+ All Categories
Home > Documents > 2012 Turning Inch LoRes

2012 Turning Inch LoRes

Date post: 01-Jul-2018
Category:
Upload: absalonjarv
View: 216 times
Download: 0 times
Share this document with a friend
752
Contents – Turning 1     T    u    r    n     i    n    g     T    o    o     l     h    o     l     d    e    r    s     T    u    r    n     i    n    g     I    n    s    e    r    t    s     M     D     T     M     i    n     i     S     h    a     f    t     T     h    r    e    a     d     i    n    g     G    r    o    o    v     i    n    g    a    n     d     C    u    t      o     f     f     R    a     i     l    w    a    y     W     h    e    e     l     M    a    c     h     i    n     i    n    g     S    e    c    o       C    a    p    t    o     S     M     G     T    u    r    n     i    n    g     T    e    c     h    n     i    c    a     l Alphanumeric index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 10 T urning T echnical information T echnical index . . . . . . . . . . . . . . . . . . . . . . . 11 Code keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 - 17 T oolholder systems . . . . . . . . . . . . . . . . . . . . 19 - 21 T oolholder selection. . . . . . . . . . . . . . . . . . . . 22 - 24 Insert selection . . . . . . . . . . . . . . . . . . . . . . . 25 Nose radius and surface finish information . . 26 Secolor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chipbreaker selection . . . . . . . . . . . . . . . . . . 28 - 29 Chipbreaker program. . . . . . . . . . . . . . . . . . . 30 - 34 Grade information . . . . . . . . . . . . . . . . . . . . . 35 - 39 Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Cutting data . . . . . . . . . . . . . . . . . . . . . . . . . . 42 - 45 Power requiremen ts . . . . . . . . . . . . . . . . . . . 46 Nose radius compensati on . . . . . . . . . . . . . . 47 - 49 T roubleshooti ng. . . . . . . . . . . . . . . . . . . . . . . 50 - 51 Insert wear Failure modes . . . . . . . . . . . . . 52 - 55 High feed (wiper) insert information . . . . . . . 56 - 60 Small boring bar info. and cutting data . . . . . 61 Railwa y whe el ma chining i nfo. and cutting da ta 62 - 63 PCBN informatio n (Clamp kits pg. 67). . . . . . 64 - 75 PCD information . . . . . . . . . . . . . . . . . . . . . . 76 - 79 Dynamomen tic keys . . . . . . . . . . . . . . . . . . . 80 T orque values for clamping screws . . . . . . . . 81 Jetstream T ooling general information . . . . . 82 Jetstream T ooling custom design . . . . . . . . . 83 Jetstream T ooling assembly and hose kits . . 83 Toolholders Jetstream T ooling application overview . . . . . 85 Jetstream T ooling toolholders . . . . . . . . . . . . 86 - 113 External application overview . . . . . . . . . . . . 114 - 119 External toolholders. . . . . . . . . . . . . . . . . . . . 121 - 1 80 Internal application overview . . . . . . . . . . . . . 182 - 184 Internal toolholders . . . . . . . . . . . . . . . . . . . . 185 - 209 Cartridge application overview . . . . . . . . . . . 210 - 211 Cartridges . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 - 232 Cartridge mounting information . . . . . . . . . . 233 Inserts T urning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 - 282 Secomax, PCBN. . . . . . . . . . . . . . . . . . . . . . . 284 - 313 Secomax, PCD. . . . . . . . . . . . . . . . . . . . . . . . 315 - 32 1 MDT – Multi Directional Turning (Turning, Threading, Grooving and Cut-off) Technical information T echnical index . . . . . . . . . . . . . . . . . . . . . . . 322 General information. . . . . . . . . . . . . . . . . . . . 323 Code keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 324 - 328 T oolholder selection. . . . . . . . . . . . . . . . . . . . 329 - 331 Insert selection . . . . . . . . . . . . . . . . . . . . . . . 332 - 3 34 Insert grades . . . . . . . . . . . . . . . . . . . . . . . . . 336 - 3 37 Special applications. . . . . . . . . . . . . . . . . . . . 338 - 339 Application technique . . . . . . . . . . . . . . . . . . 340 - 346 Cutting data . . . . . . . . . . . . . . . . . . . . . . . . . . 347 - 35 4 T roubleshoo ting. . . . . . . . . . . . . . . . . . . . . . . 356 - 3 57 Application overview . . . . . . . . . . . . . . . . . . . 358 - 359
Transcript
    T    u    r   n
    M     D     T
    f   t
    d     i   n    g
    d
    W     h    e    e
    S    e    c    o   -    C
   a    p    t   o
Turning Technical information
Technical index . . . . . . . . . . . . . . . . . . . . . . . 11 Code keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 - 17 Toolholder systems . . . . . . . . . . . . . . . . . . . . 19 - 21 Toolholder selection. . . . . . . . . . . . . . . . . . . . 22 - 24 Insert selection . . . . . . . . . . . . . . . . . . . . . . . 25 Nose radius and surface finish information. . 26 Secolor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chipbreaker selection . . . . . . . . . . . . . . . . . . 28 - 29 Chipbreaker program. . . . . . . . . . . . . . . . . . . 30 - 34 Grade information . . . . . . . . . . . . . . . . . . . . . 35 - 39 Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Cutting data . . . . . . . . . . . . . . . . . . . . . . . . . . 42 - 45 Power requirements . . . . . . . . . . . . . . . . . . . 46 Nose radius compensation . . . . . . . . . . . . . . 47 - 49 Troubleshooting. . . . . . . . . . . . . . . . . . . . . . . 50 - 51 Insert wear – Failure modes . . . . . . . . . . . . . 52 - 55 High feed (wiper) insert information . . . . . . . 56 - 60 Small boring bar info. and cutting data . . . . . 61 Railway wheel machining info. and cutting data 62 - 63 PCBN information (Clamp kits pg. 67). . . . . . 64 - 75 PCD information . . . . . . . . . . . . . . . . . . . . . . 76 - 79 Dynamomentic keys . . . . . . . . . . . . . . . . . . . 80 Torque values for clamping screws . . . . . . . . 81 Jetstream Tooling general information . . . . . 82 Jetstream Tooling custom design . . . . . . . . . 83 Jetstream Tooling assembly and hose kits . . 83
Toolholders
Jetstream Tooling application overview. . . . . 85 Jetstream Tooling toolholders . . . . . . . . . . . . 86 - 113 External application overview . . . . . . . . . . . . 114 - 119 External toolholders. . . . . . . . . . . . . . . . . . . . 121 - 180 Internal application overview. . . . . . . . . . . . . 182 - 184 Internal toolholders . . . . . . . . . . . . . . . . . . . . 185 - 209 Cartridge application overview . . . . . . . . . . . 210 - 211 Cartridges . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 - 232 Cartridge mounting information . . . . . . . . . . 233
Inserts
Turning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 - 282 Secomax, PCBN. . . . . . . . . . . . . . . . . . . . . . . 284 - 313 Secomax, PCD. . . . . . . . . . . . . . . . . . . . . . . . 315 - 321
MDT – Multi Directional Turning (Turning, Threading, Grooving and Cut-off)
Technical information
 
Internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374 - 376
Blades for MDT inserts . . . . . . . . . . . . . . . . . 384 - 385
MDT Inserts. . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 - 400
Mini ShaftTM Technical information
Troubleshooting. . . . . . . . . . . . . . . . . . . . . . . 441
Technical index . . . . . . . . . . . . . . . . . . . . . . . 488
Special inserts . . . . . . . . . . . . . . . . . . . . . . . . 497
Application overview . . . . . . . . . . . . . . . . . . . 507
    T    u    r   n
    M     D     T
    f   t
    d     i   n    g
    d
    W     h    e    e
    S    e    c    o   -    C
   a    p    t   o
External . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516 - 517 Internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518 - 519
Inserts, cut-off  . . . . . . . . . . . . . . . . . . . . . . . . . 520 - 521 Toolholders, cut-off  . . . . . . . . . . . . . . . . . . . . . 522 - 523
Railway Wheel Machining Technical information and cutting data . . . . . . 62 - 63 Cassettes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524 Inserts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525 - 526
Seco-CaptoTM
Miscellaneous
Technical information
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 Introductoion. . . . . . . . . . . . . . . . . . . . . . . . . 529 Code keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 530 - 536 Application overview . . . . . . . . . . . . . . . . . . . 537 - 546
Toolholders
Jetstream Tooling, external . . . . . . . . . . . . . . 548 - 557 MDT Jetstream Tooling, external . . . . . . . . . . 558 - 564 MDT Jetstream Tooling, external axial . . . . . . 565 - 585 External, negative . . . . . . . . . . . . . . . . . . . . . 586 - 609 External, positive . . . . . . . . . . . . . . . . . . . . . . 610 - 623 PCBN holders, external . . . . . . . . . . . . . . . . . 623 - 629 Internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630 - 649 PCBN, internal . . . . . . . . . . . . . . . . . . . . . . . . 650 MDT, external . . . . . . . . . . . . . . . . . . . . . . . . 652 - 653 MDT, internal . . . . . . . . . . . . . . . . . . . . . . . . . 654 - 660 MDT modular holders, external . . . . . . . . . . . 661 MDT modular holders, internal . . . . . . . . . . . 662 MDT modular blades . . . . . . . . . . . . . . . . . . . 663 - 667 Threading, external . . . . . . . . . . . . . . . . . . . . 668 - 669 Threading, internal. . . . . . . . . . . . . . . . . . . . . 670 - 673 MTM (Multi-task machining) toolholders . . . 674 - 683 Cut-off toolholders . . . . . . . . . . . . . . . . . . . . 685 - 686 Adapters for shank tools . . . . . . . . . . . . . . . . 687 - 691 Mini-turrets for shank tools. . . . . . . . . . . . . . 688
Clamping units
Selection information . . . . . . . . . . . . . . . . . . 696 - 697 Special applications. . . . . . . . . . . . . . . . . . . . 698 General information. . . . . . . . . . . . . . . . . . . . 699 Code keys . . . . . . . . . . . . . . . . . . . . . . . . . . . 701 Clamping units, external . . . . . . . . . . . . . . . . 702 - 703 Clamping units, internal. . . . . . . . . . . . . . . . . 704 - 705 Clamping units, VDI. . . . . . . . . . . . . . . . . . . . 706 - 707 Clamping units, for special applications . . . . 708 Accessories . . . . . . . . . . . . . . . . . . . . . . . . . . 709 spare parts . . . . . . . . . . . . . . . . . . . . . . . . . . 710 - 714
 
