+ All Categories
Home > Documents > 2015-TorontoWSF-FireResistanceInfo+Tools - Wood...

2015-TorontoWSF-FireResistanceInfo+Tools - Wood...

Date post: 18-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
60
Canadian Wood Council G063 Fire Resistance Tools and Information for Wood-Frame Buildings Ineke Van Zeeland, M.Eng., Senior Manager, Codes & Standards – Fire & Acoustics, Canadian Wood Council November 24, 2015
Transcript

Canadian Wood CouncilG063

Fire Resistance Tools and Information for Wood-Frame Buildings

Ineke Van Zeeland, M.Eng., Senior Manager, Codes & Standards – Fire & Acoustics, Canadian Wood Council

November 24, 2015

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA

CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner ofhandling, using, distributing, or dealing in any material or product._______________________________________Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

This seminar will discuss various sources of information and tools that may be used to develop solutions to meet the building code’s fire‐resistance rating requirements for wood buildings, including the 2015 revisions to the Component Additive Method and a new Annex B, entitled “Fire resistance of large cross‐section wood elements,” in CSA O86 Engineering Design in Wood.

CourseDescription

LearningObjectives

• The speaker will present the various sources of information and tools that may be used to develop solutions to meet the building code’s fire‐resistance rating requirements for wood buildings. 

• The presenter will discuss the 2015 revisions to the Component Additive Method.• The presenter will discuss the new Annex B, entitled “Fire resistance of large cross‐

section wood elements,” in CSA O86 Engineering Design in Wood.• Participants will understand how to develop solutions that meet the building code’s fire‐

resistance rating requirements for wood buildings.

Key learning points:

5

Fire Resistance

Fire Resistance

fire resistance, n—the ability of a material, product, or assembly to withstand fire or give protection from it for a period of time. (ASTM E 176-15 Standard Terminology of Fire Standards)

1.4.1.2: "...the time in minutes or hours that a material or assembly of materials will withstand the passage of flame and the transmission of heat when exposed to fire under specified conditions of test and performance criteria, or as determined by extension or interpretation of information derived from that test and performance as prescribed in this Code."

OBC 2015 - Division A - Part 1“Fire-resistance rating”

Sentence 3.1.7.1.(1): CAN/ULC-S101 - Fire Endurance Tests of Building Construction and Materials

OBC 2015 – Division B3.1.7. Fire-resistance Ratings

Sentence 3.1.7.1.(2): MMAH Supplementary Standard SB-2, “Fire Performance Ratings”

OBC 2015 – Division B3.1.7. Fire-resistance Ratings

Sentence 9.10.3.1.(1):• Part 3• MMAH Supplementary Standard SB-3

“Fire and Sound Resistance of Building Assemblies”

OBC 2015 – Division B9.10.3.1. Fire-resistance and Fire-Protection Ratings

11

CAN/ULC-S101Horizontal Furnace

12

CAN/ULC-S101 Loading – Horizontal Furnace

13

CAN/ULC-S101Vertical Furnace

14

CAN/ULC-S101Temperature Exposure

20

160

300

440

580

720

860

1000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Tem

pera

ture

(o C)

Time (minutes)

15

CAN/ULC-S101Standard Fire-resistance Test Failure Criteria

• Structural Failure• Insulation Failure• Integrity Failure

Structural Failure

Wood studs have buckled under applied load

Structural Failure

CLT wall assembly hasbuckled under applied load

18

Insulation Failure

Flame penetrating the subfloor at failure time

Integrity Failure

Fire-resistance Ratings

• Generic Listings

• Proprietary Listings

• Empirical Calculation Methods

Fire-resistance Ratings

22

Generic ListingsMMAH Supplementary Standard SB-3

23

Generic ListingsMMAH Supplementary Standard SB-3

24

Generic Listings

Table A-9.10.3.1.A (Walls):• NRC-IRC Internal Report: IR833 - “Results of Fire Resistance

Tests on Full-Scale Gypsum Board Wall Assemblies;” Sultan, M. A., et al.

Table A-9.10.3.1.B (Floors, Ceilings and Roofs):• NRC-IRC Internal Report: IR764 - “Results of Fire Resistance

Tests on Full-Scale Floor Assemblies;” Sultan, M. A., et al.

• NRC-IRC Research Report: RR184 - “Results of Fire Resistance Tests on Full-Scale Floor Assemblies - Phase II;” Sultan, M. A., et al.

