+ All Categories
Home > Documents > 223314spring 2001

223314spring 2001

Date post: 13-Apr-2018
Category:
Upload: combatps1
View: 213 times
Download: 0 times
Share this document with a friend

of 327

Transcript
  • 7/24/2019 223314spring 2001

    1/326

    General Structural Equations

    G. 1 Beam Theory J.E. Meyer

    G.2 Th e Stress Analysis of Pressure Vessels, pp 9-51 of Gill

    G.3 Appendix Elasticity Theo ry, Olander

    Fuel Modeling and Design

    F. 1

    Modeling of the Structural Be havior of Fuel Elements and Assem blies,

    Chapter 21 of Olander

    F.2

    Fuel Rod Modelling in R eactivity-initiated Accidents at High Burnups:

    Transuranus Verses Frey H. Wallin, PSI Science Report 2001, vol. 4

    F.3

    Extensive Programs Demonstrate ZIRLOTMCladding's performance

    Benefits, A W estinghouse B rochure

    F.4 Focus XS and HTS A new generation of Higher Enrichment PWR

    Fuel Assemblies

    A

    brochure from Siemens Nuclear Power

    Radiation Effects on Materials Components

    R.1

    Fundamental Radiation Effects on M aterials, Chapter

    4

    of B.M. Ma's

    book

    R.2 Fatigue Crack Propagation in Type s 304 and 308 Stainless Steel at

    Elevated Tem peratures D.T. Raske and C. F. Cheng, Nuclear

    Technology, V34, 1977

    R.3 Creep-Rupture Properties of 20% Cold-Wo rked Type 16 Stainless Steel

    R.4

    High Fluence Neutron Irradiation R.L. Fish, Nuclear Technology, V35,

    1977

    R.5

    Te nsile Behavior of Neu tron-Irradia ted Martensitic Ste els -R:L. Klueh ,

    Nuclear Technology, v102, 199 3

    R.6 Th e Evolution of Reactor Vessel PTS -A Catalyst to the Advancem ent

    of Technology -T.A.'Meyer, K.R. Balkay, S.E. Yanishko, Mech. Eng.;

    June 1984

    R.7 Methods to Counteract radiation Effects on Reactor Pressure Vessel Steels

    S.Brown, 22.3 14Term Paper Report, May 2000

  • 7/24/2019 223314spring 2001

    2/326

    Flow Induce V ariations

    V. 1

    Heat Exchange Acoustics Section 12.5 of Flow-Induced Vibration of

    Power and Process Plant Components M.K. Au-Yang, 2002

    V.2

    Summary of Important flow-Induced Vibration Relations

    R. Herron, 2002

    Containment Designs

    C.1

    Regulations and Standards for Design of Nuclear Facilities

    C.2

    Nonlinear analysis of Reinforced Concrete Structures Biiyiikoztiirk,

    in Computers and Structures, V.7, 1977

    C.3

    Imaging of Concrete Structures Biiyiikoztiirk, NDT E

    International, V.3 1, 1998

    Pressure Vessel nalysis

    P.l Structural Design Notes Topic C, Pressure Vessel Stress Analysis J.E.

    Meyer, revision August 1996

    P.2

    Structural Design Notes Topic D, Design Rules J.E. Meyer, December

    1987, revised April 1992

    P.3

    Reactor Pressure Vessels Notes on Elevated Temperature Effects J.E.

    Meyer revision July 1994

    P.4

    Criteria of the ASME Boiler and Pressure Vessel Code for Design by

    Analysis in Sections I11 and VIII, Division 2, ASME 1969

    P.5 Subsection A Requirements for Class A Vessels Article 2

    P.6 Subsection A: Requirements for Class A Vessels

    P.7

    Article A-2000: Analysis of Cylindrical Shells

    P.8

    Article A-3000: Analysis of Spherical Shells

    P.9

    Addendum to Topic E from ASME Cases N-47-29 and N47-32

  • 7/24/2019 223314spring 2001

    3/326

    22.314/1.56/2.084/13.14

    Fall

    2006

    Problem

    Set

    I

    Due

    09/19/06

    1. A tensile test on 1020 steel gives the following results:

    Load (kN) Diameter (mm) Length (mm)

    0 12.8 50.800

    22.2 50.848

    28.5 (yielding begins)

    50.2 12.2 56.1

    51.2 (Max.) 10.4 67.3

    43.6 69.8 (fracture)

    (a) Calculate the elastic modulus.

    (b) Calculate the maximum nominal strain.

    (c) Calculate the tensile strength of this steel.

    2. Calculate the maximum normal stress and the maximum shear stress in the cube shown

    below.

    1

  • 7/24/2019 223314spring 2001

    4/326

    3. This problem illustrates some important stress tensor concepts and some calculation methods

    for treating a stress tensor.

    Consider three stress tensors a, b, and c defined as follows:

    55 5 30

    5

    55

    30

    30

    =

    ;

    a

    30

    20

    10 0 0

    0 10 0

    0

    b ;=0 10

    c =a +b

    where the stresses are given in MPa units.

    (a) What are the three principal stresses that characterize each of these stress tensors ?

    (b) Draw a 3-D Mohrs circle to represent the three stress states.

    (c) Also place points on your Mohrs circles that give the stresses on planes normal to each

    of the original coordinate axes (x, y, z).

    (d) What are the unit vectors (direction cosines) that define principal directions for the

    three stress tensors?

    (e) What is the Tresca Stress for each stress tensor? What is the von Mises Stress for each

    stress tensor?

    2

  • 7/24/2019 223314spring 2001

    5/326

    22.314/1.56/2.084/13.14 Fall 2006

    Problem Set I Solution

    1. Originaldimension:

    D0 =

    12.8

    mm,

    A0 =

    D02

    /4

    =

    128.68

    mm2

    ;

    and

    L0 =

    50.800

    mm.

    (a)

    Stress

    at

    a

    loadF =22.2kN:

    =F/A0 =172.5MPaStrain:

    = (LL0)/L0 =(50.848- 50.8)/50.8=0.009448Youngs

    Modulus:

    E=/=182.6GPa

    (b)

    Maximum

    norimal

    strain

    is

    the

    strain

    when

    fracture

    occurs:

    (LmaxL0)/L0 =(69.8- 50.8)/50.8=0.374

    (c) Fmax =51.2MPa.Tensilestrengthis:Fmax/A0 =397.9MPa

    2.

    This

    problem

    has

    a

    stress

    tensor:

    xx 0 0=

    0 yy yz 0 zy zz

    Note

    that

    the

    shear

    stresses

    on

    the

    plane

    normal

    to

    x

    direction

    are

    zero.