Type Page Type Page
C-TK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .709 C-WDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .709 CC-ET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .709 CCLNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 CEAR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517 CEAR/L...-HD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .517 CER/L...-Q  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .478, 516 CER/L...-QHD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478-479, 482, 516 CER/L..-CQHD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .480 CER/L-Q-S  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .481 CFHN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384 CFIN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384 CFIR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362-363, 368-370 CFIR/L...-JET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100, 102-104 CFIR...CA-JET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 CFJN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384  
CFKN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384-385 CFLN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384 CFMN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385 CFMR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364-365 CFMR/L...-JET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 CFMR...CA-JET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 CFON  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .385 CFOR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361 CFOR/L...-JET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105-110 CFPR/L...-RB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367 CFSR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361, 366 CFSR/L...-JET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 CFTR/L...-RB  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367 CFZR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361 CFZR/L...-JET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 CGIR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371-372 CIIR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373 CNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .519  
CNR/L...-AHD  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484-485, 487, 519 CNR/L..-APIHD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .486 CNR...-H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .519 CRDNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 CRGNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 CSDNN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 CSDPN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 CSKNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 CSKPR...-CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 CSRPR...-CA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220 CSSPR/L...-CA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220, 231 CTCPN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167 CTFNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 CTFPR/L...-CA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221, 232 CTJNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178
D DCKNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 DCLNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 DDJNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129 DDJNR/L-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 DDNNN-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 DDPNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 DSBNR/L-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 DSKNR/L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135 DSSNR/L-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 DTGNR/L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 DTJNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144 DVJNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147 DVJNR/L-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 DWLNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150 DWLNR/L-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
E E..-SCLCR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 E..-SGXN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411 E..-STFCR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 E..-STUCR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
F FR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377
G GR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377
L LCEX (setting gauge)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405 L 150.10A  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522-523
M MCFNR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 MCFNR...-CA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212 MCGNR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 MCKNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 MCLNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125-126 MCLNR/L...-CA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212 MCMNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 MCRNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128 MDJNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130 MRGNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 MRGOR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 MSDNN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134 MSKNR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 MSKNR/L...-CA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213, 228 MSRNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 MSRNR/L...-CA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 MSSNR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 MSSNR/L...-CA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215, 228 MSTNR...-CA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216, 229 MSYNR/L...-CA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216, 229 MTCNN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139 MTENNS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 MTFNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 MTFNR/L...CA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217, 230 MTGNR/L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 MTGNR/L...-CA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 MTJNRS/LS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 MTLNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 MVJNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148 MVLNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 MVTNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149 MWLNR/L  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
P PCLNR/L...-JET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 PCLNR/L...CA-JET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 PDJNR/L...-JET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 PDJNR/L...CA-JET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 PROON  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168 PSDPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169 PSSNR/L...-JET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 PSSNR/L...CA-JET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 PTAPRS/LS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 PTEPNS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 PTJNR/L...JET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 PVJNR/L...-JET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 PWLNR/L...-JET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91, 92
 
Turning Page
 
Turning – Code keys
3- -
  C = Clamp lock assembly   (PC toolholders)   D = Top clamp using center hole   M = Multiple lock assembly   (Pin and clamp lock)   (M-Type toolholders)   P = Pin lock assembly   (NL/PL toolholders)   S = Screw lock   T*= Taper stem   (Tee-lock toolholders)
9. Qualified surface & length
2. Insert shape
  C = 80° Diamond D = 55° Diamond
  R = Round   S = Square   T = Triangle   V = 35° Diamond   W = Trigon
4. Insert clearance angle
6. Pocket style
S = Single wall pocket construction. Full pocket construction when letter position is vacant.
5. Hand of tool
7. Toolholder shank size
For square shanks, the number represents the number of sixteenths of width and height. For rectangular shanks, the first digit represents the number of eighths of width and the second digit represents the number of quarters of height.
3. Toolholder style
C = Shank with 0° end cutting edge angle.
D = Straight shank with 45°   side cutting edge angle.
E = Straight shank with 30°   side cutting edge angle.
F = Offset shank with 0° end   cutting edge angle.
G = Offset shank with 0° side   cutting edge angle.
J = Offset shank with –3° side   cutting edge angle.
K = Offset with 15° end cutting   edge angle.
L = Offset shank with –5° end   or side cutting edge angle.
M = Straight shank with 50° side cutting edge angle.
O*= Offset shank with centrally   located round insert.
P = Straight shank with 27 1/2°   side cutting edge angle.
Q = Offset shank with –17 1/2°   cutting edge angle.
R = Offset shank with 15° side   cutting edge angle.
S = Offset shank with 45° side   cutting edge angle.
T* = offset shank with –30° side   or end cutting edge angle.
V = Straight shank with 17 1/2°   side cutting edge angle.
W = Offset shank with 10° side cutting edge angle.
B C
D N
R- -
  S = Steel   A = Steel with   coolant hole   C = Carbide   E = Carbide with   coolant hole   H = Heavy metal   J = Heavy metal with   coolant hole
2. Shank diameter (Inch)
Stepped bar shows smallest diameter first.
4. Method of holding insert
  C = Clamp lock assembly   (PC toolholders)   M = Multiple lock assembly   (Pin and clamp lock)   (M-Type toolholders)   P = Pin lock assembly   (NL/PL toolholders)   S = Screw lock
6. Bar style
5. Insert shape
3. Boring bar length (Inch)
F = 3” G = 3.5” H = 4” J = 4.5” K = 5” L = 5.5” M = 6” N = 6.5” P = 6.75” Q = 7” R = 8” S = 10” T = 12” U = 14” V = 16” W = 18” Y = 20” X = Special Length
U = Offset shank with negative   3° (93°) end or side cutting   edge angle.
F = Offset shank with 0° (90°) end   cutting edge angle.
G = Offset shank side/end cutting (round insert)
K = Offset shank with 15° (75°) end   cutting edge angle.
L = Offset shank with negative 5°   (95°) end or side cutting   edge angle.
Q = Offset shank with negative 17.5° (107.5°) cutting edge angle.
P = Offset shank with 27° 30’ side   and end cutting edge angle.
8. Hand of bar
  R = Right   L = Left
9. Insert size I.C.
7. Insert clearance angle
A --
  S = Screw lock   C = Clamp lock assembly   (PC toolholders)   M = Multiple lock assembly   (pin and clamp lock)   (NCL toolholders)   P = Pin lock assembly   (NL/PL toolholders)
9. Insert size
A Type = Length of cutting edge in millimeters W, X & Z Type = Insert I.C. in eighths of an inch ..JET = Jetstream Tooling™
2. Insert shape
  S = Square   T = Triangle   V = 35° Diamond
4. Insert clearance angle
6. Cartridge cutting height
A Type = Length of cutting edge in millimeters W, X & Z Type = Height in thousandths of an inch rounded (2) places
5. Hand of tool
  L = Left   R = Right
7. Tool symbol
C = Indicates cartridge
3. Toolholder style
F = Offset shank with   0° end cutting edge angle G = Offset shank with   0° side cutting edge angle K = Offset shank with   15° end cutting angle L = Offset shank with –5°   and/or side cutting edge   angle R = Offset shank with   15° side cutting edge angle S = Offset shank with   45° side cutting edge angle T* = Offset shank with –30°   side or end cutting edge   angle X* = Offset shank with 27 1/2°   side or end cutting edge   angle Y = 5° end cutting edge angle
A = Metric cartridge/metric components-   metric hex wrench W = Metric cartridge/metric components-   Inch hex wrench X = 90° mount cartridge Z = Mini-cartridge
P
N
C
-
C = Diamond 80° D = Diamond 55° R = Round S = Square T = Triangle V = Diamond 35° W = Trigon 80°
8. Cutting edge condition
F = Sharp cutting edges. E = Honed cutting edges. T = Chamfered cutting edges. S = Chamfered and honed cutting   edges. K = Double chamfered cutting edges. P = Double chamfered and rounded   cutting edges.
9. Manufacturer’s option
e.g. chipbreaker designation F = Finishing M = Medium R = Roughing 1 = For low feed rates and easy conditions 9 = For high feed rates and rough   conditions
2. Insert clearance angle
N = 0° B = 5° C = 7° P = 11° D = 15° E = 20°
4. Type
B = With hole and one counter sink.
E = Smaller than 1/4” I.C. without hole.
G = With hole and chipbreaker on both faces.
H = With hole, counter sink and chipgroove.
M = With hole and chipbreaker on one face only.
P*= 10° positive-land with hole and   chipbreaker.
R = Without hole, chipbreaker on one face only.
T = C-Lock hole with chipbreaker on one face only.
U = Negative insert with hole and chip- breaker on both faces for toolholders with pin lock only.
W = C-Lock hole, no chipbreaker.
*Non ANSI Standard
5. Size
For equal sided inserts I.C. in 1/8ths of an inch. Examples:   1/8” = 1   5/32” = 1.2   3/16” = 1.5   7/32” = 1.8   1/4” = 2   5/16” = 2.5   3/8” = 3   1/2” = 4   5/8” = 5   3/4” = 6   7/8” = 7   1” = 8   1 1/4” = 10
Rectangle and parallelogram inserts require two digits: 1 st Digit-Number of 1/8ths in width. 2nd Digit-Number of 1/4ths in length.
3. Tolerances
Insert I.C. Thickness A = ±.001 ±.001 C = ±.001 ±.001 E = ±.001 ±.001 G = ±.001 ±.005 M* = ±.002 ±.005   ±.004 ±.005 U* = ±.003 ±.005   ±.010 ±.005 *Exact tolerance is determined by size of insert
6. Thickness
Number of 1/32nds on inserts less than 1/4” I.C. Number of 1/16ths on inserts 1/4” I.C. and over.
7. Nose radius
0.5 = 1/128   1 = 1/64
 
