+ All Categories
Home > Documents > 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane...

2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane...

Date post: 10-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
148
2013 North American Particle Accelerator Conference September 29 – October 4, 2013 Pasadena, California http://www.napac13.lbl.gov/ Pasadena Convention Center 300 East Green Street Pasadena, California 91101 Organized by Lawrence Berkeley National Laboratory, SLAC National Accelerator Laboratory, and the University of California, Los Angeles. Jointly sponsored by Institute of Electrical and Electronics Engineers through its Nuclear and Plasma Sciences Society and the American Physical Society through its Division of Physics of Beams. North American PAC 2013 i
Transcript
Page 1: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

2013 North American Particle Accelerator

Conference

September 29 – October 4, 2013

Pasadena, California

http://www.napac13.lbl.gov/

Pasadena Convention Center 300 East Green Street

Pasadena, California 91101

Organized by Lawrence Berkeley National Laboratory,

SLAC National Accelerator Laboratory, and the University of California, Los Angeles.

Jointly sponsored by Institute of Electrical and Electronics Engineers

through its Nuclear and Plasma Sciences Society and the American Physical Society through its

Division of Physics of Beams.

North American PAC 2013 i

Page 2: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Orientation NA-PAC’13 will take place in two buildings. The Convention Center has the industrial exhibition hall/poster sessions and the Ballroom, where the oral presentations occur. In its foyer is the Registration Desk. The nearby Conference Building offers business and support functions of the conference (except registration). On its street level you will find Author Reception, a Speaker Preparation Room, and a place to sit with your laptop to work on your Proceedings manuscript and connect to the Internet.

Pasadena, CA, USA, 29 September–4 October 2013ii

Page 3: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

North American PAC 2013 iii

Contents Section I

Sponsors & Supporters ................................................ iv Welcome from the NA-PAC'13 Chair .................... v Welcome from the NA-PAC'13 SPC Chair ............ vi Conference Committees ..................................... vii

Organizing Committee ..................................... vii Scientific Program Coordination Committee ... vii Scientific Program Committee ........................ viii Local Organizing Committee ............................. xi

Awards ............................................................... xiii Student Grant Awardees ................................ xiii NA-PAC'13 Student Poster Award .................. xiii IEEE/NPSS Particle Accelerator Science and Technology Awards ......................................... xiv U.S. Particle Accelerator School Prizes for Achievement in Accelerator Physics and Technology ....................................................... xv

Social Events ...................................................... xvi Registration & Miscellaneous ............................ xvii Scientific Program ............................................... xix

Oral Sessions .................................................... xix Poster Sessions ................................................ xx Student Poster Session ................................... xxii

Proceedings ....................................................... xxiii NA-PAC'13 Industry Exhibition & Exhibitors ..... xxiv Venue Maps .................................................... xxviii Notes Page ......................................................... xxx

Contents Section II

Scientific Program Contributions .......................... 1 Notes Page ....................................................... 117 Synoptic Table .................................. Cover Foldout

Page 4: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Sponsors & Supporters We would like to acknowledge and thank the following for their sponsorship and support.

SPONSORS

American Physical Society Division of Physics of Beams

Institute of Electrical and Electronics Engineers Nuclear and Plasma Sciences Society

Dimtel, Inc.

SUPPORTERS

Lawrence Berkeley National Laboratory

SLAC National Accelerator Laboratory

University of California, Los Angeles

US Department of Energy, Office of Science Offices of Basic Energy Sciences, Fusion Energy Science,

High Energy Physics, and Nuclear Physics

Pasadena, CA, USA, 29 September–4 October 2013iv

Page 5: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Introduction

Welcome from the NA-PAC’13 Chair We welcome you to Pasadena, California, for the North American Particle Accelerator Conference. Held from September 30 through October 4 at the Pasadena Convention Center, NA-PAC'13 will bring together scientists, engineers, students, and industrial exhibitors, representing all aspects of accelerators and particle beams, for an information-sharing experience focused on technology. This conference is the 25th in the series of Particle Accelerator Conferences and the second regional North American PAC.

The conference is organized jointly by the Lawrence Berkeley National Laboratory (LBNL), the SLAC National Accelerator Laboratory (SLAC), and the University of California Los Angeles (UCLA), and sponsored by the IEEE Nuclear and Plasma Sciences Society and the APS Division of Physics of Beams.

The Scientific Program Committee has created a diverse and exciting program covering the latest topics in the field of accelerator science and technology. It is geared toward early career scientists, engineers and students but will retain the historic international flavor with invited speakers from around the world. The program begins on Sunday with a student poster session and we will continue the tradition of offering a number of tutorials on the latest hot topics.

Accelerators involve not just science and technology but a community of friends old and new, and the social program is an important aspect of these conferences. A Companion Orientation is scheduled for Monday. Everyone is invited to a Women in Engineering Networking Event on Wednes-day evening. Finally, the Conference Banquet on Thursday evening is designed to facilitate networking and interaction with colleagues—you won’t want to miss it!

We are very fortunate to have secured Pasadena for the venue. Pasadena is embedded in a large urban setting but has a small town feel. It is a pedestrian-friendly town with excellent restaurants and access to the many attractions of the Los Angeles metropolitan area. It won’t be difficult finding things to do before, during and after the conference.

On behalf of myself and the NA-PAC’13 Organizing Committee, welcome to Pasadena!

Steve Gourlay Chair, NA-PAC’13

North American PAC 2013 v

Page 6: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Introduction

Welcome from the NA-PAC’13 SPC Chair

Our community has made important advances and achieved much in recent years in many areas on many fronts. The scientific program of NA-PAC'13 is designed foremost to reflect this progress. While making this progress, our community has also been evolving rapidly in terms of demography, emphasis, and admittedly also available resources. These considerations were also taken into account as much as possible in developing the scientific program. The Scientific Program Committee has accordingly put together a rich program consisting of 126 oral and 500 poster presentations. I hope you will find this program informative, rewarding and enjoyable. One of the realizations over the past years has been the increasing importance to our community of accelerator applications. We have continued the effort this year to emphasize applications. We introduced two sets of dedicated sessions, on Medical and Industrial Applications of Accelerators, with authoritative presentations. We encourage you to participate in these new sessions. Following the success of Tutorials at NA-PAC’11, we also have early morning Tutorials in four parallel sessions. Students and experts alike are welcome to enjoy these tutorials. Posters are an efficient way to carry out in-depth commu-nication. They play a critical part of our conference. They are designed as stand-alone sessions without overlap with oral sessions to encourage your maximum attendance and participation. We also have an Award session during which great achievers of our community will be recognized. Representing the Scientific Program Committee, I warmly welcome you to the conference! Alex Chao Chair, Scientific Program Committee

Pasadena, CA, USA, 29 September–4 October 2013vi

Page 7: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Conference Committees

Organizing Committee

Stephen Gourlay LBNLChair Joseph Bisognano UW-Madison/SRCJohn R. Cary CIPSAlex Chao SLACYu-Jiuan Chen LLNLJohn Erickson LANLStuart Henderson FNALRobert Hettel SLACGeorg H. Hoffstaetter Cornell University (CLASSE)Andrew Hutton Jefferson LabKevin Jones ORNLChan Joshi UCLALin Liu LNLSLia Merminga TRIUMFThomas Roser BNLStan Owen Schriber SOSVladimir Shiltsev FNALBruce Paul Strauss DOEVictor Paul Suller LSU/CAMDDavid Sutter UMDAlan Murray Melville Todd AESJie Wei FRIBMarion White ANLRobert Miles Zwaska FNAL

Scientific Program Coordination Committee Alex Chao SLACChair Riccardo Bartolini DiamondOliver Boine-Frankenheim GSI and TU DarmstadtMark Boland ASCoSotirios Charisopoulos IAEA, ViennaJohn Corlett LBNLHartmut Eickhoff GSIRobert Hamm R&M Technical EnterprisesStuart Henderson FNALMark Hogan SLACValeri Lebedev FNALPatric Müggli MPIKatsunobu Oide KEKPeter Ostroumov ANL

North American PAC 2013 vii

Page 8: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Conference Committees

Christine Petit-Jean-Genaz CERNSøren Prestemon LBNLDave Robin LBNLTodd Satogata Jefferson LabJingyu Tang IHEP BeijingAkira Yamamoto KEKYoshihige Yamazaki MSU

Scientific Program Committee

Alex Chao SLACChair Chris Adolphsen SLACKazunori Akai KEKAlexander Aleksandrov ORNLJose Alonso LBNLGerard Andonian UCLAGiorgio Apollinari FNALRick Baartman TRIUMFRiccardo Bartolini DiamondChristoph Bert GSIJean-Luc Biarrotte IPNMike Blaskiewicz BNLOliver Boine-Frankenheim GSI and TU DarmstadtMark Boland ASCoMichael Borland ANLLucas Brouwer UC BerkeleyDavid Bruhwiler RadiaSoft LLCJohn Byrd LBNLAlok Chakrabarti VECCAndrzej Chmielewski Inst. Nucl. Chem. & Tech.Sotirios Charisopoulos IAEAEric Colby OHEP/DOEPhil Cole ISUManoel Conde ANLJeff Corbett SLACJohn Corlett LBNLMarie-Emanuelle Couprie CEASarah Cousineau ORNLBob Dalesio BNLWinfried Decking DESYJean-Pierre Delahaye CERN on leave at SLACMike Downer U.T. AustinHartmut Eickhoff GSIEckhard Elsen DESYPhil Ferguson ORNL

Pasadena, CA, USA, 29 September–4 October 2013viii

Page 9: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Conference Committees

Wolfram Fischer BNLJay Flanz Massachusetts General HospitalJohn Fox SLACArne Freyberger Jefferson LabRobert Garnett LANLJohn Galambos ORNLThomas Haberer Heidelberg Ion Therapy Ctr.Robert Hamm R&M Technical EnterprisesBumsoo Han EB Tech Co. Ltd.Michael Harrison BNLStuart Henderson FNALGeorg Hoffstaetter Cornell University (CLASSE)Mark Hogan SLACTakahiro Inagaki RIKENCarol Johnstone FNALMichael Kelley College of William and MaryVince Kempson DiamondRobert Kephart FNALShane Koscielniak TRIUMFTadashi Koseki J-PARCThomas Kroc FNALRichard Lanza MITValeri Lebedev FNALS.Y. Lee Indiana UniversitySimon Leemann MAX-LabMatthaeus Leitner FRIB, MSUEvgeni Levichev BINPUte Linz FZJDerek Lowenstein BNLMika Masuzawa Ibaraki UniversityLia Merminga TRIUMFMichiko Minty BNLNikolai Mokhov FNALFrancoise Muehlhauser IAEAPatric Müggli MPISergei Nagaitsev FNALGeorge Neil Jefferson LabKoji Noda NIRS Greg Norton NECHeinz-Dieter Nuhn SLACKazuhito Ohmi KEKKatsunobu Oide KEKPeter Ostroumov ANLMark Palmer FNALSteve Peggs BNL/ESSMichael Peiniger Research Instruments

North American PAC 2013 ix

Page 10: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Conference Committees

Dmitry Pestrikov BINPThomas Peterson FNALChristine Petit-Jean-Genaz CERNFulvia Pilat Jefferson LabNathaniel Pogue Texas A&M UniversityEric Prebys FNALSøren Prestemon LBNLChristopher Prior STFC/RAL/ASTeCQing Qin IHEP BeijingPantaleo Raimondi INFN/LNFTor Raubenheimer SLACDave Robin LBNLThomas Roser BNLDave Rubin Cornell UniversityLawrence Rybarcyk LANLGianLuca Sabbi LBNLJames Safranek SLACKenji Saito FRIBFernando Sannibale LBNLTodd Satogata Jefferson LabCarl Schroeder LBNLTimur Shaftan BNLVladimir Shiltsev FNALLuis Silva IST PortugalMarkus Steck GSIGennady Stupakov SLACHitoshi Tanaka RIKENChuanxiang Tang Tsinghua UniversityJingyu Tang IHEP BeijingJohn Thomason STFC/RALAlan Todd AESGrigoriy Trubnikov JINRAlexander Valishev FNALNikolai Vinokurov BINPWill Waldron LBNLDong Wang SINAPJiawen Xia IMPCASGang Xu IHEP, BeijingVitaly Yakimenko SLACAkira Yamamoto KEKYoshihige Yamazaki MSUX.Q. Yan Peking University IHIPMasahiro Yoshimoto JAEAPeter Zavodszky GE Global ResearchStefan Zeisler TRIUMFYuhong Zhang Jefferson Lab

Pasadena, CA, USA, 29 September–4 October 2013x

Page 11: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Conference Committees

Local Organizing Committee Chan Joshi UC Los AngelesChair Sandra Biedron Colorado State UniversityAlex Chao SLACJoe Chew LBNLTom Gallant LBNLJan Hennessey LBNLMarcos Ruelas RadiaBeam TechnologiesChristine Petit-Jean-Genaz CERNTodd Satogata Jefferson LabSam Vanecek LBNL Centennial Conferences Conference Management

North American PAC 2013 xi

Page 12: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

www.worldscientific.com

AD

/PK

/09/

13/0

3/H

C

Contributed by more than 200 experienced experts from across the spectrum of accelerator related institutions:

• SLAC National Accelerator Laboratory

• CERN

• Cornell Laboratory for Accelerator-based Sciences and Education

• Fermilab

• TRIUMF

and more

Contains more than➤ 100 NEW articles➤ 2000 equations

➤ 300 illustrations➤ 500 graphs / tables

Latest Books in Accelerator Physics

Comprehensive review of superconducting technology and its applications to accelerators, including superconductivity magnets (SC magnets) and superconducting radio-frequency (SRF) cavities

Written by leading scientists in their respective fields from:

• CERN

• LBNL

• KEK

• BNL

• Jefferson Lab

and more

“Many other physicists will be interested in learning – in detail – of the many applications of this branch of physics, and this book is a fine source of just such information. In addition, scientists – typically not physicists – that are interested in a particular application will want to read the relevant sections of this book. In short, I believe the book should have a wide range of interested readers, and it comes well-recommended.”

Andrew M. SesslerLawrence Berkeley National Laboratory,

University of California

Readership: Physicists, engineers and practitioners in accelerator science and industry.

:: New Edition of Bestselling Handbook

AD_PK_09_13_03_HC.indd 1 6/9/13 9:15 AM

Pasadena, CA, USA, 29 September–4 October 2013xii

Page 13: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Awards Student Travel Grant Awardees Afnan Al Marzouk Northern Illinois University Simon Albright University of Huddersfield Mahmoud Ali Jefferson Lab Anthony Andrews IAC Sergey Arsenyev MIT/PSFC Taras Bondarenko MEPhI Alejandro Castilla ODU David Cesar UCLA Nathan Cook Stony Brook University Alexandra Day Wellesley College Yann Dutheil BNL Christopher Eckman IAC Jonathan Edelen CSU Steve Full Cornell University (CLASSE) Bamunuvita R. Gamage ODU Colwyn Gulliford Cornell University (CLASSE) Christopher Hopper ODU Siddharth Karkare Cornell University Nermeen Khalil SBU Xue Liang BNL Yosuke Matsumura University of Tokyo Harsha Panuganti Northern Illinois University Sam Posen Cornell University (CLASSE) Blake Riddick UMD Aakash Sahai Duke ECE Herman Schaumburg Northern Illinois University Ki Shin ORNL RAD Nihan Sipahi CSU William Stem UMD Ozhan Turgut Stanford University Alysson Vrielink TRIUMF Joel Williams CSU Eric Wisniewski ANL Tianmu Xin BNL Hao Zhang UMD Zhihong Zheng FRIB Timofey Zolkin University of Chicago The NA-PAC’13 Student Poster Award Two prizes in the amount of $500 each for the best student posters will be awarded for particularly meritorious work, selected by members of the Scientific Program Committee (SPC) during the special poster session for students on Sunday, September 29. The prizes and certificates will be presented during the Accelerator Prizes Session on Thursday, October 3.

North American PAC 2013 xiii

Page 14: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Awards

IEEE/NPSS Particle Accelerator Science and Technology Awards The IEEE Nuclear and Plasma Sciences Society confers the Particle Accelerator Science and Technology Award upon individuals who have made outstanding contributions to the development of particle accelerator science and technology. Two Awards are granted in each occurrence of the Particle Accelerator Conferences held in North America (NA-PAC or IPAC).

The 2013 awardees are:

Alexander J. Dragt, Professor Emeritus, Department of Physics, University of Maryland College Park, "for substantial contributions to the analysis of non-linear phenomena in accelerator beam optics by intro-ducing and developing map-based approaches."

Mark Hogan, Plasma Group Leader and Head of the Advanced Accelerator Research Department at SLAC National Accelerator Laboratory, "for leadership and scientific contri-butions in forging an unprecedented partnership between plasma-based and conventional particle accelerator science and technology."

The Particle Accelerator Science and Technology Doctoral Student Award recognizes outstanding thesis research in particle accelerator science and technology.

Anna Grassellino of Fermi National Accelerator Laboratory receives the Particle Accelerator Science and Technology Doctoral Student Award "for contributions to the fundamental understanding of the field dependent loss mechanisms in SRF cavities".

Pasadena, CA, USA, 29 September–4 October 2013xiv

Page 15: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Awards

U.S. Particle Accelerator School Prizes for Achievement in Accelerator Physics and Technology Two USPAS Prizes for Achievement in Accelerator Physics and Technology are awarded every other year, one of them to a scientist under 45 years of age. They recognize outstanding achievements over the full range of accelerator physics and technology. The prizes are awarded on a competitive basis without bias to race, sex, and/or nationality. The 2013 honorees are Kwang-Je Kim of ANL and Jean-Luc Vay of LBNL. This year a special Lifetime Achievement Award goes to Indiana University's S.Y. Lee.

Kwang-Je Kim of Argonne National Laboratory is honored "for a life-time of leadership in beam physics and for significant theoretical contributions improving our understanding of photocathode electron guns, syn-chrotron radiation and free-electron lasers, and for his work educating young scientists."

Jean-Luc Vay of Lawrence Berkeley National Laboratory is recognized "for original contributions to the development of novel methods for simulating particle beams, particu-larly the Lorentz boosted frame techniques, and for the successful application of these methods to multi-scale, multi-species problems."

S. Y. Lee of Indiana University will be given the USPAS Prize for Lifetime Achievement in Accelerator Physics and Technology "for his extra-ordinary contributions to accelerator education including mentoring a large cadre of highly-regarded students, for overseeing the Indiana University - USPAS Master's Degree Program in Accelerator Physics and for serving as USPAS Director from 1998 to 2002."

North American PAC 2013 xv

Page 16: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Social Events

Welcome Reception Sunday, September 29, 2013 18:00 – 20:00 North Ballroom Foyer, Convention Center Companion Orientation Monday, September 30, 2013 09:30 – 10:30 San Diego Room, Hilton Pasadena Join NA-PAC’13 companions for a light breakfast and conversation. The Hilton Concierge will provide information about sightseeing, shopping and restaurants in Pasadena. Women in Engineering Event Wednesday, October 2, 2013 18:00 -20:00 Ballroom A, Convention Center All conference attendees are invited to join the Women in Engineering networking mixer. Enjoy a cocktail and appetizers as you meet with fellow NA-PAC’13 attendees. Get your business cards ready and join us for an interactive evening to Grow Your Network and enter for raffle prizes! Conference Banquet Thursday, October 3, 2013 20:00 – 22:00 Ballroom DE, Convention Center This year, the NA-PAC banquet will not be a seated dinner. The evening will feature Southern California food stations, casual seating to facilitate networking and conversation, and live music to set the mood.

Pasadena, CA, USA, 29 September–4 October 2013xvi

Page 17: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Registration & Miscellaneous

Registration All participants MUST have a badge for entry to all technical sessions, exhibits, and social events. Registration is located outside the Exhibit Hall in the Convention Center. Hours are as follows:

Sunday, 9/29 14:00 – 20:00 Monday, 9/30 07:00 – 18:00 Tuesday, 10/01 07:30 – 18:80 Wednesday, 10/02 07:30 – 18:00 Thursday, 10/03 07:30 – 18:00 Friday, 10/04 07:30 – 12:00

Internet Wireless internet is available in public areas. Login details will be provided at registration. Internet Café (self-service) A self-service Internet Café will be available in room 204 of the Conference Building. A flat surface, power outlets, and internet connection will be provided as long as you bring a laptop. Instructions will be provided for connecting to the internet and to a local printer for small print jobs. Business Center A small Business Center will be available in room 205 for those few who do not travel with a laptop. This room will have a few computers set up for very minor print jobs relating to conference business (copyright forms, boarding passes, etc...) Hours of operation are as follows:

Sunday, 9/29 14:00 – 18:00 Monday, 9/30 08:00 – 18:00 Tuesday, 10/01 08:00 – 18:00 Wednesday, 10/02 08:00 – 18:00 Thursday, 10/03 08:00 – 18:00 Friday, 10/04 08:00 – 13:00

North American PAC 2013 xvii

Page 18: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Registration & Miscellaneous

Message Boards Useful information and daily updates can be found in the registration area.

• Special Announcements & General Message Board: Information, special announcements as well as program updates will be posted and participants can post or receive messages here.

• Job Postings and Resume Board: Participants should post to this board as appropriate.

Satellite Meetings Organizers of satellite meetings are welcome to post information on the Message Boards and also to submit it for the conference website. If you are interested in securing space to hold a meeting while attending NA-PAC’13 or to publicize a meeting, please see the staff at the Conference Registration Desk for assistance.

Pasadena, CA, USA, 29 September–4 October 2013xviii

Page 19: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Scientific Program

Oral Sessions The plenary sessions will take place in Ballroom DE (“Auditorium A”) of the Convention Center Monday morning, September 30, before the coffee break and Friday afternoon, October 4, after the lunch break. The Award Session takes place Thursday afternoon, October 3, and will be held in Ballroom DE (“Auditorium A”). All other oral sessions will take place in two parallel sessions in Ballroom DE (“Auditorium A”) and Ballroom BC (“Auditorium B”). Visual Aids Oral presentations will be made using the computers and projection equipment provided. Individual laptops cannot be accommodated. Guidelines for speakers are published at the conference website. All presentations must be uploaded via SPMS half a day in advance of the presentation. Speaker Preparation Room A speaker preparation room is available for speakers in room 212/214 at the Conference Building. This is an area where speakers should preview/test their presentations. Please upload to SPMS at least a day in advance of your scheduled presentation. Hours of operation are as follows:

Sunday, 9/29 14:00 – 18:00 Monday, 9/30 08:00 – 18:00 Tuesday, 10/01 08:00 – 18:00 Wednesday, 10/02 08:00 – 18:00 Thursday, 10/03 08:00 – 18:00 Friday, 10/04 08:00 – 13:00

North American PAC 2013 xix

Page 20: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Scientific Program

Identification of Contributions

All contributions to the scientific program have a code whereby:

- the first two letters correspond to the day of presentation, Monday, Tuesday, Wednesday, etc. (i.e. MO, TU, WE, etc.),

- the third letter indicates the type of presentation: X, Y

and Z (or XA, XB etc.,) are invited oral presentations, O (or OA, OB, OC, OD) indicate contributed oral presentations, and P is for poster presentations,

- the fourth letter indicates the location for orals in

parallel sessions (A for Auditorium A (Ballroom DE) and B for Auditorium B (Ballroom BC)), AC, BA, HO, MA and SM are the poster session areas named for Angeles Crest, Bel Air, Hollywood, Malibu and Santa Monica,

- the program code finishes with 1 digit for oral

presentations and two digits for poster presentations, corresponding to the poster panel number.

Poster Sessions

Poster Sessions will take place each afternoon from Monday to Thursday, September 30 – October 3 from 16:30 to 18:00 in the Exhibit Hall at the Convention Center. The poster sessions are de-coupled from the oral sessions to enable all delegates to participate fully in the conference program. Poster sessions are a focal point of the conference. To make the sessions as attractive, successful and rewarding as possible, authors of posters are strongly encouraged to take particular care in their preparation. Authors are reminded that no contributions are accepted for publication only. Any paper accepted for presentation, but which is not presented at the conference, will be excluded from the Proceedings.

Pasadena, CA, USA, 29 September–4 October 2013xx

Page 21: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Scientific Program

Placing a Proceedings manuscript (even if enlarged) on a poster board is not considered an acceptable poster, and if presented in this way, the paper will not be approved for publication in the Proceedings.

Posters should be mounted between 08:30 and 10:30 the day of the presentation, and must be attended from 16:30 to 18:00. Poster panels are 8 feet (2.4 meters) wide by 4 feet (1.2 meters) in height. Push pins will be provided for mounting of posters. Posters must be removed immedi-ately after 18:00 or will be discarded.

North American PAC 2013 xxi

Page 22: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Scientific Program

Poster Locations

Location Code Description

AC Poster Area Angeles Crest

BA Poster Area Bel Air

HO Poster Area Hollywood

MA Poster Area Malibu

SM Poster Area Santa Monica

Student Poster Session A special student poster session will take place during delegate registration on Sunday, September 29, 2013. All students attending the conference have been encouraged to present their work in this session. All students attending the conference with a grant must present their work in this session, and must submit a contribution to the proceedings. All work to be presented by students will be compiled into a special abstracts brochure. They will be assigned a poster panel, reserved for this session. NOTE: All student posters are also presented during the "normal" poster sessions. Student posters must be mounted early in the afternoon, from 14:00 to 14:30. Students must be present to discuss their work between 14:30 and 18:00. The posters must remain in place until 20:00. The NA-PAC´13 Scientific Program Committee will judge the posters competing for the Student Poster Awards also from 14:00.

Pasadena, CA, USA, 29 September–4 October 2013xxii

Page 23: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Proceedings Proceedings The Conference Proceedings will be published at the JACoW website (http://www.jacow.org). Contributed oral and poster presentations may be up to three pages long and invited papers up to five pages. To ensure consistency of the conference proceedings, all papers have to meet formal criteria, specified by JACoW. Guidelines can be found at the conference website under For Authors, Proceedings Paper Preparation. The paper submission deadline is Wednesday, September 25, 2013. Copyright Forms NA-PAC'13 is co-sponsored by the Institute of Electrical and Electronic Engineers, so you will have to fill out the customary IEEE copyright form and hand it in at the conference. Your JACoW SPMS account will have a link to the form. A copyright form MUST be turned in before a paper can be published. Proceedings Office Authors are requested to check on their papers via the status or “dot” board located near Author Reception and near the presentation and exhibit areas. Authors may also check on the status of their papers via SPMS at http://appora.fnal.gov/pls/pac13/edot.html. Author Reception will be located in room 207 of the Conference Building where staff will be available to answer any questions. Proceedings Office Hours

Monday, 9/30 08:00 – 18:00 Tuesday, 10/01 08:00 – 18:00 Wednesday, 10/02 08:00 – 18:00 Thursday, 10/03 08:00 – 18:00 Friday, 10/04 08:00 – 13:00

North American PAC 2013 xxiii

Page 24: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Industry Exhibition NA-PAC’13 Industry Exhibition

The NA-PAC’13 Industry Exhibition will take place in the Exhibit Hall of the Pasadena Convention Center. Exhibition dates and times are:

Monday, 9/30 09:30 - 18:00 Tuesday, 10/1 09:30 - 18:00 Wednesday, 10/2 09:30 - 18:00

Pasadena, CA, USA, 29 September–4 October 2013xxiv

Page 25: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Industry Exhibition

Registered Exhibitors (A –Z)

2 – AccSys Technology, Inc.

29 – Advanced Energy Systems

50 – American Physical Society

22 – AWR Corporation

12 – Bailey Tool & Mfg. Co.

54 – Buckley Systems Ltd.

9 – CAEN

47 – Ceramic Magnetics

6 – CML Engineering

33 – Continental Electronics Corporation

10 – CPC

27 – CPI

60 – CST of America, Inc.

7 – Danfysik

58 – Dean Technology Inc.

24 – Dimtel, Inc.

North American PAC 2013 xxv

Page 26: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Industry Exhibition

5 – Diversified Technologies, Inc.

56 – Euclid TechLabs, LLC

32 – Everson Tesla Inc.

37 – FAR-TECH, Inc.

11 – FRIATEC NA LLC

26 – GMW Associates

1 – High-Tech Manufacturing

23 – Instrumentation Technologies

49 – IOP Publishing

59 – Kepco Inc.

15 – L-3 Electron Devices

4 – Magnetic Metals Corp

30 – Mega Industries, LLC.

57 – Meyer Tool & Mfg., Inc.

38 – Micro Communication Inc

28 – Microwave Amplifiers Ltd.

13 – Muons, Inc.

Pasadena, CA, USA, 29 September–4 October 2013xxvi

Page 27: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Industry Exhibition

35 – National Instruments

52 – Pearson Electronics Inc.

14 – PHPK Technologies

21 – RadiaBeam Technologies

26 – RI Research Instruments GmbH

31 – SAES Group

53 – ScandiNova

48 – Sigmaphi Accelerator Technologies

51 – Stangenes Industries, Inc.

55 – Struck Innovative Systeme

8 – TDK-Lambda Americas

34 – THALES

36 – Tomco Technologies

3 – Toshiba Electron Tubes & Devices

61 – TREK, Inc.

North American PAC 2013 xxvii

Page 28: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Conference Venue

Conference Building and Convention Center

Pasadena, CA, USA, 29 September–4 October 2013xxviii

Page 29: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Conference Venue

Conference Building: Upper Level

Convention Center: Exhibit Hall & Ballroom

North American PAC 2013 xxix

Page 30: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Notes

Pasadena, CA, USA, 29 September–4 October 2013xxx

Page 31: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OSe

p30

30-Sep-13 09:00 – 09:30 Oral Main Auditorium (Plenary)

MOXAP — Plenary Invited Oral Presentation, CollidersChair: S.A. Gourlay (LBNL)

MOXAP109:00

Review of the Possible Projects towards a Higgs Fac-tory – S. Henderson (Fermilab)Following Higgs discovery at CERN, several accelera-tor technologies from linear to circular colliders us-ing various kinds of particles from leptons (electron,positrons, muons) or gammas or hadrons in LHC. Thespeaker should review the varios proposals outliningthe pros&cons of each technology as well as the cor-responding challenges and issues to be addressed byspecific R&D before a proposal can be realistically beproposed. The talk should also dicsuss Snowmass-2013recommendations.

30-Sep-13 09:30 – 10:00 Oral Main Auditorium (Plenary)

MOXBP — Plenary Invited Oral Presentation, MedicalAccelerators and Applications

Chair: S.A. Gourlay (LBNL)

MOXBP109:30

Demands and Perspectives of Hadron Therapy –A. Lin (University of Pennsylvania School of Medicine,Perelman Center for Advanced Medicine)This presentation should cover the clinical and biophys-ical aspects of hadron therapy and according technolog-ical perspectives. A comparison should be made of thebenefits for hadrons in treating various tumor sites ascompared with x-rays. Benefits as defined by survival rateand side effects will be given.

30-Sep-13 10:30 – 11:30 Oral Auditorium A (Parallel)

MOYAA — Invited Oral Presentations, CollidersChair: D.F. Sutter (UMD)

MOYAA110:30

LHC Operation at Higher Energy and Luminosity –G. Papotti (CERN)The Large Hadron Collider at CERN (Geneva) was com-missioned and operated in the years 2009-2013 up to abeam energy of 4 TeV. A peak luminosity of 0.77 1034

cm-2s−1 was reached and an integrated luminosity ofaround 29 fb-1 was delivered to both ATLAS and CMS.This performance allowed the discovery of a scalar boson.The LHC is presently in a shutdown phase dedicated toconsolidation and maintenance that will allow the restartof beam operation in early 2015 at an increased beam en-ergy of 6.5 to 7 TeV. Maximum acceptable pile-up, effec-tiveness of electron-cloud scrubbing, and fast loss eventsare some of the issues that will shape the choice of op-erational parameters, cycle setup, and the commission-ing strategy. The baseline choices and options for therestart after the shutdown are presented. In addition theroadmap for future performance upgrades is sketched.

MOYAA211:00

The R&D Program for a Future Muon Collider –M.A. Palmer (Fermilab)The U.S. Muon Accelerator Program is conducting a multi-year R&D program to evaluate the feasibility of the tech-nologies required for a Neutrino Factory and Muon Col-lider. The design concepts for a Higgs Factory and multi-TeV Muon Collider are described and the status of themajor R&D activities for these machines are summarized.The potential for a high energy physics facility based onmuon accelerator technology is discussed.

North American PAC 2013 1

Page 32: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

30-Sep-13 11:30 – 12:00 Oral Auditorium A (Parallel)

MOYBA — Invited Oral Presentation, CollidersChair: D.F. Sutter (UMD)

MOYBA111:30

The CLIC Project - Status and Prospects – E. Adli (Uni-versity of Oslo, CERN, SLAC)Following the feasibilty demonstration of the novel CLICtechnology and the publication in 2012 of a CLIC Concep-tual Design Report for a Multi-TeV Linear Collider to bebuilt in stages, a new phase towards a Technical Design isbeing launched by a global collaboration of volunteer in-stitutes. The presentation will review the status and plansof the CLIC study outlining the developments planned forthe next project phase.

30-Sep-13 12:00 – 12:30 Oral Auditorium A (Parallel)

MOOAA — Contributed Oral Presentations, CollidersChair: D.F. Sutter (UMD)

MOOAA112:00

High-Energy Particle Colliders: the Past 20 Years, theNext 20 Years, and the Distant Future – V.D. Shiltsev(Fermilab)Particle colliders for high-energy physics have been in theforefront of scientific discoveries for more than half a cen-tury. The accelerator technology of the colliders has pro-gressed immensely, while the beam energy, luminosity, fa-cility size, and cost have grown by several orders of mag-nitude. The method of colliding beams has not fully ex-hausted its potential but has slowed down considerablyin its progress. This paper briefly reviews the collidingbeam method and the history of colliders, discusses thedevelopment of the method over the last two decades indetail, and examines near-term collider projects that arecurrently under development. The paper concludes withan attempt to look beyond the current horizon and to findwhat paradigm changes are necessary for breakthroughsin the field.

MOOAA212:15

Status of the Electron-positron Collider VEPP-2000– A.L. Romanov, D.E. Berkaev, I. Koop, A.N. Kyrpotin,A.P. Lysenko, E. Perevedentsev, V.P. Prosvetov, Yu. A. Ro-govsky, A.I. Senchenko, P.Yu. Shatunov, Y.M. Shatunov,D.B. Shwartz, A.N. Skrinsky, I. Zemlyansky (BINP SBRAS)VEPP-2000 began high energy physics experiments at theend of 2010 and finished its third experimental seasonin June of 2013. The last season was dedicated to theenergy range of 160-510 MeV per beam. Compton back-scattering based energy measurements were used for theregular energy calibration of the VEPP-2000 in conjunc-tion with resonance depolarization and NMR based meth-ods. The concept of the round colliding beams latticealong with the precise orbit and lattice correction yieldedthe high peak luminosity of 1.2*1031 cm-2s-1 at 505 MeVwith average luminosity of 0.9*1031 cm-2s-1 per run. Thetotal tune shift up to 0.14 that corresponds to beam-beamparameter ksi=0.1 per one interaction point was achievedin runs at 390MeV. The injection system is currently in theprocess of being upgraded to allow the injection of par-ticles at the top energy of the collider VEPP-2000 and toeliminate the present lack of positrons.

30-Sep-13 10:30 – 11:00 Oral Auditorium B (Parallel)

MOYAB — Invited Oral Presentation, Light SourcesChair: M. Borland (ANL)

MOYAB110:30

Challenges and Perspectives for Diffraction LimitedStorage Ring Light Sources – R.O. Hettel (SLAC)This presentation provides an overview of the scientificmotivation for developing diffraction limited storage ring(DLSR) light sources, reviews the main R&D challenges as-sociated with DLSR implementation and summarizes theworldwide effort presently in progress to build a new gen-eration of very low emittance rings.

2 Pasadena, CA, USA, 29 September–4 October 2013

Page 33: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OSe

p30

30-Sep-13 11:00 – 11:30 Oral Auditorium B (Parallel)

MOOAB — Contributed Oral Presentations, LightSources

Chair: M. Borland (ANL)

MOOAB111:00

Initial Design of the MaRIE 1.0 X-FEL Linac –J.W. Lewellen, B.E. Carlsten, L.D. Duffy, Q.R. Mark-steiner, S.J. Russell, N.A. Yampolsky (LANL)The MaRIE 1.0 X-FEL requires an electron beam at 12GeV with 100pC bunch charge, 0.2 μm RMS normalizedtransverse emittance, and 0.15% RMS slice energy spread.These requirements place significant constraints uponthe use of techniques, such as laser heaters, which haveenabled other X-FELs to reach their design goals. Inthis paper, we present the current baseline design andperformance of the MaRIE 1.0 linac, highlight current andanticipated challenges and describe potential alternateapproaches for meeting our design performance goals.

MOOAB211:15

Ultra-low Emittance Upgrade Options for the Dia-mond Light Source – R. Bartolini, N.P. Hammond,J. Kay, R.P. Walker (Diamond) T. Pulampong (JAI)Many synchrotron radiation facilities are studying latticeupgrades in order to lower the natural emittance andhence increase the radiation brightness. While large cir-cumference rings are favoured in reaching ultra smallemittance, recent advances in design and optimisationtools allow also medium size ring to reach emittancesdown to the 100s pm region with workeable lattices. Di-amond is investigating a novel design whereby low emit-tance is conjugated with doubling of the capacity of thering, based on a double double bend achromat (DDBA)cell. Plans for the installation of two low emittance cellswill be presented. These will serve as prototype for a fullphased upgrade of the storage ring.

30-Sep-13 11:30 – 12:30 Oral Auditorium B (Parallel)

MOYBB — Invited Oral Presentations, Beam Dynamicsand Electromagnetic Fields

Chair: M. Borland (ANL)

MOYBB111:30

Analysis of Transverse Instabilities observed atJ-PARC MR and their Suppression using FeedbackSystems – Y.H. Chin (KEK)This talk should present an analysis of transverse insta-bilities observed at the J-PARC MR (Main Ring) and theirsuppression using feedback systems. Instabilities weremainly observed at low energies. About 30% of particlesare lost due to the instabilities if the feedback system isturned off at the beam power of 120kW. Both horizontaland vertical instabilities were observed. An analysis un-veils that a dipole mode has a temporal appearance ofhigher-order head-tail modes if the chromaticity is suff-isiently large. The development of instabilities in the pres-ence of a large chromaticity should be considered for con-ditions beyond the Sacherer’s text book case.

MOYBB212:00

Transverse Impedance and Transverse Instabilitiesin Fermilab Booster – A. Macridin (Fermilab)Impedances of the Fermilab Booster are strongly ampli-fied by direct beam interaction with laminations of itsbending dipoles. It results in a fast transverse instabil-ity. Interference of effects of large space charge and largeimpedance does not allow building an analytical theoryof the instability leaving numerical simulations as only re-liable way to describe the instability. The paper shouldpresent a comparison of computer simulations with ex-perimental measurements for the Fermilab Booster.

North American PAC 2013 3

Page 34: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

30-Sep-13 14:00 – 15:00 Oral Auditorium A (Parallel)

MOZAA — Invited Oral Presentations, AcceleratorSystems

Chair: C. Steier (LBNL)

MOZAA114:00

The CEBAF 12 GeV Upgrade at Jefferson Lab –L. Harwood (JLAB)This presentation should describe the progress of the12GeV Upgrade of CEBAF at Jefferson Lab. The status ofthe upgrade should be presented as well as details on theconstruction, procurement, installation and commission-ing of the magnet and SRF components of the upgrade.

MOZAA214:30

Full 3D Stochastic Cooling at RHIC – K. Mernick,M. Blaskiewicz, J.M. Brennan (BNL)Over the past several years, the installation of the full 3-dimensional stochastic cooling system in RHIC has beencompleted. The FY12 U-U and Cu-Au collider runs werethe first to benefit from the full installation. In the U-Urun, stochastic cooling improved the integrated luminos-ity by a factor of 5. This presentation provides an overviewof the design of the stochastic cooling system and reviewsthe performance of the system during the FY12 heavy ionruns.

30-Sep-13 15:00 – 15:30 Oral Auditorium A (Parallel)

MOOBA — Contributed Oral Presentations, AcceleratorSystems

Chair: C. Steier (LBNL)

MOOBA115:00

ARIEL Electron Linac – S.R. Koscielniak (TRIUMF)The TRIUMF Advanced Rare Isotope Laboratory (ARIEL)phase I is funded since 2010 June by federal and BCprovincial governments. ARIEL I comprises buildings andelectron linac; the future phase II includes hot cells, tar-get stations, mass separators and beam transport to ISACexperimental areas. The linac vault and He compressorbuilding were completed 2012. The ARIEL targets build-ing completion is 2013 Aug. With the exception of the30 MeV accelerator cryomodule and second klystron andHV power supply, the linac major procurements are com-plete. This paper reports highlights from preliminaryequipment tests in the following systems: locally manu-factured niobium 9-cell cavity, 300 keV electron gun, 4 Kcryogenic plant and sub-atmospheric pumps, 270 kW c.w.klystron and 65 kV DC power supply. Status of the 10 MeVinjector cryomodule assembly and beamlines construc-tion will also be addressed.

MOOBA215:15

The RHIC Polarized Source Upgrade – A. Zelenski(BNL)A novel polarization technique had been successfullyimplemented in the RHIC polarized H- ion source up-grade to higher intensity and polarization for use in theRHIC polarization physics program at enhanced luminos-ity RHIC operation. In this technique a primary protonbeam inside the high magnetic field solenoid is producedby charge-exchange ionization of the atomic hydrogenbeam in the He-gas ionizer cell. Further proton polariza-tion is produced in the process of polarized electron cap-ture from the optically-pumped Rb vapour. Formationof the proton beam is produced by four-electrode spheri-cal multi-aperture ion-optical system with geometrical fo-cusing. Polarized beam intensity produced in the sourceexceeds 4.0 mA.Maximum polarization of 84% was mea-sured at 0.3 mA beam intensity and 80% at 0.5 mA in 200MeV polarimeter. This high beam intensity allowed reduc-tion of the longitudinal and transverse beam emittancesat injection to AGS to reduce polarization losses in AGS.The source reliably delivered polarized beam for 2013 runin RHIC at

√s=510 GeV. This was a major contribution to

the RHIC polarization increase to over 60 % for collidingbeams.

4 Pasadena, CA, USA, 29 September–4 October 2013

Page 35: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OSe

p30

30-Sep-13 15:30 – 16:30 Oral Auditorium A (Parallel)

MOZBA — Invited Oral Presentations, HadronAccelerators

Chair: J.Y. Tang (IHEP)

MOZBA115:30

First Commissioning Experience with the Linac43 MeV Front-end at CERN – J.-B. Lallement, A. Akroh,G. Bellodi, J.F. Comblin, V.A. Dimov, E. GranemannSouza, J. Lettry, A.M. Lombardi, O. Midttun, E. Ovalle,U. Raich, F. Roncarolo, C. Rossi, J.L. Sanchez Alvarez,R. Scrivens, C.A. Valerio, M. Vretenar, M. Yarmoham-madi Satri (CERN) M. Yarmohammadi Satri (IPM)Linac4 is a normal-conducting 160 MeV H- linear acceler-ator presently under construction at CERN. It will replacethe present 50 MeV Linac2 as injector of the proton accel-erator complex as part of a project to increase the LHCluminosity. The Linac front-end, composed of a 45 keVion source, a Low Energy Beam Transport (LEBT), a 352.2MHz Radio Frequency Quadrupole (RFQ) and a MediumEnergy Beam Transport (MEBT) housing a beam chopper,have been commissioned at the 3 MeV test stand duringthe first half of 2013. The status of the installation and theresults of the first commissioning stage are presented inthis paper.

MOZBA216:00

Proton Accelerator Development in China – S. Fu(IHEP)The China Spallation Neutron Source (CSNS) and theChinese Accelerator Driven Systems (C-ADS) projects areboth underway in China. The CSNS includes a 100 kWRCS accelerator and first beam on target is planned for2017. The C-ADS project includes a high power supercon-ducting linac with a low energy (25-50 MeV) initial stageby 2015 and higher power deployment later. In addition tothese intense-beam proton accelerators, some other pro-ton accelerators for various applications are also underconstruction or planned. In this paper, the plans, R&Dand construction activities of these projects will be dis-cussed.

30-Sep-13 14:00 – 14:30 Oral Auditorium B (Parallel)

MOZAB — Invited Oral Presentation, IndustrialAccelerators and Applications

Chair: J.R. Delayen (ODU)

MOZAB114:00

Accelerator-Driven Subcritical Fission - How to De-stroy the Transuranics in Spent Nuclear Fuel andClose the Nuclear Fuel Cycle – P.M. McIntyre (TexasA&M University)Accelerator-driven subcritical fission in a molten salt core(ADSMS) can use depleted uranium or thorium as fueland produce 1 GWe power while destroying the transuran-ics produced. ADSMS requires multiple proton beamsof 800 MeV energy and 10 mA CW current. A strong-focusing cyclotron (SFC) is being developed that uses sec-tor dipoles each configured as a flux-coupled stack, creat-ing independent cyclotrons that can be integrated withina common footprint. This presentation will introduce a 4-stack SFC that can provide the beam power needed in anADSMS core to destroy transuranics at the rate and pro-portion made in a commercial GWe power reactor whilealso producing 300 MWe of power, equivalent to a x5 en-ergy amplifier.

North American PAC 2013 5

Page 36: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

30-Sep-13 14:30 – 15:00 Oral Auditorium B (Parallel)

MOZBB — Invited Oral Presentation, AlternativeAcceleration SchemesChair: J.R. Delayen (ODU)

MOZBB114:30

The Fermilab Advanced Superconducting Test Accel-erator (ASTA) Facility – P. Piot (Fermilab, Northern Illi-nois University)The Advanced Superconducting Test Accelerator (ASTA)currently in construction at Fermilab will enable a broadrange of beam-based experiments to study fundamen-tal limitations to beam intensity and to develop transfor-mative approaches to particle-beam generation, acceler-ation and manipulation. ASTA incorporates a supercon-ducting radiofrequency (SRF) linac coupled to a photoin-jector and small-circumference storage ring capable ofstoring electrons or protons. This report describes the fa-cility, its capabilities, and provide an overview of enabledresearch thrusts.