    Therefore,

    we

    can

    derive

    the

    two

    principal

    stresses

    on

    the

    yz

    plane

    using

    the

    solution

    for

    a

    plane

    stress

    condition.yy +zz yyzz

    )2 +2yzi,j (= 2 2

    i=464.5MPaandj=40.5MPa.Therefore,

    1 =464.5MPa,2 =440MPa,and3 =40.5MPa.Themaximumnormalstressis1 =464.5MPa.The

    maximum

    shear

    stress

    is(13)/2=212MPa.

    3.

    (a)

    The

    principal

    stresses

    are

    the

    eigenvalues

    of

    the

    stress

    tensor.

    Its

    solved

    by

    usingMATLAB(Seethecodeintheend).For

    55 5 30

    55a =

    ,530

    3030 20

    the

    principal

    stresses

    are

    found

    to

    be:

    1 =80MPa,2 =60MPa,and3 =-10MPa.

    1

  • 7/24/2019 223314spring 2001

    6/326

    For

    10 0 00 10 0

    0

    b = ,0 10

    the

    principal

    stresses

    are

    found

    to

    be:

    1 =

    2 =

    3 =

    -10

    MPa.

    For

    c =a +b,

    theprincipalstressesarefoundtobe:

    1 =70MPa,2 =50MPa,and3 =-20MPa.

    (b) SeeFigure1andFigure2.TheMohrsCircleforb isasinglepoint(-10,0).

    (c) Thepointsonthe3-DMohrscirclesthatgivethestressesonplanesnormaltoeachof

    the

    original

    coordinate

    axes

    (x,

    y,

    z)

    are:

    (x, 2 +2 ),(y, 2 +2 ),and(z, 2 +2 )xy xz yx yz zx zy

    as

    shown

    in

    Figure

    1

    and

    Figure

    2.

    Figure

    1:

    3-D

    Mohrs

    Circle

    for

    stress

    tensor

    a

    (d)

    The

    unit

    vectors

    are

    corresponding

    eigenvector

    of

    each

    eigenvalue

    (principal

    stress)

    of

    thestresstensor.Fora,theunitvectorsareasfollows:0.5774 0.7071 0.4082

    u1 = ;u2 = 0.7071

    0

    ;u3 = 0.4082 .0.57740.5474 0.8165

    2

  • 7/24/2019 223314spring 2001

    7/326

    Figure

    2:

    3-D

    Mohrs

    Circle

    for

    stress

    tensorc

    Forb:

    u1 =

    1 0 0

    0 ;u2 = 1 ;u3 = 0 .0 0 1

    Since

    c is

    the

    sum

    of

    a and

    hydrostatic

    pressure

    tensor

    b,

    the

    unit

    vectors

    should

    be

    thesameasthoseofa.0.5774 0.7071 0.4082

    =

    0.5774 0.70710

    0.4082;u2 ;u3u1 = = .0.5474 0.8165

    (e)

    Tresca =max{|12|,|23|,|31|}

    (12)2 + (23)2 + (31)2vonMises =

    2

    a b c

    Therefore:

    Tresca 90(MPa) 0(MPa) 90(MPa)vonMises 81.85(MPa) 0(MPa) 81.85(MPa)

    3

  • 7/24/2019 223314spring 2001

    8/326

    The MATLAB code to solve Problem 3:

    %============================================================

    % 22.314 (Fall 06) Problem SetI-3.

    % 09/19/2006%

    %============================================================

    Sigma a = [ 55 5 305

    55

    30

    30 30 20];

    Sigma b

    = [10

    0

    0

    10

    0 10 00 0

    10];

    Sigma

    c

    =

    Sigma

    a

    +

    Sigma

    b;

    % eig returns eigenvalues and eigenvectors of a matrix

    [Eigvec

    a

    Eigval

    a]

    =

    eig(Sigma

    a);

    [Eigvec

    b

    Eigval

    b]

    = eig(Sigma b);

    [Eigvec c Eigval c] = eig(Sigma c);

    % Mohrs Circlefor Sigma a 20

    s1

    =

    Eigval

    a(3,3);

    s2 = Eigval a(2,2);

    s3

    =

    Eigval

    a(1,1);

    c1

    = (s1 + s2)/2; r1 = (s1 s2)/2;c2 = (s2 + s3)/2; r2 = (s2 s3)/2;

    c3

    = (s1 + s3)/2;

    r3

    =

    (s1

    s3)/2;

    x1

    = linspace(s2, s1, 200);

    y1p = sqrt( r12 (x1 c1).2); y1n = y1p;x2

    = linspace(s3, s2, 200); 30

    y2p = sqrt( r22 (x2 c2).2); y2n = y2p;x3

    = linspace(s3, s1, 500);

    y3p = sqrt( r32 (x3 c3).2); y3n = y3p;

    figure; hold on;

    axis([30 100 50 50]);

    axis equal;

    plot(x1, y1p);

    plot(x1, y1n);

    plot(x2, y2p); 40

    plot(x2, y2n);

    plot(x3, y3p);

    plot(x3, y3n);

    sigma x = Sigma a(1,1);

    4

  • 7/24/2019 223314spring 2001

    9/326

    tau x

    sigma

    y

    tau

    y

    sigma z

    tau

    z

    = sqrt(Sigma a(1,2)2 + Sigma a(1,3)2);

    =

    Sigma

    a(2,2);

    = sqrt(Sigma a(2,1)2 + Sigma a(2,3)2);

    = Sigma a(3,3);

    = sqrt(Sigma a(3,1)2 + Sigma a(3,2)2);

    50

    plot(sigma x, tau x, '+');

    plot(sigma y, tau y, '+');

    plot(sigma z, tau z, '+');

    xlabel('\sigma (MPa)')

    ylabel('\tau (MPa)')

    %Mohrs

    Circle

    for

    Sigma

    c;

    s1

    =

    Eigval

    c(3,3);

    s2 = Eigval c(2,2);

    s3

    =

    Eigval

    c(1,1); 60

    c1

    c2

    c3

    =

    (s1

    +

    s2)/2; r1= (s2 + s3)/2; r2=

    (s1

    +

    s3)/2; r3

    =

    (s1

    s2)/2;= (s2 s3)/2;=

    (s1

    s3)/2;

    x1

    y1p

    x2

    y2p

    x3

    y3p

    = linspace(s2, s1, 200);

    = sqrt( r12 (x1 c1).2); y1n=

    linspace(s3, s2, 200);