         3   ,
*Not ISO
T U
A, B, K C, D, E, M, V H, O, P
L R S
T W
01 = 1,59 mm T1 = 1,98 mm 02 = 2,38 mm 03 = 3,18 mm T3 = 3,97 mm
04 = 4,76 mm 05 = 5,56 mm 06 = 6,35 mm 07 = 7,94 mm 08 = 8,00 mm 09 = 9,52 mm
A = 45° D = 60° E = 75° F = 85° P = 90°
A = 3° B = 5° C = 7° D = 15° E = 20°
F = 25° G = 30° N = 0° P = 11°
F E
T S
9. Version
Z = Special
Z = Special
M0* = round inserts 00 = sharp 01 = 0,1 mm 02 = 0,2 mm 04 = 0,4 mm 08 = 0,8 mm 12 = 1,2 mm etc
1st letter
2nd letter
nose radius
*Metric version
Not mandatory information
11. Manufacturers option
Tip sizes: L0 = 0,5–0,7 mm L1 = 1,8–3,3 mm L2 = 3,8–5,0 mm LF = full-face insert
Not mandatory information
Turning
F = Finishing M = Medium R = Roughing WZ = Wiper (CBN)
B = 2 C = 3 D = 4 U = 4 (double sided) V = 6 (double sided)
Not mandatory information
10. Internal designation
e.g. chipbreaker designation
W = High feed insert
19
P External Negative Toolholders (PL) • Negative-rake lock pin style • Simple to set up and index • For negative-rake inserts
Turning – Toolholder systems
Toolholder systems, external turning
M External Toolholders • A multiple-clamp and lock pin design for NC/CNC machines • Maximum insert locking power with industry-standard NL
lock pin mechanism. • Two different assembly options:   1. For negative basic shape inserts with hole   2. For conventional precision-ground or utility-ground
solid inserts with chipbreaker plates
 
C External Toolholders (PC) • Qualified holders with positive clamping. • Designed for precision- and utility-ground,   positive-rake inserts and chipbreakers. • Ideal for positive-rake applications on   materials such as high-temperature alloys,   aluminum and soft steels, and low horse-   power applications.
T External Toolholders (T-Lock)
• Well-suited for high-temperature alloy profiling. • Unrestricted chip flow. • Simple field modifications possible with Style O. • Simple retention system. • Requires no spare sparts.
C toolholder • Designed mainly for Seco PCBN inserts without hole.
The insert is locked in position by means of a clamp, which in the new design is equipped with a carbide plate
 
21
S Internal Boring Bars (C-Lock) • For bores as small as .180” • Available with steel or carbide shanks, ranging in size from   3/16” to 1”. • Designed to ISO-ANSI standards. • Uses Torx Plus® insert holding screws.
  Torx Plus® is a registered trademark of   CamCar Division of Textron, Inc.
Toolholder systems, internal turning
Turning – Toolholder systems
M Internal Boring Bars • Proven lock pin for negative rake geometry inserts. • Ideal for unground, negative rake inserts or utility,
and precision ground inserts with a chipbreaker plate. • Available with integral coolant delivery.
C Internal Boring Bars (PCBN) • Designed principally for Secomax PCBN inserts without a   center hole. • Also used with other Secomax negative and positive inserts   without a center hole and chipbreaker, or with a separate
mechanical chipbreaker. • Insert is held down with clamp. • For rougher machining, clamp is equipped with a carbide   pressure plate that reduces clamp wear and distributes the
clamping force onto the insert surface.
 
Insert clearence angle
N = Negative O = Neutral P = Positive C = Neutral – accepts 7° clearance inserts. B = Neutral – accepts 5° clearance inserts.
External
Bar style
U = Offset shank with negative   3° (93°) end or side cutting   edge angle.
F = Offset shank with 0° (90°) end   cutting edge angle.
G = Offset shank side/end cutting   (round insert)
K = Offset shank with 15° (75°) end   cutting edge angle.
L = Offset shank with negative 5°   (95°) end or side cutting   edge angle.
Q = Offset shank with negative 17.5° (107.5°) cutting edge angle.
P = Offset shank with 27° 30’ side   and end cutting edge angle.
Holder style
C = Shank with 0° end cutting edge angle.
D = Straight shank with 45°   side cutting edge angle.
E = Straight shank with 30°   side cutting edge angle.
F = Offset shank with 0° end   cutting edge angle.
G = Offset shank with 0° side   cutting edge angle.
J = Offset shank with –3° side   cutting edge angle.
K = Offset with 15° end cutting   edge angle.
L = Offset shank with –5° end   or side cutting edge angle.
M = Straight shank with 50° side cutting edge angle.
O = Offset shank with centrally   located round insert.
P = Straight shank with 27 1/2°   side cutting edge angle.
Q = Offset shank with –17 1/2°   cutting edge angle.
R = Offset shank with 15° side   cutting edge angle.
S = Offset shank with 45° side   cutting edge angle.
T = offset shank with –30° side   or end cutting edge angle.
V = Straight shank with 17 1/2°   side cutting edge angle.
W = Offset shank with 10° side   cutting edge angle.
Turning – Technical information
Select the toolholder to suit the machining operation from the overview on the following pages.
Toolholder model
Holder style
  C = 80° Diamond D = 55° Diamond
  R = Round   S = Square   T = Triangle   V = 35° Diamond   W = Trigon
External/Internal
External
Internal
Insert clearance angle
Shank size
For square shanks, the number repre- sents the number of sixteenths of width and height. For rectangular shanks, the first digit represents the number of eighths of width and the second digit represents the num- ber of quarters of height.
External
Select the most stable shank allowed by machine and application.
Toolholder shank
Shank diameter
Internal
External
Internal
Turning - Technical Information
The insert type and size are determined by the toolholder choice. The code on the insert must correspond with the code on the toolholder. The size of the insert is one of the factors that determines the maximum cutting depth (other factors are setting angle, nose radius and chipbreaker). Use the table on next page as a guideline to choose insert size.
Insert type and size
External
Internal
C = Diamond 80° D = Diamond 55° R = Round S = Square T = Triangle V = Diamond 35° W = Trigon 80°
Shape
N = 0° C = 7° P = 11° B = 5° E = 20°
Insert clearance angle
Integers of basic dimension of (largest) main cutting-edge length to be indicated. Round insert dia- meters to be indicated. Integers to be preceded by a 0.
Ex. 9.52 mm indicated by 09. Ex. 12.7 mm indicated by 12.
Cutting edge length (mm) Size
1/8” = 1  5/32” = 1.2  3/16” = 1.5  7/32” = 1.8
1/4” = 2  5/16” = 2.5
  1/2” = 4   5/8” = 5   3/4” = 6   7/8” = 7   1” = 8
1 1/4” = 10
Rectangle and parallelogram inserts require two digits: 1 st Digit-Number of 1/8ths in width. 2nd Digit-Number of 1/4ths in length.
For equal sided inserts I.C. in 1/8ths of an inch. Examples:
ISO/ANSI ISO/ANSI
ISO ANSI
.250
.375
.500
.625
1.000 1.260
Maximum depth of cut capability
 
Turning - Technical information
The choice of nose radius is dependent on the workpiece design and the machining operation. The nose radius influences cutting data choice and the surface finish achieved. The maximum feed rate that can be used depends on a number of factors including machine power, stability, workpiece material, insert shape and size, nose radius, chipbreaker, grade and setting angle.
Small nose radius = universal machining, low cutting forces (less vibration risk). Large nose radius = strong, suitable for high cutting data, good surface finish.
Nose radius
Nose radius
Surface finish
24 64 128 250 320
.002
.003
.005 – –
.003
.005
.006
.009 –
.004
.006
.009
.013
.016
.005
.008
.011
.016
.019
.006
.009
.013
.018
.022
.007
.011
.016
.022
.027
The mean value Ra is often used as surface finish value and can becalculated from the formulas:
Ra = (1/y)2  where (in)
y = (in)
Ry = profile height f = feed rate (inch/rev) r = nose radius (inch)
0.001 x V 21.6 x r f
 
