+ All Categories
Home > Documents > 2012 Smart Grid R&D Program Peer Review...

2012 Smart Grid R&D Program Peer Review...

Date post: 04-Feb-2018
Category:
Upload: vancong
View: 218 times
Download: 2 times
Share this document with a friend
54
2012 Smart Grid R&D Program Peer Review Meeting Smart Inverter Controls & Microgrid Interoperation at the Distributed Energy Communications & Controls (DECC) Lab D. Tom Rizy Oak Ridge National Laboratory (ORNL) June 7 th 2012 June 7 th , 2012
Transcript
Page 1: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

2012 Smart Grid R&D Program gPeer Review Meeting

Smart Inverter Controls & Microgrid Interoperation

at the Distributed Energy Communications& Controls (DECC) Lab( )

D. Tom RizyOak Ridge National Laboratory (ORNL)

June 7th 2012June 7th, 2012

Page 2: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Smart Inverter (SI) Controls and Microgrid (MG) InteroperationMicrogrid (MG) Interoperation

Objectives• D l d SI l f l i l

DECC Microgrid

• Develop and test SI controls for multiplerenewable/nonrenewable DER.

• Develop MG controls and communication requirements for high penetration DER.

• I l t MG t DECC L b

Technical Scope

• Implement MG at DECC Lab.• Transfer technology to industry.

Life-cycle Funding Summary ($K)

Prior to FY12 FY13 Out-

Technical Scope• Develop advanced smart inverter control

consisting of local droop (P-f, Q-V) control integrated with secondary closed loop powerPrior to

FY 121FY12 authorized2

FY13 requested

Out-year(s)3

$1,404 $535 $605 $1,8151Funding shown is what was received FY09 to FY11 for the DECC L b

integrated with secondary closed loop power control enhanced with communications.

• Develop advanced self-healing MG architecture consisting of two layers: Fundamental local and adaptive DER device

December 2008

DECC Lab.2FY12 initial funding delayed until mid February, remaining funding delayed until end of March.3Funding out to the end of FY16 assuming level funding based on FY13.

control and protection MG Control to communicate with DERs and

distribution system operations and provide active energy management. 2

Page 3: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Significance and ImpactAnnual Performance TargetsAnnual Performance Targets

• 2012 Target – Demo Integration of Renewable DER for 12% Load Factor Improvement SI controls for multiple inverter-based DER (later energy storage) to increase penetration to SI controls for multiple inverter-based DER (later energy storage) to increase penetration to

improve load factors. Work with major inverter manufacturer to embed SI controls in inverter hardware.

• 2013 Target –Smart Microgrid (MG) for >98% reduction in outage time MG concepts developed and tested at DECC provide seamless transition from grid to

islanding and back and for greater use of DER and energy storage. Proposed work with vendors to demonstrate MG at ORNL and later at military base(s).

• 2014 Target – Integration of High Penetration PV for 15% Load Factor Improvement2014 Target Integration of High Penetration PV for 15% Load Factor Improvement PV model and control development for maximum power tracking with smart inverter control. Supports integration of high penetration PV for load factor improvement.

• 2015 Target – Integrated Distribution Management Systems (DMS) for reduce SAIDI by 5% Enable DER fast voltage ride-through of high/low system voltage and frequency events. MG advanced architecture to establish functions for interfacing with DMS for reducing

SAIDI.• 2016 Target Protection integrated with DMS to reduce SAIDI by 10%

December 20083

• 2016 Target – Protection integrated with DMS to reduce SAIDI by 10% MG protection schemes (another project) integrated with SI and MG controls and DMS for

greater reduction of SAIDI.

Page 4: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Significance and ImpactTrend for Addressing TargetsTrend for Addressing Targets

ORNL R&D directly addresses SG Targets. Complete Remaining

• MG interoperation Multiple smart inverters

Smart Grid R&D Targets Remaining• Out years

MG interoperation• On‐grid/islanding modes • MG Energy Management• Integration of renewables 

d

Multiple smart inverters Flexible test bed Tech transfer MG architecture

FY12: 

12% Load 

FY13: 

98% Outage and energy storage

• Grideye incorporation Energy storage 

deploymentFactor 

Improvement

gTime 

Reduction

FY14:• MG transition• Fast DER voltage regulation 

• Utility coordination

• Embedded MGs• Grid contingency• With/Without Synchronous generation

FY14: 

Fast Voltage Regulation & 15% Load Factor

FY15 & 16: 

