andintermittent dry spells. Due to the climaticand soil conditions, agricultural activities arelimited during the year. The grazing area forgoats includes forest, wasteland and hillockswhere trees and bushes are scanty.

Management Practices

A pilot study conducted during the year1993-94 in the home tract of the Jakhranabreed revealed that extensive managementsystems (48 percent) prevailed in villageconditions followed by semi-intensive(31 percent) while 20 percent of the goats aremainly kept in intensive systems, includingbreeding bucks and high yielding does. Nospecific housing is provided in this area. Onlyimprovised thatched housing was providedby 76 percent of the goat keepers whereas23 percent of the goats was kept in the familyhouses. The flooring of houses was mudbased (Kachcha) in all cases. The goats were letout for grazing in the field but due to lack ofbiomass (bushes and grasses) the lopping offodder trees was adopted. The grazing hourswere limited to 5.4 hours per day. Goats werepreferably grazed by old people (79 percent)

Page 52: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

43

Animal Genetic Resources Information, No. 29, 2001

Rai et al.

in the village. Additional feed was providedto the goats in the form of leguminous fodder(46 percent), straw (15 percent), tree leaves(25 percent) and dalia (cooked millets) by19 percent of the goat keepers (Table 1).However, concentrate was provided by onlysix percent of the respondents. The sale of thegoats was made in the village itself, althoughthis fetched lower prices (Rs. 400/per kid,Rs.1500/per adult goat) due to middlemanintervention in the sale/purchase system. Thestudy indicated that the Jakhrana goats weremanaged under the traditional management

system. It is necessary to popularize scientificrearing methods in field conditions to increasethe production of the goats (Khan, 1994).

Phenotypic Characters

The animals of this breed are fairly large insize with narrow forehead and raised faces.Legs are long with a deep and compact body.The udder is well developed with long andconical teats. The coat colour ispredominantly black with white spots on theears and muzzle (Figures 1 and 2). The coat isshort and lustrous. The face line is straightwith shining eyes. Ears are of medium sizeand drooping in most cases. Both sexes arehorned, males had comparatively thick hornsdirected upwards. The adult body weight ofthe male and female were 57.8±3.5 kg and44.4±0.5 kg, respectively (Acharya, 1982).

Body size

The mean values of body size in terms ofbody length, heart girth, paunch girth andbody height is presented in table 2. It is notedthat all the measurements in the males hadhigher values than the females at all ages.

Body weights

The average mean body weights at birth, 3, 6and 12 months of age were 2.7±0.1, 11.9±0.6,17.3±0.5 in males and 2.4±0.1, 10.4±0.6,15.7±0.5 and 22.6±0.7 kg in females,respectively (Table 3). The body weights ofadult bucks and doe were recorded as57.8±3.5 kg and 44.4±0.5 kg, respectively. Thepre-weaning growth (0-3 months) was higherin males and female kids as compared topost-weaning growth (Table 4).

Reproduction and Breeding

A pilot survey conducted in the breeding tractof the Jakhrana goats indicated that May andJune were the pronounced season of breedingwhich resulted in 83.3 percent kidding during

Table 1. Management practices in the home tract ofJakhrana Goats (Khan, 1994).

Practice

Respondents(N = 68)(percent)

Management systemExtensiveIntensiveSemi-Intensive

482030

HousingThatched houseImproved ShedOwn House

760

23Floor

Mud based (Kachcha)Pacca

100---

GrazierLadiesChildrenOld person

40

79Additional Feeding

Leguminous Fodder (Gwar)Straws (Gram + Gwar)Tree leavesCooked millets (Dalia)Concentrate

26142519

5Sale of Goats*

KidsAdult

Rs. 400/kidRs.1500/goat

*Sale prices are based on the year 1993-94.

Page 53: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

44Jakhrana Goat in India

October (Table 1). The kidding rate in fieldconditions was 75 percent, the twinningpercent was quite high (79.1 percent) incomparison to single (16.6 percent) and triplet(4.1 percent). The age at first kidding was574±45 days in farm conditions, however,Acharya (1992) reported a lower estimate(316±51 days). Kidding interval was319.2±12.2 days in farm conditions (Table 5).These estimates indicated that Jakhrana is a

prolific breed and there is a fair scope toimprove its breeding efficiency further infield/farm conditions of management.

Production Performance

Milk production performance of Jakhranagoats is presented in table 5. The partlactation yield of 90 days and 150 days was74±2 kg and 101.5±3 kg, respectively in farmconditions. Milk yield was 116±3 kg in alactation length of 181±4 day. The peak yield

Table 2. Body measurements(cm) of Jakhrana goats (Anonymous, 1994).

Agegroup

Body lengthMale Female

Heart girthMale Female

Paunch girthMale Female

Body heightMale Female

At birth 29.9±0.2(92)

29.0±0.3(83)

35.3±0.3(92)

34.2±0.3(83)

29.2±0.2(92)

28.2±0.2(83)

35.3±0.3(92)

34.2±0.3(83)

3 month 50.5±0.9(80)

49.9±1.0(79)

55.3±0.9(80)

53.0±0.9(79)

49.8±1.0(80)

48.3±0.9(79)

55.3±0.9(80)

53.0±0.9(79)

6 month 57.5±0.6(64)

55.8±0.6(43)

61.9±0.6(64)

60.1±0.6(43)

55.9±0.4(64)

55.0±0.5(43)

61.9±0.8(64)

60.1±0.6(43)

12 month 69.5±1.9(4)

62.1±0.8(27)

77.2±1.6(4)

69.1±0.7(27)

69.1±1.4(4)

63.3±0.6(27)

77.2±1.6(4)

69.1±0.7(27)

Figures in parentheses indicate the no. of observations.

