+ All Categories
Home > Documents > 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC...

22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC...

Date post: 18-Jan-2016
Category:
Upload: vernon-wheeler
View: 215 times
Download: 0 times
Share this document with a friend
Popular Tags:
58
22 ii 2011 STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso Treu, Leon Koopmans, Matt Auger, Stefan Hilbert, Tony Readhead, Steve Myers, Gabriela Surpi, Frederic Courbin, George Meylan…
Transcript
Page 1: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Measuring the Hubble Constant Using Gravitational Lenses

Roger BlandfordKIPAC

Stanford

Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso Treu, Leon Koopmans, Matt Auger, Stefan Hilbert, Tony Readhead, Steve Myers, Gabriela Surpi, Frederic Courbin, George Meylan…

Page 2: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

http://www.slac.stanford.edu/~pjm/lensing/wineglasses22 ii 2011 STScI

Page 3: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Refraction of Light

Light travels faster in air

Light travels slower in glass

Wave crests

Light rays Light “travels slower” in glass

and is refracted

Lens

Page 4: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Deflection of Light

Newton: Opticks, Query1: Do not bodies act upon Light at a distance, and by their action bend its rays; and is not this action (caeteris paribus) strongest at the least distance?

Page 5: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Einstein’s General Theory of Relativity • 1915: Spacetime is curved

around a massive body. Light follows straight lines (geodesics) which appear to be curved. This doubles the effect.

• 1919: Eclipse measurements confirm that solar deflection is twice Newtonian expectation and makes Einstein a household name. Now measured to 1/1000.

• 1919: Eddington realizes that relativistic problem just like the Newtonian problem. Light travels slower in a gravitational field

Eddington

Page 6: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Stars: ~ microarcsec

Galaxies: ~ arcsec

Clusters of galaxies: ~ 10 arcsec

Surface density ~ 1 g cm-2

Source

Lens

Observer

Page 7: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Which way shall I go?

• Light makes the shortest (or the longest) journeys.

(Fermat)

Page 8: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Gravitational Lenses and theHubble Constant

S

DH0=V/d ~t -1 2

O

•Direct measurement•Insensitive to world model•Lens model dependence

22 ii 2011STScI

Page 9: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Q0957+561

22 ii 2011 STScI

Walsh, Carswell & Weymann(1979)

Page 10: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

John Bahcall (1934-2005)

22 ii 2011 STScI

Moderated debate between Tammann and van den Bergin 1996

H0 features prominently in “Unsolved Problems”

Page 11: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

• Type Ia supernovae: standard candles

• Fluctuations in the Cosmic Microwave Background radiation

• Baryon Acoustic Oscillations in the galaxy clustering power spectrum

• Periods of Cepheid variable stars in local galaxies

• Something else?

Standard candles, rulers, timers etc

(sound speed x age of universe) subtends ~1 degree

gas density fluctuations from CMB era are felt by dark matter - as traced by galaxies in the local(ish) universe

22 ii 2011 STScI

Page 12: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

The Measure of the Universe

• Historically, h= (H0/100 km s-1 Mpc-1) ~ 0.3-~5– 10 x Error!

• Recent determinations:– HST KP (Freedman et al)

• <h>=0.72+/-0.02+/-0.07

– Masers (Macri et al)• h=0.74+/-0.03+/-0.06

– WMAP (Komatsu et al)• h=0.71+/-0.025 (FCDM)

– BAO (Percival et al 2010)• h=0.70+/-0.015 (FCDM)

– Distance Ladder (Riess et al) • h=0.74+/-0.04 22 ii 2011 STScI

Page 13: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011

B1608+656 (Myers, CLASS 1995)

STScI

Page 14: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011

•Compact radio source (CLASS)

•VLBI Astrometry to 0.001”

•Relative magnifications

• A,C,D =2, 1, 0.35

•Time delays (Fassnacht)

•tA,C,D = 31.5, 36, 77 d (+/-1.5)

•Elliptical galaxy lenses (Fassnacht, Auger)