    = sqrt( r22 (x2 c2).2); y2n

    = linspace(s3, s1, 500);

    =

    sqrt(

    r32

    (x3

    c3).2);

    y3n

    = y1p;

    = y2p;

    =

    y3p;

    70

    figure; hold on;

    axis([20 100 50 50]);axis equal;

    plot(x1, y1p);

    plot(x1, y1n);

    plot(x2, y2p);

    plot(x2, y2n);

    plot(x3, y3p);

    plot(x3, y3n);

    80

    sigma x

    tau

    x

    sigma y

    tau

    y

    sigma z

    tau

    z

    = Sigma c(1,1);

    = sqrt(Sigma c(1,2)2 + Sigma c(1,3)2);

    = Sigma c(2,2);

    = sqrt(Sigma c(2,1)2 + Sigma c(2,3)2);

    = Sigma c(3,3);

    = sqrt(Sigma c(3,1)2 + Sigma c(3,2)2);

    5

  • 7/24/2019 223314spring 2001

    10/326

    90plot(sigma x, tau x, '+');

    plot(sigma y, tau y, '+');

    plot(sigma z, tau z, '+');

    xlabel('\sigma (MPa)')

    ylabel('\tau (MPa)')

    6

  • 7/24/2019 223314spring 2001

    11/326

    22.314/1.56/2.084/13.14

    Fall

    2006

    Problem

    Set

    II

    Due

    09/26/06

    1. Consider a cylindrical vessel of inner radius R and wall thickness t with flat ends. Thepressure inside the vessel is Pi and the surrounding pressure Po. What is the relative error inestimating the maximum value of the stress intensity in the cylinder based on the thin shell

    approximation for values of:

    t/R= 0.03t/R= 0.10t/R= 0.15t/R= 0.30

    Consider two cases:

    Pi = 2PoPi = 20Po

    2. A pressure vessel is constructed of a cylinder with a hemispherical head at each end. There

    is no external restraint to either axial or radial displacement. Inside radius of both cylinder

    and hemispheres is R. The wall thickness is uniform at a value t. The length of the cylinderis L. No flaws or stress concentrations are present. Dimensions are:

    R

    = 110 cmt= 11 cmL= 433 cm

    Material properties:

    Youngs modulus = 200 GPa

    Poissons ratio = 0.3

    Coefficient of thermal expansion = 12 m/mK

    The vessel is pressurized to a design pressure P = 15.5 MPa.

    Questions:

    (a) What is the total (peak) stress as a function of radial position (z) at a junction betweencylinder and hemisphere.

    (b) What is the maximum radial displacement of the vessel cylinder and sphere?

    1

  • 7/24/2019 223314spring 2001

    12/326

    22.314/1.56/2.084/13.14 Fall2006

    ProblemSetIISolution

    1.

    Stress

    intensity

    =

    max{|r|,|z|,zr|}Forthinwallapproximation:

    r =Pi

    +Po

    (1)2

    PiR2

    Po(R+t)2

    z =(R+t)2R2

    (2)

    =PiPo

    (R+t

    ) (3)t 2

    Therefore:

    Sthin =r =Pi

    Po

    (R+t

    ) +Pi

    +Po

    (4)

    t

    2 2

    Thickwallsolution:

    Equilibrium

    in

    radial

    direction

    gives:

    dr+

    r= 0 (5)

    dr r

    Hookslaw:

    1r

    = (r

    z) (6)E1

    = (

    r

    z)

    (7)E1

    z = (zr) (8)E

    duSince =u/r,r = dr

    ,

    we

    get:

    d 1= (r) (9)

    dr r

    For thiscloseendcylinderfarfrom theend,planestresscondition isassumed, i.e.,z isconst.

    Plug

    Eq

    6

    and

    Eq

    5into

    Eq

    9,

    we

    get

    d( +r) = 0 (10)

    dr

    Plug

    Eq

    10

    into

    Eq

    5,

    we

    get

    d 1 d(r2r) = 0 (11)

    drrdr

    1

  • 7/24/2019 223314spring 2001

    13/326

    WithB.C.r(r=R) =Pi

    andr(r=R+t) =Po,weget:

    r

    =Pi(R

    r)2 +(1(

    R

    r)2)

    Po(R+t)2 +PiR

    2

    (R+t)2R2

    =Pi(

    R

    r

    )2 +(1+(R

    r

    )2)Po(R+t)

    2 +PiR2

    (R

    +

    t)2

    R2

    r =2(R

    r)2

    (Pi

    Po)(R+t)2

    (R+t)2R2

    Maximum

    stress

    intensity

    is

    at

    the

    location

    of

    inner

    radius:

    (12)

    (13)

    (14)

    Sthick

    =2(PiPo)(R+t)

    2

    (R+t)2R2

    Theerrorinthinwallapproximationis:

    |1

    SthinSthick|

    Resultsaretabulatedbelow:

    t/RPi

    =2Po

    Pi =20Po

    0.03

    1.41%

    1.31%

    0.10

    4.13%

    4.09%

    0.15

    5.67%

    5.88%

    0.30

    8.88%

    10.46%

    2.Weusethinshellapproximationtosolvethisproblem. Foraregionofcylinderfarfroma

    junction,

    stresses

    are:

    =

    P

    R

    t(15)

    r =P/2 (16)

    x =PR

    2t(17)

    Radial

    displacement:

    uc

    =PR2

    2Et(2+

    t

    R) (18)

    Forthesphere,stressesare:

    = =PR

    2t(19)

    r

    =P/2 (20)

    Radial

    displacement:

    P R2 tus = (1+ ) (21)

    2Et R

    2

  • 7/24/2019 223314spring 2001

    14/326

    Atthejunction,NoteCEq3033givethatattheedgeofcylinder:

    u0 =uc +V0

    +M0

    (22)23D 22D

    0 =

    V0 M0(23)22D

    D

    at

    the

    edge

    of

    hemisphere:

    2R 22u0 =us V0 + M0 (24)

    Et Et

    22 430

    = V0

    + M0

    (25)Et REt

    3(12)1/4where, = sR,s = ( R2t2 ,u0 istheradialdisplacementatthejunction,0 istheslopeatthejunction.1

    Due

    to

    the

    continuity

    of

    the

    displacement

    and

    slope,

    the

    four

    unknowns

    u0,

    0,

    M0,

    and

    V0

    1NotethatthedirectionoftheshearforceQinNoteL4isdifferentfromthatinNoteC.Ifyouassumethe

    directionofQ0S issameasQOC,thecontinuityofshearforceshouldgivethat:Q0S=Q0C.

