+ All Categories
Home > Documents > 2012 NComms - Geometrically-locked vortex lattices in semiconductor quantum fluids

2012 NComms - Geometrically-locked vortex lattices in semiconductor quantum fluids

Date post: 13-Apr-2017
Category:
Upload: guilherme-tosi
View: 62 times
Download: 0 times
Share this document with a friend
15
ARTICLE Received 21 May 2012 | Accepted 5 Nov 2012 | Published 4 Dec 2012 Geometrically locked vortex lattices in semiconductor quantum fluids G. Tosi 1,2 , G. Christmann 1 , N.G. Berloff 3 , P. Tsotsis 4,5 , T. Gao 4,5 , Z. Hatzopoulos 5,6 , P.G. Savvidis 4,5 & J.J. Baumberg 1 Macroscopic quantum states can be easily created and manipulated within semiconductor microcavity chips using exciton-photon quasiparticles called polaritons. Besides being a new platform for technology, polaritons have proven to be ideal systems to study out-of-equili- brium condensates. Here we harness the photonic component of such a semiconductor quantum fluid to measure its coherent wavefunction on macroscopic scales. Polaritons originating from separated and independent incoherently pumped spots are shown to phase-lock only in high-quality microcavities, producing up to 100 vortices and antivortices that extend over tens of microns across the sample and remain locked for many minutes. The resultant regular vortex lattices are highly sensitive to the optically imposed geometry, with modulational instabilities present only in square and not triangular lattices. Such systems describe the optical equivalents to one- and two-dimensional spin systems with (anti)- ferromagnetic interactions controlled by their symmetry, which can be reconfigured on the fly, paving the way to widespread applications in the control of quantum fluidic circuits. DOI: 10.1038/ncomms2255 1 NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK. 2 Departamento de Fı ´sica de Materiales, Universidad Autono ´ma, Madrid E28049, Spain. 3 Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. 4 Department of Materials Science & Technology, University of Crete, PO Box 2208, Heraklion 71003, Greece. 5 Foundation for Research and Technology-Hellas, Institute of Electronic Structure & Laser, PO Box 1527, Heraklion 71110, Greece. 6 Department of Physics, University of Crete, PO Box 2208, Heraklion 71003, Greece. Correspondence and requests for materials should be addressed to J.J.B. (email: [email protected]). NATURE COMMUNICATIONS | 3:1243 | DOI: 10.1038/ncomms2255 | www.nature.com/naturecommunications 1 & 2012 Macmillan Publishers Limited. All rights reserved.
Transcript

ARTICLE

Received 21 May 2012 | Accepted 5 Nov 2012 | Published 4 Dec 2012

Geometrically locked vortex latticesin semiconductor quantum fluidsG. Tosi1,2, G. Christmann1, N.G. Berloff3, P. Tsotsis4,5, T. Gao4,5, Z. Hatzopoulos5,6, P.G. Savvidis4,5

& J.J. Baumberg1

Macroscopic quantum states can be easily created and manipulated within semiconductor

microcavity chips using exciton-photon quasiparticles called polaritons. Besides being a new

platform for technology, polaritons have proven to be ideal systems to study out-of-equili-

brium condensates. Here we harness the photonic component of such a semiconductor

quantum fluid to measure its coherent wavefunction on macroscopic scales. Polaritons

originating from separated and independent incoherently pumped spots are shown to

phase-lock only in high-quality microcavities, producing up to 100 vortices and antivortices

that extend over tens of microns across the sample and remain locked for many minutes. The

resultant regular vortex lattices are highly sensitive to the optically imposed geometry, with

modulational instabilities present only in square and not triangular lattices. Such systems

describe the optical equivalents to one- and two-dimensional spin systems with (anti)-

ferromagnetic interactions controlled by their symmetry, which can be reconfigured on the

fly, paving the way to widespread applications in the control of quantum fluidic circuits.

DOI: 10.1038/ncomms2255

1 NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, UK.2 Departamento de Fısica de Materiales, Universidad Autonoma, Madrid E28049, Spain. 3 Department of Applied Mathematics and Theoretical Physics,University of Cambridge, Cambridge CB3 0WA, UK. 4 Department of Materials Science & Technology, University of Crete, PO Box 2208, Heraklion 71003,Greece. 5 Foundation for Research and Technology-Hellas, Institute of Electronic Structure & Laser, PO Box 1527, Heraklion 71110, Greece. 6 Department ofPhysics, University of Crete, PO Box 2208, Heraklion 71003, Greece. Correspondence and requests for materials should be addressed to J.J.B.(email: [email protected]).

NATURE COMMUNICATIONS | 3:1243 | DOI: 10.1038/ncomms2255 | www.nature.com/naturecommunications 1

& 2012 Macmillan Publishers Limited. All rights reserved.

In systems described by the laws of quantum mechanics,continuity of the wavefunction implies that circulating flowsassume quantized values called vortices. Vortex lattices were

first predicted1 and later observed2 in type-II superconductors, inresponse to an externally applied magnetic field. In neutralquantum fluids, external rotation was used to generate vortexlattices in superfluids of helium3 and later in atomic Bose–Einstein condensates (BECs)4. Recent proposals include thegeneration of honeycomb vortex-antivortex lattices throughlinear interference of three expanding BECs5. Such lattices havenever been observed experimentally, although related techniqueshave been used to nucleate vortices in BECs6 or vortex solitons innon-linear media that have been used as waveguides7 andphotonic crystals8.

Recently a new type of macroscopic coherent state wasobserved in semiconductor microcavities9, where excitons in aquantum well strongly couple with photons confined between twomirrors producing quasiparticles called polaritons10. Polaritoncondensates have a finite lifetime and need to be constantlypumped, prompting extensive studies of the rich phenomena inout-of-equilibrium condensates9. This also makes it simple toshape the condensate flow11–13 and sculpt the confinementpotential12–14 using the pump fields.