•G1: z=0.6304,=260(+/-15) km s-1; G2

•K+A galaxy source (Myers)

•z=1.394

•HST imaging

•V, I, H bands

Data

STScI

Page 15: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Modeling Gravitational Lenses• Surface brightness (flux per solid angle) changes along ray ~ a-3

– Unchanged by lens– Images of same region of source have same surface brightness

• Complications– Deconvolution (HST blurring)– Deredenning (dust)– Decontamination (source + lens)

22 ii 2011 STScI

Image Source

Page 16: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Results

22 ii 2011 STScI

Suyu et al (2010) H0=71+/-3 km s-1 Mpc-1H0=71+/-3 km s-1 Mpc-1

•Iterative modeling•Bayesian analysis •Potential residuals ~ 2%•Adopt fixed world model

•Major sensitivity is to zL

•Assume lens model correct •Assume propagation model correct

•If relax world model, h~0.05; •If combine with WMAP5 (+flatness), w~0.2

Page 17: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Limits to the accuracy• Lens Model

– Mass sheet degeneracy• Velocity dispersion• Measuring width of ring

• Time delays– Not now limiting accuracy

• More monitoring

• Structure along line of sight– Distorts images of source and lens

• Current effort

22 ii 2011 STScI

Page 18: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

“Mass-sheet” model degeneracy

κext

To break this degeneracy,we need more information about the mass distributions:• Stellar dynamics• Slope from arc thickness• Structures along the LOS

[Courbin et. al. 2002]

Lens mass, profile slope andline of sight mass distributionare all degenerate:

22 ii 2011 STScI

Page 19: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Geodesic deviation equation

22 ii 2011 STScI

•Null geodesic congruence backward from observer•Convergence κ and shear

•First focus, tangent to caustic, multiple imaging•Distance measure is affine parameter

•dx ~ k dwhere k is a tangent vector along the geodesic•Choose where a =is the local scale factor

•errors O( relative to homogeneous reference universeFor pure convergence,

O Proper transverseSeparation vector

Angle at observer

= dτ a∫

G=c=H0=1G=c=H0=1

enthalpy density

=d =d angular diameter distance

SachsZel’dovichFeynmanRefsdalGunnPenrose\Alcock Anderson

Page 20: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Homogeneous Cosmology

• For FCDM universe w=M

– No contribution from

• Introduce a, comoving distance, radius dr=da2 and RW line element to obtain

22 ii 2011 STScI

Current separation

For k= R0sinh (r/R0)

Page 21: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Time delays

22 ii 2011 STScI

Multi-sheet propagation

t =r η ⋅

r α

2−

2 ∫ dzφ

a=

r η

2⋅Δ

dr η

dr

⎝ ⎜

⎠ ⎟−

ψ

a;α =∇ψ

Single deflector

t = [r η n ⋅

r α n

2−

ψ n

ann

∑ ] =n

∑ 1

an

ξ n ⋅∇ψ n

2−ψ n

⎡ ⎣ ⎢

⎤ ⎦ ⎥

Deviation relative to undeflected ray

Page 22: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Inhomogeneous matter distribution

Simple Model– Background density b(a)

– halos modeled by spherical profiles centered on galaxy/group centers• amplitude and size scaled to luminosity• incorporate bias?• NFW better than isothermal

– Use simulations, GGL to calibrate test convergence and estimate error

22 ii 2011 STScI

x

GroupGalaxyVoid

b

Page 23: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Multi-screen Propagation

• Treat screens as “weak deflectors”• Potential: ~ L.+.Q./2+… ; deflections, linear

• Distort appearance of source and lens• Many screens – multiply matrices

• Model lens in lens plane not on sky

22 ii 2011 STScI

t =n

∑ 1

an

ξn ⋅ ∇ψ n

2−ψ n

⎡ ⎣ ⎢

⎤ ⎦ ⎥= 0!!