5 and 10% SAIDI 

Reduction

December 2008

• Utility  coordination• Responsive load• Device protection

Synchronous  generation• MG protection

Factor Improvement

4

Page 5: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Significance and ImpactSupporting Smart Grid R&D TargetsSupporting Smart Grid R&D Targets

• Load Factor Improvement (20% by 2020) Goal: Achieve high penetration of DER (both renewable and nonrenewable) Goal: Achieve high penetration of DER (both renewable and nonrenewable) Approach: Develop fast and flexible controls for multiple and PV inverter-based

DER; transfer technology with vendor involvement. Benefit: More local power generation and regulation of voltage resulting in reduced

central generation losses and higher load factorcentral generation, losses and higher load factor.

• Reduction of Load Outage Time (>98% reduction by 2020) Goal: Develop self-healing microgrid controls building on adaptive smart inverter

controlscontrols Approach: Fast transition from grid-to-island mode and back with minimal

communications; test at DECC Lab and demo at military facilities. Benefit: Reduced down time for loads due to continuity of generation.

• System Reliability Improvement (20% SAIDI reduction by 2020) Goal: Integrate microgrid protection (leverage another project) with microgrid

controls Approach: Implement and test adaptive protection with DECC Lab microgrid under

December 20085

Approach: Implement and test adaptive protection with DECC Lab microgrid under varying operational scenarios.

Benefit: Faster and reliable detection and isolation of microgrid faults (both grid and island operation), reduced down time for system generation and loads.

Page 6: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Technical Approach

ORNL IndustryCommercializationCommercialization

Control l

Testing at T h lDevelopment,  

Modeling & Simulation

gDECC 

Laboratory

Technology Transfer

December 20086

Page 7: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Technical Innovation

• Smart Inverter Control Innovations Local closed loop adaptive self tuning control of multiple inverters Local closed loop adaptive self‐tuning control of multiple inverters Development of secondary voltage and frequency inverter control for MGs

• Microgrid (MG) Control Innovations Self healing highly stable/reliable multiple layer MG architecture Self‐healing, highly stable/reliable multiple‐layer MG architecture

Fast and adaptive local DER control System‐wide control of frequency and voltage enhanced with communications System‐wide management of high penetration DER along with DR and energy storage MG control center provides interface to DMS MG control center provides interface to DMS

Seamless DER hybrid control transition modes: Maximum or some constant power output (P, Q) Frequency (P‐f) and voltage (Q‐V) droop control Secondary closed loop frequency and voltage control Secondary closed loop frequency and voltage control

• Innovative DECC Laboratory for Technology Transfer On‐grid testing of smart inverters controls of nonrenewable and renewable on an 

actual distribution system.

December 2008

y Flexible MG test bed: conductor between test systems with innovative ORNL 

developed power flow controller for varying electrical distance for wide range of testing.

7

Page 8: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Technical Innovation vs. State of the Art

ORNL research is catalyzing the transformation of the electric distribution grid at the supply and consumer level.

TECHNOLOGY ORNL FOCUS EXISTING TECHNOLOGY

DER Composition High penetration inverter‐based for both on‐grid and islanding.

Low penetration inverter‐based for on‐ grid; Rotating generation for MG frequency.

S t I t C t l Ad ti “ th fl ” t l lf t i N d ti t l t t dSmart Inverter Control Adaptive “on the fly” control: self‐tuningparameters  for flexibility and adaptability.

Non‐adaptive control parameters  preset and fixed (based on studies).

Microgrid (MG) Architecture

Multi‐layer: (1) communication‐capable local DER layer and (2) central management layer.

Single local DER layer.

MG C l H b id l l l d l (P f Q V) L l l d l (P f Q V) i hMG Control  Hybrid control: local droop control (P‐f, Q‐V) with secondary frequency and voltage control based on central MG‐wide management. 

Local open loop droop control (P‐f, Q‐V) with steady‐state frequency and voltage control error

MG communications  Cost vs. performance evaluation of  MG control f diff i i

Literature review has not revealed similar kfor different communications. work.

MG energy management system

Economic  DER dispatch (P, Q) with responsive load and energy storage management.

Literature review has not revealed similar work.

MG protection Current magnitudes and direction change with Overcurrent methods designed for

December 20088

MG protection Current magnitudes and direction change with on‐grid vs. islanding modes: ORNL developed adaptive methods (leveraging another project).