Vortices were first observed in polariton condensates in highlyinhomogeneous samples as a result of pump and decay processeswhich pin them to defects15,16. Recently it has also provedpossible to generate vortices by coherent resonant injection17,18

together with flow against defects19,20. However, no observationof the predicted21 spontaneous regular distribution of vortices ina lattice has yet been reported. Being neutral systems, polaritoncondensates cannot produce vortex lattices in response to amagnetic field, but theoretical proposals suggest generating suchlattices using harmonic traps15 or resonant laser injection22,23.

Here we show that it is possible to generate a stable lattice ofvortices, containing vortex sub-lattices of opposite windingnumbers, by appropriately engineering the condensate wavefunc-tion through shaping the pumping configuration. These aresustained inside next-generation high-quality samples, where theextremely low disorder permits polaritons to propagate laterallywithout being scattered, and allows them to respond to imposedrotational and translational symmetries which phase-lock differ-ent condensates through a new geometrical process. The vorticesobserved are stable for many minutes, independent of preciseposition on the microcavity, and the continuously replenishedlattices are directly seen in continuous-wave experiments. Adifferent regime observed at higher polariton densities reveals thenon-linear dynamics of topological defects that move insideguides defined by the geometry.

ResultsHoneycomb stable vortex lattice. First, we incoherently andcontinuously pump the microcavity sample with three 1 mmdiameter laser beams equidistant from each other. Each pumpspot generates an electron-hole plasma that rapidly cools andscatters into polaritonic modes, whose Coulomb repulsion locallyblueshifts their energies by D at each pump spot position. Theslow escape from the cavity of their photonic components allowsthe polariton wavefunctions to be measured. With equal powersin each pump, above a threshold (typically 5 mW per spot) aphase transition occurs, where the polariton energy distributionsuddenly collapses from thermal to a single mode, followed by anon-linear increase of the emission intensity (SupplementaryFig. S1).

Under suitable pumping conditions (Supplementary Fig. S2),interference patterns appear in the region where the condensates

overlap between the three pump spots (Fig. 1a), with a char-acteristic honeycomb structure. Such a honeycomb density pat-tern is predicted to support a stable vortex lattice21. To confirmthis, we extract the condensate phase using Fourier transformfiltering applied to interference images (Fig. 1c) generated in aMach–Zehnder interferometer (see Methods). The resultantphase image (Fig. 1b) shows up to 50 vortices and antivorticeslocated at the vertices of the honeycomb. Each vortex issurrounded by three vortices of opposite winding number, andso the hexagonal lattice can be seen as two Abrikosov-liketriangular lattices1 of opposite sign (Fig. 1e). The lattice is highlycoherent over tens of microns (Fig. 1d) with interferencevisibilities over 50%, whereas the non-emissive vortex cores areseen as points of zero coherence with undefined phase.

This specific pattern is described by a single wavefunctioncoherent over tens of microns. It is an intricate superposition ofwavevectors flowing out from each pump spot and slowing downat the neighbouring ones, with magnitude at each point given bythe condensate energy, Ec, and the local blueshift, D(r) (seeSupplementary Discussion and Fig. 2a,e),

kðrÞ¼K½DEc�DðrÞ� ð1Þ

where K[E] is the inverse dispersion relation (Fig. 2e) andDEc¼Ec� ELPB, the condensate energy with respect to thebottom of the unperturbed lower polariton branch (LPB).Polaritons are created with k¼ 0 at each pump spot andaccelerate outwards through decreasing blueshifts at largerdistances12,13, with D(r410 mm)¼ 0. In the centre between thethree pumped spots (spots centroid, O) the wavefunction is thusthe superposition of three ko vectors at 1201 to each other,directed out from each pump spot (Supplementary Fig. S3 andSupplementary Discussion), whose linear combination generatesthe honeycomb lattice5. However, the separation betweenadjacent vortices is not constant over the lattice as themagnitude and direction of each of the three k vectors changesspatially according to equation (1). For instance, as the blueshiftat each pump spot increases with pump power, the condensateenergy increases, increasing ko, and thus decreasing the spacingbetween central vortices, A. (Fig. 2f,g). The non-linear condensateproperties can thus be used to stretch the vortex lattice spacing,here by over 50% from 1.2 to 1.8 mm.

Ferromagnetic coupling. To fully describe the lattice wavefunc-tion, simulations are performed using a simple form of the meanfield model of polariton condensates6,15 through the complexGinzburg–Landau equation, which includes both dissipation andpumping,

i�h@tct ¼ � �h2

2mr2þU0 cj j2þ iPðr;cÞ� ik

� �c ð2Þ

where U0 is the strength of polariton interactions, k is theirdecay, and the details of pumping are included inPðr;cÞ¼ gðrÞ�GðrÞ jcj 2 � iZðrÞ�h@t . Here, the dimension-less parameter Z describes the energy relaxation via interactionsof condensate and reservoir, g is the gain and G is a nonlinearcoefficient describing the non-linear reduction of pumpingefficiency at large polariton densities. Parameters are the sameas in ref. 21(with a single component only), and the radius of thepumping spots is 1mm.

Numerical solution of this equation for three equally spacedpump spots reproduces the vortex lattice found in experiments(Fig. 2c,d). It gives a wavefunction with the same phase at eachpump spot position (Fig. 2d), independent of the initial state, andhence the central bright lobe appears at O, the spots’ centroid(Fig. 2c). This is the only solution that is invariant under

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2255

2 NATURE COMMUNICATIONS | 3:1243 | DOI: 10.1038/ncomms2255 | www.nature.com/naturecommunications

& 2012 Macmillan Publishers Limited. All rights reserved.