Page 24: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

B1608+656: Statistical approach

• Ray-trace through Millennium S• Identify LOS where SL occurs• Find κext along LOS, excluding the SL plane (Hilbert et al. 2007)

• B1608+656 has twice the average galaxy number density (Fassnacht et al. 2009)• Find κext along all LOS in MS that have 2x ‹ngal›

22 ii 2011 STScI

Modeled external shear ~0.1; need κ for H0

Page 25: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

B1608+656-Particular Approach

• z=0.265– Off center =>

• z=0.63 (G1, G2) =150+/-60 km s-1

• z=0.426, 0.52– Centered lens => ~0

• Photometry– 1500 ACS galaxies over 10sm – 1700 P60 galaxies over 100 sm

• Redshifts– 100 zs

Experimenting with different prescriptions for assigning halos

Groups (Fassnacht et al)

Page 26: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Additional Lenses

22 ii 2011 STScI

Courbin

Page 27: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Future lens cosmography (Marshall et al)

• 2010 - 2016: ~3000 new lensed quasars with PS1, DES, HSC • About 500 of these systems will be quads• A significant monitoring follow-up task!•A larger statistical sample of doubles would provided added value, once calibrated by the quads•The spectroscopic follow-up is not demanding given rewards• Intensive modeling approach seems unavoidable 100 lenses observed to B1608’s level of detail could yield Hubble’s constant to percent precision• LSST, WFIRST…

22 ii 2011 STScI

Page 28: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Summary• Lens H0 is competitive

– ~4% with strong priors; ~7% after relaxing world model

• Promising results with B1608+656– h=0.71+/-0.03 with strong priors

• Limited by understanding of line of sight– External convergence and shear

• New formalism for multi-path propagation– Distortion not delay – matrix formalism

• Observations show overdense line of sight– Imaging and spectroscopy

• Other good candidates– Existing and future options

22 ii 2011 STScI

Page 29: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Thanks to:

22 ii 2011 STScI

Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso Treu, Leon Koopmans, Matt Auger, Stefan Hilbert, Tony Readhead, Steve Myers, Gabriela Surpi, Frederic Courbin, George Meylan…

John Bahcall

HST

Page 30: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Measuring the Hubble Constant Using Gravitational Lenses

Roger BlandfordKIPAC

Stanford

Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso Treu, Leon Koopmans, Matt Auger, Stefan Hilbert, Tony Readhead, Steve Myers, Gabriela Surpi, Frederic Courbin, George Meylan…

Page 31: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

http://www.slac.stanford.edu/~pjm/lensing/wineglasses22 ii 2011 STScI

Page 32: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Refraction of Light

Light travels faster in air

Light travels slower in glass

Wave crests

Light rays Light “travels slower” in glass

and is refracted

Lens

Page 33: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Deflection of Light

Newton: Opticks, Query1: Do not bodies act upon Light at a distance, and by their action bend its rays; and is not this action (caeteris paribus) strongest at the least distance?

Page 34: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Einstein’s General Theory of Relativity • 1915: Spacetime is curved

around a massive body. Light follows straight lines (geodesics) which appear to be curved. This doubles the effect.

• 1919: Eclipse measurements confirm that solar deflection is twice Newtonian expectation and makes Einstein a household name. Now measured to 1/1000.

• 1919: Eddington realizes that relativistic problem just like the Newtonian problem. Light travels slower in a gravitational field

Eddington

Page 35: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Stars: ~ microarcsec

Galaxies: ~ arcsec

Clusters of galaxies: ~ 10 arcsec

Surface density ~ 1 g cm-2

Source

Lens

Observer

Page 36: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

Which way shall I go?

• Light makes the shortest (or the longest) journeys.