Overcurrent methods designed for unidirectional flow in distribution systems.Directional protection currently used in transmission systems.

8

Page 9: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Technical AccomplishmentsSmart Inverter (SI) ControlsSmart Inverter (SI) Controls

DER Connected to Distribution S tSystem

Smart Inverter Controller

Current FY12 Developed PV inverter model and

Prior FYs Developed adaptive controls for single

control algorithms (Nov’11) Develop secondary frequency and

voltage control for microgrid inverter operation (Sep’12).

Developed adaptive controls for single inverter (FY06 to FY11).

Extended adaptive control methodology to support multiple inverters connected to distribution system/circuit (FY11)

Work with vendor inverter on controls (Sep’12).

Out Years SI mode switching (i e P2030)

December 2008

to distribution system/circuit (FY11). SI mode switching (i.e., P2030) SI controls for microgrid applications for

frequency and voltage transition and smooth transition from grid to microgrid

Prior year accomplishment FY12 focus Out Years 9

Page 10: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Technical AccomplishmentsMicrogrid (MG)Microgrid (MG)

Prior FY Support SPIDERS military

MG dynamic modeling and design (FY11).

Current FY12 Develop model of self- Develop model of self

healing MG architecture with advanced controls (May’12).

Identify the communication requirements for MG control (Sep’12).

Out Years Design and implement MG

protectionprotection. Determine MG transition

requirements. Develop and implement MG

energy management system

December 2008

energy management system.

Prior year accomplishment FY12 focus Out Years 10

Page 11: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Technical Accomplishments Testing & Tech TransferTesting & Tech Transfer

Prior FYs Established DECC for in erter

DECC Lab Established DECC for inverter

controls testing (FY06) Completed second inverter test

system at DECC (FY11). Multiple (Two) inverters tested Multiple (Two) inverters tested

together on-grid at DECC under voltage control (FY11).

Designed and began constructing plug-and-play, flexible and reconfigurable low-voltage and low-power test bed (FY11).

Current FY12

Install MG communications Install cables to form radial-loop MG.

Completed new test bed and installed third inverter (Mar’12)

Partnered with major inverter manufacturer (Feb’12) Prior year accomplishment

Out Years

December 2008

p Test MG in islanding mode. Install MG transition hardware Test MG mode transitions

Test inverter controls in new test bed (Jun’12)

FY12 focus Out Years

11

Page 12: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Project Team Capabilities

ORNL Team has key domain experts from industry, academia, and other National Labs needed to advance the R&D of the future electric grid.

TEAM CAPABILITIES

ORNL, UTK, and Industry Partners Smart inverter (SI) controls (>7 yrs) expertise

advancing in self healing microgrids (MGs)

g

advancing in self-healing microgrids (MGs). Power systems, protection, power electronics

and control expertise. Chair task force on volt/var control with high

penetration renewables. Member of IEEE PES WG in smart distribution Member of IEEE PES WG in smart distribution

and DER integration Support SI standards development (SCC21,

1547, NIST, and EPRI). DECC Lab provides “in-the field” SI and MG

testing with actual distribution systemtesting with actual distribution system. SPIDERS leveraging ORNL inverter controls

expertise for military MGs. ORNL partnership with UTK’s DOE/NSF

sponsored CURENT center. Industry team (TVA EPRI SCE TVPPA

December 2008

Industry team (TVA, EPRI, SCE, TVPPA, LCUB, …) provides technical input and guidance

Inverter companies provide technical support and materials. 12

Page 13: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Funding Leverage 

ORNL plays a unique role in both providing innovative SI and MG development (controls, communications & protection) and a testing platform on an actual di t ib ti tdistribution system.

December 200813

These figures above do not reflect the leverage value of a PV inverter, an automobile battery assembly , and MG equipment to be provided by industry.

Page 14: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Contact Information

D Tom RizyD. Tom [email protected] office, 207.6769 cell

Yan XuYan [email protected] office, 929.4219 cell

Oak Ridge National LaboratoryOak Ridge National Laboratory1 Bethel Valley Road, Oak Ridge, TN 37831

Power & Energy Systems (PES) Group: http://www ornl gov/sci/ees/etsd/pes/http://www.ornl.gov/sci/ees/etsd/pes/Energy & Transportation Science Division (ETSD)http://www.ornl.gov/sci/ees/etsd/Electric Deliveries Technology (EDT) Programhttp://www ornl gov/sci/electricdelivery/