30-Sep-13 15:00 – 15:30 Oral Auditorium B (Parallel)

MOOBB — Contributed Oral Presentations, AlternativeAcceleration SchemesChair: J.R. Delayen (ODU)

MOOBB115:00

The AWAKE Proton-Driven Plasma Wakefield Acceler-ation Experiment at CERN – P. Muggli (MPI)Proton (p+) bunches are interesting as wakefield driversbecause they carry large amounts of energy (many kJ) andbecause the p+ rigidity is also large. Simulations showthat a short p+ bunch (∼100 microns) can drive and sus-tain GV/m accelerating fields over very long plasma dis-tance, corresponding to a large average acceleration gra-dient. These wakefields can potentially accelerate a wit-ness electron bunch to the TeV level in a few hundred me-ters. Self-modulation instability (SMI) of long p+ bunches(∼10 cm) available today can lead to the formation of atrain ofμbunches that can resonantly drive wakefields tothe GV/m level. Based on this scheme the AWAKE collab-oration proposes to use the CERN SPS bunch to study theSMI of p+ bunches in ∼10m plasma with density in the 1-10x1015/cc range. The wakefields is sampled by externally“side-injected” electrons. Acceleration from a few MeV toa few GeV is expected. Operating at lower plasma densityeases external injection requirements. The experimentalset up and program will be presented. Expectations basedon numerical simulations of the SMI and acceleration pro-cesses will be described. Long-term goals will also be out-lined.

MOOBB215:15

High Gradient Acceleration of Electrons in a Laser-Driven Dielectric Micro-Structure – E.A. Peralta,R.L. Byer, C. McGuinness (Stanford University) E.R. Colby(OHEP/DOE) R.J. England, B. Montazeri, K. Soong, Z. Wu(SLAC) J.C. McNeur (UCLA)We report the first observation of high-gradient ac-celeration of electrons in a lithographically fabricatedmicron-scale dielectric optical accelerator driven by amode-locked Ti:sapphire laser. We have observed accel-eration gradients far exceeding those of conventionalmicrowave accelerator structures. Additionally, we haveverified the dependence of the observed accelerationgradient on: the laser pulse energy, the laser-electrontemporal overlap, the polarization of the laser, and theincidence angle of the laser. In all cases, we have foundgood agreement between the observed results, the analyt-ical predictions, and the particle simulations.

6 Pasadena, CA, USA, 29 September–4 October 2013

Page 37: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OSe

p30

30-Sep-13 15:30 – 16:00 Oral Auditorium B (Parallel)

MOOCB — Contributed Oral Presentations, AlternativeAcceleration SchemesChair: J.A. Holmes (ORNL)

MOOCB115:30

Generation of Monoenergetic Protons by Laser Accel-eration of Multi-Ion Foils with Polarization Switch –T.-C. Liu, C.-S. Liu, X. Shao (UMD) S.-H. Chen (NCU)B. Eliasson (Ruhr-Universität Bochum) J. Wang (IAMS)Laser radiation pressure acceleration is considered asan effective method in obtaining high energy quasi-monoenergetic ions. By irradiating a laser beam on amulti-species target made of carbon and hydrogen, theproton layer can be accelerated ahead of the carbonion layer due to a higher charge-to-mass ratio. And theshielded Coulomb repulsion provided by the left-behindelectron-carbon layer can not only further accelerate theproton layer, but also stabilize it for a long time. Theacceleration time of quasi-monoenergetic protons by thecombined mechanisms is extended over ten times longercompared to the case of applying single-species targetsand using radiation pressure acceleration alone. 60 MeVof quasi-monoenergetic protons from a multi-speciesfoil with input laser power of 70 TW is obtained, whichis at least five times greater than the energy obtainablefrom pure hydrogen targets. To further increase the effi-ciency, we achieve an improvement of 30 percent energyenhancement by introducing a polarization switch inthe laser profile. An analytical approach to interpret andoptimize the results is also studied.

MOOCB215:45

Modeling Underdense Plasma Photocathode Ex-periments – D.L. Bruhwiler (CIPS) G. Andonian,J.B. Rosenzweig, Y. Xi (UCLA) G. Andonian (RadiaBeam)E. Cormier-Michel (Tech-X) B. Hidding (Uni HH)The underdense plasma photocathode concept (akaTrojan horse) *,** is a promising approach to achiev-ing fs-scale electron bunches with pC-scale charge andtransverse normalized emittance below 0.01 mm-mrad,yielding peak currents of order 100 A and beam brightnessas high as 1019 A/(m rad)2, for a wide range of achievablebeam energies up to 10 GeV. A proof-of-principle experi-ment will be conducted at the FACET user facility in early2014. We present 2D and 3D simulations with physicalparameters relevant to the planned experiment.* Hidding et al., PRL 108:035001 (2012). ** Xi et al., PRST-AB16:031303 (2013).

30-Sep-13 16:00 – 16:30 Oral Auditorium B (Parallel)

MOODB — Contributed Oral Session, Beam Dynamicsand Electromagnetic Fields

Chair: J.A. Holmes (ORNL)

MOODB116:00

Beam-Beam Limit in an Integrable System –A. Valishev, S. Nagaitsev (Fermilab) V.V. Danilov (ORNL)D.N. Shatilov (BINP SB RAS)Round colliding beams have been proposed as a way topush the attainable beam-beam tune shift limit, and re-cent successful experiments at the VEPP-2000 collider atBINP demonstrated the viability of the concept. In around-beam system the dynamical stability is improvedby introducing an additional integral of motion, which ef-fectively reduces the system from a two and a half dimen-sional to one and a half dimensional. In this report wediscuss the possible further improvement through addingthe second integral of motion and thus making the systemfully integrable. We explore the ultimate beam-beam limitin such a system using numerical simulations taking intoaccount various imperfections.

North American PAC 2013 7

Page 38: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

MOODB216:15

A Model Ring With Exactly Solvable Nonlinear Mo-tion – T.V. Zolkin (University of Chicago) Y. Kharkov,I.A. Morozov (BINP SB RAS) S. Nagaitsev (Fermilab)Recently, a concept of nonlinear accelerator lattices withtwo analytic invariants has been proposed. Based on fur-ther studies, the Integrable Optics Test Accelerator (IOTA)was designed and is being constructed at the FNAL. De-spite the clarity and transparency of the proposed idea,the detailed analysis of the beam motion remains quitecomplicated and should be understood better even forthe case when no perturbations are taken into account. Inthis paper we will review one of the three proposed realiza-tions of the integrable optics, where the variables separa-tion is possible in polar coordinates. This system allowsfor an exact analytical solution expressed in terms of el-liptic integrals and Jacobi elliptic functions. It gives thepossibility to check numerical algorithms used for track-ing and to perform more rigorous analysis of the motionin comparison with the "crude" analysis of the topologyof the phase space. In addition we will discuss some dif-ficulties associated with numerical simulations of such acomparatively complex dynamical system and will take alook at the possible perturbations for a model machine.

8 Pasadena, CA, USA, 29 September–4 October 2013

Page 39: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct01

01-Oct-13 08:30 – 09:00 Oral Auditorium A (Parallel)TUOAA — Contributed Oral Presentations, Colliders

Chair: S.D. Holmes (Fermilab)

TUOAA108:30

Bunched Beam Electron Cooler for Low-energy RHICOperation – A.V. Fedotov, S.A. Belomestnykh, I. Ben-Zvi,M. Blaskiewicz, D.M. Gassner, D. Kayran, V. Litvinenko,W. Meng, I. Pinayev, B. Sheehy, S. Tepikian, J.E. Tuozzolo,G. Wang (BNL) S.A. Belomestnykh, I. Ben-Zvi, V. Litvi-nenko (Stony Brook University)RHIC operations with heavy ion beams at energies be-low 10 GeV/nucleon are motivated by a search for theQCD Critical Point. An electron cooler is proposed asa means to increase RHIC luminosity for collider opera-tions at these low energies. The electron cooling systemshould be able to deliver an electron beam of adequatequality over a wide range of electron beam energies (0.9-5 MeV). It also should provide optimum 3-D cooling forboth hadron beams in the collider. A method based onbunched electron beam, which is also a natural approachfor high-energy electron cooling, is being developed. Inthis paper, we describe the requirements for this system,its design aspects, as well as the associated challenges.

TUOAA208:45

RHIC Machine Studies towards Improving the Perfor-mance at 2.5 GeV – C. Montag, H. Huang, G.J. Marr,G. Robert-Demolaize, V. Schoefer, T.C. Shrey, S. Tepikian,K. Zeno (BNL)To search for the critical point in the QCD phase diagram,Au-Au collisions at beam energies between 2.5 and 15 GeVare required. While RHIC has successfully operated at3.85 and 5.75 GeV, the performance achieved at 2.5 GeVis not sufficient for a meaningful physics program. We re-port on dedicated beam experiments performed to under-stand and improve this situation.

01-Oct-13 09:00 – 10:00 Oral Auditorium A (Parallel)TUXA — Invited Oral Presentations, Colliders

Chair: S.D. Holmes (Fermilab)

TUXA109:00

Burn-off Dominated Uranium and AsymmetricCopper-gold Operation in RHIC – Y. Luo, M. Blask-iewicz, J.M. Brennan, W. Fischer, N.A. Kling, K. Mernick,T. Roser (BNL)In the 2012 RHIC heavy ion run, we collided uranium-uranium (U-U) ions at 96.4∼GeV/nucleon and copper-gold (Cu-Au) ions at 100∼GeV/nucleon for the first timein RHIC. The new Electron-Beam Ion Source (EBIS)was used for the first time to provide ions for the RHICphysics program. After adding the horizontal cooling,3-D stochastic cooling became operational in RHIC forthe first time, which greatly enhanced the luminosity. Inthis article, we first review the improvements and per-formances in the 2012 RHIC ion runs. Then we discussthe conditions and approaches to achieve the burn-offdominated Uranium beam lifetime at physics stores.And we discuss the asymmetric copper-gold collisiondue to different IBS and stochastic cooling rates, andthe operational solutions to maximize the integratedluminosity.

TUXA209:30

Nanometer Beam Generation and Measurements inKEK-ATF2 – G.R. White (SLAC)Techiques for generation and measurements of ultrasmall beams in the few nanmeter range for applicationsin the final focus of high energy linear colliders are beingdevelopped and tested in the KEK ATF2. After reviewingthe presently achieved performances and their possibleprogress in the future, the presentation should outlinethe basic limitations and realistic figures for applicationin future facilities.

North American PAC 2013 9

Page 40: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

01-Oct-13 10:30 – 11:30 Oral Auditorium A (Parallel)TUYAA — Invited Oral Presentations, Accelerator

SystemsChair: A.K. Mitra (TRIUMF)

TUYAA110:30

The Project-X Injector Experiment: A Novel High Per-formance Front-end for a Future High Power ProtonFacility at Fermilab – S. Nagaitsev (Fermilab)This presentation should describe the Project X InjectorExperiment (PXIE)and its connection with Project X. Itshould focus on the novel aspects of PXIE, namely the pro-grammable, bunch-by-bunch chopping of a CW H- beam;acceleration in CW superconducting RF structures imme-diately following the RFQ; operation of SRF structuresadjacent to a high-power chopper target; and preserva-tion of high-quality chopped beams with acceptable emit-tance growth and halo.

TUYAA211:00

High Power (MW-class) Targets for Particle Beams –E.J. Pitcher (ESS) C.J. Densham (STFC/RAL)This presentation will cover advances in high power (MWclass) targets for particle beams, including targets for par-ticle physics and neutron spallation systems.

01-Oct-13 11:30 – 12:00 Oral Auditorium A (Parallel)TUYBA — Invited Oral Presentation, Accelerator

TechnologyChair: A.K. Mitra (TRIUMF)

TUYBA111:30

Beam Instrumentation for High Power HadronBeams – A.V. Aleksandrov (ORNL)This presentation will describe developments in the beamdiagnostics which support the understanding and oper-ation of high power hadron accelerators. These includethe measurement of large dynamic range transverse andlongitudinal beam profiles, beam loss detection, andnon-interceptive diagnostics.

01-Oct-13 12:00 – 12:30 Oral Auditorium A (Parallel)TUOBA — Contributed Oral Presentations, Accelerator

TechnologyChair: A.K. Mitra (TRIUMF)

TUOBA112:00

A Fast Rotating Wire Scanner For Use In High Cur-rent Accelerators – S.J. Full, N.I. Agladze, A.C. Bartnik,I.V. Bazarov, J. Dobbins, B.M. Dunham, Y. Li, X. Liu,T.P. Moore, J.J. Savino, K.W. Smolenski (Cornell Univer-sity (CLASSE), Cornell Laboratory for Accelerator-BasedSciences and Education)We have developed a cost-effective, fast rotating wirescanner for use in accelerators where high beam currentswould otherwise melt even carbon wires. This new designuses a simple planetary gear setup to rotate a carbon wire,fixed at one end, through the beam at speeds in excess of20 m/s. We will present results from bench tests, as well astransverse beam profile measurements taken at Cornell’shigh-brightness ERL photoinjector, for a beam energy of4 MeV and currents up to 40 mA.

TUOBA212:15

The DOE-HEP Accelerator R&D Stewardship Pro-gram – M.S. Zisman (US DOE)Since the Accelerators for America’s Future (AfAF) Sym-posium in 2009, the U.S. Dept. of Energy’s Office ofHigh Energy Physics (DOE-HEP) has worked towardbroadening its accelerator R&D activities beyond supportof only discovery science to include medicine, energyand environment, defense and security, and industry.Accelerators play a key role in many aspects of everydaylife, and improving their capabilities will enhance U.S.economic competitiveness. In 2011, a SLAC-led taskforce was initiated by HEP to develop more fully theinformation from the original AfAF Symposium. Sub-sequently, a DOE-HEP concept (coordinated with theother cognizant Office of Science program offices) was

10 Pasadena, CA, USA, 29 September–4 October 2013

Page 41: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct01

developed for accelerator R&D stewardship. Here wedescribe the evolution of the stewardship task startingfrom its origins in the ongoing accelerator R&D program,the mission of the new program, and initial steps beingtaken to implement it. Several initiatives are currentlybeing considered to launch the program, and these willbe indicated. Involvement of the accelerator communityin developing ideas for future stewardship activities willbe crucial to the ultimate success of the program.

01-Oct-13 08:30 – 09:30 Oral Auditorium B (Parallel)TUTB — Tutorial, Light Sources

Chair: T. Rao (BNL)

TUTB108:30

High-energy, High-current ERLs – G.H. Hoffstaetter(Cornell University (CLASSE), Cornell Laboratory forAccelerator-Based Sciences and Education)This tutorial covers the design issues for ERLs and descrip-tion of various projects that rely on ERLs, including theJLAB-FEL, LHeC, eRHIC, Cornell’s x-ray ERL, KEK’s CERL,BERL inPro, and MARS. It highlights recent progress to-ward beam parameters of ERL beams in terms of emit-tance and current, as well as hardware prototypes andprogress toward ERL cryomodules, and operational expe-riences with CW SRF, essential for ERLs.

01-Oct-13 09:30 – 10:00 Oral Auditorium B (Parallel)TUOAB — Contributed Oral Presentations, Accelerator

TechnologyChair: T. Rao (BNL)

TUOAB109:30

Advances in Photocathode Technology at Cor-nell University – S.S. Karkare (Cornell University)I.V. Bazarov, L.E. Boulet, M. Brown, L. Cultrera,B.M. Dunham, N. Erickson, G. Gabriel, A. Kim, B. Lil-lard, T.P. Moore, C. Nguyen, W.J. Schaff, K.W. Smolenski,H. Wang (Cornell University (CLASSE), Cornell Labora-tory for Accelerator-Based Sciences and Education)Beam brightness from modern day photoinjectors is lim-ited by the photocathode. A multifaceted photocathodedevelopment program has been undertaken at CornellUniversity with a goal to develop the ultimate photo-cathode which has high quantum efficiency, low meantransverse energy, quick response time and a long lifetime.Positive affinity cathodes like CsK2Sb and NaK2Sb havebeen grown using different kinds of alkali metal sources(alkali-azide and pure metal), characterized and tested inthe Cornell-ERL photoinjector. Novel layered structuresof various III-V semiconductors like GaAs and AlGaAsgrown using Molecular Beam Epitaxy and activated tonegative electron affinity using Cs and NF3 are also beinginvestigated. Surface and photoemission diagnostics likeAuger spectroscopy, LEED, RHEED and the 2D-electronenergy analyzers have been connected in vacuum tothe photocathode growth and preparation chambers tofully characterize the surface and emission properties ofthe materials grown. A Monte Carlo based simulationhas also been developed to predict photoemission fromlayered semiconductor structures and help design novelstructures to optimize the photoemission properties.

TUOAB209:45

Carbon Nanotube Cathode Development and Testing– J.J. Hartzell, R.B. Agustsson, S. Boucher, L. Faillace,A.Y. Murokh, A.V. Smirnov (RadiaBeam)RadiaBeam Technologies is developing carbon nanotube(CNT) based field emission cathodes for DC-pulsed andradio-frequency electron sources. CNT cathodes offersimple operation, have demonstrated high current den-sities, and can maintain low thermal emittance due totheir ability to emit at room temperature. The experimen-tal results of testing CNT cathodes are presented, includ-ing high-voltage tests, lifetime studies, and initial perfor-mance in an RF gun. Additionally, some of the challengesposed by the fabrication and handling of the CNT cath-odes are discussed.

North American PAC 2013 11

Page 42: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

01-Oct-13 10:30 – 11:30 Oral Auditorium B (Parallel)TUYB — Invited Oral Presentations, Beam Dynamics

and Electromagnetic FieldsChair: J. Bisognano (UW-Madison/SRC)

TUYB110:30

Corrugated Structures for Terahertz Generation andBeam Dechirping – K.L.F. Bane (SLAC)In recent studies a metallic pipe with small corrugationshas been considered for two applications: as a beam-based method of generating pulses of terahertz radiation,and for simply and cheaply removing unwanted energychirp in linac-based X-ray FEL’s. With a pipe of length∼10 cm and aperture ∼1 mm, narrow-band, multi-cyclepulses of radiation can be generated, with frequency ∼1THz and pulse energy of a few mJ. In linac-based FEL’s,after the final bunch compressor, the electron bunch typ-ically is left with an energy chirp. An inexpensive way fordechirping is to have the beam pass through ∼10 m of cor-rugated pipe. This report presents and analyzes the per-formance of the corrugated structure for both mentionedpurposes. Experimental tests are also discussed.

TUYB211:00

Novel Methods for Experimental Characterizationof 3D Superconducting Linac Beam Dynamics –A.P. Shishlo (ORNL)This presentation should describe new measurementtechniques used to understand linac beam dynamics,and the results of their application in the SNS supercon-ducting linac.

01-Oct-13 11:30 – 12:30 Oral Auditorium B (Parallel)TUOBB — Contributed Oral Presentations, Beam

Dynamics and Electromagnetic FieldsChair: W. Leemans (LBNL)

TUOBB111:30

Space-charge Compensation for High-intensity Lin-ear and Circular Accelerators at Fermilab –M. Chung, L.R. Prost, V.D. Shiltsev (Fermilab)Space-charge effects have long been recognized as a fun-damental intensity limitation in high-intensity linear andcircular accelerators. As the mission of the US high en-ergy physics program is pushing the Intensity Frontier, itis very timely to explore novel schemes of space-chargecompensation that could significantly improve the perfor-mance of leading high-intensity proton accelerator facili-ties such as Project-X. In this work, we present two activi-ties at Fermilab on the space-charge compensation exper-iments based on residual gas ionization: 1) neutralizedbeam transport of continuous-wave (CW) H- beam inProject-X Injector Experiment (PXIE); and 2) trapped elec-tron plasmas for space-charge compensation in the newlyproposed Integrable Optics Test Accelerators (IOTA) ring.Characteristics of the stability in the beam-plasma sys-tem, the dynamics of beam neutralization, and the transi-tion between neutralized and un-neutralized beam trans-ports are discussed for each configuration.

TUOBB211:45

Experimental Verification of Single-bunch Accumu-lation Limit Dependence on Impedance at the APS –V. Sajaev, M. Borland, Y.-C. Chae, L. Emery (ANL)One of the unique features of the Advanced PhotonSource is operation with a small number of intensebunches – standard operating mode has twenty four 16-nC bunches, while in a special operating mode one ofthe bunches has a charge of 60 nC. Such high singlebunch currents are achieved by a combination of highoperational chromaticity and transverse bunch-by-bunchfeedback. In the near future, more narrow-gap inser-tion device vacuum chambers will be installed, whichwill increase impedance of the storage ring and make

12 Pasadena, CA, USA, 29 September–4 October 2013

Page 43: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct01

operation with high single-bunch current more problem-atic. Simulations exist that quantify the effect of in-creased impedance on the APS single-bunch accumula-tion limit; however, no experimental verification has beenperformed yet. In this paper, we will present our firstmeasurement of the single-bunch accumulation limit asa function of effective impedance. Different impedancevalues were achieved by changing storage ring beta func-tions.

TUOBB312:00

Imposing Strong Energy Slews with Transverse De-flecting Cavities – N.A. Yampolsky, A. Malyzhenkov(LANL)We propose a novel scheme for imposing strong energyslews in short electron bunches using a set of transversedeflecting cavities. Such a cavity introduces the angulardivergence depending on the longitudinal position andthe energy variation depending on the transverse position.Combining several cavities and vacuum drifts we first ex-pand the beam transversally keeping x-z correlation of thedistribution, then apply the energy variation, and focusthe beam back. The transform matrix of the scheme isequivalent to a single chirping cavity. At the same time,the strength of the R65 element is strongly increased com-pared to conventional accelerating cavities. The overallenergy variation along the bunch is defined by the trans-verse size of the beam in the middle of the beamline ratherthan its longitudinal size. As a result, the strength of theR65 element can be increased by 2 orders of magnitudecompared to conventional design. This scheme allows foracceleration on crest increasing average accelerating gra-dient and reducing accelerator cost. It also allows for us-ing weaker chicanes in compressors.

TUOBB412:15

Measurement of Ultrasmall Transverse Spot Size– K.G. Roberts, R.K. Li, P. Musumeci (UCLA),B.T. Jacobson (RadiaBeam)The imaging of extremely small, sub-5 micron, transversebeam spot sizes has been a priority in accelerator physics.Here we propose a scheme to generate and image a beamspot size about 1 micron at PEGASUS laboratory at UCLA.We are preparing a 0.8 mm, 1 pC, 10 MeV electron beamto be sent through a permanent magnet quadrupole(PMQ) triplet of strength 130 T/m, focusing the beam toa waist 1.5 microns and a total focal length of 4.5 mm.We use a YAG screen at the beam waist and a mirror todirect optical (520 nm green) light into a Schwarzschildmicroscope to collimate the light. We will then image thebeam using a CCD camera outside of the beam line.

01-Oct-13 14:00 – 15:00 Oral Auditorium A (Parallel)TUZAA — Invited Oral Presentations, Colliders

Chair: Y.H. Chin (KEK)

TUZAA114:00

Electron-Ion Collider Proposals Worldwide –Y. Zhang (JLAB)This talk should review the status of world-wide Electron-Ion Colliders proposals and designs, including the MEICat JLAB, eRHIC at BNL and the LHeC at CERN.

TUZAA214:30

Beam Physics in Future Electron Hadron Colliders –A. Valloni (CERN)High-energy electron-hadron collisions could support arich research programme in particle and nuclear physics.Several future projects are being proposed around theworld, in particular eRHIC at BNL and MEIC at JLAB inthe US, and LHeC at CERN in Europe. This presentationwill highlight some of the accelerator physics issues, anddescribe related technical developments and challengesfor these machines. In particular, optics design and beamdynamics studies are discussed, including longitudinalphase space manipulation, coherent synchrotron radia-tion, beam-beam kink instability, ion effects, as well as

North American PAC 2013 13

Page 44: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

mitigation measures for beam break up and for space-charge induced emittance growth, all of which could limitthe machine performance. Finally, first steps are pre-sented towards an LHeC R&D facility, which should inves-tigate relevant beam-physics processes.

01-Oct-13 15:00 – 15:30 Oral Auditorium A (Parallel)TUOCA — Contributed Oral Presentations, Colliders

Chair: Y.H. Chin (KEK)

TUOCA115:00

Collimation with Hollow Electron Beams: A Pro-posed Design for the LHC Upgrade – G. Stancari,V. Previtali, A. Valishev (Fermilab) R. Bruce, S. Redaelli,A. Rossi, B. Salvachua (CERN) V. Moens (EPFL)Collimation with hollow electron beams is a techniquefor halo removal in high-power hadron beams. A mag-netically confined, pulsed electron beam with a hollowcurrent-density profile overlaps with the circulating beamover a short section of the ring. If the electron distribu-tion is axially symmetric, the beam core is unperturbed,whereas the halo experiences smooth and tunable trans-verse kicks. This device addresses some of the limita-tions of traditional collimators, such as material damage,impedance, loss spikes during setup, and fragmentationin the case of ion collimation. The technique was testedextensively at the Fermilab Tevatron collider using a hol-low electron gun installed in one of the Tevatron electronlenses*. Within the US LHC Accelerator Research Programand the European HiLumi LHC Design Study, the applica-bility of this technique to the LHC is being investigatedand a conceptual design was developed. We review someof the main topics related to this study: the developmentof hollow electron guns; tracking simulations to estimateachievable halo removal rates and the effects of imperfec-tions on the proton core; and integration of the device inthe LHC machine.* G. Stancari et al., Phys. Rev. Lett. 107, 084802 (2011).

TUOCA215:15

RHIC Electron Lens Commissioning – X. Gu, Z. Altin-bas, M. Anerella, D. Bruno, M.R. Costanzo, W.C. Dawson,K.A. Drees, W. Fischer, B. Frak, D.M. Gassner, K. Hamdi,J. Hock, L.T. Hoff, A.K. Jain, J.P. Jamilkowski, R.F. Lambi-ase, Y. Luo, M. Mapes, A. Marone, C. Mi, R.J. Michnoff,T.A. Miller, M.G. Minty, C. Montag, S. Nemesure, W. Ng,D. Phillips, A.I. Pikin, S.R. Plate, P.J. Rosas, P. Sampson,J. Sandberg, L. Snydstrup, Y. Tan, R. Than, C. Theisen,P. Thieberger, J.E. Tuozzolo, P. Wanderer, W. Zhang (BNL)In the 2013 RHIC polarized proton run, it was foundthat the RHIC bunch intensity has reached a limit dueto the head-on beam-beam interaction at 2x1011, as ex-pected by simulations. To overcome this limitation, twoelectron lenses will be used for compensation. We re-port on the commissioning of new lattices that reducebeam-beam driven resonance driving terms, and bunch-by-bunch proton diagnostic during 2013 run. The effectof electron beam transport solenoids on the proton orbitwas tested. The instrumentation for Blue electron lenswas tested and electron beam was propagated from thegun to the collector. A timing system was implementedfor the electron beam. Control software, machine pro-tection and synoptic display were developed and testedduring commissioning. Both Blue and Yellow electronlens superconducting magnets are installed and their fieldstraightness was measured and corrected in the tunnel us-ing a magnetic needle. The Yellow vacuum system andbackscattered electron detectors installation are also com-pleted now.

14 Pasadena, CA, USA, 29 September–4 October 2013

Page 45: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct01

01-Oct-13 15:30 – 16:00 Oral Auditorium A (Parallel)TUODA — Contributed Oral Presentations, Accelerator

SystemsChair: T. Satogata (JLAB)

TUODA115:30

High Pressure Gas-Filled RF Cavities for Use in aMuon Cooling Channel – B.T. Freemire, P.M. Han-let, Y. Torun (IIT) M. Chung, M.R. Jana, M.A. Leo-nova, A. Moretti, T.A. Schwarz, A.V. Tollestrup, Y. Torun,K. Yonehara (Fermilab) M.G. Collura (Politecnico diTorino) R.P. Johnson (Muons. Inc.)A high pressure hydrogen gas-filled RF (HPRF) cavity canoperate in the multi-Tesla magnetic fields required for amuon accelerator cooling channel. A beam test was per-formed at the Fermilab MuCool Test Area by sending a 400MeV proton beam through an 805 MHz cavity and quan-tifying the effects of the resulting plasma within the cav-ity. The resulting energy loss per electron-ion pair pro-duced has been measured at 10-18 to 10-16 J every RF cycle.Doping the hydrogen gas with oxygen greatly decreasesthe lifetime of an electron, thereby improving the perfor-mance of the HPRF cavity. Electron lifetimes as short as1 ns have been measured. The recombination rate of pos-itive and negative ions in the cavity has been measuredon the order of 10-8 cm3/s. Extrapolation in both gas pres-sure and beam intensity are required to obtain Muon Col-lider parameters, however the results indicate HPRF cavi-ties can be used in a muon accelerator cooling channel.

TUODA215:45

Test of Optical Stochastic Cooling in the IOTA Ring –V.A. Lebedev, Y. Tokpanov (Fermilab) M.S. Zolotorev(LBNL)A new 150 MeV electron storage ring is being built at Fer-milab. The construction of a new machine pursues twogoals a test of highly non-linear integrable optics and atest of optical stochastic cooling (OSC). This paper dis-cusses details of OSC arrangements, choice of major pa-rameters of the cooling scheme and experimental tests ofthe optical amplifier prototype. The amplifier uses highlydoped Ti-sapphire crystal as amplification medium. Themajor goal of experiments is to measure the amplifier dis-persion which determines lengthening of single particlesignal and the effective bandwidth of the system.

01-Oct-13 16:00 – 16:30 Oral Auditorium A (Parallel)TUZBA — Invited Oral Presentation, Accelerator

SystemsChair: T. Satogata (JLAB)

TUZBA116:00

The Digital RF Control Revolution – C. Hovater (JLAB)Over the last 20 years a migration has taken place fromanalog signal processing to digital signal processing for RFcavity control. The motivation behind the new generationof RF controls is twofold. Some of it can be attributed tothe challenging RF control requirements needed for thehigher performing cavities and accelerators. Second isthe explosive growth of digital communication technol-ogy and its applicability to RF cavity control. The flexibil-ity and performance of digital controls has allowed thesenew accelerators (especially light sources) to meet theirrequirements. This presentation reviews the historical ad-vances of the technology and the world-wide progress indigital RF system control for linacs, rings, normal con-ducting and superconducting RF systems.

North American PAC 2013 15

Page 46: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

01-Oct-13 14:00 – 15:00 Oral Auditorium B (Parallel)TUZB — Invited Oral Presentations, Light Sources and

FELsChair: M. Peiniger (RI Research Instruments GmbH)

TUZB114:00

Free Electron Lasers in the Soft X-ray Regime –J.N. Corlett (LBNL)The science needs for probing materials to determineelectronic structure with elemental specificity, imaging,and spectroscopies, with ultrafast time resolution, drivesoft X-ray FEL design. In addition to operational softX-ray facilities, there are FEL construction projects underway that include soft X-ray laser capabilities, and plannedfacilities with novel capabilities. This paper provides a re-view of the exciting field of existing and planned soft X-rayFree Electron Lasers with the emphasis on new schemesand new technologies to achieve better performance.

TUZB214:30

Developments in Hard X-ray FELs – H.-S. Kang (PAL)LCLS has accumulated significant operational experience,now including hard X-ray self-seeding, and SACLA hassuccessfully delivered hard X-ray laser beams to users.The European XFEL is in an advanced stage of construc-tion, the SwissFEL and PAL-XFEL projects are in earlystages of construction, and MaRIE is in planning stages.This presentation should provide an overview of progressand plans for hard x-ray facilities worldwide.

01-Oct-13 15:00 – 15:30 Oral Auditorium B (Parallel)TUOCB — Contributed Oral Presentations, Light

Sources and FELsChair: M. Peiniger (RI Research Instruments GmbH)

TUOCB115:00

Machine Based Optimization Using Genetic Algo-rithms in a Storage Ring – K. Tian, J.A. Safranek,Y.T. Yan (SLAC)The genetic algorithm (GA) has been a popular techniquein optimizing the design and operation of particle accel-erators. As a population based algorithm, GA requires alarge amount of evaluations of the objective functions,which can be very time consuming. One can benefitfrom parallel computing with significantly reduced com-puting time when fulfilling the function evaluation bya numerical machine model in simulation codes. As aresult, this is the most common approach in GA applica-tions. In this paper, we present a successful experimentaldemonstration of applying the GA in real machine basedoptimization. We conduct the optimization of the linearcoupling of the SPEAR3 storage ring using the GA by di-rectly varying the strengths of SPEAR 3 skew quadrupoles,the decision variables, and measuring the beam lossrates, the sole objective function. The results in this papercan shed light on new applications of GAs in particleaccelerator community.

TUOCB215:15

Successful Completion of the ALS Brightness Up-grade – C. Steier, A. Biocca, P.W. Casey, N. Li, A. Madur,H. Nishimura, D. Robin, S.L. Rossi, T. Scarvie, C. Sun,W. Wan (LBNL)The Advanced Light Source (ALS) at Berkeley Lab is oneof the brightest sources for soft xrays worldwide. A multi-year upgrade of the ALS is underway, which includes newand replacement x-ray beamlines, a replacement of manyof the original insertion devices and many upgrades tothe accelerator. The accelerator upgrade that affects theALS performance most directly is the brightness upgrade,which reduced the horizontal emittance from 6.3 nm to2.0 nm (2.5 nm effective), resulting in one of the lowesthorizontal emittance of operating light sources. Magnetsfor this upgrade were installed in late 2012 and early 2013followed by successful commissioning and user operationwith 2.0 nm horizontal emittance.

16 Pasadena, CA, USA, 29 September–4 October 2013

Page 47: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct01

01-Oct-13 15:30 – 16:30 Oral Auditorium B (Parallel)TUODB — Contributed Oral Presentations, Hadron

CollidersChair: L. Rybarcyk (LANL)

TUODB115:30

Studies of the Low Energy Proton Beam Halo Exper-iment – H. Jiang, P. Chen, S. Fu, T. Huang, F. Li, P. Li,H.C. Liu, C. Meng, M. Meng, Z.C. Mu, H.F. Ouyang,J. Peng, L.Y. Rong, B. Sun, J.M. Tian, B. Wang, S.C. Wang,W.Q. Xin, T.G. Xu, L. Zeng, F.X. Zhao (IHEP)Space charge forces acting in a mismatched beam havebeen commonly identified as a major cause of beam halo.The knowledge of the details of the initial 6D phase-spacedistribution is very important for simulation. We havecharactered the beam transversal 4D distribution in theexperiment and then used this initial beam parameters tosimulate the beam dynamics.

TUODB215:45

Longitudinal Beam Dynamics and LLRF Require-ments for the Project X Pulsed Linac – A. Vivoli,G.I. Cancelo, B. Chase, N. Solyak (Fermilab)Project X is a high intensity proton facility being devel-oped to support the intensity frontier physics programover the next two decades at Fermilab. The ReferenceDesign is based on a continuous wave (CW) supercon-ducting 3 GeV linac providing up to 1 and 3 MW of beampower at 1 and 3 GeV respectively, while a superconduct-ing pulsed linac provides acceleration of roughly 4.3%of the beam delivered from the CW linac to the 8 GeVinjection energy of the existing Recycler/Main Injectorcomplex. In this paper we present the results of sim-ulation of longitudinal beam dynamics and Low LevelRF (LLRF) control system in the pulsed linac, operatedfor long pulses in presence of errors and cavity detun-ing for different RF configurations and settings, and setthe requirements for the LLRF necessary to fulfill thespecifications of the design.

TUODB316:00

Multi-Turn Injection of 50 MeV Protons Into theCERN Proton Synchrotron Booster – V. Raginel,E. Benedetto, C. Carli, B. Mikulec (CERN)Since 1978, Linac2 produces beams of 50 MeV protonswith an average current of 150 mA, which are injectedinto the CERN Proton Synchrotron Booster (PSB) withconventional multi-turn injection using a septum. It isplanned to replace Linac2 during a future long stop with anew H- linac, Linac4, injecting at higher energy (160 MeV)and making use of the modern charge-exchange injectionprinciple. Due to the age of Linac2 and to a delicatevacuum situation the risk of a serious Linac2 breakdownhas to be considered. Therefore it is necessary to knowif the PSB could produce beams useful for the LHC andother experiments injecting a Linac4 proton beam at50 MeV with much lower average current compared toLinac2 and without the need for a long installation of the160 MeV H- injection hardware. Benchmarking of the PSBinjection model with the existing injection system withLinac2 using the ORBIT code has been done for severaltypes of beams (low intensity to high intensity beams),and then the injection model was used to estimate thebrightness for LHC-type beams that could potentially bereached in one PSB ring with the injection of a Linac4proton beam.

North American PAC 2013 17

Page 48: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

TUODB416:15

nuSTORM: Neutrinos from STORed Muons –A.D. Bross (Fermilab)Neutrino beams produced from the decay of muons ina racetrack-like decay ring provide a powerful way tostudy short-baseline neutrino oscillation and neutrinointeraction physics. In this talk, I will describe the facility,nuSTORM, and show how the unique neutrino beam atthe facility will enable experiments of unprecedentedprecision to be carried out. I will present sensitivity plotsthat indicated that this approach can provide well over 5sigma confirmation or rejection of the LSND/MinBooNEresults and can be used to perform neutrino interactionmeasurements of unprecedented precision. The uniqueνbeam available at the nuSTORM facility has the potentialto be transformational in our approach to ν interactionphysics, offering a “ν light source” to physicists from anumber of disciplines. Finally, the nuSTORM facility canalso provide intense short-pulsed beams of low energymuons suitable for future 6D muon ionization coolingexperiments. This can be simultaneously while carryingout the neutrino program.

18 Pasadena, CA, USA, 29 September–4 October 2013

Page 49: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct02

02-Oct-13 08:30 – 09:30 Oral Auditorium A (Parallel)WEOAA — Contributed Oral Presentations, Light

Sources and FELsChair: K.-J. Kim (ANL)

WEOAA108:30

NGLS - A Next Generation Light Source – J.N. Corlett,A.P. Allezy, D. Arbelaez, J.M. Byrd, C.S. Daniels, S. DeSantis, W.W. Delp, P. Denes, R.J. Donahue, L.R. Doolittle,P. Emma, D. Filippetto, J.G. Floyd, J.P. Harkins, G. Huang,J.-Y. Jung, D. Li, T.P. Lou, T.H. Luo, G. Marcus, M.T. Mon-roy, H. Nishimura, H.A. Padmore, C. F. Papadopoulos,G.C. Pappas, S. Paret, G. Penn, M. Placidi, S. Prestemon,D. Prosnitz, H.J. Qian, J. Qiang, A. Ratti, M.W. Rein-sch, D. Robin, F. Sannibale, R.W. Schoenlein, C. Serrano,J.W. Staples, C. Steier, C. Sun, M. Venturini, W.L. Wal-dron, W. Wan, T. Warwick, R.P. Wells, R.B. Wilcox,S. Zimmermann, M.S. Zolotorev (LBNL) C. Adolphsen,K.L.F. Bane, Y. Ding, Z. Huang, C.D. Nantista, C.-K. Ng,H.-D. Nuhn, C.H. Rivetta, G.V. Stupakov (SLAC) D. Are-nius, G. Neil, T. Powers, J.P. Preble (JLAB) C.M. Ginsburg,R.D. Kephart, A.L. Klebaner, T.J. Peterson, A.I. Sukhanov(Fermilab)We present an overview of design studies and R&D to-ward NGLS – a Next Generation Light Source initiative atLBNL. The design concept is based on a multi-beamlinesoft x-ray FEL array powered by a CW superconductinglinear accelerator, and operating with a high bunch repe-tition rate of approximately 1 MHz. The linac design usesTESLA and ILC technology, supplied by an injector basedon a CW normal-conducting VHF photocathode electrongun. Electron bunches from the linac are distributed byRF deflecting cavities to the array of independently config-urable FEL beamlines with nominal bunch rates of ∼100kHz in each FEL, with uniform pulse spacing, and someFELs capable of operating at the full linac bunch rate. Indi-vidual FELs may be configured for different modes of op-eration, including self-seeded and external-laser-seeded,and each may produce high peak and average brightnessx-rays with a flexible pulse format.

WEOAA208:45

Cornell ERL Update – G.H. Hoffstaetter, C.E. Mayes(Cornell University (CLASSE), Cornell Laboratory forAccelerator-Based Sciences and Education)Cornell University has pioneered the design and hard-ware for ERL lightsources. This preparatory research forERL-lightsource construction will be discussed. Impor-tant milestones have been achieved in Cornell’s prototypeERL injector, including the production of a prototype SRFcavity that exceeds design specifications, the regular pro-duction of long-lived and low emittance cathodes, the ac-celeration of ultra-low emittance bunches, and the world-record of 75 mA current from a photoemission DC gun.We believe that demonstration of the practical feasibilityof these technologies have progressed sufficiently to allowthe construction of an ERL-based lightsource like the Cor-nell ERL.

WEOAA309:00

APS Superconducting Undulator Beam Commission-ing Results – K.C. Harkay, L.E. Boon, M. Borland,G. Decker, J.C. Dooling, C.L. Doose, L. Emery, J. Gagliano,Q.B. Hasse, Y. Ivanyushenkov, M. Kasa, J.C. Lang,D. Robinson, V. Sajaev, K.M. Schroeder, N. Sereno, Y. Shi-royanagi, D. Skiadopoulos, M.L. Smith, E. Trakhtenberg,A. Xiao, A. Zholents (ANL) L.E. Boon (Purdue University)The first prototype superconducting undulator (SCU0)was successfully installed and commissioned at the Ad-vanced Photon Source (APS) and is delivering photons foruser science. All the requirements before operating theSCU0 in the storage ring were satisfied during a short butdetailed beam commissioning. The cryogenic system per-formed very well in the presence of the beam. The totalbeam-induced heat load on the SCU0 agreed well with

North American PAC 2013 19

Page 50: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

the predictions, and the SCU0 is protected from exces-sive heat loads through a combination of orbit control andSCU0 alignment. When powered, the field integral mea-sured with the beam agreed well with the magnet mea-surements. An induced quench caused very little beammotion, and did not cause loss of the beam. The devicewas found to quench during unintentional beam dumps,but quench recovery is transparent to storage ring oper-ation. There were no beam chamber vacuum pressureissues and no negative effect observed on the beam. Fi-nally, the SCU0 was operated well beyond its design re-quirements, and no significant issues were identified. Thebeam commissioning results are described in this paper.

WEOAA409:15

Low Emittance in the Cornell ERL Injector Prototype– C.M. Gulliford, A.C. Bartnik, I.V. Bazarov, B.M. Dun-ham (Cornell University (CLASSE), Cornell Laboratoryfor Accelerator-Based Sciences and Education)We present a detailed study of the emittances producedin the Cornell Energy Recovery Linac Photoinjector. Boththe horizontal and vertical transverse phase spaces, aswell as the time-resolved (sliced) horizontal phase space,were simulated and directly measured at the end of theinjector for 19 pC and 77 pC bunches at roughly 8 MeV.The resulting 90% normalized transverse emittances for19 (77) pC/bunch were 0.23 ± 0.02 (0.51 ± 0.04) μm inthe horizontal plane, and 0.14 ± 0.01 (0.29 ± 0.02) μmin the vertical plane, respectively. These emittances weremeasured with a corresponding bunch length of 2.1±0.1(3.0±0.2) ps, respectively. For both bunch charges, therms momentum spread was determined to be on the or-der of 10–3. Excellent overall agreement between mea-surement and simulation has been demonstrated. Thebeam brightness measured in this work is significantlybetter than the best of modern storage rings, and repre-sents a milestone for the field of high-brightness, high-current photoinjectors.

02-Oct-13 09:30 – 10:00 Oral Auditorium A (Parallel)WEXA — Invited Oral Presentation, Light Sources and

FELsChair: K.-J. Kim (ANL)

WEXA109:30

Overview of Seeded FELs and Harmonic Generation –Z.T. Zhao (SINAP)Overview of Seeded FELs and Harmonic Generation High-gain free-electron lasers (FELs) have been a remarkablesuccess as the fourth generation light sources. In thelast decade, tremendous progress has been made in boththeoretical understandings and successful constructionsand operations of large-scale FEL facilities all over theworld. To generate fully coherent, ultrafast X-rays withhigh brightness, various novel seeded FEL schemes, in-cluding self-seeding, HHG seeding, HGHG and harmoniccascade, ECHO, etc., have been proposed and experimen-tally demonstrated in recent years. This paper gives anoverview of recent achievements and prospects for futuredevelopments in these seeded high-gain FELs.

02-Oct-13 10:30 – 11:30 Oral Auditorium A (Parallel)WEYA — Invited Oral Presentations, Accelerator

SystemsChair: M. White (ANL)

WEYA110:30

Recent Results from the APEX Gun Project at LBNL –F. Sannibale (LBNL)The commissioning at the Lawrence Berkeley NationalLaboratory (LBNL) of a high-brightness high-repetitionrate (MHz-class) photo-gun, based on a normal conduct-ing 186 MHz (VHF-band) RF cavity operating in CW mode,is now completed. The gun has been designed to sat-isfy the requirements for operating high-repetition rate

20 Pasadena, CA, USA, 29 September–4 October 2013

Page 51: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct02

4th generation light sources. Test of high quantum effi-ciency photocathodes with bunches of hundreds pC atMHz repetition rate are now underway. They include,Cs2Te cathodes developed in collaboration with INFN-LASA and multialkali antimonides (CsK2Sb), prepared bya collaborating group at LBNL. The present experimentalresults and the plan for future activities are presented.

WEYA211:00

Experience with the SNS Loss Monitoring and Ma-chine Protection – A.P. Zhukov (ORNL)The Spallation Neutron Source (SNS) is a megawatt classhadron accelerator. Beam loss monitoring is essential formachine protection, residual activation control and ma-chine tuning. We discuss all parts of our beam loss mon-itoring system including its detectors, electronics, ma-chine protection system (MPS) interface and its role inthe accelerator tuning process. The system was designedmore than 10 years ago, so we are now addressing obsoles-cence problems by designing a new FPGA based replace-ment. The plans for this next generation BLM system arepresented.