(Fermat)

Page 37: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Gravitational Lenses and theHubble Constant

S

DH0=V/d ~t -1 2

O

•Direct measurement•Insensitive to world model•Lens model dependence

22 ii 2011STScI

Page 38: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Q0957+561

22 ii 2011 STScI

Walsh, Carswell & Weymann(1979)

Page 39: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

John Bahcall (1934-2005)

22 ii 2011 STScI

Moderated debate between Tammann and van den Bergin 1996

H0 features prominently in “Unsolved Problems”

Page 40: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

• Type Ia supernovae: standard candles

• Fluctuations in the Cosmic Microwave Background radiation

• Baryon Acoustic Oscillations in the galaxy clustering power spectrum

• Periods of Cepheid variable stars in local galaxies

• Something else?

Standard candles, rulers, timers etc

(sound speed x age of universe) subtends ~1 degree

gas density fluctuations from CMB era are felt by dark matter - as traced by galaxies in the local(ish) universe

22 ii 2011 STScI

Page 41: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

The Measure of the Universe

• Historically, h= (H0/100 km s-1 Mpc-1) ~ 0.3-~5– 10 x Error!

• Recent determinations:– HST KP (Freedman et al)

• <h>=0.72+/-0.02+/-0.07

– Masers (Macri et al)• h=0.74+/-0.03+/-0.06

– WMAP (Komatsu et al)• h=0.71+/-0.025 (FCDM)

– BAO (Percival et al 2010)• h=0.70+/-0.015 (FCDM)

– Distance Ladder (Riess et al) • h=0.74+/-0.04 22 ii 2011 STScI

Page 42: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011

B1608+656 (Myers, CLASS 1995)

STScI

Page 43: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011

•Compact radio source (CLASS)

•VLBI Astrometry to 0.001”

•Relative magnifications

• A,C,D =2, 1, 0.35

•Time delays (Fassnacht)

•tA,C,D = 31.5, 36, 77 d (+/-1.5)

•Elliptical galaxy lenses (Fassnacht, Auger)

•G1: z=0.6304,=260(+/-15) km s-1; G2

•K+A galaxy source (Myers)

•z=1.394

•HST imaging

•V, I, H bands

Data

STScI

Page 44: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Modeling Gravitational Lenses• Surface brightness (flux per solid angle) changes along ray ~ a-3

– Unchanged by lens– Images of same region of source have same surface brightness

• Complications– Deconvolution (HST blurring)– Deredenning (dust)– Decontamination (source + lens)

22 ii 2011 STScI

Image Source

Page 45: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Results

22 ii 2011 STScI

Suyu et al (2010) H0=71+/-3 km s-1 Mpc-1H0=71+/-3 km s-1 Mpc-1

•Iterative modeling•Bayesian analysis •Potential residuals ~ 2%•Adopt fixed world model

•Major sensitivity is to zL

•Assume lens model correct •Assume propagation model correct

•If relax world model, h~0.05; •If combine with WMAP5 (+flatness), w~0.2

Page 46: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Limits to the accuracy• Lens Model

– Mass sheet degeneracy• Velocity dispersion• Measuring width of ring

• Time delays– Not now limiting accuracy

• More monitoring

• Structure along line of sight– Distorts images of source and lens

• Current effort

22 ii 2011 STScI

Page 47: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

“Mass-sheet” model degeneracy

κext

To break this degeneracy,we need more information about the mass distributions:• Stellar dynamics• Slope from arc thickness• Structures along the LOS

[Courbin et. al. 2002]

Lens mass, profile slope andline of sight mass distributionare all degenerate:

22 ii 2011 STScI

Page 48: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Geodesic deviation equation

22 ii 2011 STScI

•Null geodesic congruence backward from observer•Convergence κ and shear

•First focus, tangent to caustic, multiple imaging•Distance measure is affine parameter

•dx ~ k dwhere k is a tangent vector along the geodesic•Choose where a =is the local scale factor

•errors O( relative to homogeneous reference universeFor pure convergence,

O Proper transverseSeparation vector

Angle at observer

= dτ a∫

G=c=H0=1G=c=H0=1

enthalpy density

=d =d angular diameter distance

SachsZel’dovichFeynmanRefsdalGunnPenrose\Alcock Anderson

Page 49: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Homogeneous Cosmology