December 2008

http://www.ornl.gov/sci/electricdelivery/

14

Page 15: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

BACK‐UP SLIDESBACK UP SLIDES

December 200815

Page 16: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Distributed Energy Communications & ControlsCommunications & Controls 

(DECC) Laboratory

December 200816

Page 17: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

DECC Laboratory is located onNorth ORNL CampusNorth ORNL Campus

DECC Lab

DECC AnnexDECC Annex

Load Banks

December 200817

Page 18: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

DECC Lab LayoutN

W

S

E

S

EXIT

SG - INVERTER SG – A/C STALL& FREQ RESP

LOAD

SG – PV INVERTER

Restroom

EXIT8’ Door Way

3147 Fire Ext.

SG –S h

MainPowerPanel

Doors

IPAC - Intelligent Power Automation

Synchronous Condenser

Power Automation Center

DECC LAB TESTING6’ D

oor W

ay

EXIT GRIDEYE

SG – TEST BED

DECC LAB TESTING

December 2008AED & Fire Ext. Microturbines & Associated Equipment 18

Page 19: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

DECC Lab Assets

December 200819

Page 20: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Technical Approach – Microgrid Demonstration

Leverage DECC assets to demonstrate microgrid performance and B2G from vendor for energy storage.p gy g

Distribution System Sources Loads

December 200820

Page 21: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

DECC Lab’s Test Systems

December 200821

Page 22: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

DECC Lab Flexible Test BedCompleted Electrical InfrastructureCompleted Electrical Infrastructure

Lower Voltage and Power

Plug and Play AC and DC Plug and Play AC and DC

Reconfigurable test rack

Accelerated smart inverter testingg

Bridges design, development and simulation with higher voltage and power testingand power testing

DC

December 2008

120/208AC

22

Page 23: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

DECC Lab PV Test System

• DC Bus for Research Inverter• PV Arrays & Conventional InverterInverter

Overhead DC iLine to Conventional Inverter DC Bus in Room 2 for 

R h IResearch Inverter

L ti f DC

December 2008

Location of DC Transfer Switch inside 

Isolation Room

50kW PV Array across Bethel Valley Road supply 400‐600Vdc, 135Adc

23

Page 24: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Smart Inverter (SI) ControlsSmart Inverter (SI) Controls

December 200824

Page 25: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Smart Inverter (SI) Adaptive Control

Fixed control: PI control with fixed Kp and Ki

DE: Distributed Energy Resource

Kp and Ki determined typically by trial & error

Incorrect gains result in under-DE: Distributed Energy ResourceControl variable: PCC voltageReference: Desired PCC voltage

value

performance, oscillation, or instability Adaptive control:

Kp and Ki are initially conservative but

December 2008

valueError: Difference between reference

and measured PCC voltage

Kp and Ki are initially conservative but adjusted in real-time to achieve desired system response time

25

Page 26: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

SI Controllable VariablesSI Controllable Variables

Active power related variablesrelated variables

Reactive power related variables

Active power

Active current 

Power factor 

Frequency

related variables

Reactive power Yes Yes Yes Yes

Reactive current Yes Yes Yes Yes

Power factor Yes Yes NA Yes

December 2008

Local voltage Yes Yes Yes Yes

26

Page 27: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

SI Voltage Regulationwith Fixed vs. Adaptive SI Controlwith Fixed vs. Adaptive SI Control

(b) PCC voltage (rms) without regulation(a) Load current (rms) during load change

December 2008(c) PCC voltage (rms) with non-adaptive

voltage regulation

(d) PCC voltage (rms) with adaptive voltage regulation.

27

Page 28: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

SI Active (P) & Non‐Active (Q) ControlIncrease P Q FixedIncrease P, Q Fixed

• Complete event on left.on left.

• Zoomed in to 10 to 20 kW change on right.on right.

• Active power reference (Pref) from 10 to 50kW. P f change from 10 to 20kWP f changed from 10 kW to 50 kW o 0 to 50

• Nonactive power reference (Qref) set to10 kVar.

Pref change from 10 to 20kWPref changed from 10 kW to 50 kW

• P does not reach 50 kW and Q drops because of

December 2008

pthe inverter current limit (60A). Qref set to10kVar.Qref set to10kVar 28

Page 29: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

SI Active (P) & Non‐Active (Q) ControlDecrease P on Left, Decrease Q on Right, Q g

• Active power p(Pref) change while keeping non-active power (Q ) constant on

Pref set to 20kWPref changed from 50 to 10kW

(Qref) constant on left.