Table-3. Body weight (kg) at different ages in Jakhrana Goats (Anonymous, 1994).

Parameter No. Male No. FemaleBirth weight 92 2.7±0.1 83 2.4±0.1Weaning weight 80 11.9±0.6 79 10.4±0.66 Months weights 64 17.3±0.5 43 15.7±0.512 Months weight 04 30.9±1.7 27 22.6±0.7

Table 4. Body weight gain (gm/day) in Jakhrana Goats (Anonymous, 1994).

Parameter No. Male No. FemalePre-weaning (0-3 Month) 84 100±8.0 85 70±7.0Post-weaning (3-6 Month) 05 65±4.3 31 45±1.8

Page 54: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

45

Animal Genetic Resources Information, No. 29, 2001

Rai et al.

Figure 1. Jakhrana buck.

Figure 2. Jakhrana doe.

Page 55: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

46Jakhrana Goat in India

was 1.2±0.1 kg in farm conditions. Acharya(1982) reported higher lactation yield in thisbreed. The milk yield in village conditionswas higher and the highest yield wasrecorded as 3.5 kg per day. This was due toindividual attention paid to care and feedingof the goats.

Survivability and DiseaseResistance

A study was conducted at CIRG, Makhdoomon Jakhrana kids (298) to assess theiradaptability and survivability in semi-aridconditions of India. The results indicated thatmortality in kids was 1.6 percent per annum.The major causes (81 percent) for mortalitywere pneumonia, colibacillosis, toxaemia,pneumoenteritis and coccidiosis. The leastsquare analysis of variance revealed that birthweight and season of kidding had asignificant effect on mortality. Findingsfurther revealed that this breed is welladapted to semi-arid climatic conditions (Goelet al., 1997).

Improvement Programme

Little effort has been made to improve thisgoat breed. Production performance wasevaluated in a closed flock maintained at

Table-5. Production characteristics of Jakhrana goats (Anonymous, 1994).

Parameters No.Age at first kidding (day) 6 574±46Weight at first kidding (kg) 89 34.8±0.5Kidding interval (day) 42 319±1290 days milk yield (kg) 89 74±2150 days milk yield (kg) 79 101±3Lactation milk yield 89 116±3Lactation length (day) 89 181±4Peak yield (kg) 89 1.2±0.0Peak week 89 2.81±0.3

CSWRI Avikanagar, Rajasthan under theauspices of the All India Coordinated Projecton Goats (AICRP). Results accrued fromAICRP on goats indicated that this breed hada considerable production potential for milkand meat production in semi-arid climaticconditions. Jakhrana goats have beenintroduced in different places and buck areused for upgrading the local goats forincreasing milk production. Since this breedhas been enlisted as endangered, it needsmore concerted efforts towards conservationas well as improvement. There is an urgentneed to launch an effective breedimprovement programme in the home tract ofthe breed with the help of national andinternational collaboration. In general NGOscan play a vital role in the breed developmentprogrammes in India as their role in goatimprovement has been commendable in theMaharashtra and Rajasthan States particularlyto improve Osmanabadi and Sirohi goats,respectively.

Acknowledgement

The authors acknowledge the Director, CIRGMakhdoom for providing the facilities for thisstudy.

Page 56: 2001 ANIMAL GENETIC RESOURCES INFORMATION · Animal Genetic Resources Information is published under the joint auspices of the Food and Agriculture Organization of the United Nations

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

47

Animal Genetic Resources Information, No. 29, 2001

Rai et al.

References

Acharya, R.M. 1982. Sheep and goatbreeds of India. Animal production andhealth paper 30. Food and AgricultureOrganization of United Nations. Rome, Italy,pp. 61.

Acharya, R.M. 1992. Goat Production inAsia. In: Souvenir of V InternationalConference on Goats held in New Delhi, 2-8March 1992, pp. 56.

Anonymous. 1994. Evaluation ofJakhrana Goats in farm conditions. WesternRegional Research Centre, Avikanagar,Rajasthan (Unpublished data).

Census Report. 1988. Livestock censusof Rajasthan. Directorate of AnimalHusbandry, Govt. of Rajasthan, Jaipur, India.

FAO. 1997. Production Yearbook 50.Food and Agriculture Organization of theUnited Nations, Rome, Italy.

Goel, A.K., Agrawal, K.P. &Saxena, V.K. 1997. Survivability and diseaseincidence in Jakhrana kids in semi-aridconditions. (Abstr.) In: Third NationalSeminar on Small Ruminant Diseases held atthe Central Institute for Research on Goats,Makhdoom, Mathura (U.P.), 2-3 December1997, pp. 108.

Khan, B.U. 1994. Pilot survey onJakhrana goats in its home tract. (PersonalCommunication).

Livestock Census 1992. Directorate ofEconomics and Statistics, Ministry ofAgriculture, Government of India.

Zeuner, F.E. 1963. History ofDomesticated Animals. Harper and RawPress, New York. Cited from Sundaresan, D.(1976). Livestock Breeding in India. VikasPublishing House Pvt. Ltd. New Delhi, pp. 4.


Recommended