+ All Categories
Home > Education > 2012 tus lecture 4

2012 tus lecture 4

Date post: 20-Jun-2015
Category:
Upload: allenhermann
View: 211 times
Download: 1 times
Share this document with a friend
Popular Tags:
81
Lecture 4 Solar Cells: Theory I
Transcript
Page 1: 2012 tus lecture 4

Lecture 4

Solar Cells: Theory I

Page 2: 2012 tus lecture 4

Lecture 4. Solar cells: Motivation (examples) and Theory pn junctions under illumination

Homojunctions

Open-circuit voltage, short-

circuit current

IV curve, fill factor, solar-to-

electric conversion efficiency

Carrier generation and

recombination

Defects and minority carrier

diffusion

Current due to minority carrier

diffusion:

Solution to the diffusion

differential equation under

Spatially-homogeneous

generation, and

under Inhomogeneous

generation

Effect of an electric field

Heterojunctions

Page 3: 2012 tus lecture 4
Page 4: 2012 tus lecture 4

Celdas Solares

Page 5: 2012 tus lecture 4
Page 6: 2012 tus lecture 4
Page 7: 2012 tus lecture 4

LA TECNOLOGIA FOTOVOLTAICA ESTA CONTEMPLADA PARA APLICACIÓN AUTONAMA. ELECTRIFICACION RURAL, BOMBEO DE AGUA, ILUMINACION DE CARRATERAS, MONITOREO DE NIVELS DE AGUA EN RIOS ETC. SON ALGUNOS EJEMPLOS

ESTA TECNOLOGIA CONVIERTE LA ENERGIA SOLAR DIRECTO A ENERGIA ELECTRICA DC UTILIZABDO MODULOS FOTOVOLTAICOS (CELDAS SOLARES)

EL MATERIAL DE CONSTRUCCION DE CELDA SOLAR SE LLAMA

“SEMICONDUCTOR”

Page 8: 2012 tus lecture 4
Page 9: 2012 tus lecture 4
Page 10: 2012 tus lecture 4
Page 11: 2012 tus lecture 4
Page 12: 2012 tus lecture 4
Page 13: 2012 tus lecture 4
Page 14: 2012 tus lecture 4
Page 15: 2012 tus lecture 4
Page 16: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

16

Example: PV-Roof and Front,

Page 17: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

17

Alwitra Solar-foil

Page 18: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

18

Example: Sports-Center Tübingen

Page 19: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

19

Example:

Fire-brigade

Page 20: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

20

Example: BP Showcase

Page 21: 2012 tus lecture 4

Crystalline Silicon

• Polycrystalline Si – Made from melting Si into ingots, slicing off

wafers

– Cell efficiencies of 14% - 15%

– Widest use

• Monocrystalline Si – “Grown” crystals, more uniform structure

– Higher cell efficiencies (17% - 22%)

– Higher cost and better space utilization

• Most often manufactured in framed modules

Page 22: 2012 tus lecture 4

Amorphous Thin-Film Si

• Si solution layered onto various substrates

• Conversion efficiencies of 9% to 12%

• Some framed module products, others bonded to flexible roofing materials

• Very uniform appearance, but less effective space utilization

• Less costly to produce than crystalline modules

Page 23: 2012 tus lecture 4

Building Integrated PV

• Roof tile replacements • Solar glass • Thin film bonded to single-ply membrane

roofing material

Page 24: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

24

Solar-roof shingle

Page 25: 2012 tus lecture 4
Page 26: 2012 tus lecture 4

25 m2

Page 27: 2012 tus lecture 4
Page 28: 2012 tus lecture 4

300 m2

Page 29: 2012 tus lecture 4
Page 30: 2012 tus lecture 4
Page 31: 2012 tus lecture 4

Concentrating Solar Panels

• Fresnel lenses in tracking panels concentrate light 500:1 on smaller amount of Si (Xerox PARC Research)

• Tracking mirrors focus sunlight on stationary Si (Energy Innovations “Sunflower”)

Page 32: 2012 tus lecture 4

Energía Fotovoltaica

Efecto Fotovoltaico

LUZ SOLAR

Voltaje fotogenerado

Corriente eléctrica fotogenerada

CELDA

SOLAR

El Efecto Fotovoltaico (FV): es la generación de un voltaje en las terminales de un captador solar cuando éste es iluminado. Si a las terminales del captador se le conecta un aparato eléctrico, por ejemplo, un foco, entonces el foco se enciende debido a la corriente eléctrica que circula por él. Esta es la evidencia física del fenómeno fotovoltaico.