02-Oct-13 11:30 – 12:00 Oral Auditorium A (Parallel)WEOBA — Contributed Oral Presentations, Accelerator

SystemsChair: W.L. Waldron (LBNL)

WEOBA111:30

Initial X-band Photoinjector Performance at SLAC– C. Limborg-Deprey, C. Adolphsen, M.P. Dunning,C. Hast, R.K. Jobe, H. Li, T.J. Maxwell, D.J. McCormick,T.O. Raubenheimer, S.P. Weathersby (SLAC)The X-Band Test Area (XTA) at SLAC is an all X-Band com-pact RF photoinjector that can produce short, high cur-rent electron bunches. Computations have shown thatthe peak bunch brightness should exceed that from S-Band RF photoinjectors by a factor of four. This improvedperformance principally comes from the high (200 MV/m) peak fields that can be sustained on the gun cath-ode. During the first three months of XTA commissioning,20 pC electron bunches have been routinely generatedwith the gun cathode operating at greater than 200 MV/mwhile the dark current levels have been low. The electronbunches are accelerated to 70 MeV in a one-meter long,travelling-wave, X-band structure after the gun (a newerversion of this structure should allow acceleration to morethan 100 MeV). This paper reviews progress to date includ-ing measurements of the bunch properties and the bunch-to-bunch stability. The lengths of the 20 pC bunches havebeen measured with a transverse X-Band deflection cavityto be 250 fs rms, as expected from simulations. Transverseemittance in the range of 0.9 mm-mrad have been mea-sured. A path to reach expected low transverse emittancenumbers is described.

WEOBA211:45

Ultra-Short Electron Bunch Generation by a Photo-cathode RF Gun – M. Mizugaki, Y. Koshiba, K. Sakaue,M. Washio (Waseda University) R. Kuroda (AIST)T. Takatomi, J. Urakawa (KEK)We have been studying on the accelerator physics atWaseda University with BNL type 1.6cell rf gun. Such pho-tocathode rf gun can generate low emittance and shortbunch electron beam. Generating ultra-short electronbunch (shorter than 1ps) in a compact accelerator systemwould be meaningful because some applications needto be miniaturized, THz imaging, for example. Howevera short laser pulse cannot generate the bunch length ofless than 1ps due to the space charge effects. So as togenerate ultra-short electron bunch in compact system,we have newly designed Energy Chirping Cell attachedrf gun (ECC rf gun). ECC is attached subsequently to the1.6 cell. The role of ECC is to chirp the electron energy sothat the electron bunch is compressed by velocity differ-ence as it drifts. Simulation results show ECC rf gun canaccelerate100pC electron bunch with the bunch length

North American PAC 2013 21

Page 52: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

shorter than 100fs. We have successfully measured thecoherent THz light by synchrotron radiation and transi-tion radiation. Therefore, we inferred that the bunch wascompressed into shorter than 1ps. In this conference, wewill report the results of the bunch length measurement,present progresses and future plans.

02-Oct-13 12:00 – 12:30 Oral Auditorium A (Parallel)WEOCA — Contributed Oral Presentations, Accelerator

TechnologyChair: W.L. Waldron (LBNL)

WEOCA112:00

Robust High Average Power Modulator – I. Roth,N. Butler, M.P.J. Gaudreau, M.K. Kempkes (DiversifiedTechnologies, Inc.)Diversified Technologies Inc. (DTI) designed a modulatorwhich meets the requirements of the Spallation NeutronSource (SNS) modulators at Oak Ridge National Labora-tory and will be less expensive than copies of the currentmodulators. The SNS modulators, under developmentfor a decade, still do not meet the specifications for volt-age, droop, or pulsewidth. The modulators must providepulses of 85 kV, 165 A, with pulsewidths of 1.5 ms and volt-age flatness of 1%. The current modulator switches thefull power at high frequency during each pulse, and hasa complex output transformer. DTI designed a modula-tor that meets all specifications and is less expensive. Theproposed design is cheaper because there is an HV switchthat operates at full current only once per pulse, a correc-tor that switches only 5% of the power at high frequency,a low-cost transformer-rectifier power supply, and no out-put transformer. DTI’s patented switch uses IGBTs, allow-ing the switch to operate at full capacity even if 20% of thedevices fail. The modulator will be installed in 2013 at SNSto test klystrons. DTI will present the system componentsof the design as well as the performance results to date.

WEOCA212:15

Inductively Coupled Pulsed Energy Extraction Sys-tem for 2G Wire-based Magnets – R.B. Agustsson,J.J. Hartzell, S. Storms (RadiaBeam)This project seeks to develop a novel method for quenchprotection of high-temperature superconducting (HTS)magnets based on coupling the magnet with a high-powerresonant coil. The quench protection is realized by apply-ing an electromagnetic pulse through the resonant coiland disrupting the superconducting state in the conduc-tor. This creates a large (10s of meters) normal zone in lessthan 10 ms thus ensuring even distribution of the energydissipation. The proposed protection system does not in-volve generation of high voltage on the coil leads and doesnot contribute to cryogenic losses. The system is easilyscaled to a magnet of arbitrary size. Preliminary designand POC bench top test results are presented below.

02-Oct-13 08:30 – 09:30 Oral Auditorium B (Parallel)WETB — Tutorial, Colliders

Chair: Y. Yamazaki (FRIB)

WETB108:30

Physics of Polarized Protons in Accelerators – M. Bai(BNL)RHIC has reached new record luminosity and protonbeam polarizations at the collisions energy of 510 and 200GeV. Depolarizing effects during acceleration and storagecan lead to polarization profiles and therefore reducedaverage polarization at the collision points. The presen-tation will introduce the concept of depolarizing reso-nances and methods to overcome them during beam ac-celeration, measuring techniques for the proton beam po-larization and techniques to maintain the beam polariza-tion during an extended store.

22 Pasadena, CA, USA, 29 September–4 October 2013

Page 53: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct02

02-Oct-13 09:30 – 10:00 Oral Auditorium B (Parallel)WEOAB — Contributed Oral Presentations, Hadron

AcceleratorsChair: Y. Yamazaki (FRIB)

WEOAB109:30

Status of the FRIB Front End – E. Pozdeyev, N.K. Bult-man, G. Machicoane, G. Morgan, X. Rao, Q. Zhao (FRIB)The FRIB Front End will provide beams of stable ions witha mass up to uranium at a beam energy of 500 keV/u andintensity required to achieve a power of 400 kW on thefragmentation target. In this paper, we describe progresswith the design and construction of the Front End and itssystems.

WEOAB209:45

Upgrade of Argonne’s CW SC Heavy Ion Accelerator –P.N. Ostroumov, A. Barcikowski, Z.A. Conway, S.M. Ger-bick, M. Kedzie, M.P. Kelly, S.H. Kim, R.C. Murphy,B. Mustapha, T. Reid, S.I. Sharamentov, G.P. Zinkann(ANL)The ATLAS National User Facility is world’s first CW super-conducting linac and provides variety of ion beams for nu-clear physics experiments for the past 30 years. The accel-erator is being continuously upgraded to extend the sci-entific reach. A new normal conducting CW RFQ capableto provide total voltage up to 2.1 MV for the heaviest ura-nium ions has been added in the front of the SC linac in or-der to increase efficiency and intensity of both stable andradioactive ion beams. The RFQ has been fully integratedinto the ATLAS and it is routinely operated since January2013. A new cryomodule of high-performance 72.75 MHzSC QWRs has been built and currently it is being commis-sioned off-line. New design and fabrication techniqueshave been applied for production of QWRs which resultedto new record voltages up to 4-5 MV per cavity and lowresidual resistance of 2-3 nOhm at 2K as was demon-strated in individual cold testing of several QWRs. Primarypurpose of the new cryomodule is to increase intensity ofaccelerated stable ion beams. Beam commissioning willtake place at the end of year after substantial modificationof the booster area including radiation shielding.

02-Oct-13 10:30 – 12:30 Oral Auditorium B (Parallel)WEYB — Invited Oral Presentations, Industrial

Accelerators and ApplicationsChair: R.W. Hamm (R&M Technical Enterprises)

WEYB110:30

Commercial Applications of Small SRF Accelerators –T.L. Grimm (Niowave, Inc.)Niowave, Inc. has developed complete turn-key super-conducting electron linacs for a broad range of commer-cial applications. In addition to the niobium accelerat-ing structure, the complete system includes the liquidhelium refrigerator, high power microwave source, radia-tion shielding and licensing from the Nuclear RegulatoryCommission. This integrated system enables a companyor university research group to quickly and inexpensivelyuse the electron beam for a number of applications, in-cluding high-power x-ray sources, production of medicalradioisotopes, and high-power free-electron lasers. Super-conducting technology allows the linac to operate contin-uously with higher average beam intensity (current) thanany other type of accelerator (cyclotron, copper linac,etc.). Linacs with beam energy of 0.5 to 50 MeV and aver-age beam power of 1 W to 1 MW are under development,and two integrated helium refrigerator models have beendeveloped with leading experts in the cryogenic industry.This contribution will discuss these integrated acceleratorsystems.

North American PAC 2013 23

Page 54: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

WEYB211:00

Ion Implantation: The Largest Use of IndustrialAccelerators – S.B. Felch (Susan Felch Consulting)M.I. Current (Current Scientific) M.C. Taylor (TaylorConsulting)The implantation of ion beams into materials, primarilysemiconductors, is by far the largest industrial acceleratorapplication, with more than 10,000 systems having beensold for this purpose during the past 30 years. This talkshould review the status of this very large application.

WEYB311:30

Electron Beam Irradiation Applications –S. Sabharwal (IAEA)The irradiation of materials with electron beams or X-raysis used extensively to enhance or modify their physical,chemical, or biological properties. These electron beam"irradiators" cover a very wide range of accelerator tech-nology, beam current and energies to produce a wide vari-ety of products, mostly with polymers. They also are usedfor curing ink, coatings, and adhesives, as well as for thesterilization of medical products, disinfection and preser-vation of food. The emerging applications include treat-ment of waste waters and flue gases, and degradation ofplastics for use in coating and inks. The status of appli-cations and role of IAEA in enhancing these will be pre-sented.

WEYB412:00

Low Energy Electron Linacs for Homeland Security –H.B. Chen (TUB)This presentation should provide an overview of the latestdevelopments on the technologies of low energy electronlinacs and their applications at cargo inspection, irradia-tion for quarantine, and so on.

02-Oct-13 14:00 – 15:30 Oral Auditorium A (Parallel)WEZAA — Invited Oral Presentations, Accelerator

TechnologyChair: H.-D. Nuhn (SLAC)

WEZAA114:00

Advanced Instrumentation Systems for FELs –P.E. Evtushenko (JLAB)This presentation will cover advanced instrumentationsystems for FELs and ERLs.

WEZAA214:30

Overview and Lessons Learned of the Jefferson LabCryomodule Production for the CEBAF 12 GeV Up-grade – J. Hogan, M.A. Drury, L. Harwood, C. Hovater(JLAB) A. Burrill (HZB) C.E. Reece (JLab)The Continuous Electron Beam Accelerator Facility (CE-BAF) at Jefferson Lab is nearing completion of an energyupgrade from 6 to 12 GeV. An integral part of the upgradeis the addition of ten new cryomodules, each consisting ofeight seven-cell superconducting radio-frequency (SRF)cavities. An average performance of 100+MV of acceler-ation per cryomodule is needed to achieve the 12 GeVbeam energy goal. The production methodology was forindustry to provide and deliver the major componentsto Jefferson Lab, where they were tested and assembledinto cryomodules. The production process begins withan inspection upon receiving of all major componentsfollowed by individual performance qualification testing.The SRF cavities received their final chemical process-ing and cleaning at Jefferson Lab. The qualified compo-nents along with all associated hardware and instrumen-tation are assembled, tested, installed into CEBAF andrun through an integrated system checkout in prepara-tion for beam operations. The production process is com-plete and one of the first completed cryomodules has suc-cessfully produced 108 MV of acceleration with a linacbeam current of 465 uA.

24 Pasadena, CA, USA, 29 September–4 October 2013

Page 55: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct02

WEZAA315:00

Advances in SRF Materials Science aimed at High QCavities – A. Grassellino (Fermilab)Several SRF accelerators worldwide target continuouswave operation at medium accelerating gradients. Ex-amples include light sources, ERLs, Project X, acceleratordriven systems and more. For these machines cryogeniclosses dominate and therefore the quality factors of theSRF niobium cavities has a large impact on capital and op-erating costs. In this talk we will present the state of the artR&D in surface processing for maximization of quality fac-tors in SRF niobium cavities, with consideration regardingdifferent operating frequencies and temperature.

02-Oct-13 15:30 – 16:00 Oral Auditorium A (Parallel)WEZBA — Invited Oral Presentation, Accelerator

TechnologyChair: P. Ferracin (LBNL)

WEZBA115:30

SRF Cavities Beyond Niobium: Potential and Chal-lenges – S. Posen, M. Liepe (Cornell University(CLASSE), Cornell Laboratory for Accelerator-BasedSciences and Education)After many years of development, current preparationmethods for niobium SRF cavities regularly achieve per-formance levels very close to the fundamental limitationsof the material. Continued progress requires looking toalternative superconductors, but fabricating a high qual-ity RF surface from these materials has proven uniquelychallenging. In this talk, I will discuss the worldwideprogress towards fabricating SRF cavity surfaces withalternative materials such as Nb3Sn, NbN, and MgB2.I will also discuss thin films and multilayer films of al-ternative materials, proposed as an alternative to bulksuperconductors. I will present an improved theoreticalunderstanding of the potential of such films. I will discussnew results and make suggestions for future directionsbeyond niobium.

North American PAC 2013 25

Page 56: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

02-Oct-13 16:00 – 16:30 Oral Auditorium A (Parallel)WEODA — Contributed Oral Presentations, Accelerator

TechnologyChair: P. Ferracin (CERN)

WEODA116:00

Design of the Superconducting Magnet System forthe SuperKEKB Interaction Region – N. Ohuchi,Y. Arimoto, N. Higashi, H. Koiso, A. Morita, Y. Ohnishi,K. Oide, H. Sugimoto, M. Tawada, K. Tsuchiya, H. Ya-maoka, Z.G. Zong (KEK) M. Anerella, J. Escallier,A.K. Jain, A. Marone, B. Parker, P. Wanderer (BNL)SuperKEKB are now being constructed with a target lumi-nosity of 8×1035 which is 40 times higher than KEKB. Thisluminosity can be achieved by the "Nano-Beam" scheme,in which both beams should be squeezed to about 50 nmat the beam interaction point, IP. The superconductingmagnet system has been designed in order to attain highluminosity. The system consists of 8 superconductingquadrupoles, 4 superconducting solenoids and 43 super-conducting correctors. The magnets are installed into twocryostats in the interaction region, IR. For each beam, thefinal focusing system consists of quadrupole-doubletswith 8 superconducting quadrupoles. To reduce thebeam emittance at the IP, the superconducting solenoidscancel the integral solenoid field of the particle detec-tor, Belle II, on the beam lines. The corrector system isvery complicated and the multi-layered coils are mainlyassembled inside of the quadrupole bores. In the paper,we would like to describe the most updated design of thesuperconducting magnet system for the SuperKEKB IR.

WEODA216:15

Rapid Cycling Dipole Magnet – H. Witte, M. Anerella,J.S. Berg, P. Kovach (BNL) M.L. Lopes (Fermilab)One option for acceleration Muons from 30 to 750 GeVis to use a rapid cycling synchrotrons with frequencies of400-550 Hz. A lattice has been proposed which employs8T, 4.2 m long superconducting dipole magnets whichare interleaved with 1.8T, 7.5 m long normal conductingdipoles. The present design of the normal conductingdipoles for this lattice is based on grain oriented steel,which possesses good magnetic properties in the direc-tion of the grains. Grain oriented steel however is highlyanisotropic, which can potentially lead to field qualityproblems. In this paper we present an alternative design,which suggests lower losses, a higher peak field and betterfield quality.

02-Oct-13 14:00 – 14:30 Oral Auditorium B (Parallel)WEZB — Invited Oral Presentation, Industrial

Accelerators and ApplicationsChair: S. Charisopoulos (International Atomic Energy Agency,

Physics Section, Div. Physical and Chemical Sciences)

WEZB114:00

The Illinois Accelerator Research Center –R.D. Kephart (Fermilab)The Illinois Accelerator Research Center (IARC) is astate-of-the-art facility being built at Fermilab to developcutting-edge accelerator technologies in collaborationswith private industrial partners. The center will alsocollaborate with local universities to serve as a trainingfacility for a new generation of scientists, engineers andtechnical staff in accelerator technology.

26 Pasadena, CA, USA, 29 September–4 October 2013

Page 57: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct02

02-Oct-13 14:30 – 15:00 Oral Auditorium B (Parallel)WEOBB — Contributed Oral Presentations, Industrial

Accelerators and ApplicationsChair: S. Charisopoulos (International Atomic Energy Agency,

Physics Section, Div. Physical and Chemical Sciences)

WEOBB114:30

Development of THz-TDS System on the Basis of theS-band Compact Electron Linac – R. Kuroda (AIST)The terahertz (THz) radiation is a useful tool for progress-ing on security field. Especially, THz time-domain spec-troscopy (THz-TDS) has recently emerged as a powerfulprobe for the investigation of various dangerous materialssuch as explosives. A high power THz source has been de-veloped on the basis of the S-band compact electron linacat AIST. The THz pulse is generated with coherent radia-tion using ultra-short electron bunch with bunch lengthof less than 0.5 ps (rms) and energy of around 40 MeV.The THz pulse is detected by Electro-Optical (EO) sam-pling method with a ZnTe crystal like the pump-probetechnique. The THz temporal waveform can be measuredusing the probe laser. The spectrum and the phase infor-mation of the sample is calculated by the Fourier Trans-form of the obtained waveform. In this conference, wewill talk about details of our system and results of THz-TDS experiments.

WEOBB214:45

Development of a Time-tagged Neutron Sourcefor Imaging with Enhanced Spatial Resolution –T. Schenkel, Q. Ji, B.A. Ludewigt, W.L. Waldron (LBNL)Associate particle imaging (API) is an active interrogationmethod for neutron based imaging of materials. Ener-getic alpha particles are emitted in kinematic correlationwith neutrons in DT fusion reactions, forming a virtualneutron beam. When alphas are detected in a positionsensitive detector and their arrival time is also recordedthen time tagged neutrons can be used for 3D imaginge. g. of concealed objects in a transmission geometry orthrough detection of a prompt gamma ray. The imagingresolution in API systems is often limited by the areafrom which neutron originate. This area is determinedby the spot size of a mixed D+ and T+ ion beam. We haveadapted microwave driven ion sources (permanent mag-nets, 2.45 GHz) for the efficient production of hydrogenions (all isotopes) with high current density (50 to 100mA/cm2) and high fractions of atomic ions [1]. The highcurrent density allows us to extract ions with small aper-tures and form beam spots on the neutron productiontarget of less than 1 mm in diameter. In our presentationwe will describe the API principle and report our resultson the development of an API system with high spatialresolution.

North American PAC 2013 27

Page 58: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

02-Oct-13 15:00 – 15:30 Oral Auditorium B (Parallel)WEOCB — Contributed Oral Presentations, Medical

Accelerators and ApplicationsChair: S. Charisopoulos (International Atomic Energy Agency,

Physics Section, Div. Physical and Chemical Sciences)

WEOCB115:00

Diagnostic Proton Computed Tomography usingLaser-driven Ion Acceleration – K.E. Woods,S. Boucher (RadiaBeam) V.A. Bashkirov, R.W. Schulte(LLU/MC) B.M. Hegelich (The University of Texas atAustin)Although the growing utilization of computed tomog-raphy (CT)-based imaging has led to major advancesin diagnostic capabilities, it has also resulted in highercumulative radiation doses to patients. In order to fullyexploit the benefits of high-resolution diagnostic CTscans while minimizing the risks of radiation-inducedcancer, the realization of low-dose CT is crucial. Recentresearch has shown that the use of protons, rather thanX-rays, for CT has the potential to greatly reduce theradiation dose delivered to the patient without reducingimage quality. RadiaBeam Technologies, in collaborationwith the Loma Linda University Medical Center and theUniversity of Texas at Austin, is proposing the develop-ment of a proton CT scanner utilizing laser-driven ionacceleration (LDIA) techniques. The initial design of thissystem is presented.

WEOCB215:15

Novel System for Radiography based on ChannelingRadiation from LINAC – T.V. Bondarenko, S.M. Polo-zov, A.Yu. Smirnov (MEPhI)Angiography is one of the most reliable and contempo-rary radiography procedures of the vascular system imag-ing. X-ray spectrums provided by all modern medical an-giographs are too broad to acquire high contrast imagesand provide low radiation dose at the same time. The newmethod of narrow X-ray spectrum achieving is based onthe idea of channeling radiation applications[1]. The X-ray polycapillary optics used in this method allows elim-inating the high energy part of the spectrum and provid-ing dramatic dose reduction. The scheme of the facil-ity including the X-ray filter is discussed. The results ofthe spectrum analysis for the channeling radiation sourceand typical angiography X-ray tube are discussed. Dosesobtained by the water phantom and contrast of the iodineagent image are also provided for both cases.[1] Yu.A. Bashmakov, T.V. Bondarenko, S.M. Polozov, G.B.Sharkov Angiography X-ray monochromatic source based onradiation from crystals / Proceedings of RuPAC 2012, Saint-Petersburg, Russia, p. 406-408

02-Oct-13 15:30 – 16:00 Oral Auditorium B (Parallel)WEZBB — Invited Oral Presentation, Beam Dynamics

and Electromagnetic FieldsChair: J.R. Cary (CIPS)

WEZBB115:30

Optimizing Short Quadrupoles – R.A. Baartman (TRI-UMF)Tradition quadrupoles have a constant vertical cross sec-tion with nearly discontinuous ends. A new shape is de-rived analytically that yields dramatically smaller aberra-tions.

28 Pasadena, CA, USA, 29 September–4 October 2013

Page 59: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct02

02-Oct-13 16:00 – 16:30 Oral Auditorium B (Parallel)WEODB — Contributed Oral Presentations, Beam

Dynamics and Electromagnetic FieldsChair: J.R. Cary (CIPS)

WEODB116:00

New Method for Point-Charge Wakefield Calculation– B. Podobedov (BNL) G.V. Stupakov (SLAC)Extending our approach recently described in [1] wepresent a new method to accurately calculate point-charge geometric wakefields from wake potentials dueto a much longer bunch, typically obtained with a time-domain EM field solver. By allowing a long bunch in theEM solver, this method can significantly reduce the needfor computer resources as well as drastically shorten thecomputing time. On top of that, the method providesprofound physics insights. We give examples of longitudi-nal and transverse wakefield calculations for 2D and 3Daccelerator structures which illustrate the effectiveness ofthe new method.[1] B. Podobedov, G. Stupakov, PRST-AB 16, 024401 (2013)

WEODB216:15

Space Charge Models for Particle Tracking on LongTime Scales – J.A. Holmes, S.M. Cousineau, A.P. Shishlo(ORNL) R.E. Potts (UTK)In order to efficiently track charged particles over longtimes, most tracking codes use either analytic charge dis-tributions or particle-in-cell (PIC) methods based on fastFourier transforms (FFTs). While useful for theoreticalstudies, analytic distribution models do not allow accu-rate modeling of real machines. PIC calculations can uti-lize realistic space charge distributions, but these meth-ods suffer from the presence of numerical diffusion. Weexamine the situation for particle tracking with spacecharge over long times, and consider possible ideas to im-prove the accuracy of such calculations.

North American PAC 2013 29

Page 60: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

03-Oct-13 08:30 – 09:00 Oral Auditorium A (Parallel)THOAA — Contributed Oral Presentations, Industrial

Accelerators and ApplicationsChair: R.P. Johnson (Muons. Inc.)

THOAA108:30

Single-Shot Ultrafast Electron Microscopy – R.K. Li,P. Musumeci (UCLA)Electron microscopy is an extremely powerful tool for a va-riety of studies in physics, biology, material science, andindustrial applications. One of the mostly desired capa-bilities of a future electron microscopy is the improved re-solving power in the time domain approaching ps or evenfs levels. In this paper we show that the low emittance,low energy spread electron beams from a state-of-the-artphotoinjector can be used to take single-shot intensity-contrast snapshots of the sample. The spatial-temporalresolution can achieve 10 nm – 1 ps level. The beam op-tics is based on permanent quadrupole magnets whichare compact and avoid the high charge density cross-overin contrast to solenoids. The proposed single-shot ultra-fast electron microscopy will greatly facilitate the studiesof irreversible dynamic process in materials.

THOAA208:45

Compact, Inexpensive X-band Linacs as Radioac-tive Isotope Source Replacements – S. Boucher,R.B. Agustsson, L. Faillace, J.J. Hartzell, A.Y. Murokh,S. Seung, A.V. Smirnov, S. Storms, K.E. Woods (Radia-Beam)Radioisotope sources are commonly used in a varietyof industrial and medical applications. The US Na-tional Research Council has identified as a priority thereplacement of high-activity sources with alternativetechnologies, due to the risk of accidents and diversion byterrorists for use in Radiological Dispersal Devices (“dirtybombs”). RadiaBeam Technologies is developing novel,compact, inexpensive linear accelerators for use in a va-riety of such applications as cost-effective replacements.The technology is based on the MicroLinac (originally de-veloped at SLAC), an X-band linear accelerator poweredby an inexpensive and commonly available magnetron.Prototypes are currently under construction. This paperwill describe the design, engineering, fabrication andtesting of these linacs at RadiaBeam. Future developmentplans will also be discussed.

03-Oct-13 09:00 – 10:00 Oral Auditorium A (Parallel)THOBA — Contributed Oral Presentations, Accelerator

TechnologyChair: R.P. Johnson (Muons. Inc.)

THOBA109:00

High-Gradient Metallic Photonic Band-Gap(PBG) Structure Breakdown Testing At 17 GHz –B.J. Munroe, M.A. Shapiro, R.J. Temkin (MIT/PSFC)Photonic Band-gap (PBG) structures continue to be apromising area of research for future accelerator struc-tures. Previous experiments at X-Band have demon-strated that PBG structures can operate at high gradientand low breakdown probability, provided that pulsedheating is controlled. A metallic single-cell standing-wave structure has been constructed at MIT to investigatebreakdown performance of PBG structures with veryhigh surface temperature rise. The MIT standing-wavestructure test stand has an available power of 4 MW fora maximum gradient of 130 MV/m; the actual realizedgradient may be lower due to breakdown limitations.The MIT test stand will also utilize novel diagnostics,including fast camera imaging and optical spectroscopyof breakdowns.

30 Pasadena, CA, USA, 29 September–4 October 2013

Page 61: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct03

THOBA209:15

First Cavity Results from the Cornell SRF Group’sNb3Sn Program – S. Posen, M. Liepe (Cornell Univer-sity (CLASSE), Cornell Laboratory for Accelerator-BasedSciences and Education)As an alternative material for SRF accelerator cavities,Nb3Sn presents two important benefits. Its large Tc givesit a very small surface resistance, leading to a huge re-duction in cooling costs; and its predicted Hsh of nearly400 mT would allow for very high gradients and thereforefewer cavities in high energy linacs. Researchers in theCornell SRF group have recently fabricated two 1.3 GHzcavities coated with Nb3Sn. Testing of these first cavitieshas produced encouraging results, including a very highTc and some very high performing regions. These cavityresults as well as new sample results under TEM will bepresented.

THOBA309:30

Completion of the First SSR1 Cavity for PXIE andFirst Jacketed Tests – L. Ristori (Fermilab)Fermilab is in the process of constructing a proton linacto accelerate a 1 mA CW beam up to 30 MeV to serve asa test beam for the Project X Injector Experiment (PXIE).The major goals of PXIE are the validation of the ProjectX concept and mitigation of technical risks. The SSR1 cry-omodule comprises the last portion of PXIE and contains8 SSR1 cavities operating at 325 MHz with an optimal betaof 0.22. In this paper we present the lessons learned fromthe completion of the first cavity including the weldingoperations necessary to install the Nb-SST transition ringand the SST helium jacket. The results of various tests onthe jacketed resonator are also presented.

THOBA409:45

Development of Yb Laser For High Power Ultra-ShortPulse – Y. Matsumura, K. Koyama (University of Tokyo)M. Uesaka (The University of Tokyo, Nuclear Profes-sional School) M. Yoshida, X. Zhou (KEK)Passively mode-locked Yb lasers can easily generate fem-tosecond pulse at high repetition rate. The Yb lasers alsohave a property of high efficiency, which enables us to ob-tain high power laser. Because of these characteristics, theYb lasers have been applied to many fields such as opti-cal frequency comb and X-ray generation. Now, femtosec-ond pulse of much higher energy at high repetition rate isbeing required for dielectric laser accelerator (DLA) andlasertron. We have developed high power mode-lockedYb laser, and achieved 20W mode-locked Yb fiber laseramplification system at repetition rate of 62MHz. At theconference, our latest results will be reported.

03-Oct-13 10:30 – 11:30 Oral Auditorium A (Parallel)THYAA — Invited Oral Presentations, Alternative

Acceleration SchemesChair: M.J. Hogan (SLAC)

THYAA110:30

Latest Laser Plasma Acceleration Results from theBELLA Facility – W. Leemans (LBNL)The BELLA Project was formally launched and funded in2009 by the Department of Energy, Office of High Energyphysics to develop a new laser facility for forefront exper-iments on laser plasma acceleration at LBNL. The laserspecifications were determined by relying on previous ex-periments that showed GeV electron beams and simula-tions. The BELLA laser can operate at peak power levelson the order of a Petawatt with a record setting repetitionrate of 1 Hz for such a class of laser. Experiments havestarted in early 2013 and are aimed at studying the interac-tion of intense laser pulses in both gas jet and capillary dis-charge based plasma sources with as goal to obtain multi-GeV beams from structures that are less than a meter inlength.

North American PAC 2013 31

Page 62: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

THYAA211:00

Latest Plasma Wakefield Acceleration Results fromthe FACET Project – M.D. Litos, E. Adli, C.I. Clarke,S. Corde, J.-P. Delahaye, R.J. England, A.S. Fisher,J.T. Frederico, S.J. Gessner, M.J. Hogan, S.Z. Li, D.R. Walz,G.R. White, Z. Wu, V. Yakimenko (SLAC) E. Adli (Uni-versity of Oslo) W. An, C.E. Clayton, C. Joshi, W. Lu,K.A. Marsh, W.B. Mori, N. Vafaei-Najafabadi (UCLA)P. Muggli (MPI)SLAC’s new FACET facility had its second user run inApril–June, 2013. Several new milestones were reachedduring this run, including the achievement of beamdriven plasma wakefield acceleration of a discrete witnessbunch for the first time, and energy doubling in a noblegas plasma source. The FACET beam is a 20 GeV electronbunch with a charge of 3.2 nC that can be compressed andfocused to a size of 20 μm × 20 μm × 20 μm rms. To createthe two-bunch, drive/witness beam structure, a chirpedand over-compressed beam was dispersed horizontally ina chicane and a bite was taken from its middle with a tan-talum finger collimator, corresponding to a longitudinalnotching of the beam due to the head-tail energy corre-lation. A new 10 terawatt Ti:Sapphire laser was commis-sioned and used during this run to pre-ionize the plasmasource in order to increase the efficiency of energy trans-fer from the beam to the wake. Ultimately, a witness beamof hundreds of pC in charge was accelerated by a drivebeam of similar charge in a pre-formed lithium plasmawith a density of 5×1016 cm--3, experiencing gradientsreaching several GeV/m in magnitude.

03-Oct-13 11:30 – 12:00 Oral Auditorium A (Parallel)THYBA — Invited Oral Presentation, Alternative

Acceleration SchemesChair: X.Q. Yan (PKU)

THYBA111:30

Dielectric Wakefield Acceleration and Tests in theBNL ATF and SLAC FACET Facilities – S.P. Antipov (Eu-clid TechLabs, LLC)In this presentation we will review Dielectric Wakefield Ac-celeration (DWA) methods and related concepts. Recentresults obtained at SLAC FACET, BNL ATF and other facili-ties will be presented and possible applications outlined.

03-Oct-13 12:00 – 12:30 Oral Auditorium A (Parallel)THOCA — Contributed Oral Presentations, Alternative

Acceleration SchemesChair: X.Q. Yan (PKU)

THOCA112:00

Ionization Injection and Betatron Radiation due toEnvelope Oscillation of the Drive Electron Beam inPlasma Wakefield Accelerator (PWFA) Experimentsat FACET – K.A. Marsh, W. An, C.E. Clayton, C. Joshi,W. Lu, W.B. Mori, N. Vafaei-Najafabadi (UCLA) E. Adli(University of Oslo) E. Adli, C.I. Clarke, S. Corde, J.-P. De-lahaye, R.J. England, A.S. Fisher, J.T. Frederico, S.J. Gess-ner, M.J. Hogan, S.Z. Li, M.D. Litos, D.R. Walz, Z. Wu(SLAC) W. Lu (TUB) P. Muggli (MPI)Recent PWFA results at FACET at the SLAC National Ac-celerator Laboratory have shown a correlation betweenionization-injected electrons and the betatron x-ray yield.PWFA experiments were carried out using a rubidium va-por heat pipe oven. The vapor density was 2.5x1017 cm-3

and was ionized by the electron beam via tunneling ion-ization. Injection of plasma electrons into the wake canlimit the wake amplitude and deplete the accelerating gra-dient. Here, the source of injection and beam loading isthe ionization of the second Rb electron. The amount ofinjected charge and x-ray yield are expected to be a func-tion of the beam envelope oscillations where at the os-cillation minima, the field of the beam is strong enoughto ionize RbII, and at the oscillation maxima, the beamelectrons radiate x-rays. For a matched beam, there is no

32 Pasadena, CA, USA, 29 September–4 October 2013

Page 63: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct03

beam oscillation and the x-ray yield is much lower. Thus,the x-ray yield and unwanted beam loading are greatly re-duced. The FACET x-ray diagnostic can be used to tunethe drive beam parameters for matched propagation inthe plasma by minimizing the x-ray yield. Minimizingthe x-ray yield should also reduce unwanted beam load-ing from secondary electrons.

THOCA212:15

Experimental Progress on Staged Laser-plasma Ac-celeration – S. Shiraishi, C. Benedetti, E. Esarey,C.G.R. Geddes, A.J. Gonsalves, W. Leemans, N.H. Matlis,K. Nakamura, C.B. Schroeder, B. Shaw, T. Sokollik,S. Steinke, C. Tóth, J. van Tilborg (LBNL)Laser-plasma accelerators (LPAs)* have produced GeVelectron beams (e-beams) from cm-scale devices, demon-strating that LPAs have great potential for reducingaccelerator size and cost**]. LPA experiments performedto date utilize a single laser that drives the wakefieldfor injection and acceleration. For applications suchas high-energy accelerators, LPA designs will rely onsequencing multiple acceleration stages, each driven byits own laser***. We present recent progress on the experi-ment staging two LPA modules at the LOASIS Program atLawrence Berkeley National Laboratory. The experimentutilizes a 40 TW class laser which is split into two laserpulses. The first laser drives the first LPA module to pro-duce an e-beam. The second laser drives the second LPAmodule and accelerates the e-beam from the first LPA. Ex-cited wakefields in the second LPA module are diagnosedthrough spectral redshifting of the drive laser, which isan indicator of the efficiency of laser energy transfer intothe plasma through the generation of coherent plasmawakefields****.* E. Esarey, C.B. Schroeder, and W.P. Leemans, Rev. Mod. Phys.81 (2009). ** W.P. Leemans, et al., Nature Physics 2, 696 (2006).*** W.P. Leemans and E. Esarey, Physics Today 62, 44 (2009).**** B.A. Shadwick, et al. Phys. Plasmas 16, 056704 (2009).

03-Oct-13 08:30 – 09:30 Oral Auditorium B (Parallel)THTB — Tutorial, Beam Dynamics and Electromagnetic

FieldsChair: A. Schempp (IAP)

THTB108:30

Genetic Algorithms and Their Applications in Accel-erator Physics – A.S. Hofler (JLAB)Multi-objective optimization techniques are being widelyused in an extremely broad range of fields. The geneticoptimization was introduced in the accelerator commu-nity in relatively recent time and quickly spread aroundbecoming a fundamental tool in multidimensional opti-mization problems. The talk introduces the basics of thetechnique and reviews present applications in acceleratorproblems.

03-Oct-13 09:30 – 10:00 Oral Auditorium B (Parallel)THOAB — Contributed Oral Presentations, Medical

Accelerators and ApplicationsChair: A. Schempp (IAP)

THOAB109:30

A Specialized High-power (50 kW) Proton Beamlinefor BNCT – M.P. Dehnel, T. Christensen, D.E. Potkins,T.M. Stewart (D-Pace) S. Bucci, P. Creely, S. Domingo,G. James, H. Seki, S. Shibuya (AccSys)D-Pace has developed a specialized high-power beamlinefor transporting a 20 mA 2.5 MeV CW proton beam for aBNCT (Boron Neutron Capture Therapy) application. The2 m horizontal by 4 m vertical layout transports the space-charge dominated beam with less than 1% beam-spill us-ing two sets of 10 T/m quadrupole doublets, DC xy steerer,90 degree bending magnet, and AC x & y magnets for

North American PAC 2013 33

Page 64: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

raster-scanned flat-topped round or square intensity dis-tributions deposited over targets with 40 - 100 mm max-imum dimensions. Diagnostics include New ParametricCurrent Transformers, graphite water-cooled electrically-isolated collimators with readbacks, and a low-powersapphire beam profile monitor for macro-pulsed beams(∼100 micro-second wide pulses at low frequency). Thispaper describes the specialized: beam-optics, device de-signs, intensity distributions, and also the latest commis-sioning results.

THOAB209:45

Large Momentum Acceptance Superconducting NS-FFAG Gantry for Carbon Cancer Therapy – D. Trbo-jevic, B. Parker (BNL)Carbon cancer radiation therapy has clear advantageswith respect to the other radiation therapy treatments.Cost of the ion cancer therapy is dominated by the de-livery systems. An new design of the superconductingNon-Scaling FFAG (NS-FFAG) carbon isocentric gantry ispresented. The magnet size and weight is dramaticallysmaller with respect to other gantries in cancer therapytreatment. The weight of the transport elements of thecarbon isocentric gantry is estimated to be 1.5 tons to becompared to the 130 tons weight of the top-notch Heidel-berg facility gantry.

03-Oct-13 10:30 – 11:30 Oral Auditorium B (Parallel)THYAB — Invited Oral Presentations, Medical

Accelerators and ApplicationsChair: J. Flanz (MGH-FHBPTC)

THYAB110:30

Where is Medical Accelerator Technology Headedand How Will Accelerator Technology in Medical andParticle Beam Therapy Impact Health Care Costs? –W. Kaissl (VMS-PT)This presentation should cover what the speaker views asthe future for ion beam therapy. How does the speakerview the impact of the expansion of large accelerators intomedicine? Will economies of scale drive costs down orwill particle beam therapy be a niche modality and re-main relatively expensive? Will improvements in technol-ogy lower costs and increase effectiveness or are there in-herent limits to localized radiation therapy that precludedramatic increases in effectiveness(survival)? How doesany of this impact the overall cost of health care (indus-trial versus developing countries)?

THYAB211:00

The US Carbon Therapy Initiative – D. Robin (LBNL)This presentation will summarize the findings of a jointDOE-NIH workshop to be held in early January 2013, out-lining technical, clinical, and radiobiological issues key toestablishing carbon therapy. This workshop is being com-missioned as part of an initiative to restart the US hadrontherapy program after many years’ hiatus.

03-Oct-13 11:30 – 12:30 Oral Auditorium B (Parallel)THYBB — Invited Oral Presentations, Medical

Accelerators and ApplicationsChair: J. Flanz (MGH-FHBPTC)

THYBB111:30

Prospects for Cyclotrons from Protons to Carbon forHadron Therapy – Y. Jongen (IBA)This presentation should cover the perspectives ofcyclotrons for protons to Carbon 12 hadron therapy.Presently the majority of proton facilities use cyclotrons.However only synchrotrons are used for heavier ions.What is the status of cyclotron development for heavierparticles? Isochronous versus synchrocyclotrons? Rasterscanning? Comparison with conventional synchrotrons?

34 Pasadena, CA, USA, 29 September–4 October 2013

Page 65: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct03

THYBB212:00

Cyclotron Production of Positron Emitting Radioiso-topes – S.E. Lapi (Washington University MedicalSchool)This presentation will provide an overview of standardmethods and modern trends in isotope production forpositron emitters for use in medical imaging. This willinclude production routes, separation chemistry and ex-amples of applications.

03-Oct-13 14:00 – 14:30 Oral Auditorium A (Parallel)THODA — Contributed Oral Presentations, Industrial

Accelerators and ApplicationsChair: K. Jimbo (Kyoto University)

THODA114:00

Low Energy Fusion for a Safe and Compact NeutronSource – S.C.P. Albright, R. Seviour (University of Hud-dersfield) R. Seviour (Lund University)Neutrons are primarily produced at large international fa-cilities using either spallation reactions or nuclear fission.There is a demand for small scale neutron productionfor use at hospitals and borders for a variety of applica-tions. Isolated fission sources and sealed tube deuterium-tritium fusors are able to provide a reliable neutron fluxat small scale but are impractical due to the associated ra-dioactivity. A beam of protons or deuterons acceleratedonto a thin target will undergo a fusion reaction result-ing in the emission of a quasi-monochromatic neutronbeam. The total flux and energy spectrum of the neu-trons produced through fusion is primarily dependent ontarget material, target thickness, beam energy and projec-tile. The use of neutrons for security screening at bordercrossings, ports and airports has the potential to drasti-cally improve threat detection and contents verification.Monte Carlo code MCNPX is being used to investigate themost suitable target and beam characteristics for a neu-tron source for security applications.

THODA214:15

Accelerator-based Neutron Damage Facility usingLEDA – N. Pogue, S. Assadi, P.M. McIntyre, A. Sattarov,P.V. Tsvetkov (Texas A&M University)An accelerator based neutron damage facility (AND) isproposed to generate a high-dose fast neutron flux fortesting of advanced reactor materials. The facility willbe implemented in two stages. In AND-1, the 350 MHzLEDA RFQ will be re-commissioned to deliver 100 mA CWproton beam at 6.5 MeV. The beam will be targeted on asheet-flow Li target to produce fast neurons. Samples lo-cated at a target station behind the sheet flow will receiveup to 10 dpa/year of neutron damage with a mean neu-tron energy of 1.75 MeV. In AND-2, the LEDA beam willbe modulated and passed through a spectrometer to pro-duce three 117 MHz bunch trains, and two of them willbe injected to two 100 MeV strong-focusing cyclotrons(SFC). The beams extracted from the two cyclotrons willbe targeted in opposite directions onto sheet-flow Pbtargets. Samples located in the space between the twotargets will receive ∼140 dpa/year of fast neutron damagewith mean neutron energy ∼10 MeV. AND-1 and AND-2will provide the fast neutron flux needed for life-cycledamage studies for advance reactor technologies and forfirst-wall simulations for fusion systems.

North American PAC 2013 35

Page 66: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

03-Oct-13 14:00 – 14:30 Oral Auditorium B (Parallel)THOBB — Contributed Oral Presentations, Medical

Accelerators and ApplicationsChair: C. Joshi (UCLA)

THOBB114:00

Next Generation of Radiobiology Experiments –P.A. Posocco, S.H. Tsang (Imperial College of Scienceand Technology, Department of Physics) H. Larose (TheImperial College of Science, Technology and Medicine)Proton Therapy (PT) is a well-established cancer treat-ment, which has helped more than 10’000 patients inthe world in the last year alone. The outcomes are verypositive and for most patients PT yields much betterresults in terms of morbidity and tumour control thanconventional Radio Therapy, because with protons it ispossible to control more precisely the energy depositioninside the tumour. However, the understanding of theinteraction between radiation and cells is fundamentalto fully exploit this aspect, and therefore in-vitro andin-vivo experiments comparing the effect of protons andphotons need to be carried out. In this paper we willcritically explore the options provided by the researchgroups and facilities operating in this field and we will becompiling a list of desiderata for the next generation ofaccelerators used for these experiments.

THOBB214:15

Development of Low Energy Accelerator-Based Pro-duction of Medical Isotopes – N. Ratcliffe, R.J. Bar-low, R. Cywinski (University of Huddersfield) P. Beasley(Siemens AG, Healthcare Technology and Concepts)Here we present methods for production of new and ex-isting isotopes for SPECT (Single Photon Emission Com-puted Tomography) imaging using accelerator-based sys-tems. Such isotopes are already widely used in medicaldiagnostics and research, and there is constant develop-ment of new drugs and isotopes. However the main pro-duction method for Tc-99m, is currently in research reac-tors and is at risk due to scheduled and unscheduled shutdowns. Therefore, a low cost an alternative accelerator-based system could provide many advantages. Variouscompact low energy proton machines are being proposedto enable cheap and accessible production: here wepresent a discussion of potential new SPECT isotopes andsimulations of suitable targets for their manufacture.

36 Pasadena, CA, USA, 29 September–4 October 2013

Page 67: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct03

03-Oct-13 14:30 – 16:30 Oral Main Auditorium (Plenary)

THAP — Awards SessionChair: F.C. Pilat (JLAB)

THAP114:50

An Overview of Lie Methods for Accelerator Physics –A. Dragt (UMD)This talk will sketch how Hamiltonian mechanics can beformulated in Lie algebraic terms (indeed Poisson andJacobi almost invented Lie algebras without knowing it),and how this formulation can be applied to the descrip-tion and computation of particle orbits in accelerators ina way that both unifies both linear and nonlinear theoryand leads to explicit results for realistic machines.

THAP215:10

Perspectives on Beam Driven Plasma Acceleration:How We Got Here and Where Might We Be Going? –M.J. Hogan (SLAC)This talk is a review of the past and future of beam-drivenplasma acceleration.

THAP315:30

Field Dependent Losses in Superconducting Nio-bium Cavities – A. Grassellino (Fermilab)In this presentation I will report the investigation ofsuperconducting properties of niobium samples via ap-plication of the muon spin rotation/relaxation (muSR)technique. We employ for the first time the muSR tech-nique to study samples that are cutout from large andsmall grain 1.3 GHz radio frequency (RF) single cellniobium cavities. The RF test of these cavities was ac-companied by full temperature mapping to characterizethe RF losses in each of the samples. An interestingcorrelation is found between high field RF losses andfield dependence of the sample magnetic volume fractionmeasured via muSR, suggesting an important role ofmagnetic flux motion and surface pinning in the high RFfield cavity losses.

THAP415:50

The Quest for Bright Coherent X-rays: A PersonalStory – K.-J. Kim (ANL)This presentation will include stories associated withthe author’s work on the development of bright x-raysfrom the third generation sources and x-ray free-electronlasers.