2

1

03020100

Power (mW)

–2 0 2

1.540

1.538

1.536

k0 ΔEcEc

O

Ene

rgy

(eV

)

0.1 10.11

LPB

0

00

A

L

Δy

xMicrocavity

kx (μm–1)

0

0

0 0

0

0 0

0

0

Figure 2 | Lattice control and geometric locking. (a) Schematic landscape of the blueshift-induced potential D(r) underlying the geometrically phase-

locked vortex lattice. (b) Measured polariton emission for 25 mW excitation power per spot, with green lines crossing at the spots centroid. Simulated

wavefunction (c) density and (d) phase, showing vortices and the equal phases at each pump spot position (represented by blue zeros inside circles). Scale

bars, 10mm. (e) Energy dispersion of the region inside the dashed green circle in Fig. 1a, showing the fitted LPB (purple line). Blueshift of the condensate

energy (DEc, black circles) is set by the blueshift at the excitation spots, with condensate momentum at the spots centroid (ko, purple triangles) given by

k(r)¼ K[DEc] (equation 1). (f) Normalized circulation calculated from Fig. 1e, showing the separation (A) between adjacent vortices, with lattice centroid

(L) and spots centroid (O). Scale bar, 1mm. (g) Power dependence of the lattice energy (DEc, in meV, black circles) with logarithmic fit (black line),

measured lattice maximum momentum (ko, in mm� 1, purple triangles) with prediction based on the dispersion (purple line), measured lattice separation

(A, mm, orange circles) with prediction (orange line) from A¼ 4p/ð3koffiffiffi3pÞ, and ferro offset (F¼ |L�O|/[2p/k0], in %, green circles). Dashed line at

condensation threshold.

x

x

x

x xx

xx

xxx

xx

xxx

x x

xxx

xx

xxx

x

x

x

xxx

xx

xx

x

xx

xx

x

xx

xx

π

–π

0

0.0

0.2

0.4

0.6

Figure 1 | Honeycomb vortex-antivortex lattice. (a) Intensity and (b) phase image of the polariton emission showing the honeycomb density pattern

between the three excitation spots (black circles) with vortices (red crosses) and antivortices (orange crosses) marked. Scale bars, 5 mm. (c) Interference

image of the region inside the dashed blue rectangle in a, showing vortices (red anticlockwise circles) and antivortices (orange clockwise circles) at the

vertices of the triangular sub-lattices. (d) First-order coherence function, g(1), extracted from c. (e) Expanded phase map of the dashed blue rectangle in b

again showing vortices and antivortices. Each spot is pumped with 14 mW for all the images. Scale bars, 1 mm (in c–e).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2255 ARTICLE

NATURE COMMUNICATIONS | 3:1243 | DOI: 10.1038/ncomms2255 | www.nature.com/naturecommunications 3

& 2012 Macmillan Publishers Limited. All rights reserved.

interchange of the spot positions, and so is geometrically imposedby the pumping configuration. However, it is spontaneously chosenby the condensate system because the phase carried by the pumpinglaser is completely lost during the relaxation processes. The pumpedspots acquire the same spontaneous phase (or equivalently, pseudo-spin) and our triangular configuration avoids pseudo-spin frustra-tion by insisting on ferromagnetic nearest neighbour interactions.Thus, the vortex lattice is controlled by the pseudo-spin symmetry ofthe optically induced condensates, analogous to ferromagnetism intwo-dimensional (2D) spin systems.

The precise vortex positions are extracted by calculating thecirculation, G¼

Hn:dl from the phase map, where n¼ �h

mrj is themeasured local fluid velocity. For any contour around a vortex thequantum of circulation is G¼±h/m. Using Stokes theorem, we thusgenerate a normalized circulation for each pixel of area dS (Fig.2f)given by

~G¼x:dS/ðh/mÞ, where the local vorticity, x¼=� v. The

separation (as a fraction of the periodicity 2p/ko) between thecentroids of this vortex lattice (L) and the pumped spots (O)quantifies the deviation from perfect ferromagnetic coupling (that is,the state where the phase at each pump spot is identical). For threedifferent powers, this ‘F offset’ is found to be always below 3%(Fig. 2g) for periods of time of many minutes much longer than�h=U0, showing that ferromagnetic coupling is always dominant inthe triangular geometry. The stability of the lattice persists then dueto the non-linear geometric phase locking of the free condensatephase of each pumped spot. This implies that rich spin phenomenasuch as ladder magnets24 may be directly investigated in thepolariton system.

Square bistable lattices. Lattices with different geometry can besimply engineered by changing the number and position of pumpspots. Square lattices are created when pumping the sample withfour spots placed at the vertices of a square (Fig. 3). However,unlike the three-spot geometry in which the condensates lock

with the same phase, numerical solutions of equation (2) showtwo different possible relative phases between nearest neighbourcondensates depending on initial conditions: either 0 (Fig. 3a,b)or p (Fig. 3c,d). These are analogous to ferromagnetism (F) andanti-ferromagnetism (AF), respectively, in 2D spin systems(Fig. 3h), and can again be distinguished in experiments bylooking at the polariton density at the centroid between the spots:as seen in experiments, F-coupled condensates have an antinodeat the centre (Fig. 3e) whereas AF-coupled have a node (Fig. 3g).This bistable pseudo-spin configuration, which can then corre-spond to a qubit or an interferometer, can potentially bemanipulated through direct laser excitation, as well as in litho-graphically patterned samples25.

We find effects unique to polariton liquids. If non-linear effectsare not taken into account, stationary lattices form and novortices are expected to appear at the spots centroid (Fig. 3b,dand Supplementary Fig. S4a,b). In this case each intensity lobewould have a constant phase with abrupt p shifts localized in thezero density regions. However, under high excitation powers, anAF-coupled lattice is accompanied with weaker energy sidebands(Fig. 3f) that indicate non-linear temporal dynamics. This isconfirmed by extracting the spatio-temporal behaviour fromexperiments (see Supplementary Discussion), which shows thatdark soliton instabilities generate vortex-antivortex pairs.Although the precise trajectory of each topological defect isstochastic, these vortices are completely constrained to the squaregrid defined by density minima. Such instabilities are observed inboth experiments and simulations (Supplementary Figs S5–S7).Modulational instabilities that nucleate vortex pairs also resembleeffects in non-linear optical media26.