25

Additional CAN/ULC-S101 Testing:

NRC/CWC/FPInnovations Midrise Research:

26

Additional CAN/ULC-S101 Testing:

NRC/CWC/FPInnovations Midrise Research:

27

Proprietary Listings

28

Empirical Calculation Methods: Component Additive Method (CAM)

OBC 2015: SB-2 Fire-Performance Ratings• Section 2 Fire-Resistance Ratings• Subsection 2.3. Wood and Steel Framed

Walls, Floors and Roofs• Last revised for NBCC 1995

29

Currently does not apply to assemblies using:

Empirical Calculation Methods: Component Additive Method (CAM)

30

Major revisions for 2015 NBC:• Double layers of gypsum board (walls

and floors)• Wood I-joists, more wood truss types• Additional insulation types/locations

and floor toppings• Use of resilient metal channels

Empirical Calculation Methods: Component Additive Method (CAM)

Wood Wall AssembliesMembrane Members Insulation Total

FRRDescription Assigned time (min) Description Assigned

time (min) Description Assigned time (min)

One layer of 12.7 mm Type X Gypsum Board

25

Wood Studs @ 400 mm

o.c.20

MFI (Loadbearing & Nonloadbearing) 15 60GFI (Nonloadbearing Only) 5 50

None (Loadbearing & Nonloadbearing) & GFI (Loadbearing) 0 45

Wood Studs @ 600 mm

o.c. 15

MFI (Loadbearing & Nonloadbearing) 15 55GFI (Nonloadbearing Only) 5 45

None (Loadbearing & Nonloadbearing) & GFI (Loadbearing) 0 40

One layer of 15.9 mm Type X Gypsum Board

40

Wood Studs @ 400 mm

o.c.20

MFI (Loadbearing & Nonloadbearing) 15 75GFI (Nonloadbearing Only) 5 65

None (Loadbearing & Nonloadbearing) & GFI (Loadbearing) 0 60

Wood Studs @ 600 mm

o.c. 15

MFI (Loadbearing & Nonloadbearing) 15 70GFI (Nonloadbearing Only) 5 60

None (Loadbearing & Nonloadbearing) & GFI (Loadbearing) 0 55

Empirical Calculation Methods: CAM – Current OBC SB-2

Membrane Members Insulation Resilient Metal

Channels (min)

Total FRRDescription

Assigned time(min)

DescriptionAssigned

time(min)

DescriptionAssigned

time(min)

One layer of 12.7 mm Type

X Gypsum Board

25

Wood Studs @ 400 mm

o.c.20

MFI - rock or slag (Loadbearing & Nonloadbearing) 15 -10 50

CFI – dry-blown (Loadbearing Only) 10 -10 45GFI (Nonloadbearing Only) 5 -10 40

None (Loadbearing & Nonloadbearing) & GFI (Loadbearing) 0 -10 35

Wood Studs @ 600 mm

o.c. 15

MFI (Loadbearing & Nonloadbearing) 15 -10 45CFI – dry-blown (Loadbearing Only) 10 -10 40

GFI (Nonloadbearing Only) 5 -10 35None (Loadbearing & Nonloadbearing) &

GFI (Loadbearing) 0 -10 30

One layer of 15.9 mm Type

X Gypsum Board

40

Wood Studs @ 400 mm

o.c.20

MFI (Loadbearing & Nonloadbearing) 15 -10 65CFI – dry-blown (Loadbearing Only) 10 -10 60

GFI (Nonloadbearing Only) 5 -10 55None (Loadbearing & Nonloadbearing) &

GFI (Loadbearing) 0 -10 50

Wood Studs @ 600 mm

o.c. 15

MFI (Loadbearing & Nonloadbearing) 15 -10 60CFI – dry-blown (Loadbearing Only) 10 -10 55

GFI (Nonloadbearing Only) 5 -10 50None (Loadbearing & Nonloadbearing) &

GFI (Loadbearing) 0 -10 45

Empirical Calculation Methods: CAM – NEW 2015 NBC Appendix D-2.3.

Wood Wall Assemblies

Membrane Members Insulation Total FRR*Description Assigned

time (min) Description Assigned time (min) Description Assigned time

(min)

Loadbearing2 layers of

12.7 mm Type X Gypsum Board

50

Wood Studs @ 400 mm o.c. 20

RFI 15 85CFI – dry-blown 10 80

None & GFI 0 70

Wood Studs @ 600 mm o.c. 15

RFI 15 80CFI – dry-blown 10 75

None & GFI 0 65

Non-loadbearing2 layers of

12.7 mm Type X Gypsum Board

80

Wood Studs @ 400 mm o.c. 20

RFI 15 115GFI 5 105

None 0 100

Wood Studs @ 600 mm o.c. 15

RFI 15 110GFI 5 100

None 0 95

Empirical Calculation Methods: CAM – NEW 2015 NBC Appendix D-2.3.