    Mo

    Mo

    Vo

    Vo

    x

    z

    Figure

    1:

    Junction

    of

    hemisphere

    and

    cylinder

    3

  • 7/24/2019 223314spring 2001

    15/326

    canbesolvedbyaboveequations.Itcanbefoundthat

    M0 = 0 (26)

    V0

    =P R2/(4R+Et/3D) (27)

    u

    =

    uc +

    V0(28)2D3

    P Rx

    = (29)2t

    =P R

    +EV0

    (30)t 2DR3

    r

    =P/2 (31)

    With

    mean

    radiusR=innerradius+t/2=1.155m,t=0.11m,E=200GPa,=0.3,we

    get

    (a)

    At

    the

    junction,

    from

    Eq

    29Eq

    31:

    x=81.38MPa=122.06MPar=-7.75MPaThe

    maximum

    stress

    is

    the

    hoop

    stress:

    122.06

    MPa.

    (b)

    Radial

    displacement

    as

    a

    function

    of

    radial

    postionzis:(R+z).Thus,fromEq18,

    theradialdisplacementofcylinderis:

    P R t(2+ )(R+z)

    2Et R

    From

    Eq

    21,

    the

    radial

    displacement

    of

    hemishpere

    is:

    P R t(1+ )(R+z)

    2Et R

    From

    Eq

    28,

    the

    radial

    displacement

    of

    junction

    is:

    P R t V0( (2+ ) + )(R+z)

    2Et R 2DR3

    Therefore:

    Cylinder

    Sphere

    Junction

    Max.

    displacement

    (m)

    0.00089

    0.00037

    0.00063

    4

  • 7/24/2019 223314spring 2001

    16/326

    22.314/1.56/2.084/13.14

    Fall

    2006

    Problem

    Set

    III

    Due

    10/05/06

    1. For the same vessel described in Problem II-2, find out the maximum allowable pressure

    of the coolant so as not to cause elastic failure under expected static loading and fatigue

    conditions. State the criterion you wish to apply before proceeding to numerical evaluation.

    Yield stress = 320 MPa, Ultimate tensile stress = 500 MPa.

    S-N curves for both high cycle fatigue and low cycle fatigue are attached.

    Expected number of cycles between cold and hot zero power conditions = 500.

    Expected number of cycles between hot-zero power and hot-full power conditions =

    105

    Temperature profile is distributed parabolically at hot-full power conditions:

    1

    T=Tout T(12z/t)2

    4

    Where Tout is the outside wall temperature. T = -50 K is the temperature differencebetween inside and outside wall.

    1

  • 7/24/2019 223314spring 2001

    17/326

  • 7/24/2019 223314spring 2001

    18/326

    22.314/1.56/2.084/13.14

    Fall

    2006

    Problem

    Set

    III

    Solution

    We will consider the primary stress and secondary stress. Since the primary stresses are defined as

    external stresses, the only primary stress for this problem is due to system pressure. The secondary

    stresses are due to constraint. For this problem, the secondary stresses are junction discontinuitystress and thermal stress.

    We consider the vessel subjected to static load and cyclic load respectively.

    1. Under static load

    Given that y = 320MPa and u = 500 MPa, from ASME code, we can get that underprimary stress:

    2 1PmSmmin( y, u)=166.7 MPa

    3 3For cylinder:

    Pm =

    |

    r|

    =

    11P

    For sphere:

    Pm

    =|

    r|= 5.75P

    Thus we have:

    11P166.7 MPa

    P15.6 MPa

    For secondary stresses, we will consider three regions, the cylinder region far from junction,

    the sphere region far from junction and junction region. The thermal stress is assumed

    identical in three regions. Define:

    the stresses in cylinder region: ,c, x,c,r,cthe stresses in sphere region: ,s,x,s,r,sthe stresses in junction region: ,j, x,j, r,jIt is easy to see that: ,s

    < ,j

    < ,c

    , since the shear force in junction is in the same

    direction with the system pressure for sphere, and opposite direction for cylinder. Also,

    x,s

    =x,j

    =x,c

    and r,s

    =r,j

    =r,c. Thus the maximum stress intensity will be in thecylinder region. From ASME code:

    2 1Pm +Q3Sm3min( y, u)=500MPa

    3 3Pm +Q=max(|,cr,c|,|x,cr,c|,|,cx,c|)

    P R

    E

    P P R

    E

    P P R=max(

    t+

    1(TavgT(z)) +

    2,

    2t+

    1(TavgT(z)) +

    2,

    2t)

    Average temperature isTavg :

    t/2

    t/2T(z)2rdr

    Tavg

    = t/2

    2rdrt/2

    =Tb0.3T

    1

  • 7/24/2019 223314spring 2001

    19/326

    The thermal stress is:

    E E 1 2z

    1(TavgT(z)) =

    1(

    4(1

    t)20.3)T

    We can see that the maximum thermal stress is at the outer surface = 51.4 MPa. Therefore:

    Pm

    +Q=11P+51.4500 MPa

    P40.8 MPa

    2. Under cyclic load

    The miners rule is applied.n1 n2

    + 1N1 N2

    Assuming from CZP to HZP, only the pressure oscillations, n1=500.Assuming from HZP to HFP, only the temperature oscillations, n2 =10

    5.

    From topic D, Salt =

    1

    2max,Tresca. For high cycle, the alternating stress is the thermalstress, the amplitude is: Salt

    =25.7MPa. Applying a safety factor of 2, and using the mostconservative curve 7 on the high cycle fatigue figure, it can be seen that at 51.4 MPa, the

    cycle number is 6.5E5, i.e. N2 >6.5E5. Thus, N1n1/(1n2/N2)= 588.From low cycle fatigue figure, it can be seen that Salt 65,000 psi= 448 MPa , at lowcycle, the only stress variation is due to pressure variation and:

    Salt = 21max,Tresca = 5.5P Again, applying a safety factor of 2:

    5.5P448/2=224 MPa

    P40.7 MPa

    From above analysis results, it can be seen that the static primary stress condition in cylinder is the

    limiting factor. Therefore, the system pressure:

    P15.6MPa

    2

  • 7/24/2019 223314spring 2001

    20/326

    22.314/1.56/2.084/13.14

    Fall

    2006

    Problem

    Set

    IV

    Due

    10/12/06

    1. Consider a cantilever beam with one end fixed into a wall. The dimensions are shown in the

    figure below. A force F =bhy/2is applied to the other end. y is the yield strength. Now abending moment is applied as shown in the figure. Determine the magnitude of the moment

    Mat which the the beam fails. Assume idealized material law: elastic perfect plastic.