This pump geometry thus provides a way to generate periodic2D structures in polariton condensates, with no need of a built-inperiodic potential27. The interacting topological defects movearound on the dark lines in this square matrix, while quantizedvalues of vortex charge can also be restricted to specific positions

Inte

nsity

(a.

u.)

1.53951.5375

Energy (meV) ΔE (meV)

Inte

nsity

(a.u

.)

543210

00

00

00

00 0

0

0

0

F

AF

AF

0 0

0 0

π 0

0 π

F AF

00

00

π 0

0

π

π

π

π

π

F AF

Figure 3 | Square lattice and pseudo-spin symmetry. (a–d) Numerical solutions of equation (2) under different initial noise, giving F (a,b) or AF (c,d)

lattices. Scale bars, 10mm. (e,g) Observed polariton density at main energy peak, 1.5374 eV and 1.5386 eV, respectively, for 12 mW and 40 mW excitation

power per spot, respectively, with the intersection between the two green lines marking the spots centroid. Scale bars, 2 mm. (f) Lattice spectra for

two different powers, 12 mW (blue line) and 40 mW (red line), with main peaks classified according to the polariton density at the spots centroid.

(h) Schematic ferromagnetic (F) and antiferromagnetic (AF) stable pseudo-spin configurations (numbers inside circles represent the condensate phase

at each pump spot). (i) Spectra of simulated square lattice.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2255

4 NATURE COMMUNICATIONS | 3:1243 | DOI: 10.1038/ncomms2255 | www.nature.com/naturecommunications

& 2012 Macmillan Publishers Limited. All rights reserved.

in this lattice (see Supplementary Fig. S4c–f). Controlling furthersuch vortices will pave the way towards manipulation of quantumfluidic circuits25.

DiscussionThe vortex lattices presented here are created with no need ofglobal stirring or external rotation, and the vortex/antivortexpairs yield no global angular momentum. They are thus markedlydistinct from lattices due to global phase symmetries described inref. 4, and present a close analogy to the formation of vortexsolitons in Kerr non-linear self-defocusing media7. The phaselocking between separately pumped condensates is a keyingredient for the lattice generation and stability, but here thelocking mechanism has no relation with previously reportedJosephson tunnelling in disorder-induced trappedcondensates28,29. Instead, each of the pumped spots isresonantly pumped by the outflow from the neighbouringcondensates inducing mode-locking to the same energy. As thephase of the polariton fluids has no relation to that of ourpumping lasers, the lattice is a purely non-linear polaritonic effectspontaneously emerging from the optically induced potential.

MethodsSample. The sample, held at 10 K in a cold finger cryostat, consists of a 5l/2Al0.3Ga0.7As distributed Bragg reflector microcavity with 32 (35) pairs ofAl0.15Ga0.85As/AlAs layers of 57.2 nm/65.4 nm in the top (bottom) mirrors. It hasfour sets of quantum well regions, each containing three 10 nm thick GaAsquantum wells separated by 10 nm thick Al0.3Ga0.7As layers, placed at the anti-nodes of the cavity electric field. The high cavity quality factor (Q416,000 mea-sured, and simulated photon lifetime of 9 ps) yields a characteristic Rabi splitting of9 meV. We choose the detuning between photonic and excitonic modes to be� 3 meV by scanning the cavity wedge.

Experiment setup. A Ti:sapphire single-mode continuous-wave laser pumps thesample at 750 nm (at the first spectral dip above the stop band) with 1 mm diameterspots through a 0.7 numerical aperture lens, which also collects light emitted by thesample. Magnified real-space and momentum-space images are recorded on a SiCCD or analysed spectrally with a 0.55-m monochromator and liquid nitrogen-cooled CCD.

Interferometry. To generate a reference wave for interferometry that is sensitiveonly to the relative condensate phases (as their absolute phase is freely diffusing),we use condensate emission from 40 mm outside the lattice, behind one of thepump spots. In this technique, introduced in refs 17,18, a small portion of thisconstant phase reference wave is magnified, and interfered with the sampleemission in a Mach–Zehnder interferometer (giving for instance Fig. 1c). As acontrol, this reference wave is confirmed to give parallel fringes with no artefactswhen interfering it with corresponding regions behind the other pumped spots.Phase and coherence images are then obtained when taking the first-order dif-fraction components from the Fourier-transformed interference images. Theargument of the back-transformed inverse Fourier transforms gives an image of thecondensate phase, whereas the intensity image gives the fringe visibility and hencethe first-order coherence. The latter is normalized to the product of the intensityfrom each interferometer arm.

References1. Abrikosov, A. A. On the magnetic properties of superconductors of the second

group. Soviet Phys. JETP 5, 1174–1182 (1957).2. Essmann, U. & Trauble, H. The direct observation of individual flux lines in

type II superconductors. Phys. Lett. A 24, 526–527 (1967).3. Yarmchuk, E. J., Gordon, M. J. V. & Packard, R. E. Observation of stationary

vortex arrays in rotating superfluid helium. Phys. Rev. Lett. 43, 214–217 (1979).4. Fetter, A. L. Rotating trapped Bose-Einstein condensates. Rev. Mod. Phys. 81,

647–691 (2009).5. Ruben, G., Morgan, M. J. & Paganin, D. M. Texture control in a pseudospin

Bose-Einstein condensate. Phys. Rev. Lett. 105, 220402 (2010).6. Scherer, D. R., Weiler, C. N., Neely, T. W. & Anderson, B. P. Vortex formation

by merging of multiple trapped Bose-Einstein condensates. Phys. Rev. Lett. 98,110402 (2007).

7. Swartzlander, Jr G. A. & Law, C. T. Optical vortex solitons observed in Kerrnonlinear media. Phys. Rev. Lett. 69, 2503–2506 (1992).