THAP516:10

Advanced Modeling of Beams and Accelerators –J.-L. Vay (LBNL)Computer modeling of beams and accelerators has had aprofound impact on the design and operations of modernparticle accelerators, and its importance is growing withthe development of more powerful computers and codes.The development and application of such codes have be-come extremely complex and specialized endeavors, andthe complexity is about to reach new heights with the riseof heterogeneous many-core hardware. The breadth anddepth of computational accelerator science and technol-ogy are both widening (trend toward multi-physics mod-els with realistic geometry at full scale) and deepening(more sophisticated software on more complex architec-ture), calling for the development of teams of specialistsincluding computational physicists, applied mathemati-cians and computer scientists. The importance and com-plexity of computer modeling of accelerators will be high-lighted by examples of simulations of laser plasma accel-erator stages, including recent advances in the applica-tion of the Lorentz boosted frame technique*.* J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)

North American PAC 2013 37

Page 68: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

04-Oct-13 08:30 – 09:30 Oral Auditorium A (Parallel)FROAA — Contributed Oral Presentations, Beam

Dynamics and Electromagnetic FieldsChair: A. Dragt (UMD)

FROAA108:30

The University of Maryland Electron Ring (UMER)Program - Recent Developments – R.A. Kishek,B.L. Beaudoin, S. Bernal, M. Cornacchia, D.W. Feldman,R.B. Fiorito, I. Haber, T.W. Koeth, Y. Mo, K. Poor Režaei,K.J. Ruisard, W.D. Stem, D.F. Sutter, H.D. Zhang (UMD)Space charge, especially in the beam source and lowenergy regions, can substantially impact the dynamicsof advanced accelerators at the intensity frontier. UMERuses scaled electron beams at nonrelativistic energies (10keV) to inexpensively access the intense space chargedynamics directly relevant to low-energy hadron and ionbeams, in both rings and linacs. In UMER, space chargetune depressions at injection are adjustable in the rangeof 0.14 - 0.8, enabling scaled examination of a wide rangeof phenomena. Longitudinal induction focusing is usedto counteract the space charge force at the edges of a longrectangular bunch, confining it for 100s of turns. Thispaper reviews recent experimental, computational, andtheoretical research on UMER. Specific topics includelongitudinal induction bunch-end focusing; generationand propagation of longitudinal space charge waves,including large-amplitude solitons; bunch end inter-penetration and observation of a resulting multi-streaminstability; beam halo studies; beam current-dependenceof classical ring parameters (natural chromaticity, latticedispersion and momentum compaction); and diagnosticdevelopment.

FROAA208:45

Transverse Beam Transfer Functions via the VlasovEquation – M. Blaskiewicz, V.H. Ranjbar (BNL)A semi-numerical method of integrating the Vlasov equa-tion to obtain beam transfer functions directly as a func-tion of frequency is presented. The results are com-pared with beam transfer functions calculated via parti-cle tracking and excellent agreement is shown. The tech-nique works well with both transverse wakes and detun-ing wakes from space charge.

FROAA309:00

Control of Intrabunch Dynamics at CERN SPS Ringusing 3.2 GS/s Digital Feedback Channel –C.H. Rivetta, J.M. Cesaratto, J.D. Fox, K.M. Pollock,O. Turgut (SLAC) H. Bartosik, W. Höfle, G. Kotzian,K.S.B. Li (CERN)The feedback control of intra-bunch instabilities drivenby electron-clouds or strong head-tail coupling requiresbandwidth sufficient to sense the vertical position and ap-ply correction fields to multiple se ctions of a nanosecond-scale bunch. These requirements impose challenges andlimits in the design of the feedback channel. We presentexperimental measurements taken from CERN SPS ma-chine development studies with an intra-bunch feedbackchannel prototype. The performance of a 3.2 GS/s digi-tal processing system is evaluated, quantifying the effectof noise and limits of the feedback channel in the bunchstability as well as transient and steady state motion ofthe bunch. The controllers implemented are general pur-pose 16 tap FIR filters and the impact on the bunch sta-bility of controller parameters are analyzed and quanti-fied. These studies based on the limited feedback proto-type are crucial to validate reduced models of the systemand macro-particle simulation codes including the feed-back channel. These models will allow us predicting thebeam dynamics and controller limits when future wide-band hardware is installed in the final prototype to stabi-lize multiple bunches.

38 Pasadena, CA, USA, 29 September–4 October 2013

Page 69: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct04

FROAA409:15

Simulation Study on Transverse Laser Cooling andOrdering of Heavy-Ion Beams in a Storage Ring –Y. Yuri (JAEA/TARRI)Molecular dynamics approach in which stochastic inter-action between laser photons and ions is incorporated isemployed to study the formation of three-dimensionallyultralow-temperature coasting beams by means of lasercooling in a storage ring. The effect of momentum disper-sion on the laser-cooling process is investigated for effi-cient transverse cooling through tapered cooling and res-onant coupling. The indirect transverse cooling force isdependent on the displacement of the laser axis and laserdetuning as well as on dispersion. A string-like crystallinestate of the beam can be attained at low line density bymeans of three-dimensional (3D) cooling. On the otherhand, 3D ordered structures can be formed at higher linedensity by adjusting the tapered laser-cooling force. Thecharacteristics of Coulomb-ordered beams are discussed.

04-Oct-13 09:30 – 10:00 Oral Auditorium A (Parallel)FRXA — Invited Oral Presentations, Beam Dynamics

and Electromagnetic FieldsChair: A. Dragt (UMD)

FRXA109:30

Particle Motion in a System with a Strong Longitudi-nal Magnetic Field – V.B. Reva (BINP SB RAS)Motion of electrons in a low energy electron cooler is usu-ally described in the drift approximation. A magnetic fieldnon-uniformity becomes more essential with electron en-ergy increase breaking condition of the drift approxima-tion usage. The paper considers a description of parti-cle motion based on a decomposition of the Hamiltonianinto two parts presenting the fast and slow motions. Thesuggested method enables a generalization of the classi-cal drift approach resulting in simple Hamiltonians foreach motion type. For small longitudinal field the cou-pling term in the Hamiltonian between two modes is es-sential and needs to be taken into account. The conceptis illustrated with the COSY 2 MeV electron cooler.

04-Oct-13 10:30 – 11:30 Oral Auditorium A (Parallel)FRYAA — Invited Oral Presentations, Hadron

AcceleratorsChair: J.L. Erickson (LANL)

FRYAA110:30

SNS Performance and the Next Generation of HighPower Accelerators – J. Galambos (ORNL)The SNS accelerator at ORNL has been operating near theMW level for several years now. This presentation will dis-cuss the successes and challenges, new insight gained andlessons learned with regard to the operation of a modernhigh power accelerator. In particular, issues with the RFQ,the target and the superconducting RF linac will be dis-cussed.

FRYAA211:00

ESS Status and Design Considerations –M. Lindroos (ESS)The European Spallation Neutron Source project includesa 5 MW superconducting linac, and aims for initial oper-ation at 1.5 MW in 2019 with 5 MW capacity installed for2023. Design considerations including the work done tofind the minimum cost for preserved beam quality at lowbeam loss will be discussed. This will include a discus-sions on lessons learnt from SNS regarding e.g. supercon-ducting RF performance and RF power sources. The de-sign and construction plans and status will be describedincluding a description of how in-kind and contingencywill be managed.

North American PAC 2013 39

Page 70: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

04-Oct-13 11:30 – 12:30 Oral Auditorium A (Parallel)FRYBA — Invited Oral Presentations, Hadron

AcceleratorsChair: J.L. Erickson (LANL)

FRYBA111:30

Progress towards the Facility for Rare Isotope Beams– J. Wei, N.K. Bultman, F. Casagrande, C. Comp-ton, K.D. Davidson, J. DeKamp, B. Drewyor, K. El-liott, A. Facco, P.E. Gibson, T . Glasmacher, K. Hol-land, M.J. Johnson, S. Jones, D. Leitner, M. Leitner,G. Machicoane, F. Marti, D. Morris, J.A. Nolen, J.P. Ozelis,S. Peng, J. Popielarski, L. Popielarski, E. Pozdeyev,T. Russo, K. Saito, R.C. Webber, M. Williams, T. Xu, Y. Ya-mazaki, A. Zeller, Y. Zhang, Q. Zhao (FRIB) D. Arenius,V. Ganni (JLAB) A. Facco (INFN/LNL) R.E. Laxdal (TRI-UMF) J.A. Nolen (ANL)The Facility for Rare Isotope Beams (FRIB) is based on acontinuous-wave superconducting heavy ion linac to ac-celerate all the stable isotopes to above 200 MeV/u with abeam power of up to 400 kW. At an average beam powerapproximately two-to-three orders-of-magnitude higherthan those of operating heavy-ion facilities, FRIB stands atthe power frontier of the accelerator family - the first timefor heavy-ion accelerators. To realize this innovative per-formance, superconducting RF cavities are used startingat the very low energy of 500 keV/u, and beams with mul-tiple charge states are accelerated simultaneously. Manytechnological challenges specific for this linac have beentackled by the FRIB team and collaborators. Furthermore,the distinct differences from the other types of linacs atthe power front must be clearly understood to make theFRIB successful. This report summarizes the technicalprogress made in the past years to meet these challenges.

FRYBA212:00

Status of the ReAccelerator facility RεA for rareisotopes – D. Leitner, T. Baumann, B. Durickovic,A. Lapierre, J.A. Rodriguez, S. Schwarz, C. Sum-ithrarachchi, S. Williams, W. Wittmer (NSCL) X. Wu(FRIB)The Facility for Rare Isotope Beams (FRIB) is currently inthe preliminary design phase at Michigan State University(MSU). FRIB consists of a driver linac for the accelerationof heavy ion beams, followed by a fragmentation targetstation and a ReAccelerating facility (RεA). While FRIB isexpected to start commissioning in 2017, the first stage ofRεA called ReA3 is already under commissioning and wascoupled to the Coupled Cyclotron Facility in 2012. OnceFRIB is completed RεA will continue operation as post-accelerator facility for FRIB. RεA consists of a gas stopper,an Electron Beam Ion Trap (EBIT) charge state booster, aroom temperature radio frequency quadrupole (RFQ), aLINAC using superconducting quarter wave resonators,and an achromatic beam transport and distribution lineto a new experimental area. An overview of the facilitywill be discussed. In particular, this talk will focus onthe technical progress and commissioning results usingpilot beams from the off-line ion source and charge bredbeams from the online EBIT injector.

04-Oct-13 08:30 – 09:30 Oral Auditorium B (Parallel)FRTB — Tutorial, Accelerator Systems

Chair: R. Hrovatin (I-Tech)

FRTB108:30

Femtosecond Timing and Synchronization of LaserSystems for Accelerators – J.C. Frisch (SLAC)This tutorial should describe the challenges and demandsin timing and synchronization for accelerators, with anemphasis on femtosecond timing of laser systems. The tu-torial should describe the wide variety of timing and lasertiming challenges and system approaches.

40 Pasadena, CA, USA, 29 September–4 October 2013

Page 71: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct04

04-Oct-13 09:30 – 10:00 Oral Auditorium B (Parallel)FRXB — Invited Oral Presentation, Medical

Accelerators and ApplicationsChair: R. Hrovatin (I-Tech)

FRXB109:30

Superconducting Gantry and Other Developments atHIMAC – Y. Iwata, T. Furukawa, Y. Hara, K. Mizushima,S. Mori, T.M. Murakami, K. Noda, S. Sato, T. Shirai,K. Shoda, S.S. Suzuki (NIRS) N. Amemiya (Kyoto Uni-versity) H. Arai, T. Fujimoto (AEC) T.F. Fujita (NationalInstitute of Radiological Sciences) T. Obana (NIFS) T. Og-itsu (KEK) T. Orikasa, S. Takayama (Toshiba)New developments at HIMAC include a superconduct-ing carbon gantry, a new therapy area with three newtreatment rooms, and substantial enhancements to thesynchrotron extraction system to enable energy-variationwithin a synchrotron cycle to match characteristics of thegantry and three-dimensional raster scanning. This car-bon gantry equips ten combined-function superconduct-ing magnets, allowing us to design the compact gantry;the length and the radius of the gantry will be approxi-mately 13 and 5.5 m, respectively, which are comparableto those for the existing proton gantries. Further, these su-perconducting magnets were designed to provide the fastslew rate of the magnetic field for the energy-variation op-eration of the synchrotron. The fabrication of the super-conducting magnets has been made, and field measure-ments of the several magnets were performed. In this talk,the design of the superconducting gantry including themagnet design and results of the field measurements willbe presented.

04-Oct-13 10:30 – 11:30 Oral Auditorium B (Parallel)FRYAB — Invited Oral Presentations, Accelerator

TechnologyChair: S. Prestemon (LBNL)

FRYAB110:30

Review of Superconducting Magnet (LTS and HTS)Developments for Accelerator Applications –P. Ferracin (CERN)This presentation will focus on superconducting magnetdevelopments needed by future accelerators/colliders atthe energy frontier. A review of the various technologiesbased on LTS and HTS materials will be provided, outlin-ing their capablities and applications as well as the chal-lenges and critical issues which will have to be addressedby specific R&D.

FRYAB211:00

Protection of High-field Superconducting Magnets –H. Felice (LBNL)As superconducting accelerator magnets see the increaseof their magnetic field and stored energy, quench pro-tection becomes a critical part of magnet design. Ap-prehending the quench phenomenon requires a multidis-ciplinary approach combining magnetic, electrical andthermal analysis. Numerical codes are key componentsof this process. Due to the complexity of the topic, andbecause multiphysics approach might lead to long com-putational times, a frequent technique relies on breakingdown the problem, using dedicated tools for each physi-cal phenomenon and interfacing the results. We proposehere an overview of the various aspects of the magnet pro-tection, and we will address the way the community ispresently addressing the challenge of quench protectionsimulation.

North American PAC 2013 41

Page 72: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

04-Oct-13 11:30 – 12:30 Oral Auditorium B (Parallel)FRYBB — Invited Oral Presentations, Accelerator

TechnologyChair: A.M.M. Todd (AES)

FRYBB111:30

Progress on Superconducting Undulators –Y. Ivanyushenkov (ANL)Superconducting technology could be employed forbuilding undulators with enhanced parameters for syn-chrotron light sources and free–electron lasers. Expectedand measured performance of superconducting undu-lators will be presented. Although superconductingtechnology is already working in superconducting wig-glers, the development of superconducting undulatorswas slowed down by a variety of challenges that willbe discussed. Possible solutions with examples will bepresented. Finally, an overview of recent developmentsin superconducting undulators will be given.

FRYBB212:00

Development and Operation of the SNS Fast ChopperSystems – R.B. Saethre (ORNL RAD) D.E. Anderson,C. Deibele, V.V. Peplov, M.P. Stockli (ORNL)The Spallation Neutron Source (SNS) at Oak Ridge Na-tional Laboratory requires fast chopper systems to createa series of mini-pulses in the Linear Accelerator (LINAC)for injection into the accumulation ring. The fast choppersystems are in the front end of the accelerator with oneset of four choppers in the Low Energy Beam Transport(LEBT), immediately upstream of the Radio FrequencyQuadrupole (RFQ), and another set of two choppers in theMedium Energy Beam Transport (MEBT), downstream ofthe RFQ, where the beam energy is approximately 2.5 MeV.Clean bunching requires fast rise and fall time and lowjitter to minimize the amount of charge in the ring ex-traction gap. The chopper systems operate at a burst fre-quency of 1 MHz and a burst width of greater than 1 ms.The choppers have had historically poor reliability espe-cially in the LEBT system. This paper describes the devel-opment of reliable LEBT and MEBT choppers and the op-erational performance since SNS commissioning in 2006.

04-Oct-13 14:00 – 14:30 Oral Main Auditorium (Plenary)

FRZAP — Invited Oral Presentation, IndustrialAccelerators and Applications

Chair: A. Chao (SLAC)

FRZAP114:00

Current & Future Industrial Applications of Accelera-tors – R.W. Hamm (R&M Technical Enterprises)As demonstrated by several presentations at this meeting,particle accelerators are now very widely used for a num-ber of industrial applications. Many of the systems be-ing employed have their origins in accelerators developedfor basic science research, but now their production is aworldwide business conducted by more than 70 compa-nies and institutes that collectively ship more than 1000units per year. The industrial applications of these accel-erators cover a broad range of business segments from lowenergy electron beam systems for welding, machining,and product irradiation to high energy cyclotrons and syn-chrotrons for radioisotope production and synchrotronradiation production. This talk is a review of the statusof these business segments and the predicted growth inthem. It will also cover the new accelerator technologyunder development that will be used by industry in thefuture.

42 Pasadena, CA, USA, 29 September–4 October 2013

Page 73: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

OO

ct04

04-Oct-13 14:30 – 15:00 Oral Main Auditorium (Plenary)

FRZBP — Invited Oral Presentation, Light Sources andFELs

Chair: A. Chao (SLAC)

FRZBP114:30

Challenges and Opportunities for X-ray Free ElectronLasers – C. Pellegrini (SLAC) C. Pellegrini (UCLA)This talk should present an overview of the technical chal-lenges for delivering coherent beams of X-rays, and op-portunities for new FEL designs. Topics to be discussedinclude increased repetition rate, higher flux per pulse,temporal control and coherence, and undulator develop-ments.

North American PAC 2013 43

Page 74: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

30-Sep-13 16:30 – 18:00 Poster Poster Area Angeles Crest

MOPAC — Poster Session

03 Alternative Acceleration SchemesMOPAC01 Nonparaxial Transverse Effects on the Propagation

of Nonlinear Electromagnetic Pulses – A. Bonatto,R. Pakter, F.B. Rizzato (IF-UFRGS) A. Bonatto, S.R. Lopes(UFPR) C. Bonatto (UFPel) R.P. Nunes (UFRGS)

MOPAC02 Electron and Positron Bunch Self-modulation Exper-iments at SLAC-FACET – P. Muggli (MPI) E. Adli,S.J. Gessner, M.J. Hogan, S.Z. Li, M.D. Litos (SLAC)Y. Fang (USC) C. Joshi, K.A. Marsh, W.B. Mori, N. Vafaei-Najafabadi (UCLA) N.C. Lopes, L.O. Silva, J. Vieira (In-stituto Superior Tecnico) O. Reimann (MPI-P)

MOPAC03 Generation of High Brightness Electron Beams viaIonization Induced Injection by Transverse CollidingLasers in a Beam-Driven Plasma Wakefield Accelera-tor – F. Li, H.B. Chen, Y.-C. Du, J.F. Hua, W.-H. Huang,W. Lu, C.-X. Tang, X.L. Xu, L.X. Yan, C.J. Zhang (TUB)Y.Q. Gu (Laser Fusion Research Center, China Academyof Engineering Physics) C. Joshi, W. Lu, W.B. Mori (UCLA)

MOPAC04 High Transformer Ratio Plasma Wakefield Accelera-tion in the Blowout Regime – W. Lu, X.L. Xu (TUB)W. An, C. Joshi, W.B. Mori (UCLA) C. Huang (LANL)

MOPAC05 Emittance Dynamics of Ionization-induced Injectionin Plasma Based Accelerators – X.L. Xu, J.F. Hua, F. Li,W. Lu (TUB) C. Joshi, W.B. Mori (UCLA)

MOPAC06 Study of Beam Break-up Control for a THz DielectricWakefield Linac – C. Li, W. Gai, C.-J. Jing, J.G. Power(ANL) C.-J. Jing (Euclid TechLabs, LLC) C. Li (TUB)

MOPAC07 Photonic Crystal as a Passively Driven Structure toBoost Beam Energy – B.R. Poole (LLNL), J.R. Harris,S.V. Milton (CSU)

MOPAC08 Modeling Beam-driven Planar Dielectric Bragg Struc-ture Experiments – D.L. Bruhwiler (CIPS) G. Ando-nian, P.D. Hoang, B. Naranjo, J.B. Rosenzweig (UCLA)P. Stoltz (Tech-X)

MOPAC09 Coupling to Photonic Crystal Fiber Accelerator Struc-tures – G.R. Werner, C.A. Bauer, J.R. Cary (CIPS)J.R. Cary (Tech-X)

MOPAC10 Long Term Evolution of Plasma Wakefields –A. A. Sahai, T.C. Katsouleas (Duke ECE) W.B. Mori,F.S. Tsung (UCLA)

MOPAC11 Test of A Standing Wave Dielectric Loaded Acceler-ating Structure – C.-J. Jing, S.P. Antipov, A. Kanarey-kin, P. Schoessow (Euclid TechLabs, LLC) W. Gai (ANL)S.H. Gold (NRL)

MOPAC12 Analysis of High Repetition Rate Effects in DielectricWakefield Accelerators – P. Schoessow, S.P. Antipov, C.-J. Jing, A. Kanareykin, S.S. Zuo (Euclid TechLabs, LLC)J.G. Power, A. Zholents (ANL)

MOPAC13 Luminosity Limitations in Plasma-Based ColliderConcepts – S. Nagaitsev, V.A. Lebedev (Fermilab)

MOPAC14 Opportunities for Beam-driven-acceleration Experi-ments at the Fermilab’s ASTA Facility – P. Piot (Fermi-lab)

44 Pasadena, CA, USA, 29 September–4 October 2013

Page 75: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PSe

p30

MOPAC15 ASTA at Fermilab: Accelerator Physics and Accelera-tor Education Programs of the Modern AcceleratorR&D Users Facility for HEP and Accelerator Applica-tions – V.D. Shiltsev (Fermilab) P. Piot (Northern IllinoisUniversity)

04 Hadron AcceleratorsMOPAC16 Issues and R&D Required for the Intensity Frontier

Accelerators – V.D. Shiltsev, S. Henderson, S. Nagait-sev (Fermilab)

03 Alternative Acceleration SchemesMOPAC17 RF-Components Embedded with Photonic-Band-

Gap (PBG) and Fishnet-Metamaterial Structures forHigh Frequency Accelerator Application – Y.-M. Shin(Fermilab) D. Boyden, S. Robak (Northern IllinoisUniversity)

MOPAC18 Feasibility Study of Channeling Acceleration Exper-iment at the Fermilab Advanced SuperconductingTest Area (ASTA) – Y.-M. Shin, T. Xu (Northern IllinoisUniversity) V.D. Shiltsev, D.A. Still (Fermilab)

MOPAC19 Commissioning and Initial Target Experiments atNDCX-II – T. Schenkel, W.G. Greenway, S.M. Lidia,K. Murphy, W.L. Waldron, C.D. Weis (LBNL)

MOPAC20 Simulations of Multiple Consecutive Laser-plasmaAcceleration Stages – J.-L. Vay, E. Esarey, C.G.R. Geddes,W. Leemans, C.B. Schroeder (LBNL)

MOPAC21 Tomographic Reconstruction of Electron Trajecto-ries in a Laser-Plasma Accelerator Using BetatronX-Ray Radiation – F. Albert, A.E. Pak, B.B. Pollock,J.E. Ralph (LLNL) C.E. Clayton, C. Joshi, K.A. Marsh,J.L. Shaw (UCLA)

MOPAC22 Quasi-Monoenergetic Electron Ring ProductionFrom Laser Wakefield Acceleration in the BlowoutRegime – B.B. Pollock, F. Albert, J.D. Moody, J.E. Ralph(LLNL) C.E. Clayton, C. Joshi, K.A. Marsh, J.L. Shaw(UCLA) S.H. Glenzer (SLAC) N. Lemos (Instituto SuperiorTecnico)

MOPAC23 Full-scale 2D and 3D Simulations of Electron BeamAcceleration for the LANL Dielectric WakefieldAccelerator Experiment – C. Huang, T.J. Kwan,D.Y. Shchegolkov, E.I. Simakov (LANL)

MOPAC24 Beam Pulse Shaping Experiments for UniformHigh Gradient Dielectric Wakefield Acceleration –D.Y. Shchegolkov, E.I. Simakov (LANL) S.P. Antipov(Euclid TechLabs, LLC) S.P. Antipov (ANL) M.G. Fedurin(BNL)

MOPAC25 Update on Fabrication and Tuning of the PhotonicBand Gap Accelerating Structure for the WakefieldExperiment – E.I. Simakov, S. Arsenyev, R.L. Edwards,S. Elson, C.E. Heath, D. C. Lizon, W.P. Romero (LANL)S. Arsenyev (MIT/PSFC)

MOPAC26 Beam Brightness Booster With Ionization Coolingof Superintense Circulating Beams – V.G. Dudnikov,C.M. Ankenbrandt, R.P. Johnson (Muons. Inc.)

MOPAC27 External Injection Into Laser Based Accelerators –D.B. Cesar, P. Musumeci (UCLA)

North American PAC 2013 45

Page 76: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

MOPAC28 Applications for Optical-Scale Dielectric Laser Accel-erators – R.J. England, Z. Huang, C. Lee, R.J. Noble,J.E. Spencer, Z. Wu (SLAC) B. Montazeri, E.A. Peralta,K. Soong (Stanford University) M. Qi (Purdue University)L. Schächter (Technion)

MOPAC29 Fabrication of an 18 Layer 3D Photonic Crystal forDielectric Laser Acceleration – C. Lee, R.J. England,Z. Wu (SLAC) M. Qi (Purdue University)

MOPAC30 Multibunch Beam Physics at FACET – S.J. Gessner,M.J. Hogan, M.D. Litos (SLAC)

MOPAC31 Simulation of Power Coupling and Wakefield in Pho-tonic Band Gap Fibers for Dielectric Laser Accelera-tion – C.-K. Ng, R.J. England, R.J. Noble, J.E. Spencer(SLAC)

MOPAC32 Design of a Subnanometer Resolution Beam PositionMonitor for Dielectric Laser Accelerators – K. Soong(SLAC)

MOPAC33 Silica Rod Array for Laser-Driven Particle Accelera-tion – Z. Wu, R.J. England, R.J. Noble (SLAC) E.A. Peralta,K. Soong (Stanford University) M. Qi (Purdue University)

MOPAC34 Impurity Free Ion Beams Accelerated from OverDense Plasmas Irradiated by 1 TW CO2 Laser Pulses– N.M. Cook, P. Shkolnikov (Stony Brook University)N. Dover, Z. Najmudin (Imperial College of Science andTechnology, Department of Physics) C. Maharjan (SBU)I. Pogorelsky, M.N. Polyanskiy, O. Tresca (BNL)

MOPAC35 Full-scale Simulations of Dielectric Grating Accelera-tor Structures – B.M. Cowan, D.T. Abell, B.T. Schwartz(Tech-X)

MOPAC36 Advanced Simulation Methods for Laser-plasma Ac-celeration Stages – B.M. Cowan, J.R. Cary, E. Cormier-Michel, E.J. Hallman, N. Naseri (Tech-X), J.R. Cary(CIPS)

MOPAC37 Mitigate Ionization Induced Beam Head Erosion ina Plasma Wake Field Accelerator – W. An, C.E. Clay-ton, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori, N. Vafaei-Najafabadi, M. Zhou (UCLA) E. Adli (University ofOslo) E. Adli, S. Corde, J.-P. Delahaye, R.J. England,J.T. Frederico, S.J. Gessner, M.J. Hogan, S.Z. Li, M.D. Litos,D.R. Walz (SLAC) W. Lu (TUB) P. Muggli (MPI)

MOPAC38 Preliminary Experiments on Ionization Injectionof Electrons into a Plasma Wakefield Accelerator atFACET – C.E. Clayton, W. An, C. Joshi, K.A. Marsh,W.B. Mori, N. Vafaei-Najafabadi (UCLA) E. Adli,C.I. Clarke, S. Corde, J.-P. Delahaye, R.J. England,A.S. Fisher, J.T. Frederico, S.J. Gessner, M.J. Hogan,S.Z. Li, M.D. Litos, D.R. Walz, Z. Wu (SLAC) W. Lu (TUB)P. Muggli (MPI)

MOPAC39 Ionization Injection in LWFA for Near Term Lasers– A.W. Davidson, C. Joshi, W. Lu, W.B. Mori (UCLA)R.A. Fonseca, J.L. Martins, L.O. Silva (Instituto SuperiorTecnico) M. Zeng (Tsinghua University)

46 Pasadena, CA, USA, 29 September–4 October 2013

Page 77: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PSe

p30

MOPAC40 Single-Shot Emittance Measurement via Spectrom-eter Beam Profile Measurement – J.T. Frederico,C.E. Clayton, C. Joshi, K.A. Marsh (UCLA) E. Adli,S. Corde, S. Corde, S.J. Gessner, M.J. Hogan, S.Z. Li,M.D. Litos, T.O. Raubenheimer, T.O. Raubenheimer(SLAC)

MOPAC41 Forward Directed Low-Divergence Electron and IonBeams from a Gas Jet Irradiated by a Multi-TW CO2Laser – C. Gong, C. Chandrashekar, J.J. Pigeon, S. To-chitsky (UCLA)

MOPAC42 High-throughput Analysis of CR39 Detectors usingLensfree Holographic On-Chip Microscopy – W. Luo,A.F. Coskun, C. Gong, A. Greenbaum, C. Gulec, C. Joshi,A. Ozcan, J.J. Pigeon, F. Shabbir, J.L. Shaw, T.W. Su, S. To-chitsky (UCLA)

MOPAC43 Results of Short Pulse Driven LLNL/UCLA IFEL Exper-iment – J.T. Moody, P. Musumeci (UCLA) G.G. Ander-son, S.G. Anderson, S.M. Betts, S.E. Fisher, D.J. Gibson,A.M. Tremaine, S.S.Q. Wu (LLNL)

MOPAC44 Development of a High-repetition Rate TW CO2 LaserDriver for a Compact Ion Source – J.J. Pigeon, C. Joshi,S. Tochitsky (UCLA)

MOPAC45 Controlling the Divergence and the DivergenceGrowth in LWFA-produced Electron Beams –J.L. Shaw, C. Joshi, K.A. Marsh, N. Vafaei-Najafabadi(UCLA)

MOPAC46 Suppression of the Transformer Ratio due to Dis-tributed Injection of Electrons in a Plasma WakefieldAccelerator – N. Vafaei-Najafabadi, W. An, C.E. Clay-ton, C. Joshi, W. Lu, K.A. Marsh, W.B. Mori (UCLA) E. Adli(University of Oslo) E. Adli, C.I. Clarke, S. Corde, J.-P. De-lahaye, R.J. England, A.S. Fisher, J.T. Frederico, S.J. Gess-ner, M.J. Hogan, S.Z. Li, M.D. Litos, D.R. Walz, Z. Wu(SLAC) W. Lu (TUB) P. Muggli (MPI)

MOPAC47 Modeling of Laser Wakefield Accelerator in LorentzBoosted Frame Using an Em-Pic Code With SpectralSolver: UPIC-EMMA – P. Yu, V.K. Decyk, W.B. Mori,F.S. Tsung (UCLA) R.A. Fonseca, L.O. Silva, J. Vieira (In-stituto Superior Tecnico) W. Lu, X.L. Xu (TUB)

MOPAC48 Laser Acceleration of Multi-ion Thin Foil Target –X. Shao, W.T. Hill, C.-S. Liu, T.-C. Liu, J.J. Su (UMD) S.-H. Chen (NCU) B. Eliasson (Ruhr-Universität Bochum)J. Wang (IAMS)

MOPAC49 Seeding of the Self-modulation of a Long Parti-cle Bunch in a Plasma – Y. Fang, P. Muggli (USC)M. Babzien, M.G. Fedurin, K. Kusche, R. Malone,C. Swinson, V. Yakimenko (BNL) W.B. Mori (UCLA)P. Muggli (MPI) J. Vieira (IPFN)

North American PAC 2013 47

Page 78: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

30-Sep-13 16:30 – 18:00 Poster Poster Area Bel Air

MOPBA — Poster Session

05 Beam Dynamics and Electromagnetic Fields

MOPBA01 Current Induced In Vacuum Chamber During NSLS-II Booster Ramp – S.M. Gurov, V.A. Kiselev, S.V. Sinyat-kin (BINP SB RAS)

MOPBA02 Simulations of a Dipole Detuned Multi-HarmonicCavity Structure With Applications to Linear Collid-ers – L.R. Carver, R.M. Jones (UMAN) J.L. Hirshfield(Yale University, Physics Department) J.L. Hirshfield(Omega-P, Inc.) Y. Jiang (Yale University, Beam PhysicsLaboratory)

MOPBA03 Self-Consistent Simulations of Passive Landau CavityEffects – G. Bassi, A. Blednykh, S. Krinsky, J. Rose (BNL)

MOPBA04 Polarization Profile and Spin Dynamics Simula-tions in the AGS Using the Zgoubi Code – Y. Dutheil,L. Ahrens, H. Huang, F. Méot, V. Schoefer (BNL)

04 Hadron AcceleratorsMOPBA05 Design of the Injection Line into the INFN Molec-

ular H2+ 800 MeV High Power Cyclotron – M. Haj,Y. Dutheil, F. Méot, N. Tsoupas (BNL) L. Calabretta(INFN/LNS) A. Calanna (CSFNSM)

05 Beam Dynamics and Electromagnetic Fields

MOPBA06 Algorithms and Self-consistent Simulation ofBeam-induced Plasma in Muon Cooling Devices– V. Samulyak (BNL) M. Chung, A.V. Tollestrup, K. Yone-hara (Fermilab) B.T. Freemire (IIT) R.D. Ryne (LBNL)

MOPBA07 Applications of Parallel Optimization Algorithms toMuon Collider / Neutrino Factory Design –H. K. Sayed, J.S. Berg (BNL) J. Qiang, R.D. Ryne (LBNL)

MOPBA08 Modeling of Electron Cloud Induced Beam Dynamicsat CesrTA: An Update – K.G. Sonnad (Cornell Univer-sity (CLASSE), Cornell Laboratory for Accelerator-BasedSciences and Education) M.T.F. Pivi (SLAC)

MOPBA09 Advanced Modeling Tools for Muon-Based Acceler-ators – P. Snopok (Illinois Institute of Technology),J.S. Ellison (IIT) T.J. Roberts (Muons. Inc.)

MOPBA10 Progress of the Matter-dominated Muon AcceleratorLattice Simulation Tools Development for COSY In-finity – P. Snopok, J.D. Kunz (IIT)

MOPBA11 Space Charge Simulation in COSY Using Fast Multi-pole Method – P. Snopok (Illinois Institute of Technol-ogy) M. Berz, B.T. Loseth, K. Makino (MSU) H. Zhang(JLAB)

MOPBA12 Mitigation of Numerical Noise for Space ChargeCalculations in Tracking Codes – L.G. Vorobiev,C.M. Ankenbrandt, R.P. Johnson, T.J. Roberts (Muons.Inc.)

MOPBA13 Optimization of the Multipole to Local TranslationOperator in the Adaptive Fast Multipole Method –S. Abeyratne, B. Erdelyi (Northern Illinois University)B. Erdelyi (ANL)

48 Pasadena, CA, USA, 29 September–4 October 2013

Page 79: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PSe

p30

MOPBA14 Numerical Integrator for Coulomb Collisions –A.A. Al Marzouk, B. Erdelyi (Northern Illinois Uni-versity)

MOPBA15 Study and Comparison of the Method of Momentsand the Single Level Fast Multipole Method for 2DSpace Charge Tracking – A.J. Gee, B. Erdelyi (NorthernIllinois University) B. Erdelyi (ANL)

MOPBA16 A Picard Iteration Based Integrator –H.D. Schaumburg, B. Erdelyi (Northern Illinois Univer-sity)

MOPBA17 A User Friendly, Modular Simulation Tool for Laser-Electron Beam Interactions – S. Seung, G. Andonian,M.A. Harrison, S. Wu (RadiaBeam) D.L. Bruhwiler(CIPS) T.V. Shaftan (BNL)

MOPBA18 Multipacting Simulation of Accelerator Cavities us-ing ACE3P – C.-K. Ng, L. Ge, C. Ko, Z. Li, L. Xiao (SLAC)

MOPBA19 Inter-bunch Communication through CSR inWhispering Gallery Modes – R.L. Warnock (SLAC)J.C. Bergstrom (CLS) M. Klein (SOLEIL)

02 Light Sources

MOPBA20 Nonlinear Vlasov Simulation of an FEL in a One-dimensional Model – R.L. Warnock (SLAC)

05 Beam Dynamics and Electromagnetic Fields

MOPBA21 Modeling Localized States and Band Bending Effectson Electron Emission from GaAs – D.A. Dimitrov,Y. Choi, C. Nieter (Tech-X) I.V. Bazarov, S.S. Karkare,W.J. Schaff (Cornell University (CLASSE), Cornell Lab-oratory for Accelerator-Based Sciences and Education)I. Ben-Zvi, T. Rao, J. Smedley (BNL)

MOPBA22 Complex Charge Pair Model and Simulations ofthe FEL Amplifier for Coherent Electron Cooling –I.V. Pogorelov, B.T. Schwartz (Tech-X) D.L. Bruhwiler(CIPS) V. Litvinenko (BNL)

MOPBA23 Current Status of the GPU-Accelerated Version of EL-EGANT – I.V. Pogorelov, K.M. Amyx, J.R. King (Tech-X)M. Borland, R. Soliday (ANL)

MOPBA24 Integrated Kinetic and Plasma Dielectric Models ofElectron Cloud Buildup and TE Wave Transmission –S.A. Veitzer, P. Stoltz (Tech-X) P. Lebrun (Fermilab)

30-Sep-13 16:30 – 18:00 Poster Poster Area Hollywood

MOPHO — Poster Session

02 Light Sources

MOPHO01 Creation of Gamma Radiation Using Anihilation ofChanneled Positrons in Crystals – K.B. Oganesyan(ANSL)

MOPHO02 How Acts Plane Wiggler Magnetic Field Inhomo-geneity on the Spontaneous Radiation and Gain –K.B. Oganesyan (ANSL)

MOPHO03 Generation of Intensive Transition Radiation in Mod-ulated Medium – K.B. Oganesyan (ANSL)

MOPHO04 Ultra-Low Emittance Light Source with a Torus-knotType Accumulator Ring – A. Miyamoto, S. Sasaki(HSRC)

North American PAC 2013 49

Page 80: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

MOPHO05 Coupling and Brightness Considerations for the MAXIV 3 GeV Storage Ring – S.C. Leemann, M. Eriksson(MAX-lab)

MOPHO06 Simulation of Using Orbit Bumps to Test SextupoleCompensation for the Short Pulse X-ray System atthe Advanced Photon Source – M. Borland, V. Sajaev(ANL)

MOPHO07 A Seven-bend-achromat Lattice as a Potential Up-grade for the Advanced Photon Source – M. Borland,V. Sajaev, Y. Sun (ANL)

MOPHO08 Various Canting Schemes for Utilizing More ThanOne Insertion Device in an Insertion Device StraightSection – V. Sajaev, G. Decker, L. Emery (ANL)

MOPHO09 New Consideration for Insertion-Device Dipole-Error Perturbation Requirements when includingthe Effects of Orbit Feedback – L. Emery, V. Sajaev(ANL)

MOPHO10 Optics Design and Beam Dynamics Optimization of aFive-bend Achromat Lattice for the Advanced PhotonSource Upgrade – Y. Sun, M. Borland (ANL)

MOPHO11 Linear scaling on Choosing Bunch Compression Ra-tio for an FEL Driver – Y. Sun (ANL)

MOPHO12 Simulation of an X-band Hard X-ray FEL with LCLSInjector – Y. Sun (ANL) P. Emma (LBNL) T.O. Rauben-heimer (SLAC)

MOPHO13 Achieving Quasi Third Order Achromat in APS Up-grade Lattice – Y. Sun, M. Borland (ANL)

MOPHO14 Analytical Evaluation of Correlated Timing Jitter Can-cellation in a staged bunch compression system –Y. Sun (ANL)

MOPHO15 X-band FEL Driver Linac Design with Optics Lin-earization – Y. Sun (ANL) P. Emma (LBNL) T.O. Rauben-heimer, J. Wu (SLAC)

MOPHO16 NSLS-II Linac Beam Loading Compensation Study –G.M. Wang, W.X. Cheng, F. Gao, J. Rose, T.V. Shaftan(BNL)

MOPHO17 NSLS II Commissioning Tools – G.M. Wang,M.A. Davidsaver, T.V. Shaftan, G. Shen, L. Yang (BNL)

MOPHO18 CESR Upgrade using Defocusing Dipole Magnets –C.E. Mayes, L. Gupta, G.H. Hoffstaetter, V.O. Kostroun,A.A. Mikhailichenko (Cornell University (CLASSE), Cor-nell Laboratory for Accelerator-Based Sciences and Edu-cation)

MOPHO19 A Tunable Energy Chirp Correction – S.P. Antipov, C.-J. Jing, A. Kanareykin, P. Schoessow (Euclid TechLabs,LLC) S. Baturin (LETI) M.G. Fedurin (BNL) W. Gai,A. Zholents (ANL) V. Yakimenko (SLAC)

MOPHO20 Demonstration of a Compact High Average PowerTHz Light Source at the IAC – Y. Kim (IAC), A. Andrews,P. Buaphad, C.F. Eckman (ISU) A.V. Smirnov (Radia-Beam)

MOPHO22 Pseudo Single Bunch with Adjustable Frequency: ANew Operation Mode for Synchrotron Light Sources– C. Sun, M.P. Hertlein, J. Kirz, G.J. Portmann, D. Robin(LBNL)

50 Pasadena, CA, USA, 29 September–4 October 2013

Page 81: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PSe

p30

MOPHO23 Lattice Design Proposal for Diffraction Limited Ad-vanced Light Source – H. Tarawneh, H. Nishimura,D. Robin, C. Steier, C. Sun, W. Wan (LBNL)

MOPHO24 THz Free-Electron Laser Driven by a Superconduct-ing Linac – W.B. Colson, J. Blau, K. R. Cohn, C.M. Pogue,R. Swent (NPS) C.H. Boulware, D. Gorelov, T.L. Grimm(Niowave, Inc.) S.C. Gottschalk (STI)

MOPHO25 Removal of Residual Chirp in Compressed Beams us-ing a Passive Wakefield Technique – M.A. Harrison,G. Andonian, P. Frigola, T.J. Hodgetts, A.Y. Murokh,F.H. O’Shea, M. Ruelas (RadiaBeam)

MOPHO26 Laser-undulator FEL with Nearly CopropagatingLaser Pulse – R.A. Bosch, J. Bisognano, M.A. Green,K. Jacobs, R. Wehlitz (UW-Madison/SRC) T.-C. Chiang,T.J. Miller (University of Illinois) J.E. Lawler, D. Yavuz(UW-Madison/PD) R.C. York (FRIB)

MOPHO27 A Formula of Optimum Out-coupling Fraction forMaximum Output Power in Oscillator FEL – Q.K. Jia(USTC/NSRL)

30-Sep-13 16:30 – 18:00 Poster Poster Area Malibu

MOPMA — Poster Session

04 Hadron AcceleratorsMOPMA03 Studies on Short-Bunch Extraction at CSNS RCS –

Y. Zou, J.F. Chen, J.Y. Tang (IHEP)

MOPMA04 Design Considerations for the ESS Accelerator-to-Target Region – T.J. Shea, K.H. Andersen, P. Bentley,P.F. Henry, E.J. Pitcher, P. Sabbagh, A. Takibayev (ESS)A.I.S. Holm, S.P. Møller, H.D. Thomsen (ISA)

MOPMA05 Thermal Design of the FETS Chopper Beam Dump –P. Savage, M. Aslaninejad, P.A. Posocco, J.K. Pozimski(Imperial College of Science and Technology, Depart-ment of Physics) S. Mishra (Imperial College of Scienceand Technology) J.K. Pozimski (STFC/RAL)

MOPMA06 Proposal for Simultaneous Acceleration of Stable andUnstable Ions in ATLAS – A. Perry (IIT) B. Mustapha,P.N. Ostroumov, A. Perry (ANL) A. Perry (Soreq NRC)

MOPMA07 The D-Line Project at Michigan State University– J.A. Rodriguez, W. Wittmer (FRIB) A. Lapierre,G. Perdikakis, M. Portillo, S. Schwarz, M. Steiner,C. Sumithrarachchi, S.J. Williams, X. Wu (NSCL)

MOPMA08 Systems Engineering and Integration on the FRIBProject – D. Stout, T. Borden, N.K. Bultman, R. Frazee,M. Leitner, P. Nguyen, T. Russo, E. Tanke, C. Thronson(FRIB)

MOPMA09 Status and Opportunities at Project X: A Multi-MWFacility for Intensity Frontier Research – S.D. Holmes,M. Kaducak, R.D. Kephart, I. Kourbanis, V.A. Lebedev,C.S. Mishra, S. Nagaitsev, N. Solyak, R.S. Tschirhart (Fer-milab)

MOPMA10 Studies of Fault Scenarios in SC CW Project-X Linac –A. Saini, N. Solyak (Fermilab)

MOPMA12 Design Issues of High Intensity SC CW Ion Linac forProject-X facility. – A. Saini, N. Solyak (Fermilab)

MOPMA13 Layout of Project-X Facility: A Reference Design –A. Saini, V.A. Lebedev, J.-F. Ostiguy, N. Solyak (Fermi-lab)

North American PAC 2013 51

Page 82: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

MOPMA14 Status of the LANSCE RFQ Front-End Upgrade –R.W. Garnett, Y.K. Batygin, I. Draganic, C.M. Fortgang,S.S. Kurennoy, R.C. McCrady, J.F. O’Hara, R.J. Roybal,L. Rybarcyk (LANL) J. Haeuser (Kress GmbH) A. Schempp(IAP)

MOPMA15 Experimental Results from a Diagnostic Pulse forSingle-Particle-Like Beam Position Measurementsduring Accumulation/Production Mode in the LosAlamos Proton Storage Ring – J.S. Kolski, E. Björklund,M.J. Hall, M.P. Martinez, F.E. Shelley (LANL)

MOPMA16 Design Analysis of the New LANL 4-Rod RFQ –S.S. Kurennoy, E.R. Olivas, L. Rybarcyk (LANL)

MOPMA17 Design Requirements and Expected Performance ofthe New LANSCE H+ RFQ – L. Rybarcyk, Y.K. Batygin,I. Draganic, C.M. Fortgang, R.W. Garnett, S.S. Kuren-noy, R.C. McCrady, T.P. Wangler (LANL) J. Haeuser (KressGmbH) A. Schempp (IAP)

05 Beam Dynamics and Electromagnetic Fields

MOPMA18 GPU-accelerated Online Multi-Particle Beam Simu-lator for the LANSCE Linac – X. Pang, S.A. Baily,L. Rybarcyk (LANL)

04 Hadron AcceleratorsMOPMA19 Fault Conditions and Recovery Studies for the FRIB

Linac – Q. Zhao (NSCL)