• Nonactive power (Q ) change Pref set to 20kWPref changed from 50 to 10kW (Qref) change while keeping active power (Pref) constant on refright.

• Plots display the independent

December 2008Qref changed from 50 to 20 kVar.

Qref set to 10kVar

pcontrol of P & Q that has been achieved

29

Page 30: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

PV Inverter Active and Reactive Power ControlPower Control 

200

250 1200 w/m2

1000 w/m2

800 / 2

T=25oC

0

50

100

150

P(W

) 800 w/m2

Output (P vs. V) at different solar irradiations0 10 20 30 40

0

V (V)

200

250

25oC10oC

G=1000 w/m2

Grid-connected three-phase 0

50

100

150

P (W

)

75oC

No DC-to-DC converter for lower cost and higher efficiency.

single-stage inverter PV system0 10 20 30 400

V (V)Output (P vs. V) at different temperatures

December 2008

P (MPPT or fixed P) and Q (PCC voltage or fixed Q) controlled by inverter. PV array DC voltage stability maintained by inverter control - resistant to

disturbances caused by changing weather or system. 30

Page 31: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

PV Inverter Active and Reactive Power Control Simulation ResultsPower Control Simulation Results

351200

Case 1: Maximum power point tracking (MPPT) & PCC voltage control with varying solar irradiation (worst case)

25

30

P(k

W)

900

1000

1100

G(W

/m2)

5 10 15 20 25 30 35 40 45 50 5515

20

time(s)

P

10 15 20 25 30 35 40 45 50 55 60600

700

800

time(s)

G

274

275

550

600

650

700

tage

(V)

time(s)( )

PV array active power outputSolar Irradiance

271

272

273

V(V

)

PCC voltageVoltage reference350

400

450

500

550

PV

arra

y D

C v

olt

December 2008

5 10 15 20 25 30 35 40 45 50 55270

time(s)

PCC voltage and reference (rms)

5 10 15 20 25 30 35 40 45 50300

350

time(s)

PV array output DC voltage 31

Page 32: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

PV Inverter Active and Reactive Power Control Simulation ResultsPower Control Simulation Results

1200

Case 2: MPPT & Fixed reactive power control with varying solar irradiation (worst case) 35

900

1000

1100

1200

W/m

2) 25

30

P(k

W)

10 15 20 25 30 35 40 45 50 55 60600

700

800G(W

10 15 20 25 30 35 40 45 50 55 6015

20

time(s)

PV array active power outputSolar Irradiance

25

10 15 20 25 30 35 40 45 50 55 60time(s)

time(s)

600

650

700

ge(V

)

15

20

Q(k

VA

r)

PV inverter Q injectionQ reference400

450

500

550

V a

rray

DC

vol

tag

December 2008PV array output DC voltage 32Fixed reactive power control

10 20 30 40 501

time(s)

10 20 30 40 50 60300

350

time(s)

PV

Page 33: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

PV Inverter Active and Reactive Power Control Simulation ResultsPower Control Simulation Results

Case 3: Automatic smooth transition between fixed active power control to MPPT and then back

1100

1200

30

35

800

900

1000

G(W

/m2)

20

26

P(k

W)

P reference

10 15 20 25 30 35 40 45 50 55 60600

700

time(s)

15 21.5 25 30 35 40 43.5 5010

15

time(s)

PV inverter injection

time(s)

Solar Irradiance Switching between fixed real power control and MPPT control

December 200833

Page 34: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Adaptive Multiple Inverters Voltage Control

M lti l i t f di t d lt t l t t h ti

Applicable to radial with or without meshed distribution system with multiple DERs; simulated and proved with three in this case.

Multiple inverters for coordinated voltage control to prevent hunting. Self-adjusted control parameters to achieve fast response performance. Primarily local voltage control by inverters Only limited communication needed: initially, for large disturbance or for network change

December 200834

y y, g g Adaptability to radial distribution feeder or looped distribution systems Plug and play feature without need for network parameters

Page 35: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Adaptive Multiple Inverters Voltage Control Simulation ResultsSimulation Results

282 282 Case 1: Voltage responses of DER with ideal communication (No latency)

276

278

280

olta

ge(V

)

276

278

280

olta

ge(V

)

desired voltage response

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7272

274

time(s)

v

desired voltage responseactual voltage responsevoltage reference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7272