Page 33: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

33

History

• 1839: Discovery of the photoelectric effect by Bequerel

• 1873: Discovery of the photoelectric effect of Selen (change of electrical resistance)

• 1954: First Silicon Solar Cell as a result of the upcoming semiconductor technology ( = 5 %)

Page 34: 2012 tus lecture 4
Page 35: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

35

energy-states in solids: Band-Pattern

Atom Molecule/Solid

ene

rgy-

stat

es

• • • • • • • •

Page 36: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

36

energy-states in solids: Insulator

electron-energy

conduction-band

valence-band

Fermi- level EF

bandgap EG

(> 5 eV)

Page 37: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

37

energy-states in solids : metal / conductor

electron-energy

conduction-band

Fermi- level EF

Page 38: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

38

energy-states in solids: semiconductor

electron-energy

conduction-band

valence-band

Fermi- level EF

bandgap EG

( 0,5 – 2 eV)

Page 39: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

39

energy-states in solids: energy absorption and emission

electron-energy

conduction-band

valence-band

EF

+

-

h

Generation

+

-

h

Recombination

x

x

Page 40: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

40

doping of semiconductors In order to avoid recombination of photo-induced charges and to „extract“ their energy to an electric-device we need a kind of internal barrier. This can be achieved by doping of semiconductors:

IIIB IVB VB

Si

14

B

5

P

15

„Doping“ means in this case the replacement of original atoms of the semiconductor by different ones (with slightly different electron configuration). Semiconductors like Silicon have four covalent electrons, doping is done e.g. with Boron or Phosphorus:

Page 41: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

41

N - Doping

Si Si

Si

Si

Si

Si

Si

Si

Si

P+

-

n-conducting Silicon

-

crystal view

conduction-band

valence-band

EF

- - - - -

P+ P+ P+ P+ P+

majority carriers

Donator level

energy-band view

Page 42: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

42

P - Doping

Si Si

Si

Si

Si

Si

Si

Si

Si

p-conducting Silicon

B- +

+

crystal

conduction band

valence-band

EF B- B- B- B- B-

majority carriers

Acceptor level

+ + + + +

energy-band view

Page 43: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

43

p – type region

EF B- B- B- B- B-

+ + + +

n – type region

- - - -

P+ P+ P+ P+ P+

p/n-junction without light Band pattern view

+

-

- Diffusion

+

Diffusion

internal electrical field

+ - Ed

Ud

depletion-zone

Page 44: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

44

p–type region

EF B- B- B- B- B-

+ + + +

n–type region

- - - -

P+ P+ P+ P+ P+

irradiated p/n-junction band pattern view (absorption p-zone)

+

-

+

photocurrent

Internal electrical field

+ - Ed

Ud

depletion-zone E = h

-

Page 45: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

45

p/n–junction with irradiation crystal view

n-Silizium

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

- - - - - - - - - - - -

p-Silizium

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+ + + + + + + + + + + +

+

- diffusion

-

+

electrical field E - - - - - - - - - - - - + + + + + + + + + + + +

+

-

h

-

+

-

-

-

+

depletion zone

Page 46: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

46

Antireflection- coating

The real Silicon Solar-cell

~0,2µm

~300µm

Front-contact

Backside contact

n-region

p-region

-

+

h

depletion zone

- - - - - - - - - - + + + + + + + + + +

Page 47: 2012 tus lecture 4
Page 48: 2012 tus lecture 4
Page 49: 2012 tus lecture 4
Page 50: 2012 tus lecture 4
Page 51: 2012 tus lecture 4
Page 52: 2012 tus lecture 4
Page 53: 2012 tus lecture 4

Practical Considerations

Page 54: 2012 tus lecture 4
Page 55: 2012 tus lecture 4

This is for an “ideal cell”. In reality, there are other effects which can often be accounted for by introduction of a

multiplier “A” (larger than 1) in front of the kT/q term on the right.

Page 56: 2012 tus lecture 4
Page 57: 2012 tus lecture 4
Page 58: 2012 tus lecture 4
Page 59: 2012 tus lecture 4
Page 60: 2012 tus lecture 4
Page 61: 2012 tus lecture 4
Page 62: 2012 tus lecture 4

Next we calculate the light-generated short circuit current for using the relevant differential equations.

Consider the p-region where the minority carriers are electrons.

Also assume that the minority current is diffusion-dominated.

Page 63: 2012 tus lecture 4
Page 64: 2012 tus lecture 4

We now solve this differential equation under various boundary

conditions: 1)uniform generation, semi-infinite

geometry 2) generation decaying exponentially with position, semi-infinite geometry 3)uniform generation, finite thickness 4)generation decaying exponentially

with position, finite thickness

Page 65: 2012 tus lecture 4

n=0 x=0 x

N P

Page 66: 2012 tus lecture 4
Page 67: 2012 tus lecture 4
Page 68: 2012 tus lecture 4
Page 69: 2012 tus lecture 4
Page 70: 2012 tus lecture 4
Page 71: 2012 tus lecture 4
Page 72: 2012 tus lecture 4
Page 73: 2012 tus lecture 4
Page 74: 2012 tus lecture 4

Heterojunctions

Page 75: 2012 tus lecture 4
Page 76: 2012 tus lecture 4

Efficiency Losses in Solar Cell

1 = Thermalization loss

2 and 3 = Junction and contact voltage loss

4 = Recombination loss

Page 77: 2012 tus lecture 4
Page 78: 2012 tus lecture 4
Page 79: 2012 tus lecture 4
Page 80: 2012 tus lecture 4

6.6.06 - 8.6.06 Clemson Summer School

Dr. Karl Molter / FH Trier / [email protected]

80

Page 81: 2012 tus lecture 4

Recommended