Turning - Secolor 
Secolor is a system for selection of chipbreaker and grade. It is based on a matrix with nine squares symbolizing different workpiece materials and different machining conditions. The actual workpiece material (steel, stainless steel or cast iron) and the actual application (finishing, medium roughing or roughing) will lead to a recommendation of a chipbreaker and a grade.
The Secolor system is also used on the insert boxes. Black dots in the matrix indicate main application areas for the inserts. Circles indicate alternative application areas.
For more information about chipbreakers and the Seco chipbreaker program see pages 28-34. For more information about grades and the Seco range see pages 35-39.
Chipbreaker and grade
Finishing at low depth of cut Typical ap = .008–.032 and f = .008 in/rev.
Medium-rough machining Typical one pass machining at ap = .032–.120 and f = .012 in/rev.
Rough machining at higher depth of cut and feed rate In most cases with difficult surface conditions such as scale, irregularities and other conditions leading to interruptions and edge damage. Typically ap = .12–.28 and f = .02 in/rev.
Steel
(ISO-P)
Turning - Chipbreakers
The chipbreakers are designed to control the chips when turning long chipping materials. The chipbreaker designations describe the application area as follows:
Letter: F = Finishing Digit: 1 = For low feed rates and easy conditions   M = Medium 9 = For high feed rates and rough conditions   R = Roughing
Chipbreaker
Chipbreaker
    T    y    p    e
 
MF2 First choice for finishing.
M3 First choice for general machining.
M5 First choice for roughing.
The complete chipbreaker program is shown on the following pages.
    D    e    p    t    h
   o     f    c    u    t ,    a    p
    (     i   n    c
Chipbreaker program, negative basic shape inserts
-FF1 Chipbreaker for negative inserts. Used to achieve a very fine finish when turning steel and stainless steel.
Machining range: f = .003–.012 in/rev, ap = .008–.060 inch.
-FF2 Chipbreaker for negative inserts. Intended for fine-finishing and semi-finishing of steels and stainless steels. The positive, tight chip groove offers light cutting action combined with superior chip forming.
Machining range: f = .003–.012 in/rev, ap = .008–.060 inch.
-M1 Chipbreaker intended for superalloys and titanium alloys. It has a positive cutting rake angle which is slightly honed to increase the edge strength. Also available with a perfectly sharp edge (type ..GP insert). The M1 is intended for light roughing and for semi-finishing.
Machining range: f = .008–.016 in/rev, ap = .060–.200 inch.
-M3 First choice for medium-rough machining and also the most versatile Seco chipbreaker. In most cases, it is the only chipbreaker needed. Offers the best useful l ife and best chipbreaking in a wide range of cutting data and workpiece materials. Suitable for precision forged and cast workpieces (NNS or Near Net Shape workpieces) as regards both chip control and edge strength.
Machining range: f = .006–.020 in/rev, ap = .020–.200 inch.
-M4 Chipbreaker intended for cast iron. Positive rake angle with a narrow T-land gives low cutting forces. First choice for cast iron machining at high speeds.
Machining range: f = .004–.028 in/rev, ap = .008–.275 inch.
-M5 First choice for roughing by means of double-sided inserts. Intended for demanding operations at high feed rates in steel, stainless steel and cast iron. Combines high edge strength with comparatively low
cutting forces.
Machining range: f = .012–.028 in/rev, ap = .060–.275 inch.
-MF1 Chipbreaker intended for machining stainless steel, superalloys and titanium alloys. Type ..GP insert has a sharp, precision ground edge. Type ..MP insert has a lightly honed cutting edge for increased strength. MF1 is intended for use in semi-finishing and finishing applications.
Machining range: f = .003–.012 in/rev, ap = .008–.140 inch.
-MF2 First choice for finishing with negative inserts. Suitable for chip control at depths of cut down to .010 inch, provided that the feed rate is in excess of .010 in/rev. Good capacity for medium rough machining.
 
Chipbreaker program, negative basic shape inserts
-MF3 Chipbreaker with positive cutting rake angle intended for moderately difficult stainless steel. The MF3 is also intended for light roughing in relatively soft, “tacky” steel and difficult to machine stainless steel if the depth of cut is limited. MF3 can also be used for finishing of cast iron.
Machining range: f = .008–.016 in/rev, ap = .040–.160 inch.
-MF4 Chipbreaker intended for medium/finishing of stainless steel, very open and highly posit ive geometry.
Machining range: f = .006–.020 in/rev, ap = .020–.160 inch.
-MF5 Chipbreaker intended for medium finishing of steel and stainless steel at high feeds. Very easy cutting and open geometry.
Machining range: f = .008–.032 in/rev, ap = .008–.100 inch.
-MR3 Chipbreaker with positive cutting rake angle reduces cutting forces, which gives a very high edge strength. Intended for medium-rough and rough machining of superalloys, titanium alloys and hardened steel.
Machining range: f = .008–.024 in/rev, ap = .060–.275 inch.
-MR4 The MR4 has a negative T-land, which gives extremely high edge strength. The chipbreaker is intended for more difficult machining applications on superalloys and titanium alloys, such as intermittent cuts and the machining of parts with raw surface.
Machining range: f = .006–.020 in/rev, ap = .060–.275 inch.
-MR6 Chipbreaker for medium and medium roughing of steel. Very easy cutting and open geometry. Double and single-sided.
Machining range: f = .010–.032 in/rev, ap= .035–.200 inch.
-MR7 The strongest chipbreaker for double-sided inserts. The MR7 is suitable for high feed rates and depths of cut that normally require a single-sided insert. The chipbreaker has a wide negative T land, which gives high edge strength.
Machining range: f = .014–.035 inch/rev, ap = .060–.275 inch.
-R4 Chipbreaker for single-sided inserts. It has a positive cutting edge which gives low cutting forces.
 
-R5 Chipbreaker for single-sided inserts. Recommended for medium-roughing of steel.
Machining range: f = .012–.040 in/rev, ap = .080–.475 inch.
-R6 Chipbreaker for single-sided inserts. Recommended for medium-roughing of stainless steel.
Machining range: f = .010–.028 in/rev, ap = .080–.400 inch.
-R7  A strong but easy-cutting chipbreaker for single sided inserts. The R7 is well suited for intermittent machining of both stainless and ordinary carbon steel.
Machining range: f = .016–.040 in/rev, ap = .080–.475 inch.
-R8  A very strong chipbreaker for single-sided inserts. The R8 is intended for high feed rates when machining castings and forgings of austenitic stainless steel.
Machining range: f = .014–.032 in/rev, ap = .080–.475 inch.
-RR6  A very easy-cutting chipbreaker for single-sided inserts. Recommended for roughing of stainless steel and steel.
Machining range: f = .012–.040 in/rev, ap = .080–.475 inch.
-RR9 Extremely strong chipbreaker for single-sided negative inserts, for use at high feed rates. Suitable for difficult castings and forgings and for austenitic stainless steel.
Machining range: f = .020–.048 in/rev, ap = .100–.600 inch.
-UX Chipbreaker for negative inserts. Positive cutting rake with sharp edge. Low cutting force. Suitable for slim components.
Machining range: f = .008–.016 in/rev, ap = .040–.240 inch.
-56 -R56
 
Chipbreaker program, negative basic shape inserts
-R68 Chipbreaker for large single-sided negative inserts intended for steel and cast iron.
Machining range: f = .020–.055 in/rev, ap = .200–.550 inch.
-57 -R57
Machining range: f = .018–.042 in/rev, ap = .080–.475 inch.
Chipbreaker program, positive basic shape inserts
-FF1 Chipbreaker available for both negative and positive inserts. Used to achieve a very fine finish when turning steels and stainless steels.
Machining range: f = .002–.010 in/rev, ap = .016–.080 inch.
-F1  A finishing chipbreaker with sharp cutting edge for positive inserts. Suitable for productivity demanding finishing at fine depth of cuts in precision forgings and castings.
Machining range: f = .004–.012 in/rev, ap = .020–.100 inch.
Machining in bar automatics, for instance: f = .003–.010 in/rev, ap = .040–.120 inch.
-MF2  A versatile finishing to semi-finishing chipbreaker with light-cutting action for positive inserts. Suitable for a wide range of cuts in steel and stainless steel finishing applications including boring.
Machining range: f = .0015–.019 in/rev, ap = .002–.140 inch.
-F2 -M3
 A reliable semi-finishing to medium roughing chipbreaker ensuring safe chip flow. Suitable for medium cuts in steel and stainless steels application including boring.
Machining range: f = .006–.016 in/rev, ap = .030–.200 inch.
-M5 Rigid chipbreaker for positive inserts. Intended for medium-rough and rough machining of steels, stainless steels and cast iron. Combines high edge strength with comparatively low cutting forces. Safe action in interruptions and rough skin on parts.
Machining range: f = .006–.024 in/rev, ap = .040–.200 inch.
-AL Chipbreaker for positive inserts. Intended for machining of aluminum alloys. The rake face is highly polished and the rake angle is very large.
 
Chipbreaker program, positive basic shape inserts
-R2 Chipbreaker for large inserts intended for finishing of railway wheels.
Machining range: f = .012–.032 in/rev, ap = .040–.200 inch.
-RR94 Chipbreaker for large inserts intended for roughing of railway wheels.
Machining range: f = .024–.060 in/rev, ap = .120–.400 inch.
-RR96 Chipbreaker for large inserts intended for machining of steel with high depth of cut and large feed rates.
Machining range: f = .024–.086 in/rev, ap = .120–.940 inch.
-RR97 Chipbreaker for large inserts intended for machining of steel with high depth of cut and large feed rates. The –RR97 geometry is stronger than the –RR96.
Machining range: f = .032–.086 in/rev, ap = .120–.940 inch.
-UX Chipbreaker for positive inserts. Smooth and easy chip flow on finishing and medium roughing in steel and stainless steel. Well suited for slim components.
 