274

time(s)

vo

desired voltage responseactual voltage responsevoltage reference

time(s)

Voltage response of DER1time(s)

280

282 Voltage response of DER2

274

276

278

volta

ge(V

)

desired voltage responseactual voltage response

December 20080 0.1 0.2 0.3 0.4 0.5 0.6 0.7

272

274

time(s)

g pvoltage reference

Voltage response of DER3 35

Page 36: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Adaptive Multiple Inverters Voltage Control Simulation ResultsSimulation Results

282 282

Case 2: Voltage responses of DER with communication latency (worst case)

276

278

280

olta

ge(V

)

276

278

280

olta

ge(V

)

0.05 0.2 0.35 0.5 0.6 0.7272

274

276vo

desired voltage responseactual voltage responsevoltage reference

0.05 0.2 0.35 0.5 0.6 0.7272

274

276vo

desired voltage responseactual voltage responsevoltage reference

time(s)

280

282

time(s)Voltage response of DER1 Voltage response of DER3

A 9 cycle latency is assumed which

274

276

278

volta

ge(V

)

desired voltage responseactual voltage response

A 9-cycle latency is assumed, which is typical to wide-area-monitoring based on paper by Anjan Bose (WSU) and should be much higher than the latency in a distribution

December 200836

0.05 0.2 0.35 0.5 0.6 0.7272

274

time(s)

actual voltage responsevoltage reference

Voltage response of DER2

than the latency in a distribution system.

Page 37: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Multiple Inverter Testing at DECC Lab

DECC L b h i lDECC Lab physical configuration for multiple DER testing.

Two Inverter-based DERs (150A each) on same circuit.Electrically connected via the Electrically connected via the primary conductor of circuit #2.

One DER is located at building 3114.

December 200837

Second DER is located at building 3129 which about 700ft away.

Page 38: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Multiple Inverter Controls DevelopmentTesting ResultsTesting Results

Two inverters operated simultaneously on the same 480V circuit in ORNL di t ib ti tdistribution system.

Inverters performing voltage regulation with different reference settings. Inverter current limited to 60Arms.

December 2008Current vs. Time Voltage vs. Time

38

Page 39: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Microgrid (MG) Architecture & Interoperation

December 200839

Page 40: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Multi‐layer Microgrid Architechture

December 200840

Page 41: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Microgrid ControlReactive Power and Voltage Regulation (Q‐V)Reactive Power and Voltage Regulation (Q‐V) Voltage is a local variable

D l i li bl Droop control is applicable

Challenges: 

• DER Q  output sharing errors due to the impedances and local loads

• Q circulation because of improper voltage references

Voltage Regulation Approaches

• Ideally system model & monitoring

• Preset local PCC voltage referenceEffective Reactive Power • Preset local PCC voltage reference 

and use droop control without communication

S tti l l PCC lt f

at PCCTotal:

DER1

December 2008

Setting local PCC voltage reference via central dispatch or schedule

41

DER1:

DER2:

Page 42: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Microgrid Control StrategiesExistingExisting 

P P2max

P3maxQ (kVar)

P1max

09 1 1

Q1max

0

Q2max

Q3max

ff1 f2 fnorm f3 f4

0.9 1.1 V(pu)1.00

Q2min

Q3min

Q1min

Droop control with artificial droop curves

DER P‐f Droop factor DER Q‐V Droop factor

Different slopes to have different responses

Applicable to P‐f and Q‐V control

St d t t

December 2008

Steady‐state error

No communication or central control required

42 42

Page 43: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Microgrid Control StrategiesORNL InnovationORNL Innovation

Enhanced Droop Control

Frequency droop and secondary control  Voltage droop and secondary control

Enhanced Droop Control

Secondary control in addition to droop control for frequency and voltage control to minimize steady‐state error

December 2008

Optimal power dispatch

Only low‐speed and infrequent communication needed43

Page 44: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Microgrid Control for RenewablesOngrid vs. Islanding ModesOngrid vs. Islanding Modes

On‐grid Mode

• MPPT is the default

• Or dispatch P based schedule

• Adjust P if high or low frequency if• Adjust P if high or low frequency if not all operating at MPPT

Islanding Mode

• Frequency control is top priority

• If multiple DE: one DE provides secondary while the others providesecondary while the others provide droop control

• Frequency within normal band (f2 to f3): DEs only use droop control

December 2008

f3): DEs only use droop control

• Frequency outside of normal: secondary control is kicked 44

Page 45: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Microgrid Time Sequence and Low‐Voltage Ride‐Throughg g

The German low-voltage ride-through standards for medium-voltage energy resources interconnection (BDEW) recommend 7.5 cycles ride through time if the voltage is below 0.3 pu, 35 cycles if the voltage is between 0.3 pu and 0.7 pu, and 75 cycles if the voltage is between 0.7 pu and 0.9 pu.