8. Fleischer, J. W., Segev, M., Efremidis, N. K. & Christodoulides, D. N.Observation of two-dimensional discrete solitons in optically inducednonlinear photonic lattices. Nature 422, 147–150 (2003).

9. Kasprzak, J. et al. Bose-Einstein condensation of exciton polaritons. Nature443, 409–414 (2006).

10. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of thecoupled exciton-photon mode splitting in a semiconductor quantummicrocavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

11. Amo, A. et al. Collective fluid dynamics of a polariton condensate in asemiconductor microcavity. Nature 457, 291–295 (2009).

12. Wertz, E. et al. Spontaneous formation and optical manipulation of extendedpolariton condensates. Nat. Phys. 6, 860–864 (2010).

13. Christmann, G. et al. Polariton ring condensates and sunflower ripples in anexpanding quantum liquid. Phys. Rev. B 85, 235303 (2012).

14. Tosi, G. et al. Sculpting oscillators with light within a nonlinear quantum fluid.Nat. Phys. 8, 190–194 (2012).

15. Keeling, J. & Berloff, N. G. Spontaneous rotating vortex lattices in a pumpeddecaying condensate. Phys. Rev. Lett. 100, 250401 (2008).

16. Lagoudakis, K. G. et al. Quantized vortices in an exciton-polariton condensate.Nat. Phys. 4, 706–710 (2008).

17. Sanvitto, D. et al. Persistent currents and quantized vortices in a polaritonsuperfluid. Nat. Phys. 6, 527–533 (2010).

18. Tosi, G. et al. Onset and dynamics of vortex-antivortex pairs in polaritonoptical parametric oscillator superfluids. Phys. Rev. Lett. 107, 036401 (2011).

19. Sanvitto, D. et al. All-optical control of the quantum flow of a polaritoncondensate. Nat. Photon. 5, 610–614 (2011).

20. Nardin, G. et al. Hydrodynamic nucleation of quantized vortex pairs in apolariton quantum fluid. Nat. Phys. 7, 635–641 (2011).

21. Keeling, J. & Berloff, N. G. Controllable Half-Vortex Lattices in an IncoherentlyPumped Polariton Condensate. Preprint at http://arxiv.org/abs/1102.5302(2011).

22. Liew, T. C. H., Rubo, Y. G. & Kavokin, A. V. Generation and dynamics ofvortex lattices in coherent exciton-polariton fields. Phys. Rev. Lett. 101, 187401(2008).

23. Gorbach, A. V., Hartley, R. & Skryabin, D. V. Vortex lattices in coherentlypumped polariton microcavities. Phys. Rev. Lett. 104, 213903 (2010).

24. Elbio, D. Experiments on ladders reveal a complex interplay between a spin-gapped normal state and superconductivity. Rep. Prog. Phys. 62, 1525–1571(1999).

25. Liew, T. C. H., Shelykh, I. A. & Malpuech, G. Polaritonic devices. Physica E:Low-dimensional Syst. Nanostruct. 43, 1543–1568 (2011).

26. Tikhonenko, V., Christou, J., Luther-Davies, B. & Kivshar, Y. S. Observation ofvortex solitons created by the instability of dark soliton stripes. Opt. Lett. 21,1129–1131 (1996).

27. Kim, N. Y. et al. Dynamical d-wave condensation of exciton-polaritons in atwo-dimensional square-lattice potential. Nat. Phys. 7, 681–686 (2011).

28. Baas, A. et al. Synchronized and desynchronized phases of exciton-polaritoncondensates in the presence of disorder. Phys. Rev. Lett. 100, 170401 (2008).

29. Wouters, M. Synchronized and desynchronized phases of couplednonequilibrium exciton-polariton condensates. Phys. Rev. B 77, 121302 (2008).

AcknowledgementsWe thank C. Anton and L. Vina for comments, and grants EPSRC EP/G060649/1, EUCLERMONT4 235114, EU INDEX 289968, Spanish MEC (MAT2008-01555) and GreekGSRT programs ARISTEIA and Irakleitos II. G.T. acknowledges financial support froman FPI scholarship of the Spanish MICINN.

Author contributionsG.T. and G.C. performed the spectroscopy experiments, and together with N.G.B. andJ.J.B. devised the experiments, analysed the data and wrote the manuscript. P.G.S.contributed to preparation of the manuscript and together with P.T., T.G., Z.H. designedand grew the microcavity samples, providing characterization spectroscopy to sustainhigh-quality performance. N.G.B. devised, coded and carried out the modellingsimulations.

Additional informationSupplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Tosi, G. et al. Geometrically locked vortex lattices in semi-conductor quantum fluids. Nat. Commun. 3:1243 doi: 10.1038/ncomms2255 (2012).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2255 ARTICLE

NATURE COMMUNICATIONS | 3:1243 | DOI: 10.1038/ncomms2255 | www.nature.com/naturecommunications 5

& 2012 Macmillan Publishers Limited. All rights reserved.

Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information  

G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                1    

Supplementary  Figures  

 

Supplementary   Figure   S1|   Condensation   phase-­‐transition.   When   incoherently   pumping   the   sample  with  a  single  spot,  a  phase  transition  occurs  above  10mW.  In  this  Figure,  as  a  function  of  the  excitation  power,  red  squares  show  the  polariton  luminescence  intensity  integrated  over  the  sample,  with  a  non-­‐linear   increase  at  10𝑚𝑊,  whereas  blue  circles  account   for   the  emission  energy   linewidth,   showing    a  sudden  collapse  from  thermal  (with  broad  linewidth)  to  a  single  mode  at  10𝑚𝑊.  Red  and  blue  lines  are  guides  to  the  eye.  