MOPMA20 Impact of RF Reference Line Stability on the FRIBLinac Performance – Q. Zhao (NSCL)

MOPMA21 Optimization of the Target Subsystem for the Newg-2 Experiment – C. Y. Yoshikawa, C.M. Ankenbrandt(Muons. Inc.) A.F. Leveling, N.V. Mokhov, J.P. Morgan,C.E. Polly, S.I. Striganov (Fermilab)

30-Sep-13 16:30 – 18:00 Poster Poster Area Santa Monica

MOPSM — Poster Session

04 Hadron AcceleratorsMOPSM01 High Voltage Stabilization System of CARIBU/ECR

for ATLAS – Y. Luo, R.C. Pardo, G. Savard, S.I. Shara-mentov, R.C. Vondrasek (ANL)

MOPSM02 Design and Simulation of the Argonne Inflight Ra-diactive Ion Separator – B. Mustapha, M. Alcorta,B. Back, P.N. Ostroumov (ANL)

MOPSM03 Proposal for a nTOF Facility at BNL – W. Fischer,J.G. Alessi, M. Blaskiewicz, K.A. Brown, C.J. Gardner,W. Horak, H. Huang, F. Méot, S. Peggs, P.H. Pile, D. Ra-paria, T. Roser, N. Simos (BNL)

MOPSM04 Beam Dynamics Simulations of SRF Based ElectronCooler for Low Energy RHIC Operation – D. Kayran,S.A. Belomestnykh, I. Ben-Zvi, A.V. Fedotov, V. Litvi-nenko, I. Pinayev, B. Sheehy (BNL) S.A. Belomestnykh,I. Ben-Zvi, V. Litvinenko (Stony Brook University)

MOPSM05 Diagnostics for the LANSCE RFQ Front-End TestStand – R.C. McCrady, Y.K. Batygin, I. Draganic,C.M. Fortgang, R.W. Garnett, S.S. Kurennoy, J.F. O’Hara,E.R. Olivas, L. Rybarcyk (LANL)

MOPSM06 Design and Cold Test of a 17 GHz Overmoded Hy-brid PBG Accelerator Cavity – J.X. Zhang, A.M. Cook,B.J. Munroe, M.A. Shapiro, R.J. Temkin (MIT/PSFC)

52 Pasadena, CA, USA, 29 September–4 October 2013

Page 83: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PSe

p30

MOPSM07 Results From the Linac Commissioning of the RareIsotope Reaccelerator - ReA – W. Wittmer, S.W. Krause,A. Lapierre, D. Leitner, F. Montes, S. Nash, G. Perdikakis,R. Rencsok, S. Schwarz, X. Wu (NSCL) L.Y. Lin, J.A. Ro-driguez (FRIB)

MOPSM08 The Electron Counterpart of a Multi-Cavity ProtonCyclotron Accelerator – S.V. Shchelkunov, M.A. La-Pointe (Yale University, Beam Physics Laboratory)J.L. Hirshfield (Yale University, Physics Department)J.L. Hirshfield (Omega-P, Inc.) V.P. Yakovlev (Fermilab)

03 Alternative Acceleration SchemesMOPSM09 Status of Dielectric-Lined Two-Channel Coaxial High

Transformer Ratio Accelerator Structure Experiment– S.V. Shchelkunov (Yale University, Beam Physics Labo-ratory) M.E. Conde, W. Gai, J.G. Power, E.E. Wisniewski(ANL) J.L. Hirshfield (Yale University, Physics Depart-ment) J.L. Hirshfield, T.C. Marshall (Omega-P, Inc.)G.V. Sotnikov (NSC/KIPT)

North American PAC 2013 53

Page 84: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

01-Oct-13 16:30 – 18:00 Poster Poster Area Angeles Crest

TUPAC — Poster Session

05 Beam Dynamics and Electromagnetic Fields

TUPAC01 Kinetic Theory of Halo Formation in Charged Parti-cle Beams – W. Simeoni, F.B. Rizzato (IF-UFRGS)

TUPAC02 Beam Dynamics Studies of a 30 MeV Standing WaveElectron Linac – R. Dash (Homi Bhbha National Insti-tute (HBNI), DAE) K.C. Mittal, J. Mondal, A.S. Sharma(BARC)

TUPAC03 Beam Transport System for the High Current Injectorat IUAC – A. Mandal, D. Kanjilal, S. Kumar, G.O. Ro-drigues (IUAC)

TUPAC04 Pre-separator Design of the In-flight Fragment Sep-arator using High-power Beam – J.Y. Kim, D.G. Kim,E.H. Kim, J.-W. Kim, M. Kim, M. Kim, C.C. Yun (IBS)

TUPAC05 Proton Beam Dynamics Simulation at Linac for ADS –V.S. Dyubkov, T.V. Bondarenko, A.V. Samoshin (MEPhI)

TUPAC06 Horizontal Dispersion Studies for the CERN ProtonSynchrotron Booster Rings – V. Raginel, S.S. Gilardoni,M.J. McAteer, B. Mikulec (CERN)

TUPAC07 Beam Dynamics and Wakefield Suppression in Inter-leaved Damped and Detuned Structures for CLIC –A. D’Elia, R.M. Jones, I. Nesmiyan (UMAN)

TUPAC08 Beam-Based Alignment of Sextupoles at the APS –A. Xiao (ANL)

TUPAC09 Serpentine Acceleration with a Generalized Time ofFlight – J.S. Berg (BNL)

TUPAC10 Energy Calibration in the AGS Using Depolariza-tion Through Vertical Intrinsic Spin Resonances –Y. Dutheil, L. Ahrens, H. Huang, F. Méot, V. Schoefer(BNL)

TUPAC11 Halo Generation and Control in RHIC – C. Montag,K.A. Drees (BNL)

TUPAC12 A Graphic Interface for Full Control of the RHIC Op-tics – G. Robert-Demolaize, M. Bai (BNL) X. Shen (Indi-ana University)

TUPAC13 Trajectories of Low Energy Electrons in Particle Ac-celerator Magnetic Structures – E.E. Cowan (SyracuseUniversity), K.G. Sonnad (Cornell University (CLASSE),Cornell Laboratory for Accelerator-Based Sciences andEducation) S.A. Veitzer (Tech-X)

TUPAC14 A Linear Envelope Model for Multi-Charge StateLinac – Z.Q. He, Z. Liu, J. Wei, Y. Zhang (FRIB) R.M. Tal-man (Cornell University (CLASSE), Cornell Laboratoryfor Accelerator-Based Sciences and Education)

TUPAC15 Calculation of the Kick Maps Generated by a Hol-low Electron Lens for Studies of High-energy ProtonBeam Collimation – G. Stancari, M. Chung, A. Vali-shev (Fermilab) H.-J. Lee (Pusan National University)V. Moens (EPFL)

TUPAC16 A Preliminary Study on Possible Applications ofCurved Helical Quadrupole Focusing Channel –W. Wan, L.N. Brouwer, S. Caspi, D. Robin, A. Sessler(LBNL)

54 Pasadena, CA, USA, 29 September–4 October 2013

Page 85: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct01

TUPAC17 Limitations of Increasing the Intensity of a Relativis-tic Electron Beam – J.E. Coleman, M.T. Crawford,C. Ekdahl, B.T. McCuistian, D.C. Moir, G. Sullivan(LANL)

TUPAC18 Numerical Model and Self-Consistent Simulations ofCoherent Synchrotron Radiation in Two and ThreeDimensions – C. Huang, B.E. Carlsten, T.J. Kwan(LANL)

TUPAC19 Experimental Verification of Dipole Edge Focusingin Linear Model by Operating in the Weak Focus-ing Regime at the Los Alamos Proton Storage Ring –J.S. Kolski, R.J. Macek, T. Spickermann (LANL)

TUPAC20 Coherent Space Charge Tune Shift Measurements inthe Los Alamos Proton Storage Ring – J.S. Kolski,R.J. Macek, T. Spickermann (LANL)

TUPAC21 Performance Comparisons of Emittance-exchangerBeamlines – C.R. Prokop, P. Piot (Northern Illinois Uni-versity) B.E. Carlsten (LANL) M.D. Church, P. Piot (Fer-milab)

TUPAC22 New Modes of Intense Beam Propagation in GeneralFocusing Lattices – H. Qin, R.C. Davidson (PPPL)

TUPAC23 Generalized Courant-Snyder Theory for Charged Par-ticle Dynamics in General Focusing Lattices – H. Qin,J.W. Burby, R.C. Davidson (PPPL) M. Chung (Fermilab)

TUPAC24 Studies of Ion Beam Charge Neutralization by Ferro-electric Plasma Sources – A.D. Stepanov, R.C. David-son, E.P. Gilson, L. Grisham (PPPL)

TUPAC25 Identification of Intra-Bunch Dynamics using CERNSPS Machine Measurements – O. Turgut, J.D. Fox,C.H. Rivetta (SLAC)

TUPAC26 Nonlinear Beam Dynamics Studies of High Inten-sity, High Brightness Proton Drivers – S. Assadi,P.M. McIntyre (Texas A&M University)

TUPAC27 Exploration of Electron Polarization for the MEICElectron Collider Ring – F. Lin, Y.S. Derbenev, V.S. Mo-rozov, Y. Zhang (JLAB) D.P. Barber (DESY)

01 CollidersTUPAC28 Interaction Region Design and Detector Integration

at MEIC – V.S. Morozov, P.D. Brindza, Y.S. Derbenev,R. Ent, F. Lin, P. Nadel-Turonski, Y. Zhang (JLAB) C. Hyde(Old Dominion University) M.K. Sullivan (SLAC)

05 Beam Dynamics and Electromagnetic Fields

TUPAC29 Space Charge Effects in Optical Bunchers – L.V. Ho,J.P. Duris, R.K. Li, P. Musumeci (UCLA)

TUPAC30 Nonlinear Accelerator Lattice With Transverse Mo-tion Integrable in Normalized Parabolic Coordinates– T.V. Zolkin (University of Chicago) Y. Kharkov, I.A. Mo-rozov (BINP SB RAS) S. Nagaitsev (Fermilab)

TUPAC31 Stability of Emittance vs. Space-Charge DominatedBeams in an Electron Recirculator – S. Bernal,B.L. Beaudoin, M. Cornacchia, D.F. Sutter (UMD)

TUPAC32 Experimental Detection of Envelope Resonance in aSpace-Charge-Dominated Electron Ring – W.D. Stem,B.L. Beaudoin, I. Haber, T.W. Koeth (UMD)

North American PAC 2013 55

Page 86: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

TUPAC33 Measurement of Plasma Wave Speed from Beam EndErosion – D.F. Sutter, B.L. Beaudoin (UMD)

TUPAC34 Experimental Study of Halo Formation in SpaceCharge Dominated Beam – H.D. Zhang, R.B. Fiorito,R.A. Kishek (UMD)

01-Oct-13 16:30 – 18:00 Poster Poster Area Bel AirTUPBA — Poster Session

01 CollidersTUPBA01 Exploring the Possibility of High-energy Polarized

Electron Beam at BEPCII – Z. Duan, Q. Qin (IHEP)M. Bai (BNL)

TUPBA02 Study of Beam-Beam Effects on Proton Beam Polar-ization in RHIC – Z. Duan, Q. Qing (IHEP) M. Bai,A.I. Kirleis, V.H. Ranjbar, D. Smirnov (BNL)

TUPBA03 Accelerator Design for a Circular Higgs Factory inIHEP – J.Y. Tang, Y.W. An, S. Bai, J. Gao, H. Geng,Y.Y. Guo, Q. Qin, D. Wang, N. Wang, S. Wang, Y. Wang,M. Xiao, G. Xu, S.Y. Xu, Y. Yue, J.Y. Zhai, C. Zhang (IHEP)

TUPBA04 AC Dipole Based Optics Measurement and Correc-tion at RHIC – X. Shen, S.-Y. Lee (IUCEEM), M. Bai,Y. Luo, A. Marusic, G. Robert-Demolaize, S.M. White(BNL) R. Tomás (CERN)

TUPBA05 Implementation of Optics Correction on the Ramp inRHIC – C. Liu, A. Marusic, M.G. Minty (BNL)

TUPBA06 Global Optics Correction in RHIC Based on Turn-by-turn Data from ARTUS Tune Meter – C. Liu, M. Bai,M. Blaskiewicz, K.A. Drees, W. Fischer, A. Marusic,M.G. Minty, G. Robert-Demolaize (BNL)

TUPBA07 Maximizing Dynamic Aperture with Head-on Beam-beam Compensation in RHIC – Y. Luo, W. Fischer,S.M. White (BNL)

TUPBA08 Measurement of Beam Optical Functions during Ac-celeration in RHIC – M.G. Minty, K.A. Drees, R.L. Hul-sart, A. Marusic, R.J. Michnoff, P. Thieberger (BNL)

TUPBA09 Simulation of High Power Mercury Jet Targets forNeutrino Factory, Muon Collider, and Beyond– V. Samulyak, H.G. Kirk (BNL) H.C. Chen (SBU)K.T. McDonald (PU)

TUPBA10 Impact of the Proton Beam Bunch Length on the Per-formance of the Front End of a Neutrino Factory – H.K. Sayed, J.S. Berg, H.G. Kirk (BNL) K.T. McDonald (PU)

TUPBA11 Towards a Global Optimization of the Muon Collider/ Neutrino Factory Front End Baseline – H. K. Sayed,J.S. Berg, H.G. Kirk, R.B. Palmer, D. Stratakis (BNL)D.V. Neuffer (Fermilab)

TUPBA12 Design of ILC RTML Extraction Lines for the Ren-ovated Two-stage Bunch Compressor – S. Seletskiy(BNL)

TUPBA13 Non-scaling FFAG for Electron-ion Collider inRHIC (eRHIC) – D. Trbojevic, J.S. Berg, S.J. Brooks,O.V. Chubar, Y. Hao, V. Litvinenko, C. Liu, W. Meng,F. Méot, B. Parker, V. Ptitsyn, T. Roser, N. Tsoupas,W.-T. Weng (BNL)

56 Pasadena, CA, USA, 29 September–4 October 2013

Page 87: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct01

TUPBA14 Dynamical Beta Squeeze from 80 to 40 cm at RHICTop Energy – D. Trbojevic, C. Liu, Y. Luo (BNL)

TUPBA15 eRHIC Interaction Region Design* – D. Trbojevic,E.C. Aschenauer, V. Litvinenko, B. Parker, V. Ptitsyn (BNL)

TUPBA16 Production of Tritium at Zero Cost in Blewett Strong-Focusing Self-Collider – B.C. Maglich, T. Hester(CALSEC) M. Srivinivasan (BARC)

TUPBA17 A Muon Collider as a Higgs Factory – D.V. Neuffer,Y.I. Alexahin, M.A. Palmer (Fermilab) J.-P. Delahaye(SLAC)

TUPBA18 The Nustorm Facility-Muon Storage Ring and Injec-tion Design – A. Liu, A.D. Bross, D.V. Neuffer (Fermilab)S.A. Bogacz (JLAB) S.-Y. Lee (Indiana University)

TUPBA20 A Staged Muon-based Facility to enable Intensity andEnergy Frontier Science in the US – J.-P. Delahaye(SLAC) C.M. Ankenbrandt (Muons. Inc.) C.M. Anken-brandt, S. Brice, A.D. Bross, D.S. Denisov, E. Eichten,R.J. Lipton, D.V. Neuffer, M.A. Palmer, P. Snopok (Fermi-lab) S.A. Bogacz (JLAB) P. Huber (Virginia PolytechnicInstitute and State University) D.M. Kaplan, P. Snopok(Illinois Institute of Technology) H.G. Kirk, R.B. Palmer(BNL) R.D. Ryne (LBNL)

TUPBA21 Beam-Beam Studies for HL-LHC – A. Valishev (Fermi-lab)

TUPBA22 Study Muon Polarization in Muon Collider –K. Yonehara (Fermilab)

TUPBA23 Coherent Instability Due to Beam-Beam Interactionin Hadron Colliders – S. Paret, J. Qiang (LBNL)

TUPBA24 Particle Flow Algorithm Application for Lepton Col-lider Background Mitigation – M.A.C. Cummings,P. Saha, V. Zutshi (Northern Illinois University)

TUPBA25 Design And High Order Optimization Of The ATF2Lattices – E. Marín, G.R. White, M. Woodley (SLAC)K. Kubo, T. Okugi, T. Tauchi, J. Urakawa (KEK) R. Tomás(CERN)

TUPBA26 Coupling Spin Resonances With Siberian Snakes –N.Z. Khalil (SBU) V. Ptitsyn (BNL)

01-Oct-13 16:30 – 18:00 Poster Poster Area Hollywood

TUPHO — Poster Session

01 CollidersTUPHO01 The RHIC E-Lens Test Bench Experimental Results

– X. Gu, Z. Altinbas, E.N. Beebe, W. Fischer, B. Frak,D.M. Gassner, K. Hamdi, J. Hock, L.T. Hoff, P. Kankiya,R.F. Lambiase, Y. Luo, M. Mapes, J.-L. Mi, T.A. Miller,C. Montag, S. Nemesure, R.H. Olsen, A.I. Pikin, D. Ra-paria, P.J. Rosas, J. Sandberg, Y. Tan, C. Theisen,P. Thieberger, J.E. Tuozzolo, W. Zhang (BNL)

TUPHO02 Electron Cooling Simulations for MEIC – G.I. Bell,I.V. Pogorelov, B.T. Schwartz (Tech-X) H. Zhang,Y. Zhang (JLAB)

North American PAC 2013 57

Page 88: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

TUPHO03 Advances in MEIC Design Studies – Y. Zhang, Y.S. Der-benev, D. Douglas, A. Hutton, G.A. Krafft, R. Li, F. Lin,V.S. Morozov, E.W. Nissen, R.A. Rimmer, C. Tennant,H. Wang, S. Wang, B.C. Yunn, H. Zhang (JLAB) D.P. Bar-ber (DESY) A.M. Kondratenko (Science and TechniqueLaboratory Zaryad) M.K. Sullivan (SLAC)

TUPHO04 Electron Cooling Simulation for the Ion Collider Ringin MEIC and LEIC – H. Zhang, Y. Zhang (JLAB)

TUPHO05 Advances in MEIC Electron Cooling Studies –Y. Zhang, Y.S. Derbenev, D. Douglas, A. Hutton, R. Li,C. Tennant, H. Zhang (JLAB) E.W. Nissen (NorthernIllinois University)

01-Oct-13 16:30 – 18:00 Poster Poster Area MalibuTUPMA — Poster Session

02 Light Sources

TUPMA01 Status and Future Plan of the Development of a Com-pact X-ray Source Based on ICS at Laser Undula-tor Compact X-ray (LUCX) – M.K. Fukuda, S. Araki,A.S. Aryshev, Y. Honda, N. Terunuma, J. Urakawa (KEK)K. Sakaue, M. Washio (RISE)

TUPMA02 High-chromaticity Optics for the MAX IV 3 GeV Stor-age Ring – T. Olsson, S.C. Leemann (MAX-lab)

TUPMA03 Creation of High-charge Bunch Trains from the APSInjector for Swap-out Injection – C. Yao, M. Borland,L. Donley, L. Emery, F. Lenkszus (ANL)

TUPMA04 Observation of +1 Bucket Bunch Impurity Growth atthe APS Storage Ring – C. Yao, M. Borland, B.X. Yang(ANL)

TUPMA05 Alignment of the NSLS-II Linac – R.P. Fliller, D. Davis,F.X. Karl, T.V. Shaftan (BNL)

TUPMA06 Comparison of the NSLS-II Linac Model to Measure-ments – R.P. Fliller, T.V. Shaftan (BNL)

TUPMA07 Future Upgrades of the NSLS-II Injector – T.V. Shaf-tan, R.P. Fliller, J. Rose, G.M. Wang, F.J. Willeke (BNL)

TUPMA08 Subpicosecond Bunch Train Production for HighPower Tunable THz Source – S.P. Antipov, C.-J. Jing,A. Kanareykin, P. Schoessow (Euclid TechLabs, LLC)M.G. Fedurin (BNL) W. Gai, A. Zholents (ANL) V. Yaki-menko (SLAC)

TUPMA09 Analysis and Optimization of Coupler Effects onAPEX Beam – H.J. Qian, S. Kwiatkowski, C. F. Pa-padopoulos, Z. Paret, F. Sannibale, J.W. Staples,R.P. Wells (LBNL)

TUPMA10 LLNL X-band Test Station Status – R.A. Marsh, F. Al-bert, G.G. Anderson, S.G. Anderson, C.P.J. Barty, D.J. Gib-son, F.V. Hartemann, S.S.Q. Wu (LLNL)

TUPMA11 Photo-injector Optimization Studies for the MaRIEX-Ray Free Electron Laser – L.D. Duffy, B.E. Carl-sten, F.L. Krawczyk, J.W. Lewellen, S.J. Russell (LANL)C. Limborg-Deprey (SLAC)

TUPMA12 Low Emittance Injector Design for the MaRIE1.0 X-FEL Linac – S.J. Russell, B.E. Carlsten,L.D. Duffy, F.L. Krawczyk, S.S. Kurennoy, J.W. Lewellen,R.L. Sheffield (LANL)

58 Pasadena, CA, USA, 29 September–4 October 2013

Page 89: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct01

TUPMA13 Shaping Electron Bunches for Ultra-bright ElectronBeam Acceleration in Dielectric Loaded Waveguides– E.I. Simakov, C. Huang, T.J. Kwan, D.Y. Shchegolkov(LANL)

TUPMA14 Two-Stream Instability at Soft X-ray Wavelengthsfor Increasing Brightness of Compton Sources.– N.A. Yampolsky, G.L. Delzanno, C. Huang,D.Y. Shchegolkov (LANL)

TUPMA15 Monte Carlo Simulations of Charge Transport andPhotoemission from Electron Affinity GaAs Photo-cathodes – Y. Choi, D.A. Dimitrov, C. Nieter (Tech-X)I.V. Bazarov, S.S. Karkare (Cornell University (CLASSE),Cornell Laboratory for Accelerator-Based Sciences andEducation)

TUPMA16 High Capture Low Energy Spread Inverse Free Elec-tron Laser Accelerator – J.P. Duris (UCLA)

TUPMA17 Prototype Controlled Porosity Reservoir Photocath-ode: Design and Demonstration – E.J. Montgomery,D.W. Feldman, P.Z. Pan, B.C. Riddick (UMD) A.L. Day(Wellesley College) R.L. Ives (CCR) K. L. Jensen (NRL)

TUPMA18 DMD-Based Photocathode QE Mapping – B.C. Rid-dick, R.B. Fiorito, S.A. Khan, E.J. Montgomery, P.Z. Pan,A.G. Shkvarunets (UMD)

TUPMA19 Wisconsin SRF Gun Commissioning – J. Bisognano,M.J. Bissen, R.A. Bosch, M.Y. Efremov, D. Eisert,M.V. Fisher, M.A. Green, K. Jacobs, K.J. Kleman, R.A. Legg,G.C. Rogers, M.C. Severson, D. Yavuz (UW-Madison/SRC)

TUPMA20 Effect of RF Gradient upon the Performance of theWisconsin SRF Electron Gun – R.A. Bosch (UW-Madison/SRC) R.A. Legg (JLAB)

TUPMA21 Rejuvenation of a Cesium-Based Dispenser Photo-cathode in Response to Atmospheric Contamination– A.L. Day (Wellesley College) S. Eustice, S.A. Khan,E.J. Montgomery, B.C. Riddick (UMD) K. L. Jensen (NRL)

01-Oct-13 16:30 – 18:00 Poster Poster Area Santa MonicaTUPSM — Poster Session

06 Accelerator Systems

TUPSM01 Study on 2 Cell RF-Deflector Cavity for Ultra-shortElectron Bunch Measurement – T. Takahashi,Y. Nishimura, M. Nishiyama, K. Sakaue, M. Washio(Waseda University) T. Takatomi, J. Urakawa (KEK)

TUPSM02 Design and Experiment of a Compact C-band Photo-cathode RF Gun for UED – X.H. Liu (TUB)

TUPSM03 10s Femtosecond Bunch Length Measurement Basedon Coherent Transition Radiation – X.H. Lu (TUB)R.K. Li, P. Musumeci, K.G. Roberts, H.L. To (UCLA)

TUPSM04 High-Charge Femtosecond Electron Generations forUltrafast, High-Brightness Electron Beam Applica-tions – J.H. Park, H. Bluem, J. Rathke, T. Schultheiss,A.M.M. Todd (AES)

North American PAC 2013 59

Page 90: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

TUPSM05 Studies of Field and Photo-emission in a New Short-pulse, High-charge Cs2Te RF Photocathode Gun –E.E. Wisniewski, M.E. Conde, W. Gai, C.-J. Jing, W. Liu,J.G. Power (ANL) C.-J. Jing (Euclid TechLabs, LLC)L.K. Spentzouris, Z.M. Yusof (Illinois Institute of Tech-nology)

TUPSM06 The Cathode Preparation Chamber for the DC HighCurrent High Polarization Gun (The Gatling Gun) –O.H. Rahman, I. Ben-Zvi, D.M. Gassner, A.I. Pikin,T. Rao, E.J. Riehn, B. Sheehy, J. Skaritka, E. Wang, Q. Wu(BNL) I. Ben-Zvi (Stony Brook University)

TUPSM07 Parmela Simulation for BNL 704MHz SRF Gun in LowEmittance Operation – E. Wang, I. Ben-Zvi, J. Kewisch(BNL)

TUPSM08 Beam Dynamics and Design of a Funneling ElectronGun – E. Wang, I. Ben-Zvi, D.M. Gassner, W. Meng,A.I. Pikin, O.H. Rahman, T. Rao, E.J. Riehn, J. Skaritka(BNL)

TUPSM09 A Two-Frequency Gun for High Current ThermionicCathode Election Injection Systems – J.P. Edelen,S. Biedron, J.R. Harris, S.V. Milton (CSU) J.W. Lewellen(LANL)

TUPSM10 The Conceptual Design of PXIE Vacuum System –A.Z. Chen, V.A. Lebedev, A.V. Shemyakin (Fermilab)

TUPSM11 Development of a Compact Photo-injector with RF-Focusing Lens for Short Pulse Electron Source Appli-cation – Y.-M. Shin (Fermilab) D.W. Eaton (ScandinovaSystems AB) A.F. Grabenhofer (Northern Illinois Univer-sity)

TUPSM12 High Power Test of a 3.9 GHz 5-Cell deflecting-mode cavity in a cryogenic operation – Y.-M. Shin,M.D. Church (Fermilab)

TUPSM13 RF Gun Water Temperature Control System at ASTA– P. Stabile, M. Ball, J. Czajkowski, J.D. Firebaugh,P.A. Kasley, P.S. Prieto, T.J. Zuchnik (Fermilab)

TUPSM14 Development of EPICS Control Systems for LambdaEMS and TCR Power Supplies – A. Andrews, B.L. Berls,K. Folkman, Y. Kim, C. O’Neill, J. Ralph (IAC) P. Buaphad,C.F. Eckman, Y. Kim (ISU)

TUPSM15 The Muon Ionization Cooling Experiment: Controlsand Monitoring System – P.M. Hanlet (IIT)

TUPSM16 Progress Report of H- Ion Beam Production at theLANL Ion Source Test Stand – I. Draganic, Y.K. Baty-gin, C.M. Fortgang, R.W. Garnett, J.G. Gioia, S.S. Kuren-noy, R.C. McCrady, J.F. O’Hara, M. Pieck, G. Rouleau,L. Rybarcyk, F.E. Shelley (LANL)

TUPSM17 A Specialized MEBT Design for the LANSCE H+

RFQ Upgrade Project – C.M. Fortgang, Y.K. Batygin,R.W. Garnett, S.S. Kurennoy, L. Rybarcyk (LANL)

TUPSM18 Design of a Duoplasmatron Extraction Geome-try and LEBT for the LANSCE H+ RFQ Project –C.M. Fortgang, Y.K. Batygin, I. Draganic, R.W. Garnett,R.C. McCrady, L. Rybarcyk (LANL)

TUPSM19 Application and Calibration Aspects of a New High-Performance Beam-Dynamics Simulator for theLANSCE Linac – L. Rybarcyk, X. Pang (LANL)

60 Pasadena, CA, USA, 29 September–4 October 2013

Page 91: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct01

TUPSM20 Integration between the FRIB Linac Mechanical CADModel Geometry and the Accelerator Physics LatticeDatabase – M.J. Johnson (NSCL) N.K. Bultman, M. Leit-ner, Q. Zhao (FRIB)

TUPSM21 Beam Brightness Booster with Ionization Cooling ofSuper-intense Circulating Beams –C.M. Ankenbrandt, V.G. Dudnikov (Muons. Inc.)

TUPSM22 Improving Efficiency of Ion Production in a SaddleAntenna Surface Plasma Source – V.G. Dudnikov,R.P. Johnson (Muons. Inc.) C.A. Johnson (UW-Madison)S.N. Murray (ORNL RAD) T.R. Pennisi, C. Piller, M. San-tana, M.P. Stockli, R.F. Welton (ORNL) M.W. Turvey (Uni-versity of Florida)

TUPSM23 Quarter-Wave Superconducting RF Electron Gunswith Field-Emitter Array Cathodes – C.H. Boulware,T.L. Grimm (Niowave, Inc.)

TUPSM24 Operation of a Field-Emission Diamond Cathode inan RF-gun – P. Piot, B.R. Blomberg, D. Mihalcea,H. Panuganti (Northern Illinois University) C.A. Brau,B.K. Choi, J.D. Jarvis, M.H. Mendenhall (Vanderbilt Uni-versity) W.E. Gabella (Vanderbilt University, W.M. KeckFoundation Free-Electron Laser Center) P. Piot (Fermi-lab)

TUPSM25 Recent CsTe Cathode Investigations at Fermilab’sHBESL – H. Panuganti, P. Piot, C.R. Prokop (NorthernIllinois University) P. Piot (Fermilab)

TUPSM26 Android Application for Monitoring the Status of theAdvanced Photon Source – M. Borland (Private Ad-dress)

TUPSM27 High-power Tests and Initial Electron Beam Measure-ments of the New High-gradient Normal-conductingRF Photoinjector System for the Sincrotrone Trieste– L. Faillace, R.B. Agustsson, P. Frigola (RadiaBeam)J.B. Rosenzweig (UCLA)

TUPSM28 Status of the experimental setup of an InnovativeLow-Energy Ultra-Fast Electron Diffraction (UED)System – L. Faillace, S. Boucher, A.V. Smirnov (Radi-aBeam) P. Musumeci, E.W. Threlkeld (UCLA)

TUPSM29 Operational Testing and Performance Results of aMiniature ECR Source – W. D. Cornelius (SSolutions)

TUPSM30 Modeling the Development and Mitigation of ChargeAccumulation for Photo Emission Electron Guns –C. Nieter, Y. Choi, D.A. Dimitrov (Tech-X)

North American PAC 2013 61

Page 92: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

02-Oct-13 16:30 – 18:00 Poster Poster Area Angeles Crest

WEPAC — Poster Session

07 Accelerator Technology

WEPAC01 Thermal Dynamics Study of Crab Cavity for SPXProject at Advanced Photon Source – Y. Yang (TUB)P. Dhakal, J.D. Mammosser, H. Wang (JLAB) J.D. Fuerst,J.P. Holzbauer, A. Nassiri, G. Wu, Y. Yang (ANL)

WEPAC02 Copper Prototype Measurement of SC Deflecting Cav-ity for SPX Project at Advanced Photon Source –Y. Yang, A. Nassiri, T.L. Smith, G.J. Waldschmidt (ANL)H. Wang (JLAB) Y. Yang (TUB)

WEPAC03 An Increased Gradient Design for the ReA6 QuarterWave Resonators – Z. Zheng, Z.Q. He (TUB) A. Facco(INFN/LNL) A. Facco, Z.Q. He, Z. Liu, J. Wei, Y. Zhang,Z. Zheng (FRIB)

WEPAC04 Hydrogen Degassing Study During the Heat Treat-ment of 1.3-GHz SRF Cavities – M.J. Joung, H.J. Kim(IBS) A.M. Rowe, M. Wong (Fermilab)

WEPAC05 Measurement of a Superconducting Solenoid withApplications to Low-beta SRF Cryomodules –S.H. Kim, Z.A. Conway, M.P. Kelly, P.N. Ostroumov(ANL) E. Burkhardt (Cryomagnetics, Inc.)

WEPAC06 Mechanical Design of the 704 MHz 5-cell SRF Cav-ity Cold Mass for CeC PoP Experiment – J.C. Brutus,S.A. Belomestnykh, I. Ben-Zvi, Y. Huang, V. Litvinenko,I. Pinayev, J. Skaritka, L. Snydstrup, R. Than, J.E. Tuoz-zolo, W. Xu (BNL) T.L. Grimm, R. Jecks, J.A. Yancey(Niowave, Inc.)

WEPAC07 Mechanical Design of 112 MHz SRF Gun FPC forCeC PoP Experiment – J.C. Brutus, S.A. Belomestnykh,Y. Huang, V. Litvinenko, G.J. Mahler, I. Pinayev, J. Skar-itka, L. Snydstrup, R. Than, J.E. Tuozzolo, Q. Wu, T. Xin(BNL)

WEPAC09 A Multi-cell Temperature Mapping System for SRFCavities at Cornell University – G.M. Ge, G.H. Hoff-staetter (Cornell University (CLASSE), Cornell Labora-tory for Accelerator-Based Sciences and Education)

WEPAC10 Investigation of the Surface Resistivity of SRF Cavi-ties via the Multi-cell Temperature Mapping Systemat Cornell – G.M. Ge, G.H. Hoffstaetter (Cornell Univer-sity (CLASSE), Cornell Laboratory for Accelerator-BasedSciences and Education)

WEPAC11 Cornell’s Main Linac Cryo-module Prototype for theERL – G. Eichhorn, Y. He, G.H. Hoffstaetter, M. Liepe,T. O’Connel, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith,V. Veshcherevich (Cornell University (CLASSE), CornellLaboratory for Accelerator-Based Sciences and Educa-tion)

WEPAC12 Theoretical Description of SIS Multilayer Films forSRF Cavities – S. Posen, M. Liepe (Cornell University(CLASSE), Cornell Laboratory for Accelerator-Based Sci-ences and Education) G. Catelani (ForschungszentrumJülich, Peter Gruenberg Institut (PGI-2)) J.P. Sethna (Cor-nell University) M.K. Transtrum (M.D.A.C.C.)

62 Pasadena, CA, USA, 29 September–4 October 2013

Page 93: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct02

WEPAC13 Achieving High Accuracy in Cornell’s ERL Cavity Pro-duction – G. Eichhorn, B. Bullock, B. Clasby, B. Elmore,J.J. Kaufman, S. Posen, J. Sears, V.D. Shemelin (CornellUniversity (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education) T. Kürzeder (TU Darm-stadt)

WEPAC14 Studies of the Superconducting Traveling Wave Cav-ity for High Gradient Linac – P.V. Avrakhov, A. Kana-reykin, R.A. Kostin (Euclid TechLabs, LLC) N. Solyak,V.P. Yakovlev (Fermilab)

WEPAC15 Ferroelectric Based High Power RF Components forL-band Accelerator Applications – A. Kanareykin (Eu-clid TechLabs, LLC) S. Kazakov, V.P. Yakovlev (Fermilab)A.B. Kozyrev (LETI) E. Nenasheva (Ceramics Ltd.)

02 Light Sources

WEPAC16 A Beam-Driven Short Wavelength Microwave Undu-lator for FEL – A. Kanareykin (Euclid TechLabs, LLC)S. Baturin (LETI) C.-J. Jing, A. Zholents (ANL)

07 Accelerator Technology

WEPAC17 Study on Particulate Retention on Polished NiobiumSurfaces after BCP Etching – I.M. Malloch, C. Comp-ton, L. Popielarski (FRIB)

WEPAC18 SRF Cavity Etching Developments for FRIB CavityProcessing – K. Elliott (NSCL), I.M. Malloch (FRIB)

WEPAC19 Using Higher Order Modes of a Quarter Wave Res-onator to Accelerate Ion Beam – E. Pozdeyev (FRIB)

WEPAC20 Magnetic Shield Optimization for the FRIB Supercon-ducting Quarter-Wave Resonator Cryomodule – Y. Xu,A.D. Fox, M.J. Johnson, M. Leitner, S.J. Miller, K. Saito,M. Shuptar (FRIB)

WEPAC21 Tuning Process of SSR1 Cavity for Project X at FNAL –P. Berrutti, M.H. Awida, T.N. Khabiboulline, L. Ristori,V.P. Yakovlev (Fermilab)

WEPAC22 Single Spoke Resonator Inner Electrode Optimiza-tion Driven by Reduction of Multipoles – P. Berrutti,T.N. Khabiboulline, L. Ristori, N. Solyak, V.P. Yakovlev(Fermilab)

WEPAC23 Multipacting Simulations of SSR2 Cavity at FNAL –P. Berrutti, T.N. Khabiboulline, L. Ristori, G.V. Romanov,V.P. Yakovlev (Fermilab)

WEPAC24 Mechanical Resonance Simulations of Dressed SRFCavities – I.V. Gonin, M.H. Awida, T.N. Khabiboulline,Y.M. Pischalnikov, L. Ristori, W. Schappert, V.P. Yakovlev(Fermilab)

WEPAC25 New Helium Vessel and Lever Tuner Designs for 650MHz Project X Cavities – I.V. Gonin, M.H. Awida,E. Borissov, M.H. Foley, C.J. Grimm, T.N. Khabiboulline,M. Merio, T.J. Peterson, L. Ristori, V.P. Yakovlev (Fermi-lab)

WEPAC26 Development of Variable Coupler for Vertical Test-ing of High Q SRF Single Cell Cavities – M.H. Awida,A. Grassellino, T.N. Khabiboulline, Y.M. Pischalnikov,V. Poloubotko, K.S. Premo, V.P. Yakovlev (Fermilab)

North American PAC 2013 63

Page 94: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

WEPAC27 High Q SCRF Cavities R&D Program at Fermilab –A. Grassellino, A.C. Crawford, R.D. Kephart, O.S. Melny-chuk, A. Romanenko, A.M. Rowe, D.A. Sergatskov, V.P. Ya-kovlev (Fermilab) Y. Trenikhina (IIT)

WEPAC28 R&D Program for 650 MHz Niobium Cavities forProject X – A. Grassellino, A.C. Crawford, C.M. Gins-burg, T.N. Khabiboulline, O.S. Melnychuk, A. Roma-nenko, A.M. Rowe, D.A. Sergatskov, A.I. Sukhanov,V.P. Yakovlev (Fermilab)

WEPAC29 CM2, Second 1.3GHz Cryomodule Fabrication atFermilab – T.T. Arkan, M.H. Awida, P. Berrutti,E. Borissov, C.M. Ginsburg, C.J. Grimm, E.R. Harms,A. Hocker, T.N. Khabiboulline, Y. Orlov, Y.M. Pischal-nikov, K.S. Premo, L. Ristori, V.P. Yakovlev (Fermilab)

WEPAC30 The Double-Lever Tuning System for SSR1 – L. Ristori(Fermilab)

WEPAC31 Mechanical Design of SSR2 Resonators for Project Xand RISP – L. Ristori, M.H. Awida, P. Berrutti, I.V. Gonin,T.N. Khabiboulline, M. Merio, D. Passarelli (Fermilab)

WEPAC32 Wakefield Loss Analysis of the Elliptical 3.9 GHzThird Harmonic Cavity – M.H. Awida, P. Berrutti,T.N. Khabiboulline, A. Saini, V.P. Yakovlev (Fermilab)

WEPAC33 Results of the New High Power Tests of Super-conducting Photonic Band Gap Structure Cells –E.I. Simakov, S. Arsenyev, W.B. Haynes, S.S. Kurennoy,D. C. Lizon, J.F. O’Hara, E.R. Olivas, D.Y. Shchegolkov,T. Tajima (LANL) S. Arsenyev (MIT/PSFC) C.H. Boulware,T.L. Grimm (Niowave, Inc.)

WEPAC34 Designing PBG Resonators for Effective HOM Sup-pression in SRF Accelerators – S. Arsenyev (MIT/PSFC)E.I. Simakov (LANL)

WEPAC35 Multipactor Suppression Via Secondary Modes In ACoaxial Cavity – S.A. Rice, J.P. Verboncoeur (MichiganState University)

WEPAC36 A Comparison of Multipactor Predictions UsingTwo Popular Secondary Electron Models – S.A. Rice,J.P. Verboncoeur (Michigan State University)

WEPAC37 700 MHz Multi-Spoke Accelerating Cavity for LightSources with Integrated Cryocooler – D. Gorelov,C.H. Boulware, T.L. Grimm (Niowave, Inc.)

WEPAC38 500 MHz SRF Quarter-Wave Accelerating Cavity forLight Sources – C.H. Boulware, T.L. Grimm (Niowave,Inc.)

WEPAC39 Tests of an RF Dipole Crabbing Cavity for anElectron-Ion Collider – A. Castilla, J.R. Delayen(ODU) A. Castilla, J.R. Delayen (JLAB) A. Castilla(DCI-UG)

WEPAC40 Mechanical Analysis of the 400 MHz RF-Dipole Crab-bing Cavity Prototype for LHC High Luminosity Up-grade – S.U. De Silva, J.R. Delayen, H. Park (ODU)S.U. De Silva, J.R. Delayen, H. Park (JLAB) Z. Li (SLAC)

64 Pasadena, CA, USA, 29 September–4 October 2013

Page 95: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct02

WEPAC41 Comparison of Electromagnetic, Thermal and Me-chanical Calculation with RF Test Results in RF-Dipole Deflecting/Crabbing Cavities – H. Park,S.U. De Silva, J.R. Delayen (JLAB) S.U. De Silva,J.R. Delayen, H. Park (ODU)

WEPAC42 Geometry Effects on Multipole Components andBeam Emittance in High-velocity Multi-spoke Cavi-ties – C.S. Hopper, K.E. Deitrick, J.R. Delayen (ODU)J.R. Delayen (JLAB)

WEPAC43 Study of Cavity Imperfection Impact on RF Parame-ters and Multipole Components in a Superconduct-ing RF Dipole Cavity – R.G. Olave, S.U. De Silva,J.R. Delayen (ODU)

WEPAC44 Higher Order Modes Damping and MultipactingAnalysis for the SPX Deflecting Cavity in APS Up-grade – C.-K. Ng, Z. Li, L. Xiao (SLAC) A. Nassiri,G.J. Waldschmidt, G. Wu (ANL) R.A. Rimmer, H. Wang(JLAB)

WEPAC45 Effects of Cavity Imperfection for Project X CW Super-conducting Linac Using ACE3P – C.-K. Ng, L. Ge, Z. Li,L. Xiao (SLAC)

02 Light Sources

WEPAC46 Wakefield Computations for a Corrugated Pipe asa Beam Dechirper for FEL Applications – C.-K. Ng,K.L.F. Bane (SLAC)

07 Accelerator Technology

WEPAC47 Mechanical Design of a New Injector Cryomodule2-cell Cavity at CEBAF – G. Cheng, J. Henry, J.D. Mam-mosser, R.A. Rimmer, H. Wang, M. Wiseman, S. Yang(JLAB)

WEPAC48 Low HOM Impedance SRF Cavity for MEIC – S. Wang,R.A. Rimmer, H. Wang, Y. Zhang (JLAB)

02-Oct-13 16:30 – 18:00 Poster Poster Area Bel AirWEPBA — Poster Session

05 Beam Dynamics and Electromagnetic Fields

WEPBA01 Noise Reduction using Filters on Turn-by-Turn LHCOrbits to Obtain Magnetic Errors with the Action andPhase Jump Analysis Method – A.C. Garcia-Bonilla,J.F. Cardona (UNAL)

WEPBA02 Observation of Peaks of Synchrotron Oscillation ofa cold ion beam in S-LSR – K. Jimbo (Kyoto Univer-sity) M. Nakao, A. Noda, T. Shirai (NIRS) H. Souda(Gunma University, Heavy-Ion Medical Research Center)H. Tongu (Kyoto ICR) Y. Yuri (JAEA/TARRI)

WEPBA03 Beam-based RF-to-Laser Jitter Measurement in aPhotocathode RF Gun – Y.-C. Du, H.B. Chen, J.F. Hua,W.-H. Huang, C.-X. Tang, L.X. Yan (TUB) Q. Du (Ts-inghua University)

WEPBA04 Luminosity Estimation and Beam Phase Space Anal-ysis at VEPP-2000 – A.L. Romanov, I. Koop, E. Pereve-dentsev, D.B. Shwartz (BINP SB RAS)

WEPBA05 Combining Multiple BPM Measurements for Preces-sion AC Dipole Bump Closure – P. Oddo, M. Bai,W.C. Dawson, J. Kewisch, Y. Makdisi, C. Pai, P.H. Pile,T. Roser (BNL)

North American PAC 2013 65

Page 96: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

WEPBA06 Stripline Beam Impedance – A. Blednykh, W.X. Cheng,S. Krinsky (BNL)

WEPBA07 Longitudinal Wakefield for an Axisymmetric Collima-tor – A. Blednykh, S. Krinsky (BNL)

WEPBA08 Wake Fields due to Wall Roughness for Realistic Sur-faces – A.V. Fedotov, I. Pinayev (BNL) A. Novokhatski(SLAC)

WEPBA09 Changes in Electron Cloud Density with Beam Con-ditioning at CesrTA – J.P. Sikora, J.A. Crittenden,D.O. Duggins, Y. Li, X. Liu (Cornell University (CLASSE),Cornell Laboratory for Accelerator-Based Sciences andEducation) S. De Santis (LBNL)

WEPBA10 Electron Cloud Measurements Using a ShieldedPickup in a Quadrupole at CesrTA – J.P. Sikora,M.G. Billing, J.V. Conway, J.A. Lanzoni, Y. Li (CornellUniversity (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education)

WEPBA11 Tomographic Reconstruction of Transverse PhaseSpace for Strongly Coupled Beams – Z. Liu, Y. Zhang,Z. Zheng (FRIB) Z.Q. He (TUB)

WEPBA12 Magnetic Field Expressions for Helical AcceleratorMagnets – L.N. Brouwer, S. Caspi, D. Robin, W. Wan(LBNL)

WEPBA13 Retrieval of Effective Parameters of Metamaterialsfor Accelerator and Vacuum Electron Device Ap-plications – Z. Duan, J.S. Hummelt, M.A. Shapiro,R.J. Temkin (MIT/PSFC)

WEPBA14 Simulation of Wakefields from an Electron Bunch ina Metamaterial Waveguide – M.A. Shapiro, J.S. Hum-melt, B.J. Munroe, R.J. Temkin (MIT/PSFC) S.M. Lewis(MIT)

WEPBA15 Ribbon Electron Beam Source for Bunched BeamProfile Monitor and Tomography – V.G. Dudnikov(Muons. Inc.), A.V. Aleksandrov (ORNL)

WEPBA16 Possible Experiments on Wave Function LocalizationDue to Compton Scattering – V.V. Danilov, A.V. Alek-sandrov, J. Galambos, T.V. Gorlov, Y. Liu, A.P. Shishlo(ORNL) S. Nagaitsev (Fermilab)

WEPBA17 Measurement of Non-Linear Insert Magnets –F.H. O’Shea, R.B. Agustsson, A.Y. Murokh, E. Spranza(RadiaBeam) S. Nagaitsev, A. Valishev (Fermilab)

WEPBA18 Performance of Planar Radiator in the Radiabeam-IAC Experiment – A.V. Smirnov, R.B. Agustsson,S. Boucher, J.J. Hartzell, S. Storms (RadiaBeam) Y. Kim(IAC)

WEPBA19 Wakefield Calculations for Septum Magnet in LCLS-II– K.L.F. Bane, T.O. Raubenheimer (SLAC)

WEPBA20 New Technique to Measure the Emittance of Beamswith Space Charge – K. Poor Režaei, R.B. Fiorito,R.A. Kishek (UMD)

66 Pasadena, CA, USA, 29 September–4 October 2013

Page 97: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct02

02-Oct-13 16:30 – 18:00 Poster Poster Area Hollywood

WEPHO — Poster Session

07 Accelerator Technology

WEPHO01 High Power RF System for E-linac for TRIUMF –A.K. Mitra, Z.T. Ang, I.V. Bylinskii, S. Calic, D. Dale,S.R. Koscielniak, R.E. Laxdal, F. Mammarella (TRIUMF)

WEPHO02 Solid-state Marx Modulator for RF Accelerators –B. Cadilhon, B. Cassany (CEA)

WEPHO03 The Layout of 352 MHz 400 kW Power Amplifier –A.Yu. Smirnov, E.V. Ivanov, A.A. Krasnov, K.I. Nikol-skiy, S.A. Polikhov, I. Režanov (Siemens Research Center)G.B. Sharkov (Siemens LLC)

WEPHO04 The Layout of 72 MHz 16 kW RF Power Generator –A.Yu. Smirnov, E.V. Ivanov, A.A. Krasnov, K.I. Nikol-skiy, S.A. Polikhov, I. Režanov (Siemens Research Center)G.B. Sharkov (Siemens LLC)

WEPHO05 Overview of the RHIC e-Lens Superconducting Mag-net Power Supply System – D. Bruno, A. Di Lieto,G. Ganetis, R.F. Lambiase, W. Louie, C. Mi, T. Samms,J. Sandberg (BNL)

WEPHO06 Elens Superconducting Magnet Power Supply SystemDesign, Testing, Installation and Commissioning –C. Mi, D. Bruno, A. Di Lieto, T. Samms, J. Sandberg,C. Schultheiss, C. Sirio, R. Zapasek (BNL)

WEPHO07 RHIC IR Power Supply Performance Upgrade overRun 11, 12 and 13 – C. Mi, D. Bruno, A. Di Lieto, G. Hep-pner, W. Ng, T. Samms, J. Sandberg, C. Schultheiss,C. Sirio, R. Zapasek (BNL)

WEPHO08 200 kW CW, 350 MHz Multiple Beam Inductive Out-put Tube – R.L. Ives, G. Collins, R. Karimov, D. Marsden,M.E. Read (CCR) E.L. Eisen, T. Kumura (CPI)

WEPHO09 10 MW, L-Band, Annular Beam Klystron for Accelera-tor Applications – M.E. Read, G. Collins, P. Ferguson,R.L. Ives, R.H. Jackson, D. Marsden (CCR)

WEPHO10 X-Band RF Power Generation via an L-Band Accelera-tor System and Uses – N. Sipahi, S. Biedron, S.V. Milton,T. Sipahi (CSU) C. Adolphsen (SLAC)

WEPHO11 Components of Heating and Fueling of Fusion Plas-mas – F.M. Niell, M.P.J. Gaudreau, K. Schrock, B.E. Simp-son (Diversified Technologies, Inc.)