    M

    F

    h

    bL

    2. The stress tensor can be written as the sum of a deviatoric stress tensor and a dilation stress

    tensor and the strain can be written as the sum of volumetric strain and deviatoric strain as

    follows:

    1 0 0 S1 0 0 P 0 0

    0 2 0

    =

    0 S2 0

    +

    0 P 0

    0 0

    3 0 0

    S3 0 0

    P

    1 0 0

    10 0 v/3 0 0

    0 2 0=0 2 0+ 0 v/3 0 0 0 3 0 0

    30 0 v/3

    Where P =(1 +2 +3)/3 is the hydrostatic pressure and v = 1 +2 +3 is thevolumetric strain.

    Please show that the distortion energy UDis equal to:

    31

    UD = Si

    i2i=1

    3. Consider several ceramic fuel materials with properties listed in the table below:

    Property UO2 UC UN

    Thermal conductivity average (W/moC) 3.6 23 21Melting point (oC

    ) 2800 2390 2800

    Linear coefficient of expansion (/oC) 10.1E-6 11.1E-6 9.4E-6Fracture strength (MPa) 110 60

    1

  • 7/24/2019 223314spring 2001

    21/326

    (a) Calculate the theoretical maximum linear heat generation rate.

    (b) Compare the the minimum linear heat generation rates at which fracture would occur

    for UO2 and UC.

    2

  • 7/24/2019 223314spring 2001

    22/326

    22.314/1.56/2.084/13.14

    Fall

    2006

    Problem

    Set

    IV

    Solution

    1. Thestressdue to force F isuniformwithavalueof y/2as showninFigure(a). ThestressduetopurebendinginelasticregimeislinearlysymmetricasshowninFigure(b)In

    elasticregime,combinationofforceandmomentwillgivealinearstressdistributionwithamaximumvalueachievedatz=h/2.Thuswhenyieldingbegins,asshowninFigure(c)

    =yy/2 =y/2

    (a)

    (c)

    h/2

    -h/2

    z

    h/2

    -h/2y/2

    z

    y

    zh/2

    -h/2y

    z0

    -h/2

    h/2z

    y

    (b)

    (d)

    Themoment forreaching the yield at a local space can becalculated. Themoment shown in

    thefigureiscounterclockwise,therefore:

    1 y h 2 hM1 = 2 ( )( )

    3( )b

    2 2 2 2

    1M1 = ybh

    2

    12Whenfurtherincreasingthemagnitudeofmoment,theyieldingzoneinlowerbeamwill

    further extend butthemaximumstressremainsy aselasticperfectplasticmaterialproperty

    1

  • 7/24/2019 223314spring 2001

    23/326

    isassumed. The upper beam become compressed and will also reach the yielding at a certain

    moment. This situation continuesuntil thebeamgets totheyieldingat the wholecross

    section. ThestressdistributionisshowninFigure(d). Todeterminethemoment,wefirst

    needtoevaluatethepointz0 whichdividethecompressionandtension. Forcebalanceinaxialdirectionwill give:

    F =ybh

    = (h

    2z0)(y)b+ (z0 +

    h

    )yb2 2

    h h h=(

    2

    z0) + ( +z0)2 2

    hz0 =

    4Therefore,themomentMforactualyieldingofthewholebeamcanbecalculated:

    h h h hM =y(

    2

    z0)( +z0)/2b+y(z0( ))( +z0)/2b2 2 2

    3M =16

    ybh2 islargerthanM1

    2. Totalstrainenergyisthesumofdistortionenergyanddilationenergy:

    UT =UD +US

    UD =UTUS3

    1

    UT = ii

    2i=1

    1US = (P v)2

    Therefore:

    31 1

    UD = ii (P v)2 2

    i=1

    31 1

    = (SiP)(

    i +v/3) (P v) (1)2 2i=1

    3 3 3 31 1 1 1 1

    = Si

    i + Siv/3 + (P)

    i + (P) v/3 (P)v2 2 2 2 2i

    =1i

    =1i

    =1i

    =1

    Since

    3 3

    Si = (i +P) =1 +2 +3 + 3P = 0 (2)i=1 i=1

    3 3

    i = (iv/3)=1 +2 +3v = 0 (3)i=1 i=1

    2

  • 7/24/2019 223314spring 2001

    24/326

    Plug Eq 2 and Eq 3 into Eq 1,wecanget:

    31

    UD = Si

    i2i=1

    3. (a) From theclassnote,assuming a constant value ofthermalconductivity thelinear power

    isproportionaltothethetemperaturedifferencebetweenthecenterlineandfuelsur-

    face.

    q = 4kT

    Themaximumlinearpowerislimitedbythemeltingoffuel,i.e. whenmeltingfirstly

    occursatthecenterlineofthefuel.ThusassumeTfo =700oCand plug meltingpoints

    andaveragethermalconductivitiesofUO2,UCandUNintoaboveequations,wecan

    getanestimationofthemaximumachievablelinearheatgenerationrates:

    qmax,UO

    2=

    95

    kW/m

    qmax,UC =489 kW/m

    qmax,UN =554 kW/m

    (b) RefertonoteM12, thermalstressdueto aparabolictemperaturedistributionwould

    give a maximumstress intensity at the outer surface of the fuel inelastic regime. Using

    Trescasyieldcondition,whenfracturefirstlyoccursattheoutersurfaceofthefuel,

    thelinearheatgenerationratecanberelatedtothethefracturestressasfollows:

    q

    =

    T16k(1)

    E

    Fromtheclassnotes, E=175GPa, = 0.3forUO2,assumethesamepropertiesforUC.Plugmaterialpropertiesintotheaboveequation,wecanget:

    q = 7.7 kW/mUO2

    q =24.3 kW/mUC

    Thustheq toinitiatecrackingistypicallylessthan10%ofthattoinitiatemeltingofthefuel. BothUCandUNprovideanopportunitytoincreaseq significantlywithoutviolating

    thelimits.

    3

  • 7/24/2019 223314spring 2001

    25/326

    GPa

    S T R A ~ N

    MPa)

    MPa,

    cp)

    (strain-

    E,)?

    (oa,J

    oa A}:

    MPa.

    @aij) (caij)?

    (oa,)

    22.314/1.56/2.084/13.14 Fall 2006

    Problem Set V

    Due 10/19/06

    This problem illustrates some "plastic strain" concepts and some calculation methods for

    treating plasticity.