Coordination with Protection and DER LVR and Tripping• Microgrid switch is coordinated to be slower than grid relay protection• Microgrid switch is coordinated to be faster than Individual device tripping

December 200845

g pp g• Microgrid switch needs to be high speed to meet the individual inverter

low-voltage ride-through setting.

Page 46: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

MicrogridLow‐Volt Ride‐Through and Multi‐Input PI ControlLow Volt Ride Through and Multi Input PI Control

Smart Inverter Control for Microgrid• Decoupled PQ control

M l i l l d

December 200846

• Multiple control modes• Hierarchical control coordination to determine mode selection• Multi-mode PI controller ensures smooth transition between modes

Page 47: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

Microgrid SimulationDiagram of ORNL MicrogridDiagram of ORNL Microgrid

December 200847

Page 48: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

PublicationsPublications

December 200848

Page 49: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

FY12 Publications

• Lakshmi Gopi Reddy, Leon M. Tolbert, Burak Ozpineci, Yan Xu, D. Tom Rizy, “Reliability of IGBT in a STATCOM for harmonic compensation and power factor correction”, presented at IEEEin a STATCOM for harmonic compensation and power factor correction , presented at IEEE Applied Power Electronics Conference and Exposition, Orlando FL, February 2012.

• Philip Irminger, D. Tom Rizy, Huijuan Li, Travis Smith, Keith Rice, Fangxing Li, Sarina Adhikari, “Air Conditioning Stall Phenomenon – Testing, Model Development, and Simulation”, presented at the IEEE PES T&D Meeting & Exposition Orlando FL May 2012at the IEEE PES T&D Meeting & Exposition, Orlando FL, May 2012.

• Huijuan Li, Yan Xu, Sarina Adhikari, D. Tom Rizy, Fangxing Li, Philip Irminger, “Real and reactive power control of a three-phase single-stage PV system and PV voltage stability”, to be presented at IEEE Power Engineering Society (PES) Annual Meeting 2012, San Diego CA, July 2012.

• Yan Xu, Huijuan Li, Leon M. Tolbert, “Inverter-based microgrid control and stable islanding transition”, to be presented at IEEE Energy Conversion Congress and Exposition, Raleigh NC, September 2012.

• Rukun Mao, Huijuan Li, Husheng Li, Yan Xu, “Wireless communication for controlling microgrids: co-simulation and performance evaluation”, submitted to 3rd IEEE International Conference on Smart Grid Communications, Tainan City, Taiwan, November 2012.

• Huijuan Li Fangxing Li Yan Xu and D Tom Rizy “Autonomous and Adaptive Voltage Control

December 2008

• Huijuan Li, Fangxing Li, Yan Xu and D. Tom Rizy, Autonomous and Adaptive Voltage Control using Multiple Distributed Energy Resources”. Under review, submitted to IEEE Trans. Power Systems

49

Page 50: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

FY11 Publications

• “Microgrids and Distributed Energy Resources (DER)” Poster 8th International• Microgrids and Distributed Energy Resources (DER) , Poster, 8th International Conference on Power & Electronics (ECCE Asia), Jeju, South Korea, May 30‐Jun 3, 2011.

• “Impacts of Varying Penetration of Distributed Resources with & without Volt/VarControl: Case Study of Varying Load Types”, 2011 IEEE PES General Meeting, Jul.Control:  Case Study of Varying Load Types , 2011 IEEE PES General Meeting, Jul. 2011, pp.1‐7, 24‐29 July 2011.

• “Volt/Var Control Using Inverter‐based Distributed Energy Resources”, 2011 IEEE PES General Meeting, Jul. 2011, pp.1‐8, 24‐29 July 2011.g, , pp , y

• "Adaptive voltage control with distributed energy resources: Algorithm, theoretical analysis, simulation, and field test verification," 2011 IEEE PES General Meeting, pp.1, 24‐29 July 2011. 

• “Impact of Power Factor Correction and Harmonic Compensation by STATCOM on Converter Temperature and Reliability”, Paper No EC‐0736, 2011 IEEE Energy Conversion Congress & Exposition, Phoenix, AZ, Sept. 2011.