WEPHO12 Short Pulse Marx Modulator Optimization for Ad-vanced Accelerators – R.A. Phillips, M.P.J. Gaudreau,B.E. Simpson (Diversified Technologies, Inc.)

WEPHO13 Test of an L-Band Energy-Efficiency Solid State RFPower Source – X. Chang, N. Barov, D.J. Newsham,D. Wu (Far-Tech, Inc.)

WEPHO14 System Considerations for 201.25 MHz RF Systemfor LANSCE – J.T.M. Lyles, W.C. Barkley, J. Davis,A.C. Naranjo, P.D. Olivas, D. Rees, G. M. Sandoval, Jr.(LANL) D. Baca, R.E. Bratton, R.D. Summers (CompaIndustries, Inc.)

WEPHO15 Modelling of a Magnetron Transmitter for the ProjectX CW 1 GEV Linac – G.M. Kazakevich, R.P. Johnson(Muons. Inc.) B. Chase, R.J. Pasquinelli, V.P. Yakovlev(Fermilab)

North American PAC 2013 67

Page 98: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

WEPHO16 High MTBF RF Source Based upon the InjectionLocked Magnetron – M.L. Neubauer, A. Dudas (Muons.Inc.) H. Wang (JLAB)

WEPHO17 MW-Level Coax Coupler – M.L. Neubauer (Muons.Inc.) R.A. Rimmer (JLAB)

WEPHO18 High Power S-Band Vacuum Load – M.L. Neubauer,A. Dudas (Muons. Inc.) H. Wang (JLAB)

WEPHO19 High-Power Low-Voltage Multi-Beam Klystrons forILC and Project X – S.V. Shchelkunov (Yale Univer-sity, Beam Physics Laboratory) J.L. Hirshfield (Yale Uni-versity, Physics Department) J.L. Hirshfield (Omega-P,Inc.) S. Kazakov, N. Solyak, V.P. Yakovlev (Fermilab)V.E. Teryaev (BINP SB RAS)

WEPHO20 Second Harmonic Multiplier at 5.7 GHz for Test-ing Multi-Frequency Structures – S.V. Shchelkunov,Y. Jiang (Yale University, Beam Physics Laboratory)J.L. Hirshfield (Yale University, Physics Department)J.L. Hirshfield (Omega-P, Inc.)

02-Oct-13 16:30 – 18:00 Poster Poster Area MalibuWEPMA — Poster Session

07 Accelerator Technology

WEPMA01 Optimization of the SLED Phase Modulation Param-eters of the FERMI@Elettra Linac – C. Serpico, M. DalForno, A. Fabris (Elettra-Sincrotrone Trieste S.C.p.A.)

WEPMA02 Energy and Repetition Rate Upgrade of the S-BandRF System of the FERMI@Elettra Linac – A. Fabris,P. Delgiusto, F. Gelmetti, M.M. Milloch, A. Milocco,F. Pribaz, C. Serpico, N. Sodomaco, R. Umer, L. Veljak(Elettra-Sincrotrone Trieste S.C.p.A.)

WEPMA03 Tuner System Assembly and Tests for the 201-MHzMICE Cavity – L. Somaschini (INFN-Pisa) A.J. DeMello,D. Li, S.P. Virostek (LBNL) P.M. Hanlet (IIT) A. Moretti,R.J. Pasquinelli, D.W. Peterson, Y. Torun (Fermilab)

WEPMA04 Choke-mode Damped Accelerating Structure for theCLIC Main Linac – J. Shi, H.B. Chen, H. Zha (TUB)

WEPMA05 RF Design Optimization of a 176 MHz CW RFQ –B. Mustapha, S.V. Kutsaev, P.N. Ostroumov (ANL)

WEPMA06 Engineering Design and Analysis of a 176 MHz CWRFQ – B. Mustapha, S.V. Kutsaev, P.N. Ostroumov (ANL)

WEPMA07 Modeling Vacuum Arcs in Linac Structures – J. Norem(ANL) Z. Insepov, S. Nurkenov (Nano Synergy, Inc.)A. Moretti (Fermilab)

WEPMA08 Tuning, Conditioning, and Dark Current Measure-ments of the 1300 MHz NCRF Cavities at ArgonneWakefield Accelerator (AWA) Facility – J.G. Power,M.E. Conde, D.S. Doran, W. Gai, C.-J. Jing (ANL, EuclidTechLabs, LLC)

WEPMA09 PPM-Focused Klystrons for Accelerator Systems –P. Ferguson, R.L. Ives, D. Marsden, M.E. Read (CCR)J.E. Clayton (Varian Medical Systems, Oncology Systems)

WEPMA10 Passively Driven X-band RF Linac Structure –T. Sipahi, S. Biedron, S.V. Milton, N. Sipahi (CSU)C. Adolphsen (SLAC)

68 Pasadena, CA, USA, 29 September–4 October 2013

Page 99: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct02

WEPMA11 Progress Toward the Development of a Rapidly Tun-able RF Cavity – D.J. Newsham, J.R. Thompson (Far-Tech, Inc.)

WEPMA12 Investigation of Breakdown Induced Surface Dam-age on 805 MHz Pill Box Cavity Interior Surfaces– M.R. Jana, M. Chung, M.A. Leonova, A. Moretti,A.V. Tollestrup, K. Yonehara (Fermilab) D.L. Bowring(LBNL) B.T. Freemire, Y. Torun (IIT)

WEPMA13 Design and High Power Testing of 52.809 MHz RF Cav-ities for Slip Stacking in the Fermilab Recycler Ring –R.L. Madrak, D. Wildman (Fermilab)

WEPMA14 Perpendicularly Biased YIG Tuners for the Fermi-lab Recycler 52.809 MHz RF Cavities – R.L. Madrak,V.S. Kashikhin, A.V. Makarov, D. Wildman (Fermilab)

WEPMA15 Research and Development of Dielectric MaterialLoaded High-pressure Gas Filled RF Cavity Testsfor Muon Colliders – K. Yonehara, M.A. Leonova,A. Moretti, M. Popovic, A.V. Tollestrup (Fermilab)G. Flanagan, R.P. Johnson, F. Marhauser, J.H. Nipper(Muons. Inc.) L.M. Nash (University of Chicago) Y. Torun(IIT)

WEPMA16 Assembly and Testing of the First 201-MHz MICE Cav-ity at Fermilab – Y. Torun (Illinois Institute of Technol-ogy) D.L. Bowring, A.J. DeMello, D. Li, T.H. Luo, S.P. Vi-rostek (LBNL) P.M. Hanlet (IIT) M.A. Leonova, A. Moretti,R.J. Pasquinelli, D.W. Peterson, R.P. Schultz, J.T. Volk(Fermilab) T.H. Luo (UMiss) L. Somaschini (INFN-Pisa)

WEPMA17 Extended RF Testing of the 805-MHz Pillbox "All-Season" Cavity for Muon Cooling – Y. Torun (IllinoisInstitute of Technology) D.L. Bowring (LBNL) M. Chung,M.R. Jana, M.A. Leonova, A. Moretti, D.W. Peterson,A.V. Tollestrup, K. Yonehara (Fermilab) G. Flanagan,G.M. Kazakevich (Muons. Inc.) B.T. Freemire, P.M. Han-let (IIT)

WEPMA18 RF Design and Characterization of a Modular Cav-ity for Muon Ionization Cooling R&D – D.L. Bowring,A.J. DeMello, A.R. Lambert, D. Li, S.P. Virostek, M.S. Zis-man (LBNL) C. Adolphsen, L. Ge, A.A. Haase, K.H. Lee,Z. Li, D.W. Martin (SLAC) A.D. Bross, A. Moretti,M.A. Palmer, R.J. Pasquinelli, Y. Torun (Fermilab)D.M. Kaplan (Illinois Institute of Technology) T.H. Luo,D.J. Summers (UMiss) R.B. Palmer (BNL)

WEPMA19 Progress on the Fabrication of a CW Radio-frequencyQuadrupole (RFQ) for the Project X Injector Experi-ment (PXIE) – M.D. Hoff, A.J. DeMello, A.R. Lambert,D. Li, J.W. Staples, S.P. Virostek (LBNL)

WEPMA20 RF, Thermal, and Structural Finite Element Analy-sis of the Project X Injector Experiment (PXIE) CWRadio-frequency Quadrupole (RFQ) – A.R. Lambert,M.D. Hoff, D. Li, J.W. Staples, S.P. Virostek (LBNL)

WEPMA21 Final Design of a CW Radio-frequency Quadrupole(RFQ) for the Project X Injector Experiment (PXIE)– S.P. Virostek, A.J. DeMello, M.D. Hoff, A.R. Lambert,D. Li, J.W. Staples (LBNL)

WEPMA22 Investigation on Double Dipole Four-Vane RFQStructure – K.R. Shin (ORNL RAD) M.S. Champion,Y.W. Kang (ORNL) A.E. Fathy (University of Tennessee)

North American PAC 2013 69

Page 100: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

WEPMA23 Design and Measurement of Double Gap BuncherCavity Proposed for Reduction of X- ray Radiation– K.R. Shin (ORNL RAD) M.S. Champion, Y.W. Kang(ORNL) A.E. Fathy (University of Tennessee)

WEPMA24 Experimental results of the High-Power Tests of anUltra-high Gradient Compact S-Band (HGS) Acceler-ating Structure – L. Faillace, R.B. Agustsson, P. Frigola,A.Y. Murokh (RadiaBeam) S.G. Anderson (LLNL)V.A. Dolgashev, V. Yakimenko (SLAC) J.B. Rosenzweig(UCLA)

WEPMA25 Harmonic Ratcheting for Fast Ferrite Tuned RF Accel-eration – N.M. Cook (Stony Brook University) J.M. Bren-nan, S. Peggs (BNL)

WEPMA26 Multipacting Study for the RF Test of the MICE 201MHz RF Cavity at MTA – T.H. Luo, D.J. Summers(UMiss) D. Li, M.S. Zisman (LBNL)

WEPMA27 Tests of a Detuned Single-Mode Two-Beam Acceler-ator Structure – Y. Jiang, L.R. Carver, R.M. Jones(Yale University, Beam Physics Laboratory) L.R. Carver,R.M. Jones (UMAN) L.R. Carver, R.M. Jones (CockcroftInstitute) J.L. Hirshfield (Yale University, Physics Depart-ment) J.L. Hirshfield (Omega-P, Inc.)

WEPMA28 Study of a Detuned Multi-Harmonic Two-Beam Ac-celerator Structure – Y. Jiang, L.R. Carver, R.M. Jones(Yale University, Beam Physics Laboratory) L.R. Carver,R.M. Jones (UMAN) L.R. Carver, R.M. Jones (CockcroftInstitute) J.L. Hirshfield (Yale University, Physics Depart-ment) J.L. Hirshfield (Omega-P, Inc.)

02-Oct-13 16:30 – 18:00 Poster Poster Area Santa MonicaWEPSM — Poster Session

02 Light Sources

WEPSM01 Design Study of Knot-APPLE Undulator for PES-Beamline at SSRF – S. Sasaki, A. Miyamoto (HSRC)S. Qiao (SIMIT)

WEPSM02 Concepts for Short Period RF Undulators –S.V. Kuzikov, A.V. Savilov, A.A. Vikharev (IAP/RAS)

07 Accelerator Technology

WEPSM03 High Power, Short Pulse, Extremely High Repe-tition Rate RF Sources and Pulse Compressors –S.V. Kuzikov, A.V. Savilov (IAP/RAS)

WEPSM04 Helical Self Focusing and Cooling Accelerating Struc-ture – S.V. Kuzikov, A.A. Vikharev (IAP/RAS)

02 Light Sources

WEPSM05 Progress on Pulsed Multipole Injection for the MAXIV Storage Rings – S.C. Leemann (MAX-lab) L.O. Dallin(CLS)

WEPSM06 Beam-Induced Heat Load Predictions and Measure-ments in the APS Superconducting Undulator –K.C. Harkay, L.E. Boon, M. Borland, Y.-C. Chae, R.J. De-jus, J.C. Dooling, C.L. Doose, L. Emery, Y. Ivanyushenkov,M.S. Jaski, M. Kasa, S.H. Kim, R. Kustom, V. Sajaev,Y. Shiroyanagi, X. Sun (ANL) L.E. Boon (Purdue Univer-sity)

70 Pasadena, CA, USA, 29 September–4 October 2013

Page 101: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct02

WEPSM07 Beam-based Alignment of the First SuperconductingUndulator at APS – K.C. Harkay, L.E. Boon, M. Borland,L. Emery, R. Kustom, V. Sajaev, Y. Shiroyanagi, A. Xiao(ANL) L.E. Boon (Purdue University)

WEPSM08 Fast-Switching Variably Polarizing Undulator –M.S. Jaski, R.J. Dejus, B. Deriy, E. Gluskin, E.R. Moog,I. Vasserman, J. Wang, A. Xiao (ANL)

WEPSM09 An Electromagnetic Variably Polarizing Quasi-Periodic Undulator – M.S. Jaski, M. Abliz, R.J. Dejus,B. Deriy, E. Gluskin, E.R. Moog, I. Vasserman, A. Xiao(ANL)

WEPSM10 Design of a 17.2-mm-Period Planar Undulator for theAPS – E.R. Moog, M. Abliz, R.J. Dejus, J.H. Grimmer,M.S. Jaski (ANL)

WEPSM11 The Intermediate Energy X-ray (IEX) Undulator Com-missioning Results – A. Xiao, M. Abliz, B. Deriy,M.S. Jaski, M.L. Smith, I. Vasserman, J.Z. Xu (ANL)

WEPSM12 Non-linear Effects of Insertion Devices: Simulationand Experiment Results – A. Xiao, L. Emery, V. Sajaev(ANL)

WEPSM13 On-axis Injection Scheme for Ultra-Low-EmittanceLight Sources – A. Xiao, M. Borland, C. Yao (ANL)

WEPSM14 Advanced X-ray Beam Position Monitor System De-sign at the APS – B.X. Yang, G. Decker, J.S. Downey,Y. Jaski, T.L. Kruy, S.-H. Lee, F. Westferro (ANL)

WEPSM15 Design and Measurement of Three-Pole Wiggler(3PW) Prototype for NSLS-II Storage Ring – P. He,P.L. Cappadoro, O.V. Chubar, T.M. Corwin, H.C. Fer-nandes, D.A. Harder, A.K. Jain, J.W. Keister, C.A. Kitegi,M.M. Musardo, J. Rank, T. Tanabe (BNL) A. Deyhim,J.D. Kulesza, M. Popov (Advanced Design Consulting,Inc)

WEPSM16 Plans for the First Turns Commissioning in NSLS-IIStorage Ring – S. Seletskiy (BNL)

WEPSM17 Non-invasive Detection and Characterization ofBeams – J.E. Williams, S. Biedron, J.R. Harris, S.V. Mil-ton (CSU) S.V. Benson, P.E. Evtushenko, G. Neil, S. Zhang(JLAB)

WEPSM18 Investigation of Upstream Transient Wakefields dueto Coherent Synchrotron Radiation in Bunch Com-pression Chicanes – C.E. Mitchell, J. Qiang (LBNL)

WEPSM19 Highly Parallelized Implementations of the Undula-tor Radiation Spectrum Calculation – H. Tarawneh,S. James, K. Muriki, H. Nishimura, Y. Qin, K. Song(LBNL) A. Miyamoto, S. Sasaki (HSRC)

North American PAC 2013 71

Page 102: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

03-Oct-13 16:30 – 18:00 Poster Poster Area Angeles Crest

THPAC — Poster Session

07 Accelerator Technology

THPAC01 Longitudinal Emittance Measurement System for theARIEL Electron Linac – A.R. Vrielink, Y.-C. Chao,C. Gong, R.E. Laxdal, V. Zvyagintsev (TRIUMF)

THPAC02 Numerical Evaluation of Field Profiles of Undulatorswith Ring and Semicircle Bulk High-Tc Superconduc-tors – M. Tsuchimoto (Hokkaido Institute of Technol-ogy)

THPAC03 Beam Dump Design for the In-flight Fragment Sepa-rator using High-power Beam – J.Y. Kim, J.-W. Kim,M. Kim (IBS)

THPAC04 Beam Position Electronics Based on System on ChipPlatform – G. Jug, M. Cargnelutti, R. Hrovatin, P. Leban(I-Tech)

THPAC05 Design and Fabrication of a BPM with Low-Q for Mea-surement of EM Fields in a Cavity to Investigate MultiBeam Concepts – L.R. Carver, R.M. Jones (UMAN)J.L. Hirshfield (Yale University, Physics Department)J.L. Hirshfield (Omega-P, Inc.) Y. Jiang (Yale University,Beam Physics Laboratory)

THPAC06 Comparison of Simulations and Analytical Theory ofRadiation Heating on the Advanced Photon SourceSuperconducting Undulator – L.E. Boon (Purdue Uni-versity) L.E. Boon, R.J. Dejus, K.C. Harkay, M.S. Jaski(ANL)

THPAC07 Thermal Modeling of the Prototype SuperconductingUndulator – Y. Shiroyanagi, C.L. Doose, J.D. Fuerst,K.C. Harkay, Q.B. Hasse, Y. Ivanyushenkov, M. Kasa(ANL)

THPAC08 Modernization of the Bergoz Multiplexed BPM Sys-tem for the APS Upgrade – X. Sun, H. Bui, G. Decker,R.T. Keane, R.M. Lill, B.X. Yang (ANL)

THPAC09 Ultra-high Vacuum Seal for Long Chambers usingWire Seals – H.C. Fernandes, P.L. Cappadoro, T.M. Cor-win, P. He, P. He, C.A. Kitegi, B.N. Kosciuk, G. Rakowsky,J. Rank, S.K. Sharma, T. Tanabe (BNL)

THPAC10 Design and Testing of Faraday Cup and Dump forNSLS-II Linac and Booster – H.C. Fernandes, B. Belka-cem, W.X. Cheng, R.P. Fliller, B.N. Kosciuk, J. Rank,S.K. Sharma, O. Singh, T. Tanabe (BNL)

THPAC11 Integral Magnetic Field Measurement Using an Long-Loop-Flip Coil System at NSLS-II – P. He, P.L. Cap-padoro, T.M. Corwin, H.C. Fernandes, D.A. Harder,C.A. Kitegi, M.M. Musardo, J. Rank, T. Tanabe (BNL)A. Deyhim, J.D. Kulesza (Advanced Design Consulting,Inc)

THPAC12 Preparation and Investigation of Multi-Alkali Photo-cathodes – X. Liang, K. Attenkofer, T. Rao, S.G. Schu-bert, J. Smedley, E. Wang (BNL) I. Ben-Zvi, M. Ruiz-Osés(Stony Brook University) H.A. Padmore, J.J. Wong (LBNL)J. Xie (ANL)

72 Pasadena, CA, USA, 29 September–4 October 2013

Page 103: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct03

THPAC13 Simulation and Optimization of Multi-Slit BasedEmittance Measurement for BNL ERL – C. Liu,D.M. Gassner, D. Kayran, M.G. Minty, P. Thieberger(BNL)

THPAC14 3D Hall Probe Calibration System at BNL InsertionDevices Laboratory – M.M. Musardo, T.M. Corwin,D.A. Harder, P. He, C.A. Kitegi, W. Licciardi, G. Rakowsky,T. Tanabe (BNL)

THPAC15 NSLS II Magnetic Measurement System Facility –M.M. Musardo, T.M. Corwin, D.A. Harder, P. He,C.A. Kitegi, W. Licciardi, G. Rakowsky, J. Rank, C. Rhein,T. Tanabe (BNL)

THPAC16 Upgrade of Beam Injection Diagnostics at BNL NSLS– S. Seletskiy (BNL)

THPAC17 Alkali Antimonide Cathodes for Accelerators - a Ma-terials Perspective – J. Smedley, S.G. Schubert (BNL)I. Ben-Zvi, X. Liang, E.M. Muller, M. Ruiz-Osés (StonyBrook University) H.A. Padmore, J.J. Wong (LBNL) J. Xie(ANL)

THPAC18 Progress on Growth of a Multi-alkali Photocathodefor ERL – E. Wang, S.A. Belomestnykh, I. Ben-Zvi, T. Rao,J. Smedley (BNL) I. Ben-Zvi, M. Ruiz-Osés (Stony BrookUniversity) X. Liang (SBU)

THPAC19 Temperature Dependence of Photoemission fromCopper and Niobium – J.R. Harris (CSU) C.W. Ben-nett, M.D. Galt, A.D. Holmes, A. Kara, R. Swent (NPS)J.W. Lewellen (LANL) J. Sears (Cornell University(CLASSE), Cornell Laboratory for Accelerator-BasedSciences and Education)

THPAC20 Beam Position and Phase Measurements of Microam-pere Beams at the Michigan State University ReA3 Fa-cility – J.A. Rodriguez (FRIB)

THPAC21 Beam Diagnostic Challenges for PXIE – V.E. Scarpine,N. Eddy, D.E. Johnson, V.A. Lebedev, P.S. Prieto, L.R. Prost,A. Semenov, A.V. Shemyakin, R.M. Thurman-Keup (Fer-milab)

THPAC22 Gating and Emission Enhancement of DiamondField-emitter Arrays – H.L. Andrews (LANL) C.A. Brau,B.K. Choi, W.E. Gabella, B.L. Ivanov (VanderbiltUniversity)

THPAC23 Lifetime Study of Tungsten Filaments in an H- Sur-face Convertor Ion Source – I. Draganic, J.F. O’Hara,L. Rybarcyk (LANL)

THPAC24 PIN Diode Detectors at DARHT II – J.B. Johnson(LANL)

THPAC25 LANSCE-RM Wire Scanners: SLIP-Encoded SerialCommunication for Maintenance Display at the In-strument – J.D. Sedillo, J.D. Gilpatrick (LANL)

THPAC26 Analog Front End Design for High Speed Digitizing ofBeam Position and Phase Measurements at LANSCE– H.A. Watkins, J.D. Gilpatrick, R.C. McCrady (LANL)

THPAC27 Coherent Light Carrying Orbital Angular MomentumGenerated via FEL Interaction – A. Knyazik (UCLA)M.P. Dunning, C. Hast, E. Hemsing, A. Marinelli,T.O. Raubenheimer, D. Xiang (SLAC)

North American PAC 2013 73

Page 104: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

THPAC28 Fabrication and low-power validation of a NormalConducting Radio Frequency X-Band DeflectingCavity for Brookhaven National Lab – L. Faillace,R.B. Agustsson, A.Y. Murokh, S. Storms (RadiaBeam)V.A. Dolgashev, J.R. Lewandowski, V. Yakimenko (SLAC)J.B. Rosenzweig (UCLA)

THPAC29 Fabrication and Validation of a Normal ConductingRadio Frequency S-Band Deflecting Cavity for thePohang Accelerator Laboratory (PAL) – L. Faillace,R.B. Agustsson, J.J. Hartzell, A.Y. Murokh, S. Storms (Ra-diaBeam)

THPAC30 Design of a Fast, XFEL-Quality Wire Scanner –M.A. Harrison, R.B. Agustsson, P.S. Chang, T.J. Hodgetts,A.Y. Murokh, M. Ruelas (RadiaBeam)

THPAC31 Laser Wire Scanner for Energy Recovery Linacs –B.T. Jacobson (RadiaBeam)

THPAC32 Transverse Beam Profile Diagnostic Using Fiber Op-tic Array – S. Wu, R.B. Agustsson, G. Andonian, T.J. Hod-getts (RadiaBeam) G. Andonian, R.K. Li, C.M. Scoby(UCLA)

THPAC33 Scintillator Diagnostics for the Detection of Laser Ac-celerated Ion Beams – N.M. Cook (Stony Brook Univer-sity) R.S. Lefferts (SBUNSL) O. Tresca (BNL) V. Yakimenko(SLAC)

THPAC34 Diamond Amplifier Design and Preliminary Test –T. Xin, S.A. Belomestnykh, I. Ben-Zvi (Stony Brook Uni-versity) S.A. Belomestnykh, I. Ben-Zvi, T. Rao, J. Skaritka,E. Wang, Q. Wu (BNL)

THPAC35 Multipacting Study of 112 MHz SRF Electron Gun –T. Xin, S.A. Belomestnykh, I. Ben-Zvi (Stony Brook Uni-versity) S.A. Belomestnykh, I. Ben-Zvi, X. Liang, T. Rao,J. Skaritka, E. Wang, Q. Wu (BNL) C.H. Boulware,T.L. Grimm (Niowave, Inc.) X. Liang (SBU)

THPAC36 Progress in the Development of Textured Dyspro-sium for Undulator Applications – F.H. O’Shea (UCLA)R.B. Agustsson, Y.C. Chen, T.J. Grandsaert, A.Y. Murokh,K.E. Woods (RadiaBeam) J. Park, R.L. Stillwell (NHMFL)

THPAC37 Surface Plasmon Resonance Enhanced MultiphotonEmission from Metallic Cathode – H.L. To, G. Ando-nian, R.K. Li, P. Musumeci (UCLA) G. Andonian (Radia-Beam)

03-Oct-13 16:30 – 18:00 Poster Poster Area Bel AirTHPBA — Poster Session

07 Accelerator Technology

THPBA01 Beam Dynamics Driven Requirements on the ARIELe-linac SRF Separator Cavity – D.W. Storey (VictoriaUniversity) Y.-C. Chao, L. Merminga (TRIUMF)

THPBA02 Feasibility of an RF Dipole Cavity for the ARIEL e-linac SRF Separator – D.W. Storey (Victoria University)R.E. Laxdal, L. Merminga, V. Zvyagintsev (TRIUMF)

74 Pasadena, CA, USA, 29 September–4 October 2013

Page 105: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct03

THPBA03 Design, Fabrication, Measurement, Installation andAlignment of Two Types of Quadrupole/sextupoleCombined Magnets for the Upgrade of the 1.2GeV Booster Synchrotron at Tohoku University –W. Beeckman, S. Antoine, P. Bocher, F. Forest, P. Jehanno,P. Jivkov, M.J. Leray, S. Taillardat (Sigmaphi) H. Hama,F. Hinode (Tohoku University, Research Center forElectron Photon Science) L. Swinnen (Sigmaphi Japan)

THPBA04 Design and Construction of the Proto-type Qua-drupole Magnets for the SuperKEKB InteractionRegion – N. Ohuchi, Y. Arimoto, N. Higashi, H. Koiso,A. Morita, Y. Ohnishi, K. Oide, H. Sugimoto, M. Tawada,K. Tsuchiya, H. Yamaoka, Z.G. Zong (KEK)

THPBA05 Multipole Magnetic Measurements using a Lock-inAmplifier Technique – C.L. Doose, M. Kasa (ANL)

THPBA06 Magnetic Measurements of the First Superconduct-ing Undulator at the Advanced Photon Source –C.L. Doose, M. Kasa (ANL)

THPBA07 Superconducting Corrector IR Magnet Productionfor SuperKEKB – B. Parker, M. Anerella, J. Escallier,A.K. Jain, A. Marone, P. Wanderer (BNL) Y. Arimoto,H. Koiso, A. Morita, Y. Ohnishi, N. Ohuchi, K. Oide,H. Sugimoto, K. Tsuchiya, H. Yamaoka, Z.G. Zong (KEK)

THPBA08 Partial Return Yoke for MICE - Engineering Design –H. Witte, S.R. Plate (BNL) A.D. Bross (Fermilab) J.S. Tar-rant (STFC/RAL)

THPBA09 Partial Return Yoke for MICE - General Concept andPerformance – H. Witte, S.R. Plate (BNL) A.D. Bross(Fermilab) J.S. Tarrant (STFC/RAL)

THPBA11 A Kicker Driver for the International Linear Collider– N. Butler, M.P.J. Gaudreau, M.K. Kempkes, F.M. Niell(Diversified Technologies, Inc.)

THPBA12 Progress on the Assembly of the MSU SuperferricCyclotron Gas Stopper Superconducting Magnet –M.A. Green, G. Bollen, S. Chouhan, A. Zeller (FRIB)J. DeKamp, D. Lawton, C. Magsig, D.J. Morrissey, J. Ot-tarson, S. Schwarz (NSCL)

THPBA13 Mechanical Design of the Cryogenic Sub-Systemsfor the FRIB Quarter Wave Resonator Cryomodule– M. Shuptar, F. Casagrande, A.D. Fox, M.J. Johnson,M. Leitner, S.J. Miller, T. Xu, Y. Xu (FRIB)

THPBA14 Impact of Radiation on the Mu2e ProductionSolenoid Performance – V.V. Kashikhin, M.J. Lamm,N.V. Mokhov, V.S. Pronskikh (Fermilab)

THPBA15 A Highly Configurable and Scriptable Software Sys-tem for Fully Automated Tuning of AcceleratorCavities – J.M. Nogiec, R.H. Carcagno, S. Kotelnikov,A. Makulski, R. Nehring, D.F. Orris, W. Schappert(Fermilab)

THPBA16 A New Facility for Testing Superconducting SolenoidMagnets with Large Fringe Fields at Fermilab –D.F. Orris, R.H. Carcagno, J.M. Nogiec, R. Rabehl,C. Sylvester, M.A. Tartaglia (Fermilab)

North American PAC 2013 75

Page 106: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

THPBA17 Status Of PXIE 200 Ω MEBT Kicker Development –G.W. Saewert, M.H. Awida, H. Pfeffer, D. Wolff (Fermi-lab) D. Frolov (Kuban State University)

THPBA18 Testing of a Single 11T Nb3Sn Dipole Coil Usinga Magnetic Mirror Structure – A.V. Zlobin, N. An-dreev, E.Z. Barzi, G. Chlachidze, V.V. Kashikhin, A. No-brega, I. Novitski, D. Turrioni (Fermilab) M. Karppinen,D. Smekens (CERN)

THPBA19 Storage Ring and Interaction Region Magnets fora μ+μ- Higgs Factory – A.V. Zlobin, Y.I. Alexahin,V.V. Kashikhin, N.V. Mokhov (Fermilab)

THPBA20 Analysis and Parallelization of Pseudo-spectral Elec-tromagnetic Simulations of Relativistic Plasmas –J.-L. Vay (LBNL) B.B. Godfrey, I. Haber (UMD)

THPBA21 Fiber Optic Quench Protection for High Temper-ature Superconducting Magnets. – G. Flanagan,R.P. Johnson (Muons. Inc.) W.K. Chan, J. Schwartz(North Carolina State University)

THPBA22 Helical Muon Beam Cooling Channel EngineeringDesign – G. Flanagan, R.P. Johnson, S.A. Kahn (Muons.Inc.) N. Andreev, R. Bossert, S. Krave, M.L. Lopes,J.C. Tompkins, K. Yonehara (Fermilab) F. Marhauser(MuPlus, Inc.)

09 Industrial Accelerators and Applications

THPBA23 Disposition of Weapons-grade Plutonium withGEM*STAR – R.P. Johnson, G. Flanagan (Muons.Inc.) C. Bowman, R.B. Vogelaar (ADNA)

07 Accelerator Technology

THPBA24 A Dipole Magnet for the FRIB High Radiation Envi-ronment Nuclear Fragment Separator – S.A. Kahn,A. Dudas, G. Flanagan (Muons. Inc.) M. Anerella,R.C. Gupta, J. Schmalzle (BNL)

THPBA25 Radiation Tolerant Multipole Correction Coilsfor FRIB Quadrupoles – S.A. Kahn (Muons. Inc.)R.C. Gupta (BNL)

06 Accelerator Systems

THPBA26 Using Elliptical Magnetic Coils in a Muon CoolingChannel – S.A. Kahn, G. Flanagan, R.P. Johnson (Muons.Inc.) M.L. Lopes, K. Yonehara (Fermilab)

07 Accelerator Technology

THPBA27 Simulation Workstation – T.J. Roberts, C.M. Anken-brandt (Muons. Inc.)

THPBA28 Status of Spallation Neutron Source Cryogenic TestFacility – M.P. Howell, S.-H. Kim, W.H. Strong (ORNL)B.D. DeGraff, T.S. Neustadt, J. Saunders, D.M. Vandygriff(ORNL RAD) T. Xu (FRIB)

THPBA29 Recent Improvements in Particle SimulationSupport in Analyst-MP – J.F. DeFord, B.L. Held,A.A. Nichols, K.J. Willis (STAAR/AWR Corporation)

76 Pasadena, CA, USA, 29 September–4 October 2013

Page 107: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct03

03-Oct-13 16:30 – 18:00 Poster Poster Area Hollywood

THPHO — Poster Session

06 Accelerator Systems

THPHO01 Parameter Optimization for Multi-DimensionalLaser Cooling for an Ion Beam in the Storage RingS-LSR – Z.Q. He (TUB) K. Jimbo (Kyoto University,Institute for Advanced Energy) M. Nakao, A. Noda(NIRS) H. Okamoto, K. Osaki (HU/AdSM) H. Souda(Gunma University, Heavy-Ion Medical Research Center)J. Wei (FRIB) Y. Yuri (JAEA/TARRI)

THPHO02 Design of the Final Focus of the Proton Beam for aNeutrino Factory – J. Pasternak, M. Aslaninejad (Im-perial College of Science and Technology, Departmentof Physics) K. E. Gollwitzer (Fermilab) H.G. Kirk (BNL)K.T. McDonald (PU)

THPHO03 APS Fast Orbit Feedback System Upgrade – R. Lipa,N.D. Arnold, H. Bui, G. Decker, T. Fors, R. Laird,F. Lenkszus, A.J. Scaminaci, N. Sereno, S.E. Shoaf (ANL)

THPHO04 Linear Analysis for Several 6-D Ionization CoolingLattices – J.S. Berg, R.B. Palmer, D. Stratakis (BNL)

THPHO05 A Planar Snake Muon Ionization Cooling Lattice –R.B. Palmer, J.S. Berg, R.C. Fernow, D. Stratakis (BNL)

THPHO06 SRF and RF Systems for CeC PoP Experiment –S.A. Belomestnykh, I. Ben-Zvi, J.C. Brutus, Y. Huang,D. Kayran, V. Litvinenko, P. Orfin, I. Pinayev, T. Rao,J. Skaritka, K.S. Smith, R. Than, J.E. Tuozzolo, E. Wang,Q. Wu, W. Xu, A. Zaltsman (BNL) S.A. Belomestnykh,I. Ben-Zvi, V. Litvinenko, M. Ruiz-Osés, T. Xin (StonyBrook University) X. Liang (SBU)

THPHO07 Novel Mechanical Design for RHIC TransverseStochastic Cooling Kicker – C.J. Liaw, S. Bellavia,J.M. Brennan, K. Mernick, M. Myers, J.E. Tuozzolo (BNL)

THPHO08 Robust Mechanical Design for RHIC TransverseStochastic Cooling Pickup – C.J. Liaw, J.M. Brennan,V. De Monte, K. Mernick, M. Myers, J.E. Tuozzolo (BNL)

07 Accelerator Technology

THPHO09 High Intensity RHIC Limitations Due to SignalHeating of Cryogenic BPM Cables – P. Thieberger,J.A. D’Ambra, A.K. Ghosh, K. Hamdi, K. Mernick,T.A. Miller, M.G. Minty, C. Pai (BNL)

06 Accelerator Systems

THPHO10 Upgrading the RHIC Beam Dump for Higher Inten-sity – C. Montag, L. Ahrens, K.A. Drees, W. Fischer,H. Hahn, C.J. Liaw, J.-L. Mi, S.K. Nayak, T. Roser,P. Thieberger, J.E. Tuozzolo, K. Yip, W. Zhang (BNL)

THPHO11 Optimization of the Capture Section of a Staged Neu-trino Factory – H. K. Sayed, H.G. Kirk, D. Stratakis(BNL) X.P. Ding (UCLA) K.T. McDonald (PU) D.V. Neuffer(Fermilab) P. Snopok (Illinois Institute of Technology)

THPHO12 Studies on New, High-Performance, 6-DimensionalIonisation Cooling Lattices for Muon Acceleration –D. Stratakis, J.S. Berg, R.C. Fernow, R.B. Palmer (BNL)

North American PAC 2013 77

Page 108: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

THPHO13 Limitations Imposed by Space Charge on the FinalStages of a Muon Collider Ionization Cooling Chan-nel – D. Stratakis, J.S. Berg, R.B. Palmer (BNL) D.P. Grote(LLNL)

THPHO14 RF Cavity Phase Calibration using ElectromagneticPickups – B. Durickovic, J.L. Crisp, G. Kiupel, D. Leit-ner, J.A. Rodriguez, R.C. Webber (FRIB) D. Constan-Wahl,S.W. Krause, S. Nash, R. Rencsok, W. Wittmer (NSCL)

THPHO15 Analysis of MICE Spectrometer Solenoid MagneticField Measurements – M.A. Leonova (Fermilab)

THPHO16 Six-dimensional Ionization Cooling Lattice based on325 and 650 MHz RF Cavities – D. Stratakis (BNL),P. Snopok (Illinois Institute of Technology)

THPHO17 a Muon Beam Line for Cooling Experiments at NuS-TORM – D.V. Neuffer, A.D. Bross (Fermilab) , A. Liu (In-diana University) P. Snopok (Illinois Institute of Technol-ogy)

THPHO18 Status of the Muon Ionization Cooling Experiment(MICE) – Y. Torun (IIT) M.S. Zisman (LBNL)

THPHO19 Complete Muon Cooling Channel Design and Simula-tions – C. Y. Yoshikawa, C.M. Ankenbrandt, R.P. John-son (Muons. Inc.) Y.S. Derbenev, V.S. Morozov (JLAB)D.V. Neuffer, K. Yonehara (Fermilab)

THPHO20 Optimization and Aberration Correction of the TwinHelix Parametric Ionization Cooling Channel forMuon Beams – J.A. Maloney (Northern Illinois Uni-versity) A. Afanasev (GWU) R.P. Johnson (Muons. Inc.)V.S. Morozov (JLAB)

THPHO21 Magnetic Bunch Compression for a Compact Comp-ton Source – T. Satogata, B.R.P. Gamage (ODU) T. Sato-gata (JLAB)

THPHO22 Recent Developments on Parametric-resonance Ion-ization Cooling – V.S. Morozov, Y.S. Derbenev (JLAB)A. Afanasev (GWU) C.M. Ankenbrandt (Muons. Inc.)B. Erdelyi (Northern Illinois University)

THPHO23 Improvement of Digital Filter for the FNAL BoosterTransverse Dampers – T.V. Zolkin (University ofChicago) N. Eddy, V.A. Lebedev (Fermilab)

03-Oct-13 16:30 – 18:00 Poster Poster Area MalibuTHPMA — Poster Session

06 Accelerator Systems

THPMA01 Fast FPGA Based Low-Trigger-Jitter Waveform Gener-ator Method for Barrier-Bucket Electronics at FAIR –E. Bayer, P. Zipf (University of Kassel) A. Klaus, H. Kling-beil, G. Schreiber (GSI)

THPMA02 ADRC Based Piezo-electric Tuner Design for RF Cav-ity – Z. Zheng (TUB) Z. Liu, D. Morris, J. Wei, Y. Zhang,S. Zhao (FRIB)

THPMA03 Systems of Radiation Monitoring at SR Facilities atBINP – M. Petrichenkov, V.Ya. Chudaev, V.V. Eksta,V.F. Pindyurin, A.V. Repkov, M.A. Sheromov (BINP SBRAS)

THPMA04 Next Generation CW Reference Clock TransferSystem with Femtosecond Stability – P.L. Lemut,R. Hrovatin, P. Orel, S. Zorzut (I-Tech) S. Hunziker,V. Schlott (PSI)

78 Pasadena, CA, USA, 29 September–4 October 2013

Page 109: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct03

THPMA05 Energy Deposition in the Sector 37 Scraper of the Ad-vanced Photon Source Storage Ring – J.C. Dooling,M. Borland, Y.-C. Chae, R.R. Lindberg, A. Xiao (ANL)

07 Accelerator Technology

THPMA06 Android Application for Accelerator Physics and En-gineering Calculations – M. Borland (Private Address)

06 Accelerator Systems

THPMA07 Cryomodule Performance of the Main Linac Pro-totype Cavity for Cornell’s Energy Recovery Linac– N.R.A. Valles, G. Eichhorn, F. Furuta, G.M. Ge,D. Gonnella, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoff-staetter, M. Liepe, T.I. O’Connell, S. Posen, P. Quigley,J. Sears, V. Veshcherevich (Cornell University (CLASSE),Cornell Laboratory for Accelerator-Based Sciences andEducation)

THPMA08 Fermilab MuCool Test Area Cavity Conditioning Con-trol Using LabVIEW – D.W. Peterson, Y. Torun (Fermi-lab), Y. Torun (Illinois Institute of Technology)

THPMA09 SSR1 Cryomodule Design for PXIE – T.H. Nicol,S. Cheban, M. Chen, M. Merio, Y. Orlov, D. Passarelli,T.J. Peterson, V. Poloubotko, O. Pronitchev, L. Ristori,I. Terechkine (Fermilab)

THPMA10 Energy Deposition in Magnets and Shielding ofthe Target System of a Staged Neutrino Factory –X.P. Ding (UCLA) H.G. Kirk (BNL) K.T. McDonald (PU)C.T. Rogers (STFC/RAL/ASTeC) P. Snopok (IIT) R.J. Weggel(Particle Beam Lasers, Inc.)

THPMA11 Optimization of Particle Production for a Staged Neu-trino Factory – X.P. Ding (UCLA) H.G. Kirk (BNL)K.T. McDonald (PU)

THPMA12 Design of Magnets for the Target and Decay Regionof a Staged Neutrino Factory – R.J. Weggel (ParticleBeam Lasers, Inc.) X.P. Ding (UCLA) V.B. Graves (ORNL)H.G. Kirk, H. K. Sayed (BNL) K.T. McDonald (PU)

THPMA13 A Bunch Length Monitor for the JLab 12 GeV Upgrade– M.M. Ali, A. Freyberger, J.G. Gubeli, G.A. Krafft (JLAB)

THPMA14 A High-Intensity Neutron Production Target basedon Rotary Valving – B. Rusnak, P. Fitsos, M. Hall,R. Souza (LLNL)

03-Oct-13 16:30 – 18:00 Poster Poster Area Santa MonicaTHPSM — Poster Session

08 Medical Accelerators and Applications

THPSM01 Ion-irradiation Response of Gafchromic Films andtheir Application to the Measurement of the Trans-verse Beam Intensity Distribution – Y. Yuri, I. Ishibori,T. Ishizaka, S. Okumura, T. Yuyama (JAEA/TARRI)

09 Industrial Accelerators and Applications

THPSM02 Simulation of X-band 30 MeV Linac Neutron Source –K. Tagi (University of Tokyo) K. Dobashi, T. Fujiwara,M. Uesaka (The University of Tokyo, Nuclear Profes-sional School) M. Yamamoto (Accuthera Inc.)