    Uniaxial Stress-Strain Information: Consider a material that has the uniaxial stress-strain curve(actually two straight lines) shown below. The first portion of the curve, a line from the origin to

    STRESS point A, has no plastic deformation. The secondportion, a line from point A to point B, has bothelastic and plastic deformation.

    The elastic stress-strain behavior is characterizedby a Young's Modulus of 195 and a Poisson'sratio of 0.3.

    Additional information about the uniaxial curveincludes the stress at point A (1 50 and the

    0(stress, strain) at point B (260 0.54%).

    Derived Properties: Using the above uniaxial stress-strain information, what is the 0.2% offset

    yield stress for this material? What is the plastic stress as a function of equivalent

    hardening) strain

    Loadina Sequences and Questions:

    A three dimensional stress is applied in a proportional manner to a solid made of the abovematerial until the following stress state is reached (note that this state is 2.5 multiplied bythe tensor of problem set

    where the stresses are given in

    1) What is the deviatoric stress that corresponds to What is the equivalent stressas evaluated by the following equation:

  • 7/24/2019 223314spring 2001

    26/326

    abii),

    MPa.

    ab

    Show that this equivalent stress is equal to the previously defined "von Mises stress."

    2) What strain tensors (elastic, mechanical, and total) exist when aa is reached?

    The stress on the same solid is next proportionally reduced until zero stress remains.

    3) What strain tensors (elastic, mechanical, and total) exist when zero stress is reached?

    The same solid is subjected to a different proportional loading to reach the stress statewhere:

    where the stress is given in

    4) What strain tensors (elastic, mechanical, and total) exist when is reached?

    The stress is next proportionally reduced until zero stress remains.

    5) What strain tensors (elastic, mechanical, and total) exist when zero stress is reached?

  • 7/24/2019 223314spring 2001

    27/326

    22.314 Problem V Solution Fall

    2006

    Known

    E

    =195000

    v

    =0.3

    A

    = 150

    oB

    :=260

    sB

    =0.54-10

    - 2

    Derived

    properties

    EmA

    =0

    on

    rsm

    =

    B

    -

    E

    smY

    :=0.002

    smY - smA

    ry : mA

    . oB -

    aA)

    .

    aAd

    Linear

    interpolation

    between A anb B to get yield

    stress

    r

    emB -

    smA

    aY

    =

    204.098

    The 0.2

    offset yield

    stress oY

    is 204.098

    MPa

    From the

    uniaxial

    stress-strain curve,

    when op

  • 7/24/2019 223314spring 2001

    28/326

    Loading

    sequences

    and

    questions

    1317.5

    -12.5

    75

    a:=

    -

    12.5

    137.5

    75

    75

    75

    50

    1)

    akk:=o

    0,0

    +l

    a,

    I

    +

    aa

    2

    ,

    2

    ukk

    =325

    i:=0..2

    j =0..2

    ac

    :=0

    Sal

    1

    :=oa,

    - --i-

    j,0)-

    129.167

    -12.5

    75

    a

    =12 5

    29.167

    75

    75

    75

    -58.333

    une

    =

    i

    Sa)

    Sao,

    -)22+

    Sao,2-2

    (Sa

    ,)2

    1 Sa,2)

    .

    2

    Sa2,)]

    oae

    = 204.634

    Now

    calculate

    VonMises

    stress

    for

    comparision

    eigena:=

    eigenvals aa)

    aVM

    .[(150

    - 200)

    2

    (150

    +25)2 200+25

    cVM

    =204.634

    We

    can see cae=aVM

  • 7/24/2019 223314spring 2001

    29/326

    2) Strain tensor

    for

    sa

    a) Elastic

    strain

    i

    =0 2

    j

    =0..2

    1

    selaij

    =2

    .[ l

    v)-ai,j-

    v

    5 i-

    j ,0 -Okk]

    S4.167.10-

    4

    -8333-10'

    5

    10-4

    cela

    8.333.10

    4.167 10

    5 10

    4

    [510 4

    5.0

    - 4

    -1.667-10

    -4

    b)

    Mechanical

    strain

    Since

    aae=204>aa=150,

    mechanical

    strain

    exists

    and

    has

    to

    be calculated

    Since

    the

    stress

    was

    applied

    in

    a

    proportional

    manner,

    Saij/ce

    is

    constant,

    thus

    we

    have

    cm ij)= 3*Sa i,j)2*ae)*se

    roota

    =

    roo

    Lae E-

    A. oB

    -

    A)

    A],ea

    Ec

    = roota

    sae

    =

    0.002

    100sac

    =

    0 202

    Mathcad

    sometimes

    doesn't

    show

    enough

    significant

    digits.

    sae

    is actually

    0.00202

    here

    Sa

    mai

    2.aa

    4.31810

    4

    -1.85110

    -4

    0.001

    ma

    -1.851-10

    -

    4.318-10

    4

    0.001

    0.001

    0.001

    -8.637 10

    Total

    stress

    stola

    =~ela-

    cma

  • 7/24/2019 223314spring 2001

    30/326

    8.48510

    4

    -2.684*.t0

    4

    0.002

    Etola

    =

    2.68410

    8.48510

    -

    4

    0.002

    0.002

    0.002

    -.

    OO l

    3) When

    stress

    is

    proportionally

    reduced

    to

    zero,

    sela

    vanishs

    while

    ema remains unchanged.

    stola=tma

    when

    zero

    stress

    is reached

    26

    0

    0

    ab

    :=

    0

    00

    000

    akk

    :=

    bo,

    t

    bl.

    I

    b

    2

    ,2

    akk

    260

    i

    =0..2

    j

    =0..2

    Sbi,

    j

    abi

    j

    -

    -5(i-

    j,0 kk

    173.333

    Sb =

    0

    0

    0

    0

    -86.667 0

    0

    -86.667

    obe=

    3.-[ Sbo

    0

    )

    2

    (Sb, 1)22+S

    Sbb2)22+

    Sb j 2+

    Sb2)

    2-2+

    Sb

    22

    )

    2

    ]

    obe

    =260

    4) Strain

    tensors

    for

    ab

    a)

    Elastic

    strain

    i

    =0..2

    j

    =0..2

    celbi

    j

    =

    Ij

    v)-obi,-

    v5 i-j,

    0).kk

  • 7/24/2019 223314spring 2001

    31/326

    0 001

    selb =

    0

    0

    0 0

    -4

    10

    -4

    0

    0

    -4-104

    b) Mechanical strain

    During

    the second

    loading, when ae

    increases

    from 0

    to

    oae,

    no

    mechanical

    strain is

    produced.