Turning - Insert grades
The Seco range consists of coated grades (CVD and PVD), uncoated grades, cermet, PCBN and PCD. The designation of the grades indicates a ranking regarding their wear resistance and tough- ness qualities. All the grades are also classified according to ISO (P, M, K, N, S, H). The black areas in the chart indicate a grade's main ISO application groups and the white areas indicate other supplementary application groups.
Insert grades
 
CVD coated grades
TP0500 Intended primary for medium-roughing and roughing of steel and alloyed steel requiring a very high degree of heat and wear resistance.
Ti(C,N) + Al2O3 DURATOMIC ®
TP1500 Intended for general turning of steel and alloyed steel. The high wear resistance of fers high speed capabil ity.
Ti(C,N) + Al2O3 DURATOMIC ®
TP2500 TP2500 is intended for a wide range of turning applicat ions in both steel and stainless steel and is also a good choice for cast iron. The wear resistance and edge strength together with the high versatility make the grade the first choice in a large number of applications.
Ti(C,N) + Al2O3 DURATOMIC ®
TP3500 Intended for rough or intermittent turning in steels and stainless steels as well as general turning of stainless steels.
Ti(C,N) + Al2O3 DURATOMIC ®
TP200 TP200 is a universal grade with high versatility. The grade is intended for a wide range of turning ap- plications in both steel and stainless steel and is also a good choice for cast iron.
Ti(C,N) + Al2O3 + TiN
TP40 TP40 is the basic grade for turning in the P40 range. Very tough grade for demanding operations on steel castings and forging, and on all types of stainless steel.
TiC/Ti(C,N) + TiN
CVD coated grades
TH1500  A very hard CVD-coated super fine grained grade intended for machining of hardened steels with hardness 40-52 HRc. An alternative grade for finishing of cast iron.
Ti(C,N) + Al2O3 DURATOMIC ®
TM2000 TM2000 is the most wear-resistant of the grades intended for machining of stainless steel. The higher wear resistance offers higher speed capability.
Ti(C,N) + Al2O3 DURATOMIC®
TM4000 TM4000 is intended for machining of stainless steel. The wear resistance together with the superior edge toughness makes the grade the first choice in stainless steel applications.
Ti(C,N) + Al2O3 DURATOMIC ®
TK1001 The most wear resistant grade for machining of grey- and ductile cast iron. It is also an alternative in turning of hardened steels.
Ti(C,N) + Al2O3 DURATOMIC ®
TK2001 The basic choice for machining of grey- and ductile cast iron. A tougher grade than TK1001 to be used under unstable conditions and interrupted cuts. Can also be used for harder abrasive steels.
Ti(C,N) + Al2O3 DURATOMIC ®
PVD coated grades
TH1000  A very hard PVD-coated super fine grained grade intended for machining of steel components with both hardened and soft areas. The superior edge toughness provides excellent performance in inter- rupted cuts in hardened steels as well as in hard surface removal.
Nanolaminate based on Ti-Al-Si-N
TS2000 Hard micrograin principally intended for finishing operations in superalloys and titanium alloys. Also performs well in finishing operations on stainless steel.
(Ti,Al)N + TiN
TS2500 Tougher alternative to TS2000. TS2500 is principally intended for roughing operations in superalloys and titanium alloys.
(Ti,Al)N + TiN
CP200 Hard micrograin principally intended for finishing operations on hot-strength superalloys based on Ni, Co, Fe and Ti, and for machining unalloyed titanium. Also performs well in finishing operations on stainless steels.
(Ti, Al) N + TiN
CP500  A very tough micrograin intended for finishing and medium roughing of stainless steel. Can handle intermittent cutting operations very well. CP500 is also an alternative for aluminium alloys.
(Ti,Al)N + TiN
Uncoated grades
890 Micrograin with very high hardness and good toughness. Just like CP200, 890 is intended for super- alloys and titanium alloys. Also suitable for hardened steel, cast iron and non ferrous alloys like Al, Cu.
883 Tougher alternative to 890. Principally intended for roughing of superalloys and titanium alloys.
HX Principally intended for machining cast iron and hardened steel. Also suitable for aluminium and other non-ferrous materials.
KX Micrograin intended for machining aluminium and other non-ferrous materials.
Cermet
TP1020 Cermet with very high wear resistance intended for highest surface finish requirements with predict- ability and control in steel and stainless steel.
 
Feed rate
Rate of metal removal
Cutting time L fm
f
D = Workpiece diameter (in)
fm = Feed rate (in/min)
n = RPM (rev/min)
P  = Unit power factor   horsepower per cubic inch per minute
(for P values see page 46)
Q = Metal removal rate (in3 /min)
r = Nose radius
vc = Cutting speed (ft/min)
Horsepower required at motor
Torque at spindle
Ts = 63,030 HPs
Cutting Data
Cutting Speed The recommended cutting speeds (sfm) in the tables are estimated for 15 minutes tool life for SMG 1-7 and 12-15, and 10 minutes tool life for SMG 8-11. Use the tables beginning on page 715 to classify the workpiece material into an Seco Material Group.
For more accurate recommendations with other nose radius and cutting depth combinations and other feed rates than those used in the tables, use the SecoCut application, please visit http://www.secotools.com/customerzoneus
 CCMT 32.51-F1 Tool life = 15 min κr = 95° r ε  = .016 inch ap = .040 inch
Seco Material
Group No.
TP1500 TP2500 TP3500 TP40
Feed rate, f inch/rev
.004 .008 .012 .004 .008 .012 .004 .008 .012 .004 .008 .012
Cutting speed, vc sf/min
1 3660 2955 2530 3255 2465 1990 1820 1670 1480 2100 1590 1310 2 3100 2505 2145 2755 2090 1685 1540 1415 1255 1780 1350 1110 3 2560 2065 1770 2275 1725 1390 1270 1170 1035 1470 1115 915 4 2185 1765 1510 1945 1470 1190 1085 1000 885 1255 950 785 5 1820 1470 1260 1620 1225 990 905 830 735 1045 795 655 6 1595 1290 1105 1420 1075 870 795 730 645 920 695 570
42
 CCMT 32.51-F1 Tool life = 15 min κr = 95° r ε  = .016 inch ap = .040 inch
Seco Material
Group No.
CP500 TP1030 TP1020
Cutting speed, vc sf/min
1 1335 1070 925 2235 1770 1425 1415 930 665 2 1130 905 785 1895 1500 1210 1195 785 565 3 935 750 645 1565 1240 1000 990 650 465 4 795 640 550 1335 1055 850 845 555 395 5 665 530 460 1110 880 710 705 460 330 6 585 465 405 975 775 620 615 405 290
CNMG 432-M3   Tool life = 15 min   κr = 95° r ε  = .031 inch   ap = .100 inch
Seco Material
Group No.
Feed rate, f inch/rev
.010 .012 .016 .010 .012 .016 .010 .012 .016 .010 .012 .016 .010 .012 .016
Cutting speed, vc sf/min
1 2940 2700 2255 2505 2315 2025 1995 1785 1470 1460 1360 1190 1250 1165 1030 2 2490 2285 1910 2125 1960 1715 1690 1515 1245 1235 1155 1010 1060 985 875 3 2055 1890 1575 1755 1620 1415 1395 1250 1030 1020 950 835 875 815 720 4 1755 1610 1345 1495 1385 1210 1190 1065 880 870 815 710 750 695 615 5 1465 1345 1120 1250 1155 1005 995 890 735 725 675 595 625 580 515 6 1285 1180 985 1095 1010 885 870 780 645 640 595 520 545 510 450
CNMM 544-R4 Tool life = 15 min κr = 95° r ε  = .063 inch ap = .235 inch
Seco Material
Group No.
TP0500 TP1500 TP2500 TP3500
Feed rate, f inch/rev
.016 .024 .031 .016 .024 .031 .016 .024 .031 .016 .024 .031
Cutting speed, vc sf/min
1 2175 1495 1070 1985 1590 1335 1425 1030 795 1165 905 730 2 1845 1265 910 1680 1345 1130 1205 870 675 990 765 620 3 1520 1045 750 1390 1110 935 995 720 560 815 635 510 4 1300 890 640 1185 950 800 850 615 475 695 540 435 5 1085 745 535 990 790 665 710 510 395 580 450 365 6 950 650 470 865 695 585 620 450 350 510 395 320
κr = Lead or setting angle
 
43
 CNMG 432-MF2 Tool life = 15 min   r = 95° r  = .031 inch ap = .060 inch
Seco Material
Group No.
TH1000 TH1500
Cutting speed, vc sf/min
7 455 380 325 565 440 360
CCMT 32.51-MF2 Tool life = 10 min   r = 95° r  = .016 inch ap = .040 inch
Seco Material
Group No.
TM4000 TP2500 CP500
Cutting speed, vc sf/min
8 995 950 875 1230 1345 1305 645 570 520 9 780 745 690 965 1055 1025 510 450 405 10 640 610 565 790 865 835 415 365 335 11 475 455 415 585 640 620 310 270 245
CNMG 432-MF4 Tool life = 10 min   r = 95° r  = .031 inch ap = .080 inch
Seco Material
Group No.
TM2000 TM4000 TP2500 CP500
Feed rate, f inch/rev
.008 .012 .016 .008 .012 .016 .008 .012 .016 .008 .012 .016
Cutting speed, vc sf/min
8 1120 915 755 895 735 605 1340 1100 875 530 455 405 9 880 720 595 705 575 475 1055 865 685 415 355 320 10 720 590 485 575 470 390 860 710 560 340 290 260 11 535 435 360 425 350 285 640 525 415 255 215 195
CNMG 543-M5 Tool life = 10 min   r = 95° r  = .047 inch ap = .100 inch
Seco Material
Group No.
TM2000 TM4000 TP2500 TP40
Feed rate, f inch/rev
.012 .018 .024 .012 .018 .024 .012 .018 .024 .012 .018 .024
Cutting speed, vc sf/min
8 780 565 425 625 450 340 925 615 420 490 410 355 9 610 445 335 490 355 265 730 485 330 385 320 280 10 500 360 275 400 290 220 595 395 270 315 265 230 11 370 270 205 295 215 160 440 295 200 235 195 170
CCMT 32.51-F2 Tool life = 15 min   r = 95° r  = .016 inch ap = .080 inch
Seco Material
Group No.
Uncoated grade
Cutting speed, vc sf/min
12 480 420 380 13 420 370 335 14 355 310 280 15 295 260 235
CNMG 433-MR7 Tool life = 15 min   r = 95° r  = .016 inch ap = .080 inch
Seco Material
Group No.
Cutting speed, vc sf/min
 