• For FCDM universe w=M

– No contribution from

• Introduce a, comoving distance, radius dr=da2 and RW line element to obtain

22 ii 2011 STScI

Current separation

For k= R0sinh (r/R0)

Page 50: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Time delays

22 ii 2011 STScI

Multi-sheet propagation

t =r η ⋅

r α

2−

2 ∫ dzφ

a=

r η

2⋅Δ

dr η

dr

⎝ ⎜

⎠ ⎟−

ψ

a;α =∇ψ

Single deflector

t = [r η n ⋅

r α n

2−

ψ n

ann

∑ ] =n

∑ 1

an

ξ n ⋅∇ψ n

2−ψ n

⎡ ⎣ ⎢

⎤ ⎦ ⎥

Deviation relative to undeflected ray

Page 51: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Inhomogeneous matter distribution

Simple Model– Background density b(a)

– halos modeled by spherical profiles centered on galaxy/group centers• amplitude and size scaled to luminosity• incorporate bias?• NFW better than isothermal

– Use simulations, GGL to calibrate test convergence and estimate error

22 ii 2011 STScI

x

GroupGalaxyVoid

b

Page 52: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Multi-screen Propagation

• Treat screens as “weak deflectors”• Potential: ~ L.+.Q./2+… ; deflections, linear

• Distort appearance of source and lens• Many screens – multiply matrices

• Model lens in lens plane not on sky

22 ii 2011 STScI

t =n

∑ 1

an

ξn ⋅ ∇ψ n

2−ψ n

⎡ ⎣ ⎢

⎤ ⎦ ⎥= 0!!

Page 53: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

B1608+656: Statistical approach

• Ray-trace through Millennium S• Identify LOS where SL occurs• Find κext along LOS, excluding the SL plane (Hilbert et al. 2007)

• B1608+656 has twice the average galaxy number density (Fassnacht et al. 2009)• Find κext along all LOS in MS that have 2x ‹ngal›

22 ii 2011 STScI

Modeled external shear ~0.1; need κ for H0

Page 54: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

22 ii 2011 STScI

B1608+656-Particular Approach

• z=0.265– Off center =>

• z=0.63 (G1, G2) =150+/-60 km s-1

• z=0.426, 0.52– Centered lens => ~0

• Photometry– 1500 ACS galaxies over 10sm – 1700 P60 galaxies over 100 sm

• Redshifts– 100 zs

Experimenting with different prescriptions for assigning halos

Groups (Fassnacht et al)

Page 55: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Additional Lenses

22 ii 2011 STScI

Courbin

Page 56: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Future lens cosmography (Marshall et al)

• 2010 - 2016: ~3000 new lensed quasars with PS1, DES, HSC • About 500 of these systems will be quads• A significant monitoring follow-up task!•A larger statistical sample of doubles would provided added value, once calibrated by the quads•The spectroscopic follow-up is not demanding given rewards• Intensive modeling approach seems unavoidable 100 lenses observed to B1608’s level of detail could yield Hubble’s constant to percent precision• LSST, WFIRST…

22 ii 2011 STScI

Page 57: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Summary• Lens H0 is competitive

– ~4% with strong priors; ~7% after relaxing world model

• Promising results with B1608+656– h=0.71+/-0.03 with strong priors

• Limited by understanding of line of sight– External convergence and shear

• New formalism for multi-path propagation– Distortion not delay – matrix formalism

• Observations show overdense line of sight– Imaging and spectroscopy

• Other good candidates– Existing and future options

22 ii 2011 STScI

Page 58: 22 ii 2011STScI Measuring the Hubble Constant Using Gravitational Lenses Roger Blandford KIPAC Stanford Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso.

Thanks to:

22 ii 2011 STScI

Sherry Suyu, Phil Marshall, Chris Fassnacht, Tommaso Treu, Leon Koopmans, Matt Auger, Stefan Hilbert, Tony Readhead, Steve Myers, Gabriela Surpi, Frederic Courbin, George Meylan…

John Bahcall

HST


Recommended