    Since

    cbe=260 >

    aae=204, new

    mechanical

    strain

    will be produced

    when

    ae

    increases

    from aae

    to

    abe.

    bshe

    roothb=ro

    obe-

    -a aB-A)

    aAse

    4eB

    -

    zeA

    she

    =rootb

    abe = 0.004

    100-sbe= 0.407

    3.Sb

    i

    smadd,,

    :=

    . sbe

    -

    sac

    0.002 0

    0

    cmadd 0

    0.001

    0

    0 0 -0.001

    smadd

    is

    the addtional mechanical

    strain

    tensor that is produced

    when

    ve

    increases

    from

    ose

    to

    abe.

    Adding

    smadd

    to

    Ema

    we

    can

    get the total mechanical strain when

    ob

    is

    reached.

    smb := madd

    sma

    0.002

    Emb

    -1.85110

    -

    0.001

    c) Total stress

    stolb

    =

    celb

    - smb

    -1.851-10

    -5.916*10

    -

    0.001

    / 0.004

    Etolb=

    1-1.851-10

    o 1

    -1.851 10

    -

    0.001

    -9.91610

    0.001

    0.001 -f002

  • 7/24/2019 223314spring 2001

    32/326

    5)

    When

    stress

    is

    proportionally

    reduced

    to zero, selb

    vanishs while Emb remains unchanged.

    stolb=smb

    when

    zero stress

    is reached

    Note: Some

    of the

    elements

    in the matrices

    may

    not

    be accurate

    because

    Mathcad

    sometimes

    doesn t show

    enough

    significant digits.

  • 7/24/2019 223314spring 2001

    33/326

    22 31411 5612 084113 14Fall 2006

    Problem

    SetV

    Due 10126106

    his prob lem i l l us t ra tes a mechan ism by wh ich c lad s t resses can be

    reduced du r in g up-power ramps by approaching f u l l power a t a s low er

    r a t e .

    1. Geometry (20C)

    The c l ad ou ts id e d iameter i s 11.2 nun; and the c l ad th ickness i s 0.7 mm

    2.

    Clad Mater ia l Propert ies (assumed constant)

    Young s Modulus = 76 GPa;

    Po isson s Rat io = 0.25;

    Co e f f i c i e n t o f Thermal

    Expansion

    =

    6.7

    m1m K;

    and

    c lad c reep ra te (s l . )

    =

    (1 x 10-9)ag;

    9

    where a has th e un i t s MPa.

    9

    3. Ope rat ing Con dit ion s

    -

    A t ho t zero power, th e c la d i s a t 280C. th e co ola nt pressure i s 15.5 MPa,

    th e gas pressure ins id e the rod i s 5.4 MPa, and the c lad i s touch ing

    the fue l w i t h ze ro con tac t p ressu re .

    A t

    ho t f u l l power the co ola nt and gas pressures are unchanged, the

    average c l ad tempera ture i s 375 C, and th e r ad ia l d isplacement o f th e

    ou t e r su r face o f t he f ue l has i nc reased by 35 run

    Consider two cases:

    - An up-power ramp from zero t o f u l l power i n 30 minutes;

    - An up-power r i i p from zero t o f u l l power i n 30 hours .

    4.

    Ca lcu la t i ona l Bas i s

    - Use a s i n g l e r i n g t o r e p r e s e nt t h e c l a d

    C on sid er t h a t t h e r a d i a l d e f l e c t i o n a t t h e f u e l o u t e r s u r fa c e

    and the c l ad average tempera tu re va ry l i n e a r l y w i th t ime

    during each up-power ramp.

    - Use on ly e l a s t i c , thermal , and c reep s t r a in s . Le t the c reep

    s t ra in s equal zero a t ho t zero power.

    Use zero ax ia l

    f o rc e f rom fue l - c l a d con tac t.

  • 7/24/2019 223314spring 2001

    34/326

    5.

    Questions

    O bta in the fo l low ing quant i t i es upon reach ing fu l l

    power i n each up

    power ramp:

    .

    c lad s t ress ;

    c la d s t ra in ; and

    ra d i a l d isplacem ent a t the c la d outer sur face .

  • 7/24/2019 223314spring 2001

    35/326

  • 7/24/2019 223314spring 2001

    36/326

  • 7/24/2019 223314spring 2001

    37/326

  • 7/24/2019 223314spring 2001

    38/326

  • 7/24/2019 223314spring 2001

    39/326

  • 7/24/2019 223314spring 2001

    40/326

  • 7/24/2019 223314spring 2001

    41/326

  • 7/24/2019 223314spring 2001

    42/326

  • 7/24/2019 223314spring 2001

    43/326

  • 7/24/2019 223314spring 2001

    44/326

  • 7/24/2019 223314spring 2001

    45/326

    22.314/1.56/2.084/13.14 Fall 2006

    Problem Set VII

    Due 11/02/06

    This problem set illustrates applications of beam theory to Zircaloy Follower in a BWR forcalculation of curvature caused by Zircaloy growth ; Consult Notes X on Beam Theory.

    ZIRCALOY FOLLOWER

    Xa) Geometry and Material properties : WY

    Consider a BWR reactor core that has cruciform Zshaped control rods. When each control rod is fully

    withdrawn for power operation, it is replaced in thecore by an attached Zircaloy follower to prevent Texcessive water hole peaking. The follower is also

    cruciform shaped and is shown in the adjacent figure.The dimensions are :

    WL = length in the z-direction = 2.4 m ; W = width or

    span = 200 mm ; and T = thickness = 7 mm. T

    The Zircaloy has a Youngs Modulus of 75 GPa and a Poissons

    Ratio of 0.25. The growth strain in the z-direction as a function

    of fast fluence is given by the following equation :

    egz = C1N + C2N2 ; (1.1)

    where :

    - the z-direction growth strain ( egz) is given in percent;

    - the fast fluence (N) is given in the units of (1021fast neutrons per cm2) with the fast flux

    cutoff specified by E > 1 MeV; and

    - the constants are C1= 0.013 and C2= 0.0018.

    b) Notation and Support Information :

    For points originally on the axial centerline (x = 0; y = 0 ), denote displacements in the x-direction, the y-direction, and the z-direction displacement, respectively, by u, v, and w.