Cutting Speed
Cutting Data
 CCGT 21.51-AL Tool life = 15 min   r = 95° r  = .016 inch ap = .040 inch
Seco Material
Group No.
Uncoated grade
Cutting speed, vc sf/min
16 1885 1660 1500 17 1520 1340 1210 18 1160 1020 925
CNMP 432-MF1 Tool life = 10 min   r = 95° r  = .031 inch ap = .060 inch
Seco Material
Group No.
TS2000 TS2500 CP500 890
Feed rate, f inch/rev
.003 .006 .009 .003 .006 .009 .003 .006 .009 .003 .006 .009
Cutting speed, vc sf/min
19 385 285 200 350 260 180 140 110 95 145 115 100 20 310 230 160 280 210 145 120 95 85 115 95 80 21 270 200 140 240 180 125 105 85 70 100 80 70 22 430 320 220 385 285 200 165 135 115 160 130 115
CNMG 432-MF4 Tool life = 10 min   r = 95° r  = .031 inch ap = .060 inch
Seco Material
Group No.
Cutting speed, vc sf/min
19 375 230 145 340 210 130 135 106 90 20 305 185 120 275 165 105 115 90 80 21 260 160 100 235 145 90 100 80 70 22 420 255 165 375 230 146 160 125 110
CNMG 433-MR4 Tool life = 10 min   r = 95° r  = .047 inch ap = .120 inch
Seco Material
Group No.
TS2500 883
Cutting speed, vc sf/min
 
Selection of cutting data – Superalloys and titanium alloys
1. The machinability factor for specific materials is found in the table on page 734.
2. The values for depth of cut (ap) and feed rate (f) are obtained on the basis of the machinability of the material and the type of machining, i.e. F (Finishing), M (Medium) or R (Roughing). The recommended first choice of chipbreaker and grade are also specified, and an alternative grade is also stated.
3. Read the recommended cutting speed with regard to the relevant machinability.
Cutting data – Superalloys
Initial values Recommendation Cutting speed vc (sf/min)
D.O.C. ap (in)
Feed rate f
Alt. choice 4.5-4.2 4.1-3.9 3.8-3.5 3.4-3.1 3.0-2.8 2.7-2.4 2.3-2.0 1.9-1.7 1.6-1.3 1.2-0.9 0.8-0.5 0.4-0.1
2.8 - 4.5 F .010-.060 .003-.008 ..-MF1 TS2000 890 1050 970 870 770 705 – – – – – – – M .040-.140 .004-.010 ..-MF1 TS2000 890 720 675 605 540 490 – – – – – – – R .060-.200 .008-.016 ..-MR3 TS2000 890 360 345 310 280 245 – – – – – – –
1.7 - 2.7 F .010-.060 .004-.010 ..-MF1 TS2000 890 – – – – – 525 445 375 – – – – M .040-.140 .006-.012 ..-MF1 TS2000 890 – – – – – 330 280 245 – – – – R .060-.200 .008-.016 ..-M1 TS2500 883 – – – – – 195 165 130 – – – –
0.9 - 1.6 F .010-.060 .004-.010 ..-MF1 TS2000 890 – – – – – – – – 295 215 – – M .040-.140 .006-.012 ..-MF1 TS2000 890 – – – – – – – – 180 130 – – R .060-.200 .008-.016 ..-MR4 TS2500 883 – – – – – – – – 115 80 – –
0.1 - 0.8 F .010-.060 .004-.010 ..-MF1 TS2000 890 – – – – – – – – – – 150 65 M .040-.140 .006-.012 ..-MF1 TS2000 890 – – – – – – – – – – 100 50 R .060-.200 .008-.016 ..-MR4 TS2500 883 – – – – – – – – – – 65 35
45
Brinell Hardness Number
A.N.S.I 1010-1025   1030-1055   1060-1095   1112-1120   1314-1340   1330-1350   2015-2115   2315-2335   2340-2350   2512-2515   3115-3130   3160-3450   4130-4345   4615-4820   5120-5150   52100   6115-6140   6145-6195 Plain Cast Iron Alloy Cast Iron Malleable Iron Cast Steel
.58
.58 –
.50
.42 –
.67
.54 –
.50
.50 – –
.46
.46 –
.46 –
.30
.30
.42
.62
.67
.67 – –
.46
.67 –
.58
.50
.58
.58
.50
.46
.50
.50
.58
.54
.70
.33
.42 –
.67
201-250
351-400
1.3 – – – –
Material Classification
A286 A286 Chromoloy Chromoloy Hastelloy-B INCO 700 INCO 702 M-252 M-252 TI-150A U-500 4340 4340
165 285 200 310 230 330 230 230 310 340 375 200 340
  .82   .93   .78 1.18 1.10 1.12 1.10 1.10 1.20   .65 1.10   .78   .93
Brinell Hardness Number P
Non-Ferrous Metals and Alloys
Hard Medium
Hardness P
 
Turning - Technical Information
Nose Radius Compensation Values This programming reference is based upon the American National Standard Institute’s Chart Standards. The symbols employed in this chart are defined below.
These nose radius compensation values are intended for use only on fully qualified standard M-type NC tooling and are con- sistent with the rake attitudes as displayed in this catalog.
Refer to the turning catalog for specific toolholder style infor- mation showing the exact (zero reference point) qualified loca- tion. These values have been abbreviated to O.N.R. for (over nose radius) and T.S.C. for (to sharp corner).
All manufactured qualified values are furnished to the qualified dimension with a tolerance of ± .003” when measured as speci- fied over the radius of a master gage insert. The selected (zero reference point) radius is a function of the insert I.C. per the following.
Style B and R Triangle
Style B and R Square
Style R 100°/80° Diamond
Style C Triangle
Style E Triangle
L2 = from center of nose radius to sharp corner.
D1 = from over nose radius to sharp corner.
D2 = from center of nose radius to sharp corner.
B
C
E
Neg.
Pos.
Neg.
Pos.
Neg.
Pos.
Neut.
Gage Insert – Reference
100°/80°
F
G
J
K
Neg.
Pos.
Neg.
Neg.
Pos.
Neg.
Neg.
Neg.
Neg.
Pos.
Neg.
1/64 1/32 3/64 1/16
1/64 1/32 3/64 1/16
1/64 1/32 3/64 1/16
1/64 1/32 3/64 1/16
1/64 1/32 3/64 1/16
1/64 1/32 3/64 1/16
1/64 1/32 3/64 1/16
1/64 1/32 3/64 1/16
1/64 1/32 3/64 1/16
1/64 1/32 3/64 1/16
1/64 1/32 3/64 1/16
Style L 35° Diamond
Style T 35° Diamond
80°/100°
Step 1.  Increase the feed rate.
Step 2.  Use the chart below to select a more suitable   chipbreaker. Take one to the left or below the one   being used.
High cutting force
Step 1.  Reduce the feed rate.
Step 2.  Use the chart below to select a more suitable   chipbreaker. Take one to the right or above the one   being used.
Chipbreaker chart
    i   o    n
Vibrations
• Improve the stability of the tool and workpiece. • Reduce the cutting speed. • Increase the feed rate. • Reduce the depth of cut. • Select a freer cutting chipbreaker. • Select a smaller nose radius.
Poor surface finish
• Reduce the feed rate. • Increase the cutting speed. • Use a coolant. • Improve the stability of the tool and workpiece. • Select a freer cutting chipbreaker. • Increase the nose radius.
Optimization – Grades
Insert Wear – Failure Modes
1. NORMAL FLANK WEAR Normal Flank Wear, since it is predictable and dependable, is the most desirable wear condition. Rapid flank wear looks the same, but happens much quicker than the target 15 minutes of time in cut.
CAUSE Abrasive wear. Hard microscopic inclusions of carbide or work-hardened material in the workpiece cut into the insert. Small pieces of coating break off and cut into the insert. The cobalt eventually wears out of the matrix, the carbide grains no longer have sufficient adhesion, and they break off.
WHAT TO LOOK FOR • Relatively uniform abrasion along the cutting edge • Occasionally, metal from the workpiece that is smeared over the cutting edge can exaggerate the apparent size of the wear scar • Duratomic inserts will wear black and smooth • Non-Duratomic inserts will have shiny abrasions • An all black condition is the under-coating showing through the top coating
WHEN TO EXPECT IT • In all materials, an insert will fail due to normal wear if it doesn’t fail from something else first.
CORRECTIVE ACTIONS (TO RAPID FLANK WEAR) • Select a more wear resistant, harder, or coated carbide grade • Reduce the cutting speed (RPM or SFPM) • Apply coolant correctly
2. CRATERING CAUSE A combination of diffusion, decomposition and abrasive wear causes cratering. The heat from workpiece chips decomposes the tungsten carbide grains in the substrate, and carbon leaches into the chips (diffusion), wearing a ‘crater’ on the top of the insert. The crater will eventually grow large enough to cause the insert flank to chip, or may cause rapid flank wear.
WHAT TO LOOK FOR • Craters or pits on top of inserts • Chipbreaking may improve after cratering starts
WHEN TO EXPECT IT • Iron or titanium-based alloys
 