December 200850

Page 51: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

FY10 Publications

• "An adaptive voltage control algorithm with multiple distributed energy resources," N th A i P S i (NAPS) 2009 1 6 O t 2009North American Power Symposium (NAPS), 2009 , pp.1‐6, Oct. 2009.

• "Local Voltage Support From Distributed Energy Resources To Prevent Air Conditioner Motor Stalling," Innovative Smart Grid Technologies (ISGT), 2010 , pp.1‐6, Jan. 2010.

• "Properly understanding the impacts of distributed resources on distribution systems," 2010 IEEE Power and Energy Society General Meeting, pp.1‐5, Jul. 2010.

• "Adaptive Voltage Control With Distributed Energy Resources: Algorithm, Theoretical p g gy g ,Analysis, Simulation, and Field Test Verification," IEEE Trans. Power Systems, vol.25, no.3, pp.1638‐1647, Aug. 2010.

• "Instantaneous active and nonactive power control of distributed energy resources with a current limiter," 2010 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3855‐3861, Sept. 2010.

• "Voltage and current unbalance compensation using a static var compensator," IET P El t i l 3 6 977 988 N 2010

December 2008

Power Electronics, vol.3, no.6, pp.977‐988, Nov. 2010.

51

Page 52: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

FY09 Publications

• "Using Distributed Energy Resources to Supply Reactive Power for Dynamic Voltage R l ti " I t ti l R i f El t i l E i i l 3 5 795 802Regulation," International Review of Electrical Engineering, vol. 3, no. 5, pp. 795‐802, October 2008. 

• "Local Dynamic Reactive Power for Correction of System Voltage Problems, "ORNL/TM 2008/174 Oak Ridge National Laboratory TN November 2008ORNL/TM‐2008/174, Oak Ridge National Laboratory, TN, November 2008.

• "A Framework to Quantitatively Evaluate the Economic Benefits from Reactive Power Compensation," International Review of Electrical Engineering, vol. 3, no. 6, pp. 989‐998 December 2008998, December 2008.

• "Preventing delayed voltage recovery with voltage‐regulating distributed energy resources," IEEE PowerTech2009, Bucharest, pp.1‐6, June‐July 2009.

December 200852

Page 53: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

FY08 Publications

• "The application of droop‐control in distributed energy resources to extend the lt ll i " IEEE IAS I d t i l d C i l P S t T h i lvoltage collapse margin," IEEE IAS Industrial and Commercial Power Systems Technical 

Conference 2008 (ICPS 2008),May 4‐8, 2008.

• "Voltage regulation with multiple distributed energy resources," (invited) IEEE PES General Meeting 2008 Pittsburgh PA July 20 24 2008General Meeting 2008, Pittsburgh, PA, July 20‐24, 2008.

• "Interaction of multiple distributed energy resources in voltage regulation", IEEE PES General Meeting 2008, Pittsburgh, PA, July 20‐24, 2008.

• “Active power and nonactive power control of distributed energy resources”, The 40th North American Power Symposium, , Calgary Canada, September 28 – 30, 2008

December 200853

Page 54: 2012 Smart Grid R&D Program Peer Review Meetingenergy.gov/sites/...Controls_and_Microgrid_Interoperation_at_DECC.pdf · • 2013 Target –Smart Microgrid (MG) for >98% reduction

FY07 Publications

• "Assessment of the Economic Benefits from Reactive Power Compensation," P di f th IEEE P S t C f d E iti 2006 1767Proceeding of the IEEE Power Systems Conference and Exposition 2006, pp. 1767‐1773, Atlanta, GA, October 2006.

• "Reactive Power from Distributed Energy," The Electricity Journal, vol. 19, no. 10, pp. 27 38 December 200627‐38, December 2006.

• “Dynamic Voltage Regulation Using Distributed Energy Resources,” Proceedings of CIRED 2007, Vienna, Austria, May 20‐24, 2007.

• “Nonactive‐power‐related ancillary services provided by distributed energy resources,” IEEE Power Engineering Society General Meeting, June 24‐28, 2007, Tampa, Florida.

• “Experiment and Simulation of Dynamic Voltage Regulation with Multiple Distributed Energy Resources,” IREP Symposium 2007 ‐ Bulk Power System Dynamics and Control, Charleston, SC, August 2007.

December 200854


Recommended