North American PAC 2013 79

Page 110: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

THPSM03 Direct Diagnostic Technique for a High IntensityLaser Based on Laser Compton Scattering – R. Sato,A. Endo, K. Nonomura, K. Sakaue, M. Washio, Y. Yoshida(Waseda University)

THPSM04 Conceptual Design on Accelerator Physics for China-ADS Linac – J.Y. Tang, P. Cheng, H. Geng, Z. Guo, Z. Li,C. Meng, H.F. Ouyang, S. Pei, B. Sun, J.L. Sun, F. Yan,Z. Yang, C. Zhang (IHEP) Y. He, Y. Yang (IMP)

08 Medical Accelerators and Applications

THPSM05 The Monte Carlo Simulation of Scintillant for Detec-tor System in Proton Radiography – X.M. Hu, H.B. Xu,Y.J. Ying, N. Zheng (Institute of Applied Physics and Com-putational Mathematics)

THPSM06 The Monte Carlo Simulation for Detector QuantumEfficiency in High-Energy Gamma Camera – H.B. Xu,X.M. Hu, Y.J. Ying, N. Zheng (Institute of Applied Physicsand Computational Mathematics)

THPSM07 The Monte Carlo Simulation of the Dosimetric Fea-tures for 6702 125I Brachytherapy – Y.J. Ying, X.M. Hu,H.B. Xu, N. Zheng (Institute of Applied Physics and Com-putational Mathematics)

09 Industrial Accelerators and Applications

THPSM08 Horn Antenna Design for THz Band Radiation Source– T.V. Bondarenko, S.M. Polozov, A.Yu. Smirnov (MEPhI)

THPSM09 Application of Low-Energy Proton LINAC to ADS forEnergy Production – A.G. Golovkina, D.A. Ovsyan-nikov (St. Petersburg State University) I.V. Kudinovich(KSRC)

08 Medical Accelerators and Applications

THPSM10 Statistical Analysis of Propagated Effects on Depth-Dose Distribution Curves due to Uncertainties in Ini-tial Proton Beam Energy – P.A. Posocco, M. Aslanine-jad, J.F. Piech, S. Zalel (Imperial College of Science andTechnology, Department of Physics)

THPSM11 A Novel Solution for FFAG Proton Gantries – J. Paster-nak, M. Aslaninejad, P.R.N. Holland, P.A. Posocco,G.W. Walton (Imperial College of Science and Technol-ogy, Department of Physics)

THPSM12 A Ready-to-use Application of Laser-Plasma Accelera-tors using Gabor Lenses – J.K. Pozimski, M. Aslanine-jad, N. Dover, Z. Najmudin, R.M. Nichols, P.A. Posocco(Imperial College of Science and Technology, Depart-ment of Physics)

06 Accelerator Systems

THPSM13 Characterisation of Nitrogen Clusters and Gas Jet Tar-gets under Varied Nozzle Geometries – P.A. Posocco,N. Dover, C. Hughes, Z. Najmudin (Imperial College ofScience and Technology, Department of Physics)

09 Industrial Accelerators and Applications

THPSM14 Construction and Testing of the Dual Slot ResonanceLinac – N. Barov, X. Chang, R.H. Miller, D.J. Newsham(Far-Tech, Inc.)

80 Pasadena, CA, USA, 29 September–4 October 2013

Page 111: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

PO

ct03

07 Accelerator Technology

THPSM15 A Compact Cavity BPM System for 1300 MHz Cry-omodules – N. Barov (Far-Tech, Inc.)

08 Medical Accelerators and Applications

THPSM16 Design of X-band Linac Structures for the Medical Cy-berKnife Project – C.F. Eckman, T. Downer (IAC) A. An-drews, P. Buaphad, Y. Kim (ISU)

09 Industrial Accelerators and Applications

THPSM17 Tunable, Nearly Monoenergetic Gamma RayBeams for SNM Interrogation – C.M. Ankenbrandt,R.J. Abrams, M.A.C. Cummings (Muons. Inc.)

THPSM18 Adaptive High Speed Rail Cargo Scanning System –S. Boucher, A. Arodzero, A.Y. Murokh (RadiaBeam)

THPSM19 Compact Schemes for Laser-free THz-Sub-THzSource – A.V. Smirnov (RadiaBeam)

THPSM20 Linac-based Photonuclear Applications at the IdahoAccelerator Center – M. Mamtimin, F. Harmon,V. Starovoitova (IAC) F. Harmon (ISU)

THPSM21 Adaptation of the ISIS Induction-cell Driver to a Low-Impedance X-pinch Driver – R.V. Shapovalov (IAC)

North American PAC 2013 81

Page 112: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Boldface papercodes indicate primary authors

— A —

Abell, D.T. MOPAC35Abeyratne, S. MOPBA13Abliz, M. WEPSM09, WEPSM10, WEPSM11Abrams, R.J. THPSM17Adli, E. MOYBA1, THYAA2, THOCA1,

MOPAC02, MOPAC37, MOPAC38,MOPAC40, MOPAC46

Adolphsen, C. WEOAA1, WEOBA1, WEPHO10,WEPMA10, WEPMA18

Afanasev, A. THPHO20, THPHO22Agladze, N.I. TUOBA1Agustsson, R.B. TUOAB2, WEOCA2, THOAA2,

TUPSM27, WEPBA17, WEPBA18,WEPMA24, THPAC28, THPAC29,THPAC30, THPAC32, THPAC36

Ahrens, L. MOPBA04, TUPAC10, THPHO10Akroh, A. MOZBA1Al Marzouk, A.A. MOPBA14Albert, F. MOPAC21, MOPAC22, TUPMA10Albright, S.C.P. THODA1Alcorta, M. MOPSM02Aleksandrov, A.V. TUYBA1, WEPBA15, WEPBA16Alessi, J.G. MOPSM03Alexahin, Y.I. TUPBA17, THPBA19Ali, M.M. THPMA13Allezy, A.P. WEOAA1Altinbas, Z. TUOCA2, TUPHO01Amemiya, N. FRXB1Amyx, K.M. MOPBA23An, W. THYAA2, THOCA1, MOPAC04,

MOPAC37, MOPAC38, MOPAC46An, Y.W. TUPBA03Andersen, K.H. MOPMA04Anderson, D.E. FRYBB2Anderson, G.G. MOPAC43, TUPMA10Anderson, S.G. MOPAC43, TUPMA10, WEPMA24Andonian, G. MOOCB2, MOPBA17, MOPHO25,

THPAC32, THPAC37, MOPAC08Andreev, N. THPBA18, THPBA22Andrews, A. TUPSM14, MOPHO20, THPSM16Andrews, H.L. THPAC22Anerella, M. TUOCA2, WEODA1, WEODA2,

THPBA07, THPBA24Ang, Z.T. WEPHO01Ankenbrandt, C.M. TUPBA20, MOPAC26, MOPBA12,

MOPMA21, TUPSM21, THPBA27,THPHO19, THPHO22, THPSM17

Antipov, S.P. MOPAC24, THYBA1, MOPAC11,MOPAC12, MOPHO19, TUPMA08

Antoine, S. THPBA03Arai, H. FRXB1Araki, S. TUPMA01Arbelaez, D. WEOAA1Arenius, D. WEOAA1, FRYBA1Arimoto, Y. WEODA1, THPBA04, THPBA07Arkan, T.T. WEPAC29Arnold, N.D. THPHO03

82 Pasadena, CA, USA, 29 September–4 October 2013

Page 113: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Arodzero, A. THPSM18Arsenyev, S. MOPAC25, WEPAC33, WEPAC34Aryshev, A.S. TUPMA01Aschenauer, E.C. TUPBA15Aslaninejad, M. MOPMA05, THPHO02, THPSM10,

THPSM11, THPSM12Assadi, S. THODA2, TUPAC26Attenkofer, K. THPAC12Avrakhov, P.V. WEPAC14Awida, M.H. WEPAC21, WEPAC24, WEPAC25,

WEPAC26, WEPAC29, WEPAC31,WEPAC32, THPBA17

— B —

Baartman, R.A. WEZBB1Babzien, M. MOPAC49Baca, D. WEPHO14Back, B. MOPSM02Bai, M. WETB1, TUPAC12, TUPBA01,

TUPBA02, TUPBA04, TUPBA06,WEPBA05

Bai, S. TUPBA03Baily, S.A. MOPMA18Ball, M. TUPSM13Bane, K.L.F. TUYB1, WEOAA1, WEPAC46,

WEPBA19Barber, D.P. TUPAC27, TUPHO03Barcikowski, A. WEOAB2Barkley, W.C. WEPHO14Barlow, R.J. THOBB2Barov, N. WEPHO13, THPSM14, THPSM15Bartnik, A.C. TUOBA1, WEOAA4Bartolini, R. MOOAB2Bartosik, H. FROAA3Barty, C.P.J. TUPMA10Barzi, E.Z. THPBA18Bashkirov, V.A. WEOCB1Bassi, G. MOPBA03Baturin, S. MOPHO19, WEPAC16Batygin, Y.K. MOPMA14, MOPMA17, MOPSM05,

TUPSM16, TUPSM17, TUPSM18Bauer, C.A. MOPAC09Baumann, T. FRYBA2Bayer, E. THPMA01Bazarov, I.V. TUOBA1, TUOAB1, WEOAA4,

MOPBA21, TUPMA15Beasley, P. THOBB2Beaudoin, B.L. FROAA1, TUPAC31, TUPAC32,

TUPAC33Beebe, E.N. TUPHO01Beeckman, W. THPBA03Belkacem, B. THPAC10Bell, G.I. TUPHO02Bellavia, S. THPHO07Bellodi, G. MOZBA1Belomestnykh, S.A. TUOAA1, MOPSM04, WEPAC06,

WEPAC07, THPAC18, THPAC34,THPAC35, THPHO06

North American PAC 2013 83

Page 114: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ben-Zvi, I. TUOAA1, MOPBA21, MOPSM04,TUPSM06, TUPSM07, TUPSM08,WEPAC06, THPAC18, THPAC34,THPAC35, THPHO06, THPAC12,THPAC17

Benedetti, C. THOCA2Benedetto, E. TUODB3Bennett, C.W. THPAC19Benson, S.V. WEPSM17Bentley, P. MOPMA04Berg, J.S. WEODA2, MOPBA07, TUPAC09,

TUPBA10, TUPBA11, TUPBA13,THPHO04, THPHO05, THPHO12,THPHO13

Bergstrom, J.C. MOPBA19Berkaev, D.E. MOOAA2Berls, B.L. TUPSM14Bernal, S. FROAA1, TUPAC31Berrutti, P. WEPAC21, WEPAC22, WEPAC23,

WEPAC29, WEPAC31, WEPAC32Berz, M. MOPBA11Betts, S.M. MOPAC43Biedron, S. TUPSM09, WEPHO10, WEPMA10,

WEPSM17Billing, M.G. WEPBA10Biocca, A. TUOCB2Bisognano, J. MOPHO26, TUPMA19Bissen, M.J. TUPMA19Björklund, E. MOPMA15Blaskiewicz, M. MOZAA2, TUOAA1, TUXA1,

FROAA2, MOPSM03, TUPBA06Blau, J. MOPHO24Blednykh, A. MOPBA03, WEPBA06, WEPBA07Blomberg, B.R. TUPSM24Bluem, H. TUPSM04Bocher, P. THPBA03Bogacz, S.A. TUPBA18, TUPBA20Bollen, G. THPBA12Bonatto, A. MOPAC01Bonatto, C. MOPAC01Bondarenko, T.V. WEOCB2, TUPAC05, THPSM08Boon, L.E. WEOAA3, WEPSM06, WEPSM07,

THPAC06Borden, T. MOPMA08Borissov, E. WEPAC25, WEPAC29Borland, M. TUOBB2, WEOAA3, MOPBA23,

MOPHO06, MOPHO07, MOPHO10,MOPHO13, TUPMA03, TUPMA04,WEPSM06, WEPSM07, WEPSM13,THPMA05, TUPSM26, THPMA06

Bosch, R.A. MOPHO26, TUPMA19, TUPMA20Bossert, R. THPBA22Boucher, S. TUOAB2, WEOCB1, THOAA2,

TUPSM28, WEPBA18, THPSM18Boulet, L.E. TUOAB1Boulware, C.H. MOPHO24, TUPSM23, WEPAC33,

WEPAC37, WEPAC38, THPAC35Bowman, C. THPBA23

84 Pasadena, CA, USA, 29 September–4 October 2013

Page 115: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Bowring, D.L. WEPMA12, WEPMA16, WEPMA17,WEPMA18

Boyden, D. MOPAC17Bratton, R.E. WEPHO14Brau, C.A. TUPSM24, THPAC22Brennan, J.M. MOZAA2, TUXA1, WEPMA25,

THPHO07, THPHO08Brice, S. TUPBA20Brindza, P.D. TUPAC28Brooks, S.J. TUPBA13Bross, A.D. TUODB4, TUPBA18, TUPBA20,

WEPMA18, THPBA08, THPBA09,THPHO17

Brouwer, L.N. TUPAC16, WEPBA12Brown, K.A. MOPSM03Brown, M. TUOAB1Bruce, R. TUOCA1Bruhwiler, D.L. MOOCB2, MOPAC08, MOPBA17,

MOPBA22Bruno, D. TUOCA2, WEPHO05, WEPHO06,

WEPHO07Brutus, J.C. WEPAC06, WEPAC07, THPHO06Buaphad, P. MOPHO20, TUPSM14, THPSM16Bucci, S. THOAB1Bui, H. THPAC08, THPHO03Bullock, B. WEPAC13Bultman, N.K. WEOAB1, FRYBA1, MOPMA08,

TUPSM20Burby, J.W. TUPAC23Burkhardt, E. WEPAC05Burrill, A. WEZAA2Butler, N. WEOCA1, THPBA11Byer, R.L. MOOBB2Bylinskii, I.V. WEPHO01Byrd, J.M. WEOAA1

— C —

Cadilhon, B. WEPHO02Calabretta, L. MOPBA05Calanna, A. MOPBA05Calic, S. WEPHO01Cancelo, G.I. TUODB2Cappadoro, P.L. WEPSM15, THPAC09, THPAC11Carcagno, R.H. THPBA15, THPBA16Cardona, J.F. WEPBA01Cargnelutti, M. THPAC04Carli, C. TUODB3Carlsten, B.E. MOOAB1, TUPAC18, TUPAC21,

TUPMA11, TUPMA12Carver, L.R. WEPMA27, WEPMA28, MOPBA02,

THPAC05Cary, J.R. MOPAC09, MOPAC36Casagrande, F. FRYBA1, THPBA13Casey, P.W. TUOCB2Caspi, S. TUPAC16, WEPBA12Cassany, B. WEPHO02Castilla, A. WEPAC39Catelani, G. WEPAC12Cesar, D.B. MOPAC27

North American PAC 2013 85

Page 116: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Cesaratto, J.M. FROAA3Chae, Y.-C. TUOBB2, WEPSM06, THPMA05Champion, M.S. WEPMA22, WEPMA23Chan, W.K. THPBA21Chandrashekar, C. MOPAC41Chang, P.S. THPAC30Chang, X. WEPHO13, THPSM14Chao, Y.-C. THPAC01, THPBA01Chase, B. TUODB2, WEPHO15Cheban, S. THPMA09Chen, A.Z. TUPSM10Chen, H.B. WEYB4, MOPAC03, WEPBA03,

WEPMA04Chen, H.C. TUPBA09Chen, J.F. MOPMA03Chen, M. THPMA09Chen, P. TUODB1Chen, S.-H. MOOCB1, MOPAC48Chen, Y.C. THPAC36Cheng, G. WEPAC47Cheng, P. THPSM04Cheng, W.X. MOPHO16, WEPBA06, THPAC10Chiang, T.-C. MOPHO26Chin, Y.H. MOYBB1Chlachidze, G. THPBA18Choi, B.K. TUPSM24, THPAC22Choi, Y. MOPBA21, TUPMA15, TUPSM30Chouhan, S. THPBA12Christensen, T. THOAB1Chubar, O.V. TUPBA13, WEPSM15Chudaev, V.Ya. THPMA03Chung, M. TUOBB1, TUODA1, MOPBA06,

TUPAC15, TUPAC23, WEPMA12,WEPMA17

Church, M.D. TUPAC21, TUPSM12Clarke, C.I. THYAA2, THOCA1, MOPAC38,

MOPAC46Clasby, B. WEPAC13Clayton, C.E. THYAA2, THOCA1, MOPAC21,

MOPAC22, MOPAC37, MOPAC38,MOPAC40, MOPAC46

Clayton, J.E. WEPMA09Cohn, K. R. MOPHO24Colby, E.R. MOOBB2Coleman, J.E. TUPAC17Collins, G. WEPHO08, WEPHO09Collura, M.G. TUODA1Colson, W.B. MOPHO24Comblin, J.F. MOZBA1Compton, C. FRYBA1, WEPAC17Conde, M.E. MOPSM09, TUPSM05, WEPMA08Constan-Wahl, D. THPHO14Conway, J.V. WEPBA10Conway, Z.A. WEOAB2, WEPAC05Cook, A.M. MOPSM06Cook, N.M. MOPAC34, WEPMA25, THPAC33Corde, S. THYAA2, THOCA1, MOPAC37,

MOPAC38, MOPAC40, MOPAC46Corlett, J.N. TUZB1, WEOAA1

86 Pasadena, CA, USA, 29 September–4 October 2013

Page 117: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Cormier-Michel, E. MOOCB2, MOPAC36Cornacchia, M. FROAA1, TUPAC31Cornelius, W. D. TUPSM29Corwin, T.M. WEPSM15, THPAC09, THPAC11,

THPAC14, THPAC15Coskun, A.F. MOPAC42Costanzo, M.R. TUOCA2Cousineau, S.M. WEODB2Cowan, B.M. MOPAC35, MOPAC36Cowan, E.E. TUPAC13Crawford, A.C. WEPAC27, WEPAC28Crawford, M.T. TUPAC17Creely, P. THOAB1Crisp, J.L. THPHO14Crittenden, J.A. WEPBA09Cultrera, L. TUOAB1Cummings, M.A.C. THPSM17, TUPBA24Current, M.I. WEYB2Cywinski, R. THOBB2Czajkowski, J. TUPSM13

— D —

D’Ambra, J.A. THPHO09D’Elia, A. TUPAC07Dal Forno, M. WEPMA01Dale, D. WEPHO01Dallin, L.O. WEPSM05Daniels, C.S. WEOAA1Danilov, V.V. MOODB1, WEPBA16Dash, R. TUPAC02Davidsaver, M.A. MOPHO17Davidson, A.W. MOPAC39Davidson, K.D. FRYBA1Davidson, R.C. TUPAC22, TUPAC23, TUPAC24Davis, D. TUPMA05Davis, J. WEPHO14Dawson, W.C. TUOCA2, WEPBA05Day, A.L. TUPMA17, TUPMA21De Monte, V. THPHO08De Santis, S. WEOAA1, WEPBA09De Silva, S.U. WEPAC40, WEPAC41, WEPAC43Decker, G. WEOAA3, MOPHO08, WEPSM14,

THPAC08, THPHO03Decyk, V.K. MOPAC47DeFord, J.F. THPBA29DeGraff, B.D. THPBA28Dehnel, M.P. THOAB1Deibele, C. FRYBB2Deitrick, K.E. WEPAC42Dejus, R.J. WEPSM06, WEPSM08, WEPSM09,

WEPSM10, THPAC06DeKamp, J. FRYBA1, THPBA12Delahaye, J.-P. THYAA2, THOCA1, MOPAC37,

MOPAC38, MOPAC46, TUPBA17,TUPBA20

Delayen, J.R. WEPAC39, WEPAC40, WEPAC41,WEPAC42, WEPAC43

Delgiusto, P. WEPMA02Delp, W.W. WEOAA1

North American PAC 2013 87

Page 118: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Delzanno, G.L. TUPMA14DeMello, A.J. WEPMA03, WEPMA16, WEPMA18,

WEPMA19, WEPMA21Denes, P. WEOAA1Denisov, D.S. TUPBA20Densham, C.J. TUYAA2Derbenev, Y.S. TUPAC27, TUPAC28, TUPHO03,

TUPHO05, THPHO19, THPHO22Deriy, B. WEPSM08, WEPSM09, WEPSM11Deyhim, A. WEPSM15, THPAC11Dhakal, P. WEPAC01Di Lieto, A. WEPHO05, WEPHO06, WEPHO07Dimitrov, D.A. MOPBA21, TUPMA15, TUPSM30Dimov, V.A. MOZBA1Ding, X.P. THPHO11, THPMA10, THPMA11,

THPMA12Ding, Y. WEOAA1Dobashi, K. THPSM02Dobbins, J. TUOBA1Dolgashev, V.A. WEPMA24, THPAC28Domingo, S. THOAB1Donahue, R.J. WEOAA1Donley, L. TUPMA03Dooling, J.C. WEOAA3, WEPSM06, THPMA05Doolittle, L.R. WEOAA1Doose, C.L. WEOAA3, WEPSM06, THPAC07,

THPBA05, THPBA06Doran, D.S. WEPMA08Douglas, D. TUPHO03, TUPHO05Dover, N. MOPAC34, THPSM12, THPSM13Downer, T. THPSM16Downey, J.S. WEPSM14Draganic, I. MOPMA14, MOPMA17, MOPSM05,

TUPSM16, TUPSM18, THPAC23Dragt, A. THAP1Drees, K.A. TUOCA2, TUPAC11, TUPBA06,

TUPBA08, THPHO10Drewyor, B. FRYBA1Drury, M.A. WEZAA2Du, Q. WEPBA03Du, Y.-C. MOPAC03, WEPBA03Duan, Z. TUPBA01, TUPBA02Duan, Z. WEPBA13Dudas, A. WEPHO16, WEPHO18, THPBA24Dudnikov, V.G. MOPAC26, TUPSM21, TUPSM22,

WEPBA15Duffy, L.D. MOOAB1, TUPMA11, TUPMA12Duggins, D.O. WEPBA09Dunham, B.M. TUOBA1, TUOAB1, WEOAA4Dunning, M.P. WEOBA1, THPAC27Durickovic, B. THPHO14, FRYBA2Duris, J.P. TUPAC29, TUPMA16Dutheil, Y. MOPBA04, MOPBA05, TUPAC10Dyubkov, V.S. TUPAC05

— E —

Eaton, D.W. TUPSM11Eckman, C.F. THPSM16, MOPHO20, TUPSM14Eddy, N. THPAC21, THPHO23

88 Pasadena, CA, USA, 29 September–4 October 2013

Page 119: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Edelen, J.P. TUPSM09Edwards, R.L. MOPAC25Efremov, M.Y. TUPMA19Eichhorn, G. WEPAC11, WEPAC13, THPMA07Eichten, E. TUPBA20Eisen, E.L. WEPHO08Eisert, D. TUPMA19Ekdahl, C. TUPAC17Eksta, V.V. THPMA03Eliasson, B. MOOCB1, MOPAC48Elliott, K. FRYBA1, WEPAC18Ellison, J.S. MOPBA09Elmore, B. WEPAC13Elson, S. MOPAC25Emery, L. TUOBB2, WEOAA3, MOPHO08,

MOPHO09, TUPMA03, WEPSM06,WEPSM07, WEPSM12

Emma, P. WEOAA1, MOPHO12, MOPHO15Endo, A. THPSM03England, R.J. MOOBB2, THYAA2, THOCA1,

MOPAC28, MOPAC29, MOPAC31,MOPAC33, MOPAC37, MOPAC38,MOPAC46

Ent, R. TUPAC28Erdelyi, B. MOPBA13, MOPBA15, MOPBA14,

MOPBA16, THPHO22Erickson, N. TUOAB1Eriksson, M. MOPHO05Esarey, E. THOCA2, MOPAC20Escallier, J. WEODA1, THPBA07Eustice, S. TUPMA21Evtushenko, P.E. WEZAA1, WEPSM17

— F —

Fabris, A. WEPMA01, WEPMA02Facco, A. FRYBA1, WEPAC03Faillace, L. TUOAB2, THOAA2, TUPSM27,

TUPSM28, WEPMA24, THPAC28,THPAC29

Fang, Y. MOPAC02, MOPAC49Fathy, A.E. WEPMA22, WEPMA23Fedotov, A.V. TUOAA1, MOPSM04, WEPBA08Fedurin, M.G. MOPAC24, MOPAC49, MOPHO19,

TUPMA08Felch, S.B. WEYB2Feldman, D.W. FROAA1, TUPMA17Felice, H. FRYAB2Ferguson, P. WEPHO09, WEPMA09Fernandes, H.C. WEPSM15, THPAC09, THPAC10,

THPAC11Fernow, R.C. THPHO05, THPHO12Ferracin, P. FRYAB1Filippetto, D. WEOAA1Fiorito, R.B. FROAA1, TUPAC34, TUPMA18,

WEPBA20Firebaugh, J.D. TUPSM13Fischer, W. TUXA1, TUOCA2, MOPSM03,

TUPBA06, TUPBA07, TUPHO01,THPHO10

North American PAC 2013 89

Page 120: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Fisher, A.S. THYAA2, THOCA1, MOPAC38,MOPAC46

Fisher, M.V. TUPMA19Fisher, S.E. MOPAC43Fitsos, P. THPMA14Flanagan, G. WEPMA15, WEPMA17, THPBA21,

THPBA22, THPBA23, THPBA24,THPBA26

Fliller, R.P. TUPMA05, TUPMA06, TUPMA07,THPAC10

Floyd, J.G. WEOAA1Foley, M.H. WEPAC25Folkman, K. TUPSM14Fonseca, R.A. MOPAC39, MOPAC47Forest, F. THPBA03Fors, T. THPHO03Fortgang, C.M. MOPMA14, MOPMA17, MOPSM05,

TUPSM16, TUPSM17, TUPSM18Fox, A.D. WEPAC20, THPBA13Fox, J.D. FROAA3, TUPAC25Frak, B. TUOCA2, TUPHO01Frazee, R. MOPMA08Frederico, J.T. THYAA2, THOCA1, MOPAC37,

MOPAC38, MOPAC46, MOPAC40Freemire, B.T. TUODA1, MOPBA06, WEPMA12,

WEPMA17Freyberger, A. THPMA13Frigola, P. MOPHO25, TUPSM27, WEPMA24Frisch, J.C. FRTB1Frolov, D. THPBA17Fu, S. MOZBA2, TUODB1Fuerst, J.D. WEPAC01, THPAC07Fujimoto, T. FRXB1Fujita, T.F. FRXB1Fujiwara, T. THPSM02Fukuda, M.K. TUPMA01Full, S.J. TUOBA1Furukawa, T. FRXB1Furuta, F. THPMA07

— G —

Gabella, W.E. THPAC22, TUPSM24Gabriel, G. TUOAB1Gagliano, J. WEOAA3Gai, W. MOPAC06, MOPAC11, MOPHO19,

MOPSM09, TUPMA08, TUPSM05,WEPMA08

Galambos, J. FRYAA1, WEPBA16Galt, M.D. THPAC19Gamage, B.R.P. THPHO21Ganetis, G. WEPHO05Ganni, V. FRYBA1Gao, F. MOPHO16Gao, J. TUPBA03Garcia-Bonilla, A.C. WEPBA01Gardner, C.J. MOPSM03Garnett, R.W. MOPMA14, MOPMA17, MOPSM05,

TUPSM16, TUPSM17, TUPSM18

90 Pasadena, CA, USA, 29 September–4 October 2013

Page 121: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Gassner, D.M. TUOAA1, TUOCA2, TUPHO01,TUPSM06, TUPSM08, THPAC13

Gaudreau, M.P.J. WEOCA1, WEPHO11, WEPHO12,THPBA11

Ge, G.M. WEPAC09, WEPAC10, THPMA07Ge, L. MOPBA18, WEPAC45, WEPMA18Geddes, C.G.R. THOCA2, MOPAC20Gee, A.J. MOPBA15Gelmetti, F. WEPMA02Geng, H. TUPBA03, THPSM04Gerbick, S.M. WEOAB2Gessner, S.J. THYAA2, THOCA1, MOPAC02,

MOPAC30, MOPAC37, MOPAC38,MOPAC40, MOPAC46

Ghosh, A.K. THPHO09Gibson, D.J. MOPAC43, TUPMA10Gibson, P.E. FRYBA1Gilardoni, S.S. TUPAC06Gilpatrick, J.D. THPAC25, THPAC26Gilson, E.P. TUPAC24Ginsburg, C.M. WEOAA1, WEPAC28, WEPAC29Gioia, J.G. TUPSM16Glasmacher, T . FRYBA1Glenzer, S.H. MOPAC22Gluskin, E. WEPSM08, WEPSM09Godfrey, B.B. THPBA20Gold, S.H. MOPAC11Gollwitzer, K. E. THPHO02Golovkina, A.G. THPSM09Gong, C. THPAC01Gong, C. MOPAC41, MOPAC42Gonin, I.V. WEPAC24, WEPAC25, WEPAC31Gonnella, D. THPMA07Gonsalves, A.J. THOCA2Gorelov, D. MOPHO24, WEPAC37Gorlov, T.V. WEPBA16Gottschalk, S.C. MOPHO24Grabenhofer, A.F. TUPSM11Grandsaert, T.J. THPAC36Granemann Souza, E. MOZBA1Grassellino, A. WEZAA3, THAP3, WEPAC26,

WEPAC27, WEPAC28Graves, V.B. THPMA12Green, M.A. THPBA12Green, M.A. MOPHO26, TUPMA19Greenbaum, A. MOPAC42Greenway, W.G. MOPAC19Grimm, C.J. WEPAC25, WEPAC29Grimm, T.L. WEYB1, MOPHO24, TUPSM23,

WEPAC06, WEPAC33, WEPAC37,WEPAC38, THPAC35

Grimmer, J.H. WEPSM10Grisham, L. TUPAC24Grote, D.P. THPHO13Gu, X. TUOCA2, TUPHO01Gu, Y.Q. MOPAC03Gubeli, J.G. THPMA13Gulec, C. MOPAC42Gulliford, C.M. WEOAA4

North American PAC 2013 91

Page 122: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Guo, Y.Y. TUPBA03Guo, Z. THPSM04Gupta, L. MOPHO18Gupta, R.C. THPBA24, THPBA25Gurov, S.M. MOPBA01

— H —

Haase, A.A. WEPMA18Haber, I. FROAA1, TUPAC32, THPBA20Haeuser, J. MOPMA14, MOPMA17Hahn, H. THPHO10Haj, M. MOPBA05Hall, D.L. THPMA07Hall, M. THPMA14Hall, M.J. MOPMA15Hallman, E.J. MOPAC36Hama, H. THPBA03Hamdi, K. TUOCA2, TUPHO01, THPHO09Hamm, R.W. FRZAP1Hammond, N.P. MOOAB2Hanlet, P.M. TUODA1, TUPSM15, WEPMA03,

WEPMA16, WEPMA17Hao, Y. TUPBA13Hara, Y. FRXB1Harder, D.A. WEPSM15, THPAC11, THPAC14,

THPAC15Harkay, K.C. WEOAA3, WEPSM06, WEPSM07,

THPAC06, THPAC07Harkins, J.P. WEOAA1Harmon, F. THPSM20Harms, E.R. WEPAC29Harris, J.R. MOPAC07, TUPSM09, WEPSM17,

THPAC19Harrison, M.A. MOPBA17, MOPHO25, THPAC30Hartemann, F.V. TUPMA10Hartzell, J.J. TUOAB2, WEOCA2, THOAA2,

WEPBA18, THPAC29Harwood, L. MOZAA1, WEZAA2Hasse, Q.B. WEOAA3, THPAC07Hast, C. WEOBA1, THPAC27Haynes, W.B. WEPAC33He, P. WEPSM15, THPAC09, THPAC11,

THPAC14, THPAC15He, Y. WEPAC11, THPMA07He, Y. THPSM04He, Z.Q. TUPAC14, WEPAC03, WEPBA11,

THPHO01Heath, C.E. MOPAC25Hegelich, B.M. WEOCB1Held, B.L. THPBA29Hemsing, E. THPAC27Henderson, S. MOXAP1, MOPAC16Henry, J. WEPAC47Henry, P.F. MOPMA04Heppner, G. WEPHO07Hertlein, M.P. MOPHO22Hester, T. TUPBA16Hettel, R.O. MOYAB1Hidding, B. MOOCB2

92 Pasadena, CA, USA, 29 September–4 October 2013

Page 123: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Higashi, N. WEODA1, THPBA04Hill, W.T. MOPAC48Hinode, F. THPBA03Hirshfield, J.L. MOPBA02, MOPSM08, MOPSM09,

WEPHO19, WEPHO20, WEPMA27,WEPMA28, THPAC05

Ho, K.M.V. THPMA07Ho, L.V. TUPAC29Hoang, P.D. MOPAC08Hock, J. TUOCA2, TUPHO01Hocker, A. WEPAC29Hodgetts, T.J. MOPHO25, THPAC30, THPAC32Höfle, W. FROAA3Hoff, L.T. TUOCA2, TUPHO01Hoff, M.D. WEPMA19, WEPMA20, WEPMA21Hoffstaetter, G.H. TUTB1, WEOAA2, MOPHO18,

WEPAC09, WEPAC10, WEPAC11,THPMA07

Hofler, A.S. THTB1Hogan, J. WEZAA2Hogan, M.J. THYAA2, THOCA1, THAP2,

MOPAC02, MOPAC30, MOPAC37,MOPAC38, MOPAC40, MOPAC46

Holland, K. FRYBA1Holland, P.R.N. THPSM11Holm, A.I.S. MOPMA04Holmes, A.D. THPAC19Holmes, J.A. WEODB2Holmes, S.D. MOPMA09Holzbauer, J.P. WEPAC01Honda, Y. TUPMA01Hopper, C.S. WEPAC42Horak, W. MOPSM03Hovater, C. TUZBA1, WEZAA2Howell, M.P. THPBA28Hrovatin, R. THPAC04, THPMA04Hu, X.M. THPSM05, THPSM06, THPSM07Hua, J.F. MOPAC03, MOPAC05, WEPBA03Huang, C. MOPAC04, MOPAC23, TUPAC18,

TUPMA13, TUPMA14Huang, G. WEOAA1Huang, H. TUOAA2, MOPBA04, MOPSM03,

TUPAC10Huang, T. TUODB1Huang, W.-H. MOPAC03, WEPBA03Huang, Y. WEPAC06, WEPAC07, THPHO06Huang, Z. WEOAA1, MOPAC28Huber, P. TUPBA20Hughes, C. THPSM13Hulsart, R.L. TUPBA08Hummelt, J.S. WEPBA13, WEPBA14Hunziker, S. THPMA04Hutton, A. TUPHO03, TUPHO05Hyde, C. TUPAC28

— I —

Insepov, Z. WEPMA07Ishibori, I. THPSM01Ishizaka, T. THPSM01

North American PAC 2013 93

Page 124: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ivanov, B.L. THPAC22Ivanov, E.V. WEPHO03, WEPHO04Ivanyushenkov, Y. WEOAA3, FRYBB1, WEPSM06,

THPAC07Ives, R.L. TUPMA17, WEPHO08, WEPHO09,

WEPMA09Iwata, Y. FRXB1

— J —

Jackson, R.H. WEPHO09Jacobs, K. MOPHO26, TUPMA19Jacobson, B.T. TUOBB4, THPAC31Jain, A.K. TUOCA2, WEODA1, WEPSM15,

THPBA07James, G. THOAB1James, S. WEPSM19Jamilkowski, J.P. TUOCA2Jana, M.R. TUODA1, WEPMA12, WEPMA17Jarvis, J.D. TUPSM24Jaski, M.S. WEPSM06, WEPSM08, WEPSM09,

WEPSM10, WEPSM11, THPAC06Jaski, Y. WEPSM14Jecks, R. WEPAC06Jehanno, P. THPBA03Jensen, K. L. TUPMA17, TUPMA21Ji, Q. WEOBB2Jia, Q.K. MOPHO27Jiang, H. TUODB1Jiang, Y. MOPBA02, WEPHO20, WEPMA27,

WEPMA28, THPAC05Jimbo, K. WEPBA02, THPHO01Jing, C.-J. MOPAC06, TUPSM05, WEPAC16,

WEPMA08, MOPAC11, MOPAC12,MOPHO19, TUPMA08

Jivkov, P. THPBA03Jobe, R.K. WEOBA1Johnson, C.A. TUPSM22Johnson, D.E. THPAC21Johnson, J.B. THPAC24Johnson, M.J. FRYBA1, WEPAC20, THPBA13,

TUPSM20Johnson, R.P. TUODA1, MOPAC26, MOPBA12,

TUPSM22, WEPHO15, WEPMA15,THPBA21, THPBA22, THPBA23,THPBA26, THPHO19, THPHO20

Jones, R.M. WEPMA27, WEPMA28, MOPBA02,TUPAC07, THPAC05

Jones, S. FRYBA1Jongen, Y. THYBB1Joshi, C. THYAA2, THOCA1, MOPAC02,

MOPAC03, MOPAC04, MOPAC05,MOPAC21, MOPAC22, MOPAC37,MOPAC38, MOPAC39, MOPAC40,MOPAC42, MOPAC44, MOPAC45,MOPAC46

Joung, M.J. WEPAC04Jug, G. THPAC04Jung, J.-Y. WEOAA1

94 Pasadena, CA, USA, 29 September–4 October 2013

Page 125: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

— K —

Kaducak, M. MOPMA09Kahn, S.A. THPBA22, THPBA24, THPBA25,

THPBA26Kaissl, W. THYAB1Kanareykin, A. MOPAC11, MOPAC12, MOPHO19,

TUPMA08, WEPAC14, WEPAC15,WEPAC16

Kang, H.-S. TUZB2Kang, Y.W. WEPMA22, WEPMA23Kanjilal, D. TUPAC03Kankiya, P. TUPHO01Kaplan, D.M. TUPBA20, WEPMA18Kara, A. THPAC19Karimov, R. WEPHO08Karkare, S.S. TUOAB1, MOPBA21, TUPMA15Karl, F.X. TUPMA05Karppinen, M. THPBA18Kasa, M. WEOAA3, WEPSM06, THPAC07,

THPBA05, THPBA06Kashikhin, V.S. WEPMA14Kashikhin, V.V. THPBA14, THPBA18, THPBA19Kasley, P.A. TUPSM13Katsouleas, T.C. MOPAC10Kaufman, J.J. WEPAC13Kay, J. MOOAB2Kayran, D. TUOAA1, MOPSM04, THPAC13,

THPHO06Kazakevich, G.M. WEPHO15, WEPMA17Kazakov, S. WEPAC15, WEPHO19Keane, R.T. THPAC08Kedzie, M. WEOAB2Keister, J.W. WEPSM15Kelly, M.P. WEOAB2, WEPAC05Kempkes, M.K. WEOCA1, THPBA11Kephart, R.D. WEOAA1, WEZB1, MOPMA09,

WEPAC27Kewisch, J. TUPSM07, WEPBA05Khabiboulline, T.N. WEPAC21, WEPAC22, WEPAC23,

WEPAC24, WEPAC25, WEPAC26,WEPAC28, WEPAC29, WEPAC31,WEPAC32

Khalil, N.Z. TUPBA26Khan, S.A. TUPMA18, TUPMA21Kharkov, Y. MOODB2, TUPAC30Kim, A. TUOAB1Kim, D.G. TUPAC04Kim, E.H. TUPAC04Kim, H.J. WEPAC04Kim, J.-W. TUPAC04, THPAC03Kim, J.Y. TUPAC04, THPAC03Kim, K.-J. THAP4Kim, M. TUPAC04, THPAC03Kim, M. TUPAC04Kim, S.-H. THPBA28Kim, S.H. WEPSM06Kim, S.H. WEOAB2, WEPAC05Kim, Y. MOPHO20, TUPSM14, WEPBA18,

THPSM16

North American PAC 2013 95

Page 126: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

King, J.R. MOPBA23Kirk, H.G. TUPBA09, TUPBA10, TUPBA11,

TUPBA20, THPHO02, THPHO11,THPMA10, THPMA11, THPMA12

Kirleis, A.I. TUPBA02Kirz, J. MOPHO22Kiselev, V.A. MOPBA01Kishek, R.A. FROAA1, TUPAC34, WEPBA20Kitegi, C.A. WEPSM15, THPAC09, THPAC11,

THPAC14, THPAC15Kiupel, G. THPHO14Klaus, A. THPMA01Klebaner, A.L. WEOAA1Klein, M. MOPBA19Kleman, K.J. TUPMA19Kling, N.A. TUXA1Klingbeil, H. THPMA01Knyazik, A. THPAC27Ko, C. MOPBA18Koeth, T.W. FROAA1, TUPAC32Koiso, H. WEODA1, THPBA04, THPBA07Kolski, J.S. MOPMA15, TUPAC19, TUPAC20Kondratenko, A.M. TUPHO03Koop, I. MOOAA2, WEPBA04Koscielniak, S.R. MOOBA1, WEPHO01Kosciuk, B.N. THPAC09, THPAC10Koshiba, Y. WEOBA2Kostin, R.A. WEPAC14Kostroun, V.O. MOPHO18Kotelnikov, S. THPBA15Kotzian, G. FROAA3Kourbanis, I. MOPMA09Kovach, P. WEODA2Koyama, K. THOBA4Kozyrev, A.B. WEPAC15Krafft, G.A. TUPHO03, THPMA13Krasnov, A.A. WEPHO03, WEPHO04Krause, S.W. MOPSM07, THPHO14Krave, S. THPBA22Krawczyk, F.L. TUPMA11, TUPMA12Krinsky, S. MOPBA03, WEPBA06, WEPBA07Kruy, T.L. WEPSM14Kubo, K. TUPBA25Kudinovich, I.V. THPSM09Kürzeder, T. WEPAC13Kulesza, J.D. WEPSM15, THPAC11Kumar, S. TUPAC03Kumura, T. WEPHO08Kunz, J.D. MOPBA10Kurennoy, S.S. MOPMA14, MOPMA16, MOPMA17,

MOPSM05, TUPMA12, TUPSM16,TUPSM17, WEPAC33

Kuroda, R. WEOBA2, WEOBB1Kusche, K. MOPAC49Kustom, R. WEPSM06, WEPSM07Kutsaev, S.V. WEPMA05, WEPMA06Kuzikov, S.V. WEPSM02, WEPSM03, WEPSM04Kwan, T.J. MOPAC23, TUPAC18, TUPMA13Kwiatkowski, S. TUPMA09

96 Pasadena, CA, USA, 29 September–4 October 2013

Page 127: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Kyrpotin, A.N. MOOAA2

— L —

Laird, R. THPHO03Lallement, J.-B. MOZBA1Lambert, A.R. WEPMA18, WEPMA19, WEPMA20,

WEPMA21Lambiase, R.F. TUOCA2, TUPHO01, WEPHO05Lamm, M.J. THPBA14Lang, J.C. WEOAA3Lanzoni, J.A. WEPBA10Lapi, S.E. THYBB2Lapierre, A. FRYBA2, MOPMA07, MOPSM07LaPointe, M.A. MOPSM08Larose, H. THOBB1Lawler, J.E. MOPHO26Lawton, D. THPBA12Laxdal, R.E. FRYBA1, WEPHO01, THPAC01,

THPBA02Leban, P. THPAC04Lebedev, V.A. TUODA2, MOPAC13, MOPMA09,

MOPMA13, TUPSM10, THPAC21,THPHO23

Lebrun, P. MOPBA24Lee, C. MOPAC28, MOPAC29Lee, H.-J. TUPAC15Lee, K.H. WEPMA18Lee, S.-H. WEPSM14Lee, S.-Y. TUPBA18, TUPBA04Leemann, S.C. MOPHO05, TUPMA02, WEPSM05Leemans, W. THYAA1, THOCA2, MOPAC20Lefferts, R.S. THPAC33Legg, R.A. TUPMA20, TUPMA19Leitner, D. FRYBA1, THPHO14, FRYBA2,

MOPSM07Leitner, M. FRYBA1, MOPMA08, TUPSM20,

WEPAC20, THPBA13Lemos, N. MOPAC22Lemut, P.L. THPMA04Lenkszus, F. TUPMA03, THPHO03Leonova, M.A. TUODA1, WEPMA12, WEPMA15,

WEPMA16, WEPMA17, THPHO15Leray, M.J. THPBA03Lettry, J. MOZBA1Leveling, A.F. MOPMA21Lewandowski, J.R. THPAC28Lewellen, J.W. MOOAB1, TUPMA11, TUPMA12,

TUPSM09, THPAC19Lewis, S.M. WEPBA14Li, C. MOPAC06Li, D. WEOAA1, WEPMA03, WEPMA16,

WEPMA18, WEPMA19, WEPMA20,WEPMA21, WEPMA26

Li, F. TUODB1Li, F. MOPAC03, MOPAC05Li, H. WEOBA1Li, K.S.B. FROAA3Li, N. TUOCB2Li, P. TUODB1

North American PAC 2013 97

Page 128: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Li, R. TUPHO03, TUPHO05Li, R.K. THOAA1, TUPAC29, TUPSM03,

THPAC32, THPAC37Li, R.K. TUOBB4Li, S.Z. THYAA2, THOCA1, MOPAC02,

MOPAC37, MOPAC38, MOPAC40,MOPAC46

Li, Y. TUOBA1, WEPBA09, WEPBA10Li, Z. MOPBA18, WEPAC40, WEPAC44,

WEPAC45, WEPMA18Li, Z. THPSM04Liang, X. THPAC12, THPAC35, THPAC18,

THPHO06, THPAC17Liaw, C.J. THPHO07, THPHO08, THPHO10Licciardi, W. THPAC14, THPAC15Lidia, S.M. MOPAC19Liepe, M. WEZBA1, THOBA2, WEPAC11,