53
3. BUILT UP EDGE CAUSE Material adhesion. BUE is a result of the workpiece material being pressure welded to the cutting edge. This occurs when there is chemical affinity, high pressure, and sufficient temperature in the cutting zone. Eventually, the built up edge breaks off and takes pieces of the insert with it, leading to chippage and rapid flank wear.
WHAT TO LOOK FOR • Shiny material on the top or flank of the insert edge • Erratic changes in part size or finish
WHEN TO EXPECT IT • Gummy materials • At low speeds • High temp alloys and stainless steel • Threading operations • Drilling • Non-ferrous materials
CORRECTIVE ACTIONS • Any coating, especially a nitride coating, will reduce built-up edge • Increase the cutting speed (RPM or SFPM) • Select an insert with a sharper cutting edge geometry • Increase the feed rate • Apply coolant correctly, perhaps increasing the concentration • Use an insert with a smoother (polished) surface
4. CHIPPING
f = vibration frequency (cycles per second)
V = cutting speed (feet per minute)
WL = wave length of vibration (inches)
CAUSE Mechanical instability. Chipping of the insert edge is often a result of vibrations in the workpiece or spindle. Hard inclusions in the surface of the material being cut and interrupted cuts result in local stress concentrations that can cause chipping.
WHAT TO LOOK FOR • Chips along the edge of the insert
WHEN TO EXPECT IT • Non-rigid set-ups (bad bearings, worn spindles, etc.) • Hard spots in work material • Powdered Metal (PM) materials
CORRECTIVE ACTIONS • Ensure proper (rigid) machine tool setup • Minimize deflection • Select a tougher insert grade • Select a stronger cutting edge geometry • Reduce the feed rate (especially at the entrance or exit of the cut) • Use honed inserts • See also corrective actions for built-up edge
Insert Wear – Failure Modes
54
5. THERMAL MECHANICAL FAILURE CAUSE A combination of Thermal Cycling (changing the temperature of the insert very rapidly), Thermal Load (temperature differences between warm and cold zones), and Mechanical Shock causes thermal mechanical failure. Stress cracks form along the insert edge, eventually causing sections of carbide to pull out and appear to be chipping. Seen most commonly in milling.
WHAT TO LOOK FOR • Multiple cracks perpendicular to cutting edge • Need to identify before chipping
WHEN TO EXPECT IT • Milling • Facing operations when a large number of parts are machined • Operations with intermittent coolant flow
CORRECTIVE ACTIONS • Apply coolant correctly or remove completely • Select a tougher insert grade (higher cobalt content) • Reduce the cutting speed (RPM or SFPM) • Reduce the feed rate • Use a freer cutting geometry to reduce heat
6. EDGE DEFORMATION CAUSE Thermal Overloading. Excessive heat causes the carbide binder (cobalt) to soften. Mechanical Overloading. Pressure of the insert against the workpiece makes the insert deform or sag at the tip, eventually breaking off or leading to rapid flank wear.
WHAT TO LOOK FOR • Deformation at the cutting edge • The dimensions of the workpiece may not be as expected
WHEN TO EXPECT IT • High heat operations • High speed • Hard steels or work-hardened surfaces • High temperature alloys • High feed rates
CORRECTIVE ACTIONS • Apply coolant correctly • Use a harder, more wear resistant grade • Reduce cutting speed (RPM or SFPM) • Reduce the feed rate • Select an insert with a larger nose radius. • Using a freer cutting insert geometry will have a small but positive effect
Insert Wear – Failure Modes
55
7. NOTCHING CAUSE Differences in hardness or abrasiveness within the workpiece. Notching is caused when the surface of the workpiece is harder or more abrasive than the material deeper in the cut, e.g. surface hardening from previous cuts, forged or cast surfaces, or surface scale. This causes the insert to wear more rapidly in that part of the cutting zone. Local Stress Concentration can also lead to notching. As a result of the compressive stress along the cutting edge – and lack of the same behind the cutting edge – the insert is particularly stressed at the depth of cut line. Impact of any sort, such as hard micro inclusions in the workpiece material or slight interruptions, can cause a notch.
WHAT TO LOOK FOR • Notching or chipping at the depth of cut area on the insert
WHEN TO EXPECT IT • Materials with surface scale or oxidation • Work hardened materials • Cast or irregular surfaces • (see also Built Up Edge)
CORRECTIVE ACTIONS • Vary the depth of cut when using multiple passes • Use a tool with a larger lead angle • Reduce the feed rate • Increase cutting speed if machining a high temp alloy   • NOTE: This will generate more flank wear • Select a tougher insert grade • Carefully increase the hone in the DOC area • Use a chipbreaker designed for high feed rates • Prevent build-up edge, especially in stainless and high temp alloys
8. MECHANICAL FRACTURE CAUSE Excessive wear of any type can cause mechanical fracture. Mechanical overload. The mechanical load is so great that the insert breaks during the first moments of a cut.
WHAT TO LOOK FOR • Fracture of insert
CORRECTIVE ACTIONS • Correct for all other failure mechanisms besides normal flank wear • Reduce the feed rate • Reduce the depth of cut • Verify set-up rigidity • Select a tougher insert grade (higher content of cobalt) • Select an insert with a more secure cutting edge • Select an insert with a chipbreaker geometry for higher feed rates • Select a thicker insert • Check the workpiece for hard inclusions or difficult entry
Insert Wear – Failure Modes
Cutting data for CBN300, CBN400C
Cutting data for CBN050C, CBN060K
Cutting data for CBN10, CBN100
CNMG 432W-M3, TP200,  = 95°, ap = .040”, cutting speed adjusted for feed, workpiece material: steel, Seco material group 4.
*Wiper W-M3
Feed (ipr)
Ra (in)
Standard M3
Rmax Rmax
The Seco High Feed inserts offer
• Excellent surface finish at high feed rates. • Superior surface finish at normal feed rates.
The use of High Feed inserts often eliminates the need for finish grinding. High Feed inserts are designed for small cutting depths.
Material
Cutting
Material
Cutting
Chipbreaker program
A versatile chipbreaker for positive inserts. For finishing machining of steel, stainless steel and cast iron giving good surface finish. Suitable for high feed rates at small depth of cut. Machining range: f = .002-.020 in/rev, ap = .010-.120 in.
Chipbreaker for high feed finishing of steel and stainless steel. Wide chip control range in finis- hing and generates a high quality surface finish. Machining range: f = .004-.020 in/rev, ap = .008-.060 in.
Chipbreaker for high feed finishing and medium-roughing machining of steel and cast iron. Ensures safe and well directed chip flow and good surface finish. Machining range: f = .008-.025 in/rev, ap = .020-.160 in.
First choice for finishing with negative inserts. Chipbreaker suitable for finishing machining of steel, stainless steel and cast iron at high feed rates giving good surface finish. Machining range: f = .002-.024 in/rev, ap = .010-.160 in.
 
Feed rate, f (in/rev)
Feed rate, f (in/rev)
Negative inserts, C and S Chipbreaker W-R7
Negative inserts, C and S Chipbreaker W-R4
Feed rate, f (in/rev)
Operation guidelines • The favorable surface finish results are
lost, if the cutting edge angle diverges from 95° (C-and W-style inserts).
• Max diversion allowed: ±2°.
• Back-turning is NOT recommended.
Copying with D- and T-style High Feed inserts
Since D- and T-style High Feed inserts not are designed within ISO-tolerances an adjust- ment in the tool offset must be made. A deviation from the nominal nose radius shape, will always occur (D1, D2) when going towards a corner.
The wiper on a D-and T-style insert does not provide an exact corner radius.
ISO-profile (Nominal Nose radius)
When copying with a D- or T-style High Feed insert, an adjustment must be made for dimensional deviations.
• The favorable surface finish results are lost, if the cutting edge angle diverges from 93° (D-and T-style inserts).
• Max diversion allowed: ±2°.
• Back-turning is NOT recommended.
Turning – High Feed inserts
C-style High Feed inserts
On C-style High Feed inserts, except for PCBN inserts, the wiper geometry is also located on the 100° corner.
Chipbreaker W-R4 and W-R7
When using W-R4 or W-R7 chipbreaker use a toolholder with M type clamping.
S-style High Feed inserts S-style High Feed insert to be used in a toolholder with 75° setting angle. The favorable surface finish results are lost,
 