 

 

 

 

 

 

 

 

 

 

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Linewidth (m

eV)In

tegr

ated

inte

nsity

(arb

. uni

ts)

1 10 100Power (mW)

Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information  

G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                2    

 

Supplementary   Figure   S2|   Conditions   for   observing   stable   condensate   interference.   (a-­‐c)   Polariton  emission   images   for   two   pump   spots   placed   40𝜇𝑚   apart,   with   power   at   each   spot   indicated.   (d-­‐f)  Polariton  dispersions  corresponding  to  a  spatially-­‐apertured  20𝜇𝑚-­‐diameter  circle  centred  between  the  two  spots  in  (a-­‐c)  respectively.  It  is  clear  that  phase  locking  occurs  and  a  coherent  standing  wave  forms  only  when  outflowing  polaritons  from  each  spot  are  condensed  and  have  the  same  energy  (b,e).  On  the  other  hand,  if  pumping  bellow  threshold  (a,d)  or  with  asymmetric  powers  (c,e),  no  interferences  appear.  (g)  Simulated  time  evolution  along  the  central  line  connecting  two  pumping  spots,  one  at  −10𝜇𝑚  with  twice   the   intensity   of   the   other   at   10𝜇𝑚.   When   the   discrepancy   between   pumping   strengths   is   too  large,  the  relative  phase  between  the  two  independent  condensates  continuously  evolves,  shifting  the  fringes  in  time  (g),  thus  making  it  impossible  to  observe  in  a  time-­‐integrated  measurement  (c).  Because  of   the   nonlinear   potential   landscape   caused   by   the   feedback   between   polariton   density   and   local  blueshifts,  the  condition  subtly  varies  with  excitation  conditions.  

 

 

 

 

 

 

 

 

 

-4 -2 0 2 4K vector (1/um)

1.5401.5391.5381.5371.536En

ergy

(eV)

-4 -2 0 2 4K vector (1/um)

1.5401.5391.5381.5371.536En

ergy

(eV)

-4 -2 0 2 4K vector (1/um)

1.5401.5391.5381.5371.536En

ergy

(eV)

-20 -10 0 10 20space (um)

-8-4048

spac

e (u

m)

-20 -10 0 10 20space (um)

-8-4048

spac

e (u

m)

-20 -10 0 10 20space (um)

-8-4048

spac

e (u

m)

10mW 10mW

18mW 18mW

22mW 30mW

a

b

c

d

e

f

x  (μm)

y  (μm)

kx (μm-­‐1)

-­‐10            -­‐5                0                5            10x  (μm)

0

20

40

60

80

100

time  (ps)

g

simulated

Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information  

G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                3    

 

Supplementary   Figure   S3|   Hexagonal   lattice   wave-­‐function.   (a)   Measured   wavevector   distribution  corresponding   to   region   inside   the   dashed   green   circle   in   Fig.   1a.   Purple   triangles   show   lattice  momentum  at  the  spots  centroid,  𝑘!.  (b)  Estimated  spatially-­‐dependent  polariton  energy  blueshifts.  (c)  Spatially-­‐dependent   radial   wavevector   calculated   from   the   inverse   dispersion   relation,   Eq.   (1),   using  𝛥 𝒓   from  panel   (b).   (d)   Simulated  spatial   intensity  of   the   lattice  wave-­‐function,   𝜓 𝑟 !,  using  Eq.  S1  and   panels   (b,c).   Simulated   data   correspond   to   an   experimental   excitation   power   equal   to   20mW   at  each  spot.  Length  scale  in  (b-­‐d)  marked  in  (d).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 µm

𝒌𝒐

a b c d

Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information  

G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                4    

 

Supplementary   Figure   S4|   Ordered   square   lattices.   (a)   Intensity   and   (b)   phase   image   of   simulated  interference   between   four   perpendicular   plane   waves   with   π-­‐phase   relative   shifts.   No   vortex   is  observed;   instead,   square   intensity   lobes   of   constant   phase   appear   separated   by   dark-­‐soliton   stripes  with   π-­‐phase   shifts.   Such   a   pattern   is   not   observed   experimentally   due   to   instabilities   that   generate  vortices   at   random   positions   between   the   lobes.   (c)   Intensity   and   (d)   phase   image   of   simulated  interference  between  four  perpendicular  plane  waves,  one  of  them  having  a  π-­‐phase  shift.  Here  vortices  appear  regularly  placed   in  a  square  grid.  Such  a  pattern   is  also  observed  experimentaly   for  assymetric  pumps  (e,f).  

 

 

 

 

 

 

 

 

 

 

 

 

!"

#!"!"

#!"

130

120

110

100

9080

9080706050403020

2 µm

130

120

110

100

9080

90807060504030

240

230

220

210

200

190

180

170

160

240230220210200190180170160

240

230

220

210

200

190

180

170

160

240230220210200190180170160

c

db

e

f

a

Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information  

G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                5    

 

Supplementary   Figure   S5|   Non-­‐linear   square   lattice.   (a)   Simulated   and   (b)   measured   time-­‐averaged  polariton  emission  of  AF  lattice  corresponding  to  Fig.  3i  and  Fig.  3f,g,  respectively.  (c)  Time  evolution  of  the   simulated  wavefunction   phase   at   each   pump   spot   position.   (d)   Simulated   and   (e)  measured   time  evolution  of  the  relative  wavefunction  phase  at  each  lobe  indicated  in  (a,b).    