WEPAC12, THPMA07Lill, R.M. THPAC08Lillard, B. TUOAB1Limborg-Deprey, C. WEOBA1, TUPMA11Lin, A. MOXBP1Lin, F. TUPAC27, TUPAC28, TUPHO03Lin, L.Y. MOPSM07Lindberg, R.R. THPMA05Lindroos, M. FRYAA2Lipa, R. THPHO03Lipton, R.J. TUPBA20Litos, M.D. THYAA2, THOCA1, MOPAC02,

MOPAC30, MOPAC37, MOPAC38,MOPAC40, MOPAC46

Litvinenko, V. TUOAA1, MOPBA22, MOPSM04,TUPBA13, TUPBA15, WEPAC06,WEPAC07, THPHO06

Liu, A. TUPBA18, THPHO17Liu, C. TUPBA05, TUPBA06, TUPBA13,

TUPBA14, THPAC13Liu, C.-S. MOOCB1, MOPAC48Liu, H.C. TUODB1Liu, T.-C. MOOCB1, MOPAC48Liu, W. TUPSM05Liu, X. TUOBA1, WEPBA09Liu, X.H. TUPSM02Liu, Y. WEPBA16Liu, Z. TUPAC14, WEPAC03, WEPBA11,

THPMA02Lizon, D. C. MOPAC25, WEPAC33Lombardi, A.M. MOZBA1Lopes, M.L. WEODA2, THPBA22, THPBA26Lopes, N.C. MOPAC02Lopes, S.R. MOPAC01Loseth, B.T. MOPBA11Lou, T.P. WEOAA1Louie, W. WEPHO05Lu, W. THOCA1, MOPAC03, MOPAC04,

MOPAC05, MOPAC37, MOPAC38,MOPAC46, MOPAC47, THYAA2,MOPAC39

Lu, X.H. TUPSM03

98 Pasadena, CA, USA, 29 September–4 October 2013

Page 129: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Ludewigt, B.A. WEOBB2Luo, T.H. WEOAA1, WEPMA16, WEPMA18,

WEPMA26Luo, W. MOPAC42Luo, Y. TUXA1, TUOCA2, TUPBA04,

TUPBA07, TUPBA14, TUPHO01Luo, Y. MOPSM01Lyles, J.T.M. WEPHO14Lysenko, A.P. MOOAA2

— M —

Macek, R.J. TUPAC19, TUPAC20Machicoane, G. WEOAB1, FRYBA1Macridin, A. MOYBB2Madrak, R.L. WEPMA13, WEPMA14Madur, A. TUOCB2Maglich, B.C. TUPBA16Magsig, C. THPBA12Maharjan, C. MOPAC34Mahler, G.J. WEPAC07Makarov, A.V. WEPMA14Makdisi, Y. WEPBA05Makino, K. MOPBA11Makulski, A. THPBA15Malloch, I.M. WEPAC17, WEPAC18Malone, R. MOPAC49Maloney, J.A. THPHO20Malyzhenkov, A. TUOBB3Mammarella, F. WEPHO01Mammosser, J.D. WEPAC01, WEPAC47Mamtimin, M. THPSM20Mandal, A. TUPAC03Mapes, M. TUOCA2, TUPHO01Marcus, G. WEOAA1Marhauser, F. WEPMA15, THPBA22Marín, E. TUPBA25Marinelli, A. THPAC27Marksteiner, Q.R. MOOAB1Marone, A. TUOCA2, WEODA1, THPBA07Marr, G.J. TUOAA2Marsden, D. WEPHO08, WEPHO09, WEPMA09Marsh, K.A. THYAA2, THOCA1, MOPAC02,

MOPAC21, MOPAC22, MOPAC37,MOPAC38, MOPAC40, MOPAC45,MOPAC46

Marsh, R.A. TUPMA10Marshall, T.C. MOPSM09Marti, F. FRYBA1Martin, D.W. WEPMA18Martinez, M.P. MOPMA15Martins, J.L. MOPAC39Marusic, A. TUPBA04, TUPBA05, TUPBA06,

TUPBA08Matlis, N.H. THOCA2Matsumura, Y. THOBA4Maxwell, T.J. WEOBA1Mayes, C.E. WEOAA2, MOPHO18McAteer, M.J. TUPAC06McCormick, D.J. WEOBA1

North American PAC 2013 99

Page 130: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

McCrady, R.C. MOPMA14, MOPMA17, MOPSM05,TUPSM16, TUPSM18, THPAC26

McCuistian, B.T. TUPAC17McDonald, K.T. TUPBA09, TUPBA10, THPHO02,

THPHO11, THPMA10, THPMA11,THPMA12

McGuinness, C. MOOBB2McIntyre, P.M. MOZAB1, THODA2, TUPAC26McNeur, J.C. MOOBB2Melnychuk, O.S. WEPAC27, WEPAC28Mendenhall, M.H. TUPSM24Meng, C. TUODB1, THPSM04Meng, M. TUODB1Meng, W. TUOAA1, TUPBA13, TUPSM08Méot, F. MOPBA04, MOPBA05, MOPSM03,

TUPAC10, TUPBA13Merio, M. WEPAC25, WEPAC31, THPMA09Merminga, L. THPBA01, THPBA02Mernick, K. MOZAA2, TUXA1, THPHO07,

THPHO08, THPHO09Mi, C. TUOCA2, WEPHO05, WEPHO06,

WEPHO07Mi, J.-L. TUPHO01, THPHO10Michnoff, R.J. TUOCA2, TUPBA08Midttun, O. MOZBA1Mihalcea, D. TUPSM24Mikhailichenko, A.A. MOPHO18Mikulec, B. TUODB3, TUPAC06Miller, R.H. THPSM14Miller, S.J. WEPAC20, THPBA13Miller, T.A. TUOCA2, TUPHO01, THPHO09Miller, T.J. MOPHO26Milloch, M.M. WEPMA02Milocco, A. WEPMA02Milton, S.V. MOPAC07, TUPSM09, WEPHO10,

WEPMA10, WEPSM17Minty, M.G. TUOCA2, TUPBA05, TUPBA06,

TUPBA08, THPAC13, THPHO09Mishra, C.S. MOPMA09Mishra, S. MOPMA05Mitchell, C.E. WEPSM18Mitra, A.K. WEPHO01Mittal, K.C. TUPAC02Miyamoto, A. MOPHO04, WEPSM01, WEPSM19Mizugaki, M. WEOBA2Mizushima, K. FRXB1Mo, Y. FROAA1Møller, S.P. MOPMA04Moens, V. TUOCA1, TUPAC15Moir, D.C. TUPAC17Mokhov, N.V. MOPMA21, THPBA14, THPBA19Mondal, J. TUPAC02Monroy, M.T. WEOAA1Montag, C. TUOAA2, TUOCA2, TUPAC11,

TUPHO01, THPHO10Montazeri, B. MOOBB2, MOPAC28Montes, F. MOPSM07Montgomery, E.J. TUPMA17, TUPMA18, TUPMA21Moody, J.D. MOPAC22

100 Pasadena, CA, USA, 29 September–4 October 2013

Page 131: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Moody, J.T. MOPAC43Moog, E.R. WEPSM08, WEPSM09, WEPSM10Moore, T.P. TUOBA1, TUOAB1Moretti, A. TUODA1, WEPMA03, WEPMA07,

WEPMA12, WEPMA15, WEPMA16,WEPMA17, WEPMA18

Morgan, G. WEOAB1Morgan, J.P. MOPMA21Mori, S. FRXB1Mori, W.B. THYAA2, THOCA1, MOPAC02,

MOPAC03, MOPAC04, MOPAC05,MOPAC10, MOPAC37, MOPAC38,MOPAC39, MOPAC46, MOPAC47,MOPAC49

Morita, A. WEODA1, THPBA04, THPBA07Morozov, I.A. MOODB2, TUPAC30Morozov, V.S. TUPAC27, TUPAC28, TUPHO03,

THPHO19, THPHO20, THPHO22Morris, D. FRYBA1, THPMA02Morrissey, D.J. THPBA12Mu, Z.C. TUODB1Muggli, P. MOOBB1, THYAA2, THOCA1,

MOPAC02, MOPAC37, MOPAC38,MOPAC46, MOPAC49

Muller, E.M. THPAC17Munroe, B.J. THOBA1, MOPSM06, WEPBA14Murakami, T.M. FRXB1Muriki, K. WEPSM19Murokh, A.Y. TUOAB2, THOAA2, MOPHO25,

WEPBA17, WEPMA24, THPAC28,THPAC29, THPAC30, THPAC36,THPSM18

Murphy, K. MOPAC19Murphy, R.C. WEOAB2Murray, S.N. TUPSM22Musardo, M.M. WEPSM15, THPAC11, THPAC14,

THPAC15Mustapha, B. WEOAB2, MOPMA06, MOPSM02,

WEPMA05, WEPMA06Musumeci, P. TUOBB4, THOAA1, MOPAC27,

MOPAC43, TUPAC29, TUPSM03,TUPSM28, THPAC37

Myers, M. THPHO07, THPHO08

— N —

Nadel-Turonski, P. TUPAC28Nagaitsev, S. MOODB1, MOODB2, TUYAA1,

MOPAC13, MOPAC16, MOPMA09,TUPAC30, WEPBA16, WEPBA17

Najmudin, Z. MOPAC34, THPSM12, THPSM13Nakamura, K. THOCA2Nakao, M. WEPBA02, THPHO01Nantista, C.D. WEOAA1Naranjo, A.C. WEPHO14Naranjo, B. MOPAC08Naseri, N. MOPAC36Nash, L.M. WEPMA15Nash, S. MOPSM07, THPHO14Nassiri, A. WEPAC01, WEPAC02, WEPAC44

North American PAC 2013 101

Page 132: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Nayak, S.K. THPHO10Nehring, R. THPBA15Neil, G. WEOAA1, WEPSM17Nemesure, S. TUOCA2, TUPHO01Nenasheva, E. WEPAC15Nesmiyan, I. TUPAC07Neubauer, M.L. WEPHO16, WEPHO17, WEPHO18Neuffer, D.V. TUPBA11, TUPBA17, TUPBA18,

TUPBA20, THPHO11, THPHO17,THPHO19

Neustadt, T.S. THPBA28Newsham, D.J. WEPHO13, WEPMA11, THPSM14Ng, C.-K. WEOAA1, MOPAC31, MOPBA18,

WEPAC44, WEPAC45, WEPAC46Ng, W. TUOCA2, WEPHO07Nguyen, C. TUOAB1Nguyen, P. MOPMA08Nichols, A.A. THPBA29Nichols, R.M. THPSM12Nicol, T.H. THPMA09Niell, F.M. WEPHO11, THPBA11Nieter, C. MOPBA21, TUPMA15, TUPSM30Nikolskiy, K.I. WEPHO03, WEPHO04Nipper, J.H. WEPMA15Nishimura, H. TUOCB2, WEOAA1, MOPHO23,

WEPSM19Nishimura, Y. TUPSM01Nishiyama, M. TUPSM01Nissen, E.W. TUPHO03, TUPHO05Noble, R.J. MOPAC28, MOPAC31, MOPAC33Nobrega, A. THPBA18Noda, A. WEPBA02, THPHO01Noda, K. FRXB1Nogiec, J.M. THPBA15, THPBA16Nolen, J.A. FRYBA1Nonomura, K. THPSM03Norem, J. WEPMA07Novitski, I. THPBA18Novokhatski, A. WEPBA08Nuhn, H.-D. WEOAA1Nunes, R.P. MOPAC01Nurkenov, S. WEPMA07

— O —

O’Connel, T. WEPAC11O’Connell, T.I. THPMA07O’Hara, J.F. MOPMA14, MOPSM05, TUPSM16,

WEPAC33, THPAC23O’Neill, C. TUPSM14O’Shea, F.H. MOPHO25, WEPBA17, THPAC36Obana, T. FRXB1Oddo, P. WEPBA05Oganesyan, K.B. MOPHO01, MOPHO02, MOPHO03Ogitsu, T. FRXB1Ohnishi, Y. WEODA1, THPBA04, THPBA07Ohuchi, N. WEODA1, THPBA04, THPBA07Oide, K. WEODA1, THPBA04, THPBA07Okamoto, H. THPHO01Okugi, T. TUPBA25

102 Pasadena, CA, USA, 29 September–4 October 2013

Page 133: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Okumura, S. THPSM01Olave, R.G. WEPAC43Olivas, E.R. MOPMA16, MOPSM05, WEPAC33Olivas, P.D. WEPHO14Olsen, R.H. TUPHO01Olsson, T. TUPMA02Orel, P. THPMA04Orfin, P. THPHO06Orikasa, T. FRXB1Orlov, Y. WEPAC29, THPMA09Orris, D.F. THPBA15, THPBA16Osaki, K. THPHO01Ostiguy, J.-F. MOPMA13Ostroumov, P.N. WEOAB2, MOPMA06, MOPSM02,

WEPAC05, WEPMA05, WEPMA06Ottarson, J. THPBA12Ouyang, H.F. TUODB1, THPSM04Ovalle, E. MOZBA1Ovsyannikov, D.A. THPSM09Ozcan, A. MOPAC42Ozelis, J.P. FRYBA1

— P —

Padmore, H.A. WEOAA1, THPAC12, THPAC17Pai, C. WEPBA05, THPHO09Pak, A.E. MOPAC21Pakter, R. MOPAC01Palmer, M.A. MOYAA2, TUPBA17, TUPBA20,

WEPMA18Palmer, R.B. TUPBA11, TUPBA20, WEPMA18,

THPHO04, THPHO05, THPHO12,THPHO13

Pan, P.Z. TUPMA17, TUPMA18Pang, X. MOPMA18, TUPSM19Panuganti, H. TUPSM24, TUPSM25Papadopoulos, C. F. WEOAA1, TUPMA09Papotti, G. MOYAA1Pappas, G.C. WEOAA1Pardo, R.C. MOPSM01Paret, S. WEOAA1, TUPBA23Paret, Z. TUPMA09Park, H. WEPAC40, WEPAC41Park, J. THPAC36Park, J.H. TUPSM04Parker, B. WEODA1, THOAB2, TUPBA13,

TUPBA15, THPBA07Pasquinelli, R.J. WEPHO15, WEPMA03, WEPMA16,

WEPMA18Passarelli, D. WEPAC31, THPMA09Pasternak, J. THPHO02, THPSM11Peggs, S. MOPSM03, WEPMA25Pei, S. THPSM04Pellegrini, C. FRZBP1Peng, J. TUODB1Peng, S. FRYBA1Penn, G. WEOAA1Pennisi, T.R. TUPSM22Peplov, V.V. FRYBB2Peralta, E.A. MOOBB2, MOPAC28, MOPAC33

North American PAC 2013 103

Page 134: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Perdikakis, G. MOPMA07, MOPSM07Perevedentsev, E. MOOAA2, WEPBA04Perry, A. MOPMA06Peterson, D.W. WEPMA03, WEPMA16, WEPMA17,

THPMA08Peterson, T.J. WEOAA1, WEPAC25, THPMA09Petrichenkov, M. THPMA03Pfeffer, H. THPBA17Phillips, D. TUOCA2Phillips, R.A. WEPHO12Piech, J.F. THPSM10Pieck, M. TUPSM16Pigeon, J.J. MOPAC41, MOPAC42, MOPAC44Pikin, A.I. TUOCA2, TUPHO01, TUPSM06,

TUPSM08Pile, P.H. MOPSM03, WEPBA05Piller, C. TUPSM22Pinayev, I. TUOAA1, MOPSM04, WEPAC06,

WEPAC07, WEPBA08, THPHO06Pindyurin, V.F. THPMA03Piot, P. MOZBB1, MOPAC14, TUPAC21,

TUPSM24, TUPSM25, MOPAC15Pischalnikov, Y.M. WEPAC24, WEPAC26, WEPAC29Pitcher, E.J. TUYAA2, MOPMA04Pivi, M.T.F. MOPBA08Placidi, M. WEOAA1Plate, S.R. TUOCA2, THPBA08, THPBA09Podobedov, B. WEODB1Pogorelov, I.V. MOPBA22, MOPBA23, TUPHO02Pogorelsky, I. MOPAC34Pogue, C.M. MOPHO24Pogue, N. THODA2Polikhov, S.A. WEPHO03, WEPHO04Pollock, B.B. MOPAC21, MOPAC22Pollock, K.M. FROAA3Polly, C.E. MOPMA21Poloubotko, V. WEPAC26, THPMA09Polozov, S.M. WEOCB2, THPSM08Polyanskiy, M.N. MOPAC34Poole, B.R. MOPAC07Poor Režaei, K. FROAA1, WEPBA20Popielarski, J. FRYBA1Popielarski, L. FRYBA1, WEPAC17Popov, M. WEPSM15Popovic, M. WEPMA15Portillo, M. MOPMA07Portmann, G.J. MOPHO22Posen, S. WEZBA1, THOBA2, WEPAC12,

WEPAC13, THPMA07Posocco, P.A. THOBB1, MOPMA05, THPSM10,

THPSM11, THPSM12, THPSM13Potkins, D.E. THOAB1Potts, R.E. WEODB2Power, J.G. MOPAC06, MOPAC12, MOPSM09,

TUPSM05, WEPMA08Powers, T. WEOAA1Pozdeyev, E. WEOAB1, FRYBA1, WEPAC19Pozimski, J.K. MOPMA05, THPSM12Preble, J.P. WEOAA1

104 Pasadena, CA, USA, 29 September–4 October 2013

Page 135: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Premo, K.S. WEPAC26, WEPAC29Prestemon, S. WEOAA1Previtali, V. TUOCA1Pribaz, F. WEPMA02Prieto, P.S. TUPSM13, THPAC21Prokop, C.R. TUPAC21, TUPSM25Pronitchev, O. THPMA09Pronskikh, V.S. THPBA14Prosnitz, D. WEOAA1Prost, L.R. TUOBB1, THPAC21Prosvetov, V.P. MOOAA2Ptitsyn, V. TUPBA13, TUPBA15, TUPBA26Pulampong, T. MOOAB2

— Q —

Qi, M. MOPAC28, MOPAC29, MOPAC33Qian, H.J. WEOAA1, TUPMA09Qiang, J. WEOAA1, MOPBA07, TUPBA23,

WEPSM18Qiao, S. WEPSM01Qin, H. TUPAC22, TUPAC23Qin, Q. TUPBA01, TUPBA03Qin, Y. WEPSM19Qing, Q. TUPBA02Quigley, P. WEPAC11, THPMA07

— R —

Rabehl, R. THPBA16Raginel, V. TUODB3, TUPAC06Rahman, O.H. TUPSM06, TUPSM08Raich, U. MOZBA1Rakowsky, G. THPAC09, THPAC14, THPAC15Ralph, J. TUPSM14Ralph, J.E. MOPAC21, MOPAC22Ranjbar, V.H. FROAA2, TUPBA02Rank, J. WEPSM15, THPAC09, THPAC10,

THPAC11, THPAC15Rao, T. MOPBA21, TUPSM06, TUPSM08,

THPAC12, THPAC18, THPAC34,THPAC35, THPHO06

Rao, X. WEOAB1Raparia, D. MOPSM03, TUPHO01Ratcliffe, N. THOBB2Rathke, J. TUPSM04Ratti, A. WEOAA1Raubenheimer, T.O. WEOBA1, MOPAC40, MOPHO12,

MOPHO15, WEPBA19, THPAC27Read, M.E. WEPHO08, WEPHO09, WEPMA09Redaelli, S. TUOCA1Reece, C.E. WEZAA2Rees, D. WEPHO14Reid, T. WEOAB2Reimann, O. MOPAC02Reinsch, M.W. WEOAA1Rencsok, R. MOPSM07, THPHO14Repkov, A.V. THPMA03Reva, V.B. FRXA1Režanov, I. WEPHO03, WEPHO04

North American PAC 2013 105

Page 136: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Rhein, C. THPAC15Rice, S.A. WEPAC35, WEPAC36Riddick, B.C. TUPMA17, TUPMA18, TUPMA21Riehn, E.J. TUPSM06, TUPSM08Rimmer, R.A. TUPHO03, WEPAC44, WEPAC47,

WEPAC48, WEPHO17Ristori, L. THOBA3, WEPAC21, WEPAC22,

WEPAC23, WEPAC24, WEPAC25,WEPAC29, WEPAC30, WEPAC31,THPMA09

Rivetta, C.H. WEOAA1, FROAA3, TUPAC25Rizzato, F.B. MOPAC01, TUPAC01Robak, S. MOPAC17Robert-Demolaize, G. TUOAA2, TUPAC12, TUPBA04,

TUPBA06Roberts, K.G. TUOBB4, TUPSM03Roberts, T.J. MOPBA09, MOPBA12, THPBA27Robin, D. TUOCB2, WEOAA1, THYAB2,

MOPHO22, MOPHO23, TUPAC16,WEPBA12

Robinson, D. WEOAA3Rodrigues, G.O. TUPAC03Rodriguez, J.A. MOPMA07, MOPSM07, THPAC20,

THPHO14, FRYBA2Rogers, C.T. THPMA10Rogers, G.C. TUPMA19Rogovsky, Yu. A. MOOAA2Romanenko, A. WEPAC27, WEPAC28Romanov, A.L. MOOAA2, WEPBA04Romanov, G.V. WEPAC23Romero, W.P. MOPAC25Roncarolo, F. MOZBA1Rong, L.Y. TUODB1Rosas, P.J. TUOCA2, TUPHO01Rose, J. MOPBA03, MOPHO16, TUPMA07Rosenzweig, J.B. MOOCB2, MOPAC08, TUPSM27,

WEPMA24, THPAC28Roser, T. TUXA1, MOPSM03, TUPBA13,

WEPBA05, THPHO10Rossi, A. TUOCA1Rossi, C. MOZBA1Rossi, S.L. TUOCB2Roth, I. WEOCA1Rouleau, G. TUPSM16Rowe, A.M. WEPAC04, WEPAC27, WEPAC28Roybal, R.J. MOPMA14Ruelas, M. MOPHO25, THPAC30Ruisard, K.J. FROAA1Ruiz-Osés, M. THPAC12, THPAC17, THPAC18,

THPHO06Rusnak, B. THPMA14Russell, S.J. MOOAB1, TUPMA11, TUPMA12Russo, T. FRYBA1, MOPMA08Rybarcyk, L. MOPMA14, MOPMA16, MOPMA17,

MOPMA18, MOPSM05, TUPSM16,TUPSM17, TUPSM18, TUPSM19,THPAC23

Ryne, R.D. MOPBA06, MOPBA07, TUPBA20

106 Pasadena, CA, USA, 29 September–4 October 2013

Page 137: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

— S —

Sabbagh, P. MOPMA04Sabharwal, S. WEYB3Sabol, D.M. WEPAC11Saethre, R.B. FRYBB2Saewert, G.W. THPBA17Safranek, J.A. TUOCB1Saha, P. TUPBA24Sahai, A. A. MOPAC10Saini, A. MOPMA10, MOPMA12, MOPMA13,

WEPAC32Saito, K. FRYBA1, WEPAC20Sajaev, V. TUOBB2, WEOAA3, MOPHO06,

MOPHO07, MOPHO08, MOPHO09,WEPSM06, WEPSM07, WEPSM12

Sakaue, K. TUPMA01, WEOBA2, TUPSM01,THPSM03

Salvachua, B. TUOCA1Samms, T. WEPHO05, WEPHO06, WEPHO07Samoshin, A.V. TUPAC05Sampson, P. TUOCA2Samulyak, V. MOPBA06, TUPBA09Sanchez Alvarez, J.L. MOZBA1Sandberg, J. TUOCA2, TUPHO01, WEPHO05,

WEPHO06, WEPHO07Sandoval, Jr., G. M. WEPHO14Sannibale, F. WEOAA1, WEYA1, TUPMA09Santana, M. TUPSM22Sasaki, S. MOPHO04, WEPSM01, WEPSM19Sato, R. THPSM03Sato, S. FRXB1Satogata, T. THPHO21Sattarov, A. THODA2Saunders, J. THPBA28Savage, P. MOPMA05Savard, G. MOPSM01Savilov, A.V. WEPSM02, WEPSM03Savino, J.J. TUOBA1Sayed, H. K. MOPBA07, TUPBA10, TUPBA11,

THPHO11, THPMA12Scaminaci, A.J. THPHO03Scarpine, V.E. THPAC21Scarvie, T. TUOCB2Schächter, L. MOPAC28Schaff, W.J. TUOAB1, MOPBA21Schappert, W. WEPAC24, THPBA15Schaumburg, H.D. MOPBA16Schempp, A. MOPMA14, MOPMA17Schenkel, T. WEOBB2, MOPAC19Schlott, V. THPMA04Schmalzle, J. THPBA24Schoefer, V. TUOAA2, MOPBA04, TUPAC10Schoenlein, R.W. WEOAA1Schoessow, P. MOPAC11, MOPAC12, MOPHO19,

TUPMA08Schreiber, G. THPMA01Schrock, K. WEPHO11Schroeder, C.B. THOCA2, MOPAC20Schroeder, K.M. WEOAA3

North American PAC 2013 107

Page 138: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Schubert, S.G. THPAC12, THPAC17Schulte, R.W. WEOCB1Schultheiss, C. WEPHO06, WEPHO07Schultheiss, T. TUPSM04Schultz, R.P. WEPMA16Schwartz, B.T. MOPAC35, MOPBA22, TUPHO02Schwartz, J. THPBA21Schwarz, S. FRYBA2, MOPMA07, MOPSM07,

THPBA12Schwarz, T.A. TUODA1Scoby, C.M. THPAC32Scrivens, R. MOZBA1Sears, J. WEPAC11, WEPAC13, THPAC19,

THPMA07Sedillo, J.D. THPAC25Seki, H. THOAB1Seletskiy, S. TUPBA12, WEPSM16, THPAC16Semenov, A. THPAC21Senchenko, A.I. MOOAA2Sereno, N. WEOAA3, THPHO03Sergatskov, D.A. WEPAC27, WEPAC28Serpico, C. WEPMA01, WEPMA02Serrano, C. WEOAA1Sessler, A. TUPAC16Sethna, J.P. WEPAC12Seung, S. THOAA2, MOPBA17Severson, M.C. TUPMA19Seviour, R. THODA1Shabbir, F. MOPAC42Shaftan, T.V. MOPBA17, MOPHO16, MOPHO17,

TUPMA05, TUPMA06, TUPMA07Shao, X. MOOCB1, MOPAC48Shapiro, M.A. THOBA1, MOPSM06, WEPBA13,

WEPBA14Shapovalov, R.V. THPSM21Sharamentov, S.I. WEOAB2, MOPSM01Sharkov, G.B. WEPHO03, WEPHO04Sharma, A.S. TUPAC02Sharma, S.K. THPAC09, THPAC10Shatilov, D.N. MOODB1Shatunov, P.Yu. MOOAA2Shatunov, Y.M. MOOAA2Shaw, B. THOCA2Shaw, J.L. MOPAC21, MOPAC22, MOPAC42,

MOPAC45Shchegolkov, D.Y. MOPAC23, MOPAC24, TUPMA13,

TUPMA14, WEPAC33Shchelkunov, S.V. MOPSM08, MOPSM09, WEPHO19,

WEPHO20Shea, T.J. MOPMA04Sheehy, B. TUOAA1, MOPSM04, TUPSM06Sheffield, R.L. TUPMA12Shelley, F.E. MOPMA15, TUPSM16Shemelin, V.D. WEPAC13Shemyakin, A.V. TUPSM10, THPAC21Shen, G. MOPHO17Shen, X. TUPAC12, TUPBA04Sheromov, M.A. THPMA03Shi, J. WEPMA04

108 Pasadena, CA, USA, 29 September–4 October 2013

Page 139: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Shibuya, S. THOAB1Shiltsev, V.D. MOOAA1, TUOBB1, MOPAC15,

MOPAC16, MOPAC18Shin, K.R. WEPMA22, WEPMA23Shin, Y.-M. MOPAC17, TUPSM11, TUPSM12,

MOPAC18Shirai, T. FRXB1, WEPBA02Shiraishi, S. THOCA2Shiroyanagi, Y. WEOAA3, WEPSM06, WEPSM07,

THPAC07Shishlo, A.P. TUYB2, WEODB2, WEPBA16Shkolnikov, P. MOPAC34Shkvarunets, A.G. TUPMA18Shoaf, S.E. THPHO03Shoda, K. FRXB1Shrey, T.C. TUOAA2Shuptar, M. WEPAC20, THPBA13Shwartz, D.B. MOOAA2, WEPBA04Sikora, J.P. WEPBA09, WEPBA10Silva, L.O. MOPAC02, MOPAC39, MOPAC47Simakov, E.I. MOPAC23, MOPAC24, MOPAC25,

TUPMA13, WEPAC33, WEPAC34Simeoni, W. TUPAC01Simos, N. MOPSM03Simpson, B.E. WEPHO11, WEPHO12Singh, O. THPAC10Sinyatkin, S.V. MOPBA01Sipahi, N. WEPHO10, WEPMA10Sipahi, T. WEPHO10, WEPMA10Sirio, C. WEPHO06, WEPHO07Skaritka, J. TUPSM06, TUPSM08, WEPAC06,

WEPAC07, THPAC34, THPAC35,THPHO06

Skiadopoulos, D. WEOAA3Skrinsky, A.N. MOOAA2Smedley, J. MOPBA21, THPAC12, THPAC17,

THPAC18Smekens, D. THPBA18Smirnov, A.V. TUOAB2, THOAA2, MOPHO20,

TUPSM28, WEPBA18, THPSM19Smirnov, A.Yu. WEOCB2, THPSM08, WEPHO03,

WEPHO04Smirnov, D. TUPBA02Smith, E.N. WEPAC11Smith, K.S. THPHO06Smith, M.L. WEOAA3, WEPSM11Smith, T.L. WEPAC02Smolenski, K.W. TUOBA1, TUOAB1Snopok, P. TUPBA20, MOPBA10, THPMA10,

MOPBA09, MOPBA11, THPHO11,THPHO16, THPHO17

Snydstrup, L. TUOCA2, WEPAC06, WEPAC07Sodomaco, N. WEPMA02Sokollik, T. THOCA2Soliday, R. MOPBA23Solyak, N. TUODB2, MOPMA09, MOPMA10,

MOPMA12, MOPMA13, WEPAC14,WEPAC22, WEPHO19

Somaschini, L. WEPMA03, WEPMA16

North American PAC 2013 109

Page 140: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Song, K. WEPSM19Sonnad, K.G. MOPBA08, TUPAC13Soong, K. MOOBB2, MOPAC32, MOPAC28,

MOPAC33Sotnikov, G.V. MOPSM09Souda, H. WEPBA02, THPHO01Souza, R. THPMA14Spencer, J.E. MOPAC28, MOPAC31Spentzouris, L.K. TUPSM05Spickermann, T. TUPAC19, TUPAC20Spranza, E. WEPBA17Srivinivasan, M. TUPBA16Stabile, P. TUPSM13Stancari, G. TUOCA1, TUPAC15Staples, J.W. WEOAA1, TUPMA09, WEPMA19,

WEPMA20, WEPMA21Starovoitova, V. THPSM20Steier, C. TUOCB2, WEOAA1, MOPHO23Steiner, M. MOPMA07Steinke, S. THOCA2Stem, W.D. FROAA1, TUPAC32Stepanov, A.D. TUPAC24Stewart, T.M. THOAB1Still, D.A. MOPAC18Stillwell, R.L. THPAC36Stockli, M.P. FRYBB2, TUPSM22Stoltz, P. MOPAC08, MOPBA24Storey, D.W. THPBA01, THPBA02Storms, S. WEOCA2, THOAA2, WEPBA18,

THPAC28, THPAC29Stout, D. MOPMA08Stratakis, D. TUPBA11, THPHO04, THPHO05,

THPHO11, THPHO12, THPHO13,THPHO16

Striganov, S.I. MOPMA21Strong, W.H. THPBA28Stupakov, G.V. WEOAA1, WEODB1Su, J.J. MOPAC48Su, T.W. MOPAC42Sugimoto, H. WEODA1, THPBA04, THPBA07Sukhanov, A.I. WEOAA1, WEPAC28Sullivan, G. TUPAC17Sullivan, M.K. TUPAC28, TUPHO03Sumithrarachchi, C. FRYBA2, MOPMA07Summers, D.J. WEPMA18, WEPMA26Summers, R.D. WEPHO14Sun, B. TUODB1, THPSM04Sun, C. TUOCB2, WEOAA1, MOPHO22,

MOPHO23Sun, J.L. THPSM04Sun, X. WEPSM06, THPAC08Sun, Y. MOPHO07, MOPHO10, MOPHO11,

MOPHO12, MOPHO13, MOPHO14,MOPHO15

Sutter, D.F. FROAA1, TUPAC31, TUPAC33Suzuki, S.S. FRXB1Swent, R. MOPHO24, THPAC19Swinnen, L. THPBA03Swinson, C. MOPAC49

110 Pasadena, CA, USA, 29 September–4 October 2013

Page 141: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Sylvester, C. THPBA16

— T —

Tagi, K. THPSM02Taillardat, S. THPBA03Tajima, T. WEPAC33Takahashi, T. TUPSM01Takatomi, T. WEOBA2, TUPSM01Takayama, S. FRXB1Takibayev, A. MOPMA04Talman, R.M. TUPAC14Tan, Y. TUOCA2, TUPHO01Tanabe, T. WEPSM15, THPAC09, THPAC10,

THPAC11, THPAC14, THPAC15Tang, C.-X. MOPAC03, WEPBA03Tang, J.Y. MOPMA03, TUPBA03, THPSM04Tanke, E. MOPMA08Tarawneh, H. MOPHO23, WEPSM19Tarrant, J.S. THPBA08, THPBA09Tartaglia, M.A. THPBA16Tauchi, T. TUPBA25Tawada, M. WEODA1, THPBA04Taylor, M.C. WEYB2Temkin, R.J. THOBA1, MOPSM06, WEPBA13,

WEPBA14Tennant, C. TUPHO03, TUPHO05Tepikian, S. TUOAA1, TUOAA2Terechkine, I. THPMA09Terunuma, N. TUPMA01Teryaev, V.E. WEPHO19Than, R. TUOCA2, WEPAC06, WEPAC07,

THPHO06Theisen, C. TUOCA2, TUPHO01Thieberger, P. TUOCA2, TUPBA08, TUPHO01,

THPAC13, THPHO09, THPHO10Thompson, J.R. WEPMA11Thomsen, H.D. MOPMA04Threlkeld, E.W. TUPSM28Thronson, C. MOPMA08Thurman-Keup, R.M. THPAC21Tian, J.M. TUODB1Tian, K. TUOCB1To, H.L. TUPSM03, THPAC37Tochitsky, S. MOPAC41, MOPAC42, MOPAC44Todd, A.M.M. TUPSM04Tokpanov, Y. TUODA2Tollestrup, A.V. TUODA1, MOPBA06, WEPMA12,

WEPMA15, WEPMA17Tomás, R. TUPBA04, TUPBA25Tompkins, J.C. THPBA22Tongu, H. WEPBA02Torun, Y. TUODA1, WEPMA03, WEPMA18,

THPMA08, WEPMA12, WEPMA15,THPHO18, WEPMA16, WEPMA17

Tóth, C. THOCA2Trakhtenberg, E. WEOAA3Transtrum, M.K. WEPAC12Trbojevic, D. THOAB2, TUPBA13, TUPBA14,

TUPBA15

North American PAC 2013 111

Page 142: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Tremaine, A.M. MOPAC43Trenikhina, Y. WEPAC27Tresca, O. MOPAC34, THPAC33Tsang, S.H. THOBB1Tschirhart, R.S. MOPMA09Tsoupas, N. MOPBA05, TUPBA13Tsuchimoto, M. THPAC02Tsuchiya, K. WEODA1, THPBA04, THPBA07Tsung, F.S. MOPAC10, MOPAC47Tsvetkov, P.V. THODA2Tuozzolo, J.E. TUOAA1, TUOCA2, TUPHO01,

WEPAC06, WEPAC07, THPHO06,THPHO07, THPHO08, THPHO10

Turgut, O. FROAA3, TUPAC25Turrioni, D. THPBA18Turvey, M.W. TUPSM22

— U —

Uesaka, M. THOBA4, THPSM02Umer, R. WEPMA02Urakawa, J. WEOBA2, TUPBA25, TUPMA01,

TUPSM01

— V —

Vafaei-Najafabadi, N. THYAA2, THOCA1, MOPAC02,MOPAC37, MOPAC38, MOPAC45,MOPAC46

Valerio, C.A. MOZBA1Valishev, A. MOODB1, TUOCA1, TUPAC15,

TUPBA21, WEPBA17Valles, N.R.A. THPMA07Valloni, A. TUZAA2van Tilborg, J. THOCA2Vandygriff, D.M. THPBA28Vasserman, I. WEPSM08, WEPSM09, WEPSM11Vay, J.-L. THAP5, MOPAC20, THPBA20Veitzer, S.A. MOPBA24, TUPAC13Veljak, L. WEPMA02Venturini, M. WEOAA1Verboncoeur, J.P. WEPAC35, WEPAC36Veshcherevich, V. WEPAC11, THPMA07Vieira, J. MOPAC02, MOPAC47, MOPAC49Vikharev, A.A. WEPSM02, WEPSM04Virostek, S.P. WEPMA03, WEPMA16, WEPMA18,

WEPMA19, WEPMA20, WEPMA21Vivoli, A. TUODB2Vogelaar, R.B. THPBA23Volk, J.T. WEPMA16Vondrasek, R.C. MOPSM01Vorobiev, L.G. MOPBA12Vretenar, M. MOZBA1Vrielink, A.R. THPAC01

— W —

Waldron, W.L. WEOAA1, WEOBB2, MOPAC19Waldschmidt, G.J. WEPAC02, WEPAC44Walker, R.P. MOOAB2Walton, G.W. THPSM11

112 Pasadena, CA, USA, 29 September–4 October 2013

Page 143: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Walz, D.R. THYAA2, THOCA1, MOPAC37,MOPAC38, MOPAC46

Wan, W. TUOCB2, WEOAA1, MOPHO23,TUPAC16, WEPBA12

Wanderer, P. TUOCA2, WEODA1, THPBA07Wang, B. TUODB1Wang, D. TUPBA03Wang, E. TUPSM06, TUPSM07, TUPSM08,

THPAC12, THPAC18, THPAC34,THPAC35, THPHO06

Wang, G. TUOAA1Wang, G.M. MOPHO16, MOPHO17, TUPMA07Wang, H. TUPHO03, WEPAC01, WEPAC02,

WEPAC44, WEPAC47, WEPAC48,WEPHO16, WEPHO18

Wang, H. TUOAB1Wang, J. WEPSM08Wang, J. MOOCB1, MOPAC48Wang, N. TUPBA03Wang, S. TUPHO03, WEPAC48Wang, S. TUPBA03Wang, S.C. TUODB1Wang, Y. TUPBA03Wangler, T.P. MOPMA17Warnock, R.L. MOPBA19, MOPBA20Warwick, T. WEOAA1Washio, M. TUPMA01, WEOBA2, TUPSM01,

THPSM03Watkins, H.A. THPAC26Weathersby, S.P. WEOBA1Webber, R.C. FRYBA1, THPHO14Weggel, R.J. THPMA10, THPMA12Wehlitz, R. MOPHO26Wei, J. FRYBA1, TUPAC14, WEPAC03,

THPHO01, THPMA02Weis, C.D. MOPAC19Wells, R.P. WEOAA1, TUPMA09Welton, R.F. TUPSM22Weng, W.-T. TUPBA13Werner, G.R. MOPAC09Westferro, F. WEPSM14White, G.R. TUXA2, THYAA2, TUPBA25White, S.M. TUPBA04, TUPBA07Wilcox, R.B. WEOAA1Wildman, D. WEPMA13, WEPMA14Willeke, F.J. TUPMA07Williams, J.E. WEPSM17Williams, M. FRYBA1Williams, S. FRYBA2Williams, S.J. MOPMA07Willis, K.J. THPBA29Wiseman, M. WEPAC47Wisniewski, E.E. MOPSM09, TUPSM05Witte, H. WEODA2, THPBA08, THPBA09Wittmer, W. MOPMA07, FRYBA2, MOPSM07,

THPHO14Wolff, D. THPBA17Wong, J.J. THPAC12, THPAC17Wong, M. WEPAC04

North American PAC 2013 113

Page 144: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Woodley, M. TUPBA25Woods, K.E. WEOCB1, THOAA2, THPAC36Wu, D. WEPHO13Wu, G. WEPAC01, WEPAC44Wu, J. MOPHO15Wu, Q. TUPSM06, WEPAC07, THPAC34,

THPAC35, THPHO06Wu, S. MOPBA17, THPAC32Wu, S.S.Q. MOPAC43, TUPMA10Wu, X. FRYBA2, MOPMA07, MOPSM07Wu, Z. MOOBB2, THYAA2, THOCA1,

MOPAC28, MOPAC29, MOPAC33,MOPAC38, MOPAC46

— X —

Xi, Y. MOOCB2Xiang, D. THPAC27Xiao, A. WEOAA3, TUPAC08, WEPSM07,

WEPSM08, WEPSM09, WEPSM11,WEPSM12, WEPSM13, THPMA05

Xiao, L. MOPBA18, WEPAC44, WEPAC45Xiao, M. TUPBA03Xie, J. THPAC12, THPAC17Xin, T. WEPAC07, THPAC34, THPAC35,

THPHO06Xin, W.Q. TUODB1Xu, G. TUPBA03Xu, H.B. THPSM05, THPSM06, THPSM07Xu, J.Z. WEPSM11Xu, S.Y. TUPBA03Xu, T. FRYBA1, THPBA13, THPBA28Xu, T. MOPAC18Xu, T.G. TUODB1Xu, W. WEPAC06, THPHO06Xu, X.L. MOPAC03, MOPAC04, MOPAC05,

MOPAC47Xu, Y. WEPAC20, THPBA13

— Y —

Yakimenko, V. MOPAC49, THYAA2, MOPHO19,TUPMA08, WEPMA24, THPAC28,THPAC33

Yakovlev, V.P. MOPSM08, WEPAC14, WEPAC15,WEPAC21, WEPAC22, WEPAC23,WEPAC24, WEPAC25, WEPAC26,WEPAC27, WEPAC28, WEPAC29,WEPAC32, WEPHO15, WEPHO19

Yamamoto, M. THPSM02Yamaoka, H. WEODA1, THPBA04, THPBA07Yamazaki, Y. FRYBA1Yampolsky, N.A. MOOAB1, TUOBB3, TUPMA14Yan, F. THPSM04Yan, L.X. MOPAC03, WEPBA03Yan, Y.T. TUOCB1Yancey, J.A. WEPAC06Yang, B.X. TUPMA04, WEPSM14, THPAC08Yang, L. MOPHO17Yang, S. WEPAC47

114 Pasadena, CA, USA, 29 September–4 October 2013

Page 145: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Ind

ex

Yang, Y. THPSM04Yang, Y. WEPAC01, WEPAC02Yang, Z. THPSM04Yao, C. TUPMA03, TUPMA04, WEPSM13Yarmohammadi Satri, M. MOZBA1Yavuz, D. MOPHO26, TUPMA19Ying, Y.J. THPSM05, THPSM06, THPSM07Yip, K. THPHO10Yonehara, K. TUODA1, MOPBA06, TUPBA22,

WEPMA12, WEPMA15, WEPMA17,THPBA22, THPBA26, THPHO19

York, R.C. MOPHO26Yoshida, M. THOBA4Yoshida, Y. THPSM03Yoshikawa, C. Y. MOPMA21, THPHO19Yu, P. MOPAC47Yue, Y. TUPBA03Yun, C.C. TUPAC04Yunn, B.C. TUPHO03Yuri, Y. FROAA4, WEPBA02, THPHO01,

THPSM01Yusof, Z.M. TUPSM05Yuyama, T. THPSM01

— Z —

Zalel, S. THPSM10Zaltsman, A. THPHO06Zapasek, R. WEPHO06, WEPHO07Zelenski, A. MOOBA2Zeller, A. FRYBA1, THPBA12Zemlyansky, I. MOOAA2Zeng, L. TUODB1Zeng, M. MOPAC39Zeno, K. TUOAA2Zha, H. WEPMA04Zhai, J.Y. TUPBA03Zhang, C. TUPBA03, THPSM04Zhang, C.J. MOPAC03Zhang, H. MOPBA11, TUPHO02, TUPHO03,

TUPHO04, TUPHO05Zhang, H.D. FROAA1, TUPAC34Zhang, J.X. MOPSM06Zhang, S. WEPSM17Zhang, W. TUOCA2, TUPHO01, THPHO10Zhang, Y. TUZAA1, TUPAC27, TUPAC28,

TUPHO02, TUPHO03, TUPHO04,TUPHO05, WEPAC48

Zhang, Y. FRYBA1, TUPAC14, WEPAC03,WEPBA11, THPMA02

Zhao, F.X. TUODB1Zhao, Q. WEOAB1, FRYBA1, TUPSM20,

MOPMA19, MOPMA20Zhao, S. THPMA02Zhao, Z.T. WEXA1Zheng, N. THPSM05, THPSM06, THPSM07Zheng, Z. WEPAC03, WEPBA11, THPMA02Zholents, A. WEOAA3, MOPAC12, MOPHO19,

TUPMA08, WEPAC16

North American PAC 2013 115

Page 146: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Zhou, M. MOPAC37Zhou, X. THOBA4Zhukov, A.P. WEYA2Zimmermann, S. WEOAA1Zinkann, G.P. WEOAB2Zipf, P. THPMA01Zisman, M.S. WEPMA18, WEPMA26, THPHO18,

TUOBA2Zlobin, A.V. THPBA18, THPBA19Zolkin, T.V. MOODB2, TUPAC30, THPHO23Zolotorev, M.S. TUODA2, WEOAA1Zong, Z.G. WEODA1, THPBA04, THPBA07Zorzut, S. THPMA04Zou, Y. MOPMA03Zuchnik, T.J. TUPSM13Zuo, S.S. MOPAC12Zutshi, V. TUPBA24Zvyagintsev, V. THPAC01, THPBA02

116 Pasadena, CA, USA, 29 September–4 October 2013

Page 147: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Notes

Pasadena, CA, USA, 29 September–4 October 2013xxx

Page 148: 2013 North American Particle Accelerator Conference · 2013-12-19 · Robert Kephart FNAL Shane Koscielniak TRIUMF Tadashi Koseki J-PARC Thomas Kroc FNAL Richard Lanza MIT Valeri

Notes

Pasadena, CA, USA, 29 September–4 October 2013xxx


Recommended