Wood Wall Assemblies

Membrane MembersTotalFRR*Description

Assigned time(min)

DescriptionAssigned

time(min)

1 layer of 12.7 mm Type X

Gypsum Board

25

Wood Joists @ 400 mm o.c. maximum 10 35

Wood Trusses @ 600 mm o.c. maximum 5 30

1 layer of 15.9 mm Type X

Gypsum Board

40

Wood Joists @ 400 mm o.c. maximum 10 50

Wood Trusses @ 600 mm o.c. maximum 5 45

Wood Floor Assemblies

Empirical Calculation Methods: CAM – Current OBC SB-2

Membrane Members Insulation ToppingTotalFRRDescription

ResilientMetal

Channels

Assigned time(min)

DescriptionAssigned

time(min)

DescriptionAssigned

time(min)

DescriptionAssigned

time(min)

1 layers of 12.7 mm Type X

Gypsum Board

Spaced ≤ 400 mm o.c. 25

Wood Joists, Trusses,

I-joists @ 600 mm o.c.

maximum

10

MFI (rock or slag) or

CFI (wet-sprayed)

5

None or Gypsum-concrete 0 40

Concrete 5 45

None or GFI 0None or Gypsum-

concrete 0 35

Concrete 5 40

1 layer of 15.9 mm Type X

Gypsum Board

Spaced ≤ 400 mm o.c. 40

Wood Joists, Trusses,

I-joists @ 600 mm o.c.

maximum

10

MFI (rock or slag) or

CFI (wet-sprayed)

5

None or Gypsum-concrete 0 55

Concrete 5 60

None or GFI 0None or Gypsum-

concrete 0 50

Concrete 5 55

Empirical Calculation Methods: CAM – NEW 2015 NBC Appendix D-2.3.

Wood Floor Assemblies

Membrane Members Insulation ToppingTotalFRRDescription

ResilientMetal

Channels

Assigned time(min)

DescriptionAssigned

time(min)

DescriptionAssigned

time(min)

DescriptionAssigned

time(min)

2 layers of 12.7 mm Type X

Gypsum Board

Spaced ≤ 400 mm o.c.(or direct applied to

members ≤ 400 mm o.c.)

50

Wood Joists, Trusses, I-joists @ 600 mm o.c. maximum

10

RFI or CFI (wet-

sprayed)5

None or Gypsum-concrete 0 65

Concrete 5 70

None or GFI 0None or Gypsum-

concrete 0 60

Concrete 5 65

2 layers of 12.7 mm Type X

Gypsum Board

Spaced ≤ 600 mm o.c.(or direct applied)

45

Wood Joists, Trusses, I-joists @ 600 mm o.c. maximum

10

RFI or CFI (wet-

sprayed)5

None or Gypsum-concrete 0 60

Concrete 5 65

None or GFI 0None or Gypsum-

concrete 0 55

Concrete 5 60

2 layer of 15.9 mm Type X

Gypsum Board

Spaced ≤ 600 mm o.c.(or direct applied)

60

Wood Joists, Trusses, I-joists @ 600 mm o.c. maximum

10

RFI or CFI (wet-

sprayed)5

None or Gypsum-concrete 0 75

Concrete 5 80

None or GFI 0None or Gypsum-

concrete 0 70

Concrete 5 75

Empirical Calculation Methods: CAM – NEW 2015 NBC Appendix D-2.3.

Wood Floor Assemblies

37

Heavy Timber Construction

OBC Subsection 3.1.4. sets out the requirements that must be conformed to for code-defined heavy timber construction

e.g. Table 3.1.4.7. Heavy Timber Dimensions

38

Division B - Article 3.1.4.6.Heavy Timber Construction Alternative:3.1.4.6.(1): If combustible construction is permitted and is not required to have a fire-resistance rating of more than 45 min, heavy timber construction is permitted to be used.