 

 

 

 

 

 

 

 

 

 

 

12840Time (ps)

Lobe 1 Lobe 2 Lobe 3 Lobe 4

12840Time (ps)

Lobe 1 Lobe 2 Lobe 3 Lobe 4

Simulations Simulations Experiments

2

1

0

-1

-2

y (µ

m)

-2 -1 0 1 2x (µm)

2

1

0

-1

-2

y (µ

m)

-2 -1 0 1 2x (µm)

0

1

Intensity1 2

3 4

Simulations Experiments

1 2

3 4

-π/2

0

π/2

Pha

se

12840Time (ps)

Spot 1 Spot 2 Spot 3 Spot 4

a

c d e

b

Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information  

G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                6    

 

Supplementary  Figure  S6|  Vortex-­‐dark  soliton  trains.  Measured  (a)  emission  intensity,  (b)  phase-­‐map  and  (c)  circulation  and  phase-­‐derivative  corresponding  to  the  region  inside  dashed  blue  box  in  Supplementary  Fig.  S5b  for  time  slice  𝑡 = 0,  showing  dark-­‐solitons  (DS),  vortex  (V)  and  antivortex  (AV).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.5

-0.5y

(µm

) -2 -1 0x (µm)

0.5

-0.5

y (µ

m) -2 -1 0

x (µm)-0.5

0.5y (µ

m) -2 -1 0

x (µm)

Intensity01

VDS

AVDS

1086420 Time (ps)

-2 -2

-1 -1

0 0x

(µm

)

-10010dφ/dy

(µm-1)

1 -1

Vorticity

10 8 6 4 2 0Time (ps)

-2-2

-1-1

00x (µ

m)

-10

0 10

dφ/dy(µm

-1)

1-1

Vorticity

10

8

6

4

2

0

Tim

e (p

s)

-2

-2

-1

-1

0

0x (µm)

-10

0

10

dφ/dy(µm

-1)

1

-1

Vorticity

10

8

6

4

2

0

Tim

e (p

s)

-2

-2

-1

-1

0

0x (µm)

-10

0

10

dφ/dy(µm

-1)

1

-1

Vorticity

10

8

6

4

2

0

Tim

e (p

s)

-2

-2

-1

-1

0

0x (µm)

-10

0

10

dφ/dy(µm

-1)

1

-1

Vorticity

10 8 6 4 2 0

Time (ps)

-2-2

-1-1

00x (µ

m)

-10

0 10

dφ/dy(µm

-1)

1-1

VorticityCirculation

10

8

6

4

2

0

Tim

e (p

s)

-2

-2

-1

-1

0

0x (µm)

-10

0

10

dφ/dy(µm

-1)

1

-1V

orticity

10

8

6

4

2

0

Tim

e (p

s)

-2

-2

-1

-1

0

0x (µm)

-10

0

10

dφ/dy(µm

-1)

1

-1

Vorticity

a

b

c

Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information  

G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                7    

 Supplementary   Figure   S7|   Vortex   and   dark-­‐soliton   nonlinear   dynamics   in   square   ‘waveguides’.   (a)  Simulated  and  (b)  measured  time-­‐averaged  circulation  strength,   Γ(𝒓) .  (c)  Simulated  and  (d)  measured  time   evolution   of   the   vorticity   and   phase-­‐gradient   of   the   region   inside   the   dashed   red   box   in   (a,b)  integrated  along  the  𝑦-­‐axis  (see  Supplementary  Fig.  S6).  

 

 

 

 

 

 

 

 

 

 

10

8

6

4

2

0

Tim

e (p

s)

-2

-2

-1

-1

0

0x (µm)

-10

0

10

dφ/dy(µm

-1)

1

-1

Vorticity

2

1

0

-1

-2

y (µ

m)

-2 -1 0 1 2x (µm)

2

1

0

-1

-2

y (µ

m)

-2 -1 0 1 2x (µm)

110

vortexprobability (%

)

10

8

6

4

2

0

Tim

e (p

s)-2

-2

-1

-1

0

0x (µm)

Simulations Experimentsa b

c dC

irculationΓ "(𝒓)

p(vortex),2

1

0

-1

-2

y (µ

m)

-2 -1 0 1 2x (µm)

110

vortexprobability (%

)

%

%

Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information  

G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                8    

Supplementary  Discussion  

Lattice  wave-­‐function.  Under  low  pump  power,  when  non-­‐linearities  do  not  play  a  significant  role,  each  pump  spot  contributes  to  the  global  wave-­‐function  with  a  superposition  of  different  𝑘-­‐states  at  different  radial  positions5:  

𝜓 𝑟, 𝑡 ≈ 𝑒! ! !"!!!(𝒓) . 𝒓!𝒓𝒏 !!! 𝑔! 𝒓 𝑒!! 𝒓!𝒓𝒏 !!!!"#$!!!!                          (S1)  

𝑡 𝒓 − 𝒓𝒏 =    !"(!!)!" !!

   𝑑𝑟′𝒓!𝒓𝒏!                    (S2)  

The  blueshift  𝛥(𝒓)  is  maximum  at  the  spot  positions  and  decays  parabolically  going  to  zero  after  10𝜇𝑚  (Supplementary   Fig.   S3b).   The   radial   𝐾   wavevector   is   given   by   the   inverse   lower   polariton   branch  dispersion  relation  (Fig.  2e,  Supplementary  Fig.  S3a)  and  depends  on  the  blueshift  (Supplementary  Fig.  S3b).   The   expanding  density   decays   exponentially   according   to   the  polariton   lifetime  𝜏!   and   the   local  velocity  from  Eq.  (S2).  The  term  𝑔! 𝒓  describes  local  amplification13.  Hexagonal  lattices  appear  in  this  model   in  the  wavefunction  central  region,  reproducing  well  the  measured  pattern  (Supplementary  Fig.  S3d).  

The   individual   condensate  phases  𝜑!,  merely   spatially   shift   the   lattice   for   the  3   spot   case.   For   all   the  measured  data,  the  relative  phases  between  the  three  condensates  are  close  to  zero  (F  offset  <  3°)  and  are  well  described  by  the  linear  superposition  of  plane  waves.  Nonlinearities  and  relative  phases  play  a  much   more   important   role   for   the   4   spot   excitations   and   higher   powers,   but   we   also   found   square  lattices  that  can  be  well  reproduced  by  linear  interferences  (Supplementary  Fig.  S4c-­‐f).    