The Helix™ wiper technology
SECOMAX™ Crossbill™ PCBN Wiper inserts A deviation from the normal radius shape will always occur when a standard wiper geometry is used to machine towards a corner/face. The new Crossbill™ Wiper gives the opportunity to produce a radius without deviation from the normal shape and without losing the advantages from a standard wiper insert.
Axial turning (full wiper effect) Facing (no wiper effect) Copying (no deviation forming a radius)
Wiper segment
Wiper segment
Turning – High Feed inserts
Our unique patented, Helix™ wiper concept is designed for optimization in finish machining. It has a wiper on both sides of the corner radii (as the standard) but the protection chamfer is twisted from negative to positive or from positive to negative depending on the application. It is available in grade CBN050C. The following considerations apply when selecting the appropriate geometry:
Positive Wiper, WZP • Reducing vibrations in weak set-ups • Lower radial cutting forces • Used where standard wiper cannot be used
Negative Wiper, WZN • Longer tool life • Reducing vibrations in stable set-ups • Increasing compressive stresses
Big angle Small angle Small angle Big angle
Wiper sectionWiper section
Turning – Small diameter boring
Seco offers a range of small diameter boring bars to machine holes as small as .180 inch. Inserts are available in C and T shapes in modern PVD coated inserts.
The toolholders are available in steel and also in heavy metal for applications
where extra reach or stability is needed.
Set-up information When positioned in the machine the insert will sit slightly above center line. This is a design feature of the tool that compensates for the deflection and improves the machining operation.
When setting the tool in the machine be sure to position it with the flat parallel and in the same plane as the bed of the machine.
Position flat parallel with machine bed
TDAB 1.21.50.5 and CDCB 1.21.20.5 ap = .008 kr = 90° re = .008
SMG
CP500 883
.002 .004 .006 .002 .004 .006
1 1510 1230 1180 – – –
2 1280 1035 1000 – – –
3 1050 855 835 – – –
4 900 740 705 – – –
5 755 605 590 – – –
6 655 540 525 – – –
7 – – – 195 155 150
16 – – – 2065 1705 1640
17 – – – 1675 1380 1330
 
Inserts for machining of new wheels
• Inserts and cassettes for re-machining of used wheels
• Railway machining inserts and cassettes can be found on pages 524-526
Machining of new wheels
Feed recommendation: .024-.060 in/rev D.O.C. recommendation: ap < .600 inch
SNMM-R7
For roughing operations at high feed rates and large depth of cut.
Feed recommendation: .024-.048 in/rev D.O.C. recommendation: ap < .600 inch
Re-machining
LNMX-MF
For re-machining at small depth of cut. (Normally used when machining with an under floor lathe).
Feed recommendation: .016-.040 in/rev D.O.C. recommendation: ap < .400 inch
LNMX-MR
 
Cutting speed recommendations vc(sf/min)
Machining of new wheels
Reference: RCMX 250700 ap = .240 inch kr = 90° re = .492 inch
SMG
TP0500 TP1500 TP2500 TK2001
Feed rate, f (in/rev) Feed rate, f (in/rev) Feed rate, f (in/rev) Feed rate, f (in/rev)
.024 .040 .060 .024 .040 .060 .024 .040 .060 .024 .040 .060
4 1375 900 575 1200 920 720 900 605 425 885 690 510
Reference: SNMM 856-R7 ap = .240 inch kr = 75° re = .094 inch
SMG
CVD coated grades
TP1500 TP2500 TK2001
Feed rate, f (in/rev) Feed rate, f (in/rev) Feed rate, f (in/rev)
.031 .060 .080 .031 .060 .080 .031 .060 .080
4 835 560 460 510 280 215 625 345 245
Re-machining
Reference: LNMX 301940-MR ap = .240 inch kr = 95° re = .157 inch
SMG
CVD coated grades
TP1500 TP2500 TK2001
Feed rate, f (in/rev) Feed rate, f (in/rev) Feed rate, f (in/rev)
.031 .060 .080 .031 .060 .080 .031 .060 .080
7 280 195 155 180 100 70 215 120 90
Cassettes Standard product
Right-hand version shown.
 
SecomaxTM – PCBN
Introduction Polycrystalline Cubic Boron Nitride (PCBN) is a material which is sintered at extremely high pressure and high temperature into a wear-resistant material with properties close to those of diamond. Due to the hot hardness, oxidation resistance and fracture toughness of the material, inserts made of PCBN have excellent edge strength and long tool life in machining operations on hard fer- rous materials and pearlitic grey cast iron.
Secomax PCBN inserts are suitable for machining:
• Hardened steels (including hard-facing alloys) • Pearlitic grey cast iron • Chilled and white cast iron • Manganese steel • Cemented carbide • Valve seat materials • Powder metallurgy components • Nickel-based super alloys, e.g. Inconel 718
For more information including a comprehensive guide to understanding and applying PCBN successfully, please ask your sales representative for the ’Secomax PCBN, Technical Guide’.
CBN brazed onto standard carbide inserts. Not regrindable.
Grades: CBN10
Solid insert
Toolholder styles: D, P, C and M
CBN100 and CBN300 are also, in some geometries, available with hole.
Sintered layer insert – LF
Grades: CBN10, CBN150, CBN160C, CBN200
Toolholder styles: C, M and S
MDT Grades: CBN10, CBN170, CBN200 Toolholder styles: C (MDT)
Brazed tip -L1 (single and double sided) and -L2
CBN brazed onto standard carbide inserts. Regrindable.
Grades: CBN10, CBN060K, CBN150, CBN160C, CBN170, CBN200
Toolholder styles: D, P, S and M
Brazed tip – L0
Selection of insert types
 
SecomaxTM – PCBN
Brazed CBN inserts CBN10, CBN200 L0 = .004” x 20° L1 = .008” x 20° (L1-WZ = .004 x 20°) L2 = .008” x 20° LF = .008” x 20° LF-MDT = .008” x 20° CBN150 L0 = .004” x 20° (positive C-lock inserts) L0 = .006” x 25° L1 = .006” x 25° LF = .006” x 25° CBN050C, CBN160C, CBN060K L1 = .006” x 25° LF = .006” x 25°
The vast majority of heat treated components in the metal wor- king industry are machined to their final geometrical form after hardening. A new method in hard turning is now introduced, the Seco patented Plunge Turning. The plunging process consists of an orthogonal cut, using the solid CBN100.
Geometry recommendations Strong cutting edge geometries are always preferred.
• Negative cutting geometry • Chamfered cutting edge • Large nose radius
Sharp positive cutting edge geometry can be advantageous when:
• Finishing of small hardened bores without interruptions • Finishing of unstable components without interruptions • Finishing of pearlitic grey cast iron
Edge preparations E = Honed E25 = Extra honed, intended for Nickel-based superalloys S = Chamfered and honed S25 = Chamfered and extra honed for PM material WZ = High feed (wiper) geometry WZP = High feed (wiper) geometry positive WZN = High feed (wiper) geometry negative
Chamfer size and angle
Solid CBN inserts CBN060K = .006” x 25° CBN100 = .004” x 20° CBN200 = .008” x 20° CBN300 = .008” x 20° CBN400C = .008” x 20° CBN500 = .008” x 20° S-00420 = .004” x 20° S-00820 = .008” x 20° S-01515 = .015” x 15° S-06015 = .060” x 20° X = Custom
Plunge Turning
Conventional Turning Plunge Turning
General cutting data recommendation for Plunge Turning is vc = 660–1300 sf/min and f = .0016 in/rev.
To avoid the cutting edge profile affecting surface finish, complete the operation with a small axial movement.
In addition to the introduction of the Plunge Turning method there are also some new toolholders. These toolholders have set screws which give the possibility to adjust the tool- holder to an exact setting angle. The toolholders (only available in metric sizes) have a designation ending with – PL, and are available for inserts in sizes T..2 and T..3.
Using the Plunge Turning method gives two great advantages compared to conventional hard turning, reduction in cutting time (up to 90%) and improved surface integrity.
Cutting time 5 seconds Cutting time .5 seconds
WorkpieceWorkpiece
Round inserts
R...2 R...3 R...4
.004
.006
.008
.010
.012
.016
.020
.030
.040
.050
.060
.070
.080
.100
.120
.140
.160
.180
.200
20 16 14 12 11 10 8 7 6 5 5 4 4 3 3 – – – –
24 20 17 15 14 12 10 8 7  7 6 5 5 4 4 4 3 – –
– 23 20 18 16 14 12 10 9 8 7 6 6 5 5 4 4 4 3
    T    o    o
    d    g    e    a    n    g
    l   e          m    a    x
    (    °     )
max limited
The tool cutting edge angle is limited to 75° resulting in maximum depth of cut ap.
Max. D.O.C. ap (inch)Grade
CBN10
Max. D.O.C. ap (inch)GradeType
.020” 30% of cutting edge length
.020” 30% of cutting edge length 30% of cutting edge length 30% of cutting edge length 30% of cutting edge length
Solid
TTL
r = .031” r = .047”
Nose angle
Insert shape
True tip length (TTL) in inch per nose radius (r) and tip type
MDT size
MDT size
       t       e
         P          V          D
The Secomax range of grades consists of both coated and uncoated grades. The application area for the Secomax grades are shown below. The black areas in the chart indicate a grade’s main ISO application groups and the white areas indicate other supplementary application groups.
Grades
Optional parts for ”M” style holders to accept solid inserts (without hole)
Insert Anvil Anvil screw Long reach clamp Optional parts pack
CN** 42* CSN442 S-46 CL-22 CN42-22
CN** 43* Existing S-46 CL-22 CN43-22
DN** 32* DSSN333 S-34 CL-22 DN32-22
DN** 33* Existing S-34 CL-22 DN33-22
RN** 42* IRSN44 S-46 CL-12 RN42-12
RN** 43* Existing S-46 CL-12 RN43-12
SN** 32* Existing S-34 CL-7 SN32-7
SN** 42* ISSN443 S-46 CL-12 SN42-12
SN** 43* Existing S-46 CL-12 SN43-12
TN** 32* ITSN333 S-34 CL-22 TN32-22
TN** 33* Existing S-34 CL-22 TN33-22
Use insert nomenclature in above chart to determine parts required. Instruction for toolholder modification

Recommended