39

Generic ListingsOBC 2015: SB-2 Fire-Performance Ratings• Section 2 Fire-Resistance Ratings

40

Empirical FRR Calculation Method: SB-2 Subsection 2.11. Glued-Laminated Timber Beams and Columns

• Validated by test results

• For FRRs greater than 45 min

41

Empirical FRR Calculation Method: SB-2 Subsection 2.11. Glued-Laminated Timber Beams and Columns

42

•f = load factor shown in Figure 2.11.2.A

•B = dimension of thesmaller side

•D = dimension on the larger side

Empirical FRR Calculation Method: SB-2 Subsection 2.11. Glued-Laminated Timber Beams and Columns

43

K = effective length factor (CAN/CSA-O86)

L = unsupported length of column

Empirical FRR Calculation Method: SB-2 Subsection 2.11. Glued-Laminated Timber Beams and Columns

44

Empirical FRR Calculation Methods: Mass Timber Beams and Columns

Additional Information:•American Wood Council (www.awc.ca)•DCA 2 - Design of Fire-Resistive Exposed Wood Members

•TR10 - Calculating the Fire Resistance of Exposed Wood Members

5.6 Fire resistanceWhere applicable, design for fire resistance shall be in accordance with the NBCC.Note: See Annex B for a methodology that provides useful information in the development of a proposal for an alternative solution to meet the objectives of the NBCC.

Empirical FRR Calculation Methods: CSA O86-2014 Large Cross-section Wood Elements (Mass Timber)

Empirical FRR Calculation Methods: CSA O86-2014 Large Cross-section Wood Elements (Mass Timber)

Materials- Solid-sawn lumber- Glued-laminated timber (glulam)- Structural composite lumber (SCL)

Empirical FRR Calculation Methods: CSA O86-2014 – Annex B

48

Concept of Fire Resistance for Large Cross-section Wood Members

• Char Layer• Char Base• Pyrolysis Zone• Pyrolysis Zone Base• Normal Wood

49

Concept of Fire Resistance for Large Cross-section Wood Members

Modification Factors for Fire Design- Resistance factor, - Load duration factor, Kd

- System factor, KH

- Size factor, KZ

- Lateral stability factor, KL

- Slenderness ratio, CC

- Slenderness factor, KC

- Specified strength adjustment factor for fire design, Kfi

Empirical FRR Calculation Methods: CSA O86-2014 – Annex B

Char Depth

Empirical FRR Calculation Methods: CSA O86-2014 – Annex B

o = one-dimensional charring raten = notional charring rate

Zero-strength layer

Empirical FRR Calculation Methods: CSA O86-2014 – Annex B

Resistance of reduced cross-section• Calculate sectional properties using reduced

cross-sectional dimensions (char depth + zero-strength layer depth)

• Use modification factors

Empirical FRR Calculation Methods: CSA O86-2014 – Annex B

Fire-resistance ratingA structural element shall be assigned a fire-resistance rating of a particular duration of fire exposure if the reduced structural resistance of the element, after the specified exposure time, is greater than the specifiedgravity load effects.

Resistancereduced(t=FRR) ≥ Demand

Empirical FRR Calculation Methods: CSA O86-2014 – Annex B

Surfaces initially protected by gypsum board• one layer of 12.7 mm Type X ‒ 15 min• one layer of 15.9 mm Type X ‒ 30 min • two layers of 15.9 mm Type X ‒ 60 min

Connections• Limited information at this time• AWC’s Technical Report 10 • Eurocode 5: Part 1-2

Empirical FRR Calculation Methods: CSA O86-2014 – Annex B

Wood decking• double tongue-and-groove• single tongue-and-groove or internal spline• butt-jointed• unexposed surface protection

– T&G wood flooring ≥ 19 mm thick, laid crosswise or diagonally

– T&G plywood or OSB ≥12.5 mm thick– concrete topping ≥ 38 mm thick– gypsum-concrete topping ≥ 25 mm thick

Empirical FRR Calculation Methods: CSA O86-2014 – Annex B

57

Cross-Laminated Timber (CLT)

Empirical FRR Calculation Methods: CSA O86-2016 Supplement – Annex B

58

Empirical FRR Calculation Methods: Cross-laminated Timber (CLT)

Additional Resources:• Fire Safety Design in Buildings, Canadian Wood Council,

1996 (free PDF - www.cwc.ca).

• Janssens, M., and Douglas, Brad; Chapter 7 - Wood and Wood Products, Handbook of Building Materials for FireProtection, McGraw-Hill, 2004.

• White, Robert H.; Section 4, Chapter 11 - AnalyticalMethods for Determining Fire Resistance of TimberMembers, The SFPE Handbook of Fire Protection Engineering, Society of Fire Protection Engineering, 4th Edition, 2008.

• White, Robert H., et al.; Wood Handbook, Chapter 18: FireSafety of Wood Construction, 2010 (free PDF -www.fpl.fs.fed.us).

• SP Report 2010:19, Fire Safety in Timber Buildings: Technical Guideline, 2010.

This concludes The American Institute of Architects Continuing Education Systems Course

Canadian Wood CouncilWood WORKS! Ontario

www.cwc.cawww.wood-works.ca


Recommended