 

 

 

 

 

 

 

 

 

 

 

Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information  

G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                9    

Non-­‐linear   vortex   dynamics   in   the   square   lattice.   To   better   understand   the   nonlinear   dynamics,   the  time-­‐evolution  of  the  lattice  wavefunction  is  tracked  in  simulations  and  experiments,   in  the  latter  case  after   back   Fourier   transforming   the   complete   energy-­‐resolved   tomography   in   density   and   phase.  Tomographic  reconstruction  is  taken  by  sequentially  translating  the  spatial   images  across  the  entrance  slit   of   the   spectrometer,   thus   recording   spectra   for   each   line   scan   of   the   image.   The   phase   of   each  energy  mode  is  then  retrieved  from  interferences  of  each  tomographically  reconstructed  spatial  mode,  and   so   the   condensate  wave-­‐function   is   fully   characterized   in   terms   of   energy,   density   and   phase.   A  simple   Fourier   transform   allows   the   condensate   phase   and   density   to   be   tracked   in   time:  𝜓 𝒓, 𝑡 =

𝜓 𝒓,𝐸  𝑒!"#/ℏ!!(!)! ,  with  𝜑(𝐸)  being  their  relative  phase  .  This  relative  phase  is  constrained  by  the  direct   images   of   polariton   density.   We   checked   also   that   𝜑(𝐸)   does   not   substantially   change   the  reconstruction  of  the  dynamics.  The  2meV  spectral  bandwidth   leads  to  dynamical  observations  on  the  𝑝𝑠-­‐timescale.  

Even  though  the  AF-­‐coupled  lattice  is  stable  (Supplementary  Fig.  S5a-­‐c),  the  regions  between  the  bright  spots   which   are   expected   to   contain   dark-­‐soliton   stripes   are   destabilised   by   the   strong   nonlinear  interactions.   Under   high   pump   powers   non-­‐linear   dynamics   is   observed,   although   AF-­‐phase-­‐coupling  between   spots   is   preserved   and   the   time-­‐averaged   wave-­‐function   of   the   central   region   shows   the  characteristic  four  lobes  with  𝜋  phase  relation  between  them.  

Under  high  polariton  densities,  dark-­‐solitons  breaks  up  into  vortex-­‐antivortex  pairs,  which  are  connected  by  dark  solitons  (Supplementary  Fig.  S6).  The  probability  of  finding  a  vortex  at  a  specific  spatial  point  is  given   by   the   normalised   time-­‐averaged   circulation,   Γ(𝒓) = 𝛤(𝒓, 𝑡) 𝑑𝑡 /∆𝑡,   mapped   in  Supplementary  Fig.  S7a,b.  We  note  that  the  experimental  spatial  resolution  for  the  accuracy  of  locating  the  vorticity  centre  of  the  larger  topological  vortex  (∼ 0.7  𝜆/2𝑁𝐴)  is  almost  the  pixel  size  here.  

To  easily  visualize  such  vortex-­‐dark  soliton  trains,  we  extract   from  the  phase-­‐map  (Supplementary  Fig.  S6b)    and  plot   in  compatible   images  the  circulation  and  the  phase-­‐derivative  (Supplementary  Fig.  S6c),  along   with   the   polariton   density   (Supplementary   Fig.   S6a).   Averaging   over   this   small   section   of   y  between  two  bright  lobes,  allows  the  dynamics  of  these  vortices  and  the  phase-­‐gradient  to  be  observed.  

An   intricate   time   dynamics   results   (Supplementary   Fig.   S7c,d),   with   moving   vortices   (red)   and   anti-­‐vortices  (blue)  linking  dark  solitons  of  oppositely  directed  phase-­‐gradient,  producing  phase  fluctuations  between   the   bright   lobes   of   the   lattice   (Supplementary   Fig.   S5d,e).   Despite   their   non-­‐linear   time-­‐dynamics,  the  topological  defects  remain  constrained  in  the  gaps  between  the  density  lobes,  which  form  vortex  ‘waveguides’  (e.g.  Supplementary  Fig.  S7b).    

             

Geometrically-­‐locked  vortex  lattices  in  semiconductor  quantum  fluids   Supplementary  Information  

G.  Tosi,  G.  Christmann,  N.G.  Berloff,  P.  Tsotsis,  T.  Gao,  Z.  Hatzopoulos,  P.G.  Savvidis,  J.J.  Baumberg                                                10    

Influence   of   disorder   on   the   geometric   coupling.   The   effect   of   disorder   on   the   geometric   coupling  robustness  is  studied  by  adding  a  random  potential  to  equation  (2):    

𝑖ℏ !"!"= − ℏ!

!!∇! + 𝑈! 𝜓 ! + 𝑉!"# 𝒓 + 𝑖𝑃 𝒓,𝜓 − 𝑖𝜅  𝜓       (S3)  

The  external  potential  𝑉!"#  contains  disorder  and  is  modelled  by  a  random  distribution  of  Fourier  modes  of  varying  amplitude  and  broadband  spatial  frequencies.  

The  numerical  solution  of  this  equation  for  three  equally  spaced  pump  spots  and  no  disorder  (𝑉!"# = 0)  always   gives   a  wavefunction  with   the   same  phase   from  each   spot   position,   and   so   the   central   bright  hexagon  appears  at  the  spots  centroid,  𝑂.    

When  pumping  with  four  equally-­‐spaced  spots  and  no  disorder,  two  stable  solutions  appear  depending  on   the   initial  noise:  one  with  equal  phases  at  each  pump  spot,   leading   to  a  maximum   intensity   in   the  centre,   and   the   other  with   a   π   phase   difference   between   neighbouring   spots,   leading   to   a  minimum  intensity   in   the   centre.   We   have   checked   that   this   effect   is   not   due   to   the   square   geometry   of   the  computational  grid  by  moving  the  positions  of  the  pumping  spots  around  the  centre.    

Strong   disorder   introduces   phase-­‐shifts   during   propagation   out   from   each   spot,   and   so   the   lattice   is  displaced   and   the   geometric   coupling   is   lost.   However,   for   the   low   disorder   values   of   our   sample13,  geometric  coupling  is  preserved.  

 


Recommended