    1

  • 7/24/2019 223314spring 2001

    46/326

    At z = 0, the follower is supported so that u, v, and w are all zero and so that no moments are

    applied. At z = L, the follower is supported so that the z-direction force is zero, so that u and vare zero, and so that no moments are applied.

    c) Fast Neutron Fluence:

    After several refueling cycles, a follower has an accumulated fast fluence given by:

    N = [ x x ] [N z ] ;N ( ) ( ) (1.2)z

    Where N is the fast fluence expressed in the units of Eq 1.1; where

    0.1 xN x =

    W

    ; and where (1.3)( ) 15 1 +x

    (z-(L2)

    )

    N z = . (1.4)( ) 1.49cos pz Le

    Le is the extrapolated length of the core ( 2.54 m )

    d) Questions : d.1) What is u as a function of z ? d.2) What is the value of w at z = L ?

    2

  • 7/24/2019 223314spring 2001

    47/326

    22.314/1.56/2.084/13.14 Fall 2006

    Problem Set VII Solution

    Solution:

    x

    z

    y

    Beam model Cross section

    Geometry and material properties:

    L=2.4m; W=200mm; T=7mmand

    E=75 GPa and =0.25Boundary conditions:

    At z=0: At z=L:

    u=v=w=0 u=v=0M0=0 ML=0

    Fz=0

    (a) According to the beam theory:

    z

    z =

    +

    zo ; where

    zo =

    0.01

    gzE

    furthermore,

    z =za kyx; where za =dw

    and ky =dy =

    d 2u2dz dz dz

    therefore,

    dw d 2uz =E( 2 x 0.01gz )dz dzAt any cross section,

    My =

    zxdA =M0 =0

    A

    In the meanwhile,

    My =zxdA =E(za kyx 0.01gz )xdAA A

    where u,v,w,zaand kyare only functions ofz,and

    gz =C1N +C2N2 =

    C1Nx (x)Nz (z) +C2 (Nx (x)Nz (z))2

    1

  • 7/24/2019 223314spring 2001

    48/326

    Therefore,

    My = Eza (z)dA +Eky (z)x2dA +0.01EC1Nz (z)15

    1 +0

    0

    .

    .

    1

    2

    x

    xdA +0.01EC2Nz (z)2

    Nx (x)2xdA

    A A A A

    where

    dA=

    0 for symmetryA

    T w x

    2dA =202x2wdx + T2x

    2Tdx=4.6722 106

    A 2

    N (x)xdA = 15xdA +7.5x2dA =3.504 105x

    A A A

    Nx (x)2xdA =225xdA +225x

    2dA +56.25x3dA =1.05 103

    A

    A A A

    Then,

    Eky (z) 4.6722 106 +EC1Nz (z) 3.504 10

    7 +EC2Nz (z)2 1.05 105 =0

    2

    ky = 0.075C1Nz (z) 2.25C2Nz (z)2 = 0.001453cos

    2

    2

    z

    L

    e

    L

    0.008991cos

    2

    2

    z

    L

    e

    L

    2z L 2z L= 0.001453cos

    2L0.004496 0.004496cos

    L

    e e

    y (z) y (0) = 0z

    ky (z)dz=0z

    0.001453cos

    2z

    2

    L

    e

    L

    +0.004496 +0.004496cos

    2z

    L

    e

    L

    dz

    = 0.001453Le

    sin

    2z L

    +sinL

    0.004496z 0.004496Le

    sin

    2z L

    +sinL

    2Le 2Le 2 Le Le

    = 0.001175sin(1.2368z 1.4842)

    0.004496z

    0.001818sin(2.4736z

    2.9684)

    0.001484

    and let

    (0) =CyAgain,

    z

    u(z) u(0) =y (z)dz0= 0.010

    z

    [0.1175sin(1.2368z1.4842) +0.4496z+0.182sin(2.4736z2.9684) +0.1484 C]dz

    2= 0.00095[cos1.4842 cos(1.2368z 1.4842)]0.002248z

    0.000736[cos2.9684 cos(2.4736z 2.9684)]0.001484z +Cz

    =0.000736cos(2.4736z

    2.9684)

    +0.00095cos(1.2368z

    1.4842)

    0.002248z

    2

    0.001484z +0.0006428 +Cz

    and the boundary conditions: u(0)=0 and u(L)=0

    we get C=0.006879

    therefore,

    u(z) =0.000736cos(2.4736z 2.9684) +0.00095cos(1.2368z 1.4842) 0.002248z2

    +0.0054z +0.0006428

    2

  • 7/24/2019 223314spring 2001

    49/326

    (b) To obtain w(z), we first calculate the axial strain =dw(z)

    zadz

    We already know

    F =zdA =FzL =0zA

    In the meanwhile,

    Fz =zdA =

    E(za kyx 0.01gz )dAA A

    =Eza dA Eky (z)xdA 0.01EC1Nz (z)Nx (x)dA 0.01EC2Nz (z)2

    Nx (x)2dA

    A A A A

    where

    dA =A =2TW T2 =

    0.0028A

    xdA =0A

    Nx (x)dA = 15dA +7.5

    xdA =

    0.042A A A

    Nx (x)2 dA =225dA +225xdA +56.25x

    2dA =0.6303A A A A

    Therefore,

    za =0.15C1Nz (z) +2.25107C2Nz (z)2

    2

    =0.002905cos

    2z L

    +0.008996

    cos

    2z L

    2Le 2Le

    =

    0.002905cos

    2z L

    +

    0.004498 +

    0.004498cos

    2z L

    2Le Le

    Then, we can obtain w(z) by integrating zaover zz

    w(z) w(0) = za (z)dz00.002905L 2z L L 0.004498L 2z L Le e= sin +sin + sin +sin +0.004498z

    2Le 2Le

    2 Le Le

    =0.002349sin(1.2368z 1.4842)+0.001818sin(2.4736z 2.9684)+0.004498z +0.002653

    Therefore:

    w(L) =w(2.4) =0.016102m

    3

  • 7/24/2019 223314spring 2001

    50/326

    22.314/1.56/2.084/13.14 Fall 2006

    Problem Set VIII

    Due 11/09/06

    Consider the pre-stressed concrete containment example of Problem Set L.54.

    Evaluate the impact of changing the longitudinal tendon pitch from 165 mm to 200 mm on the

    required prestress level to prevent tensile stresses in the concrete upon pressurization.

    1

  • 7/24/2019 223314spring 2001

    51/326

    Structural Xechanics i n Nuclear Power Technoloa

    (1.5653, 2.0845, 3.827, 13.143, 16.2613, 22.3143)

    Problem Set L 5

    This problem i l l u s t r a t e s some of the concepts i n reinforced/

    pres tres sed concrete containment s t re s s calculat ionr .

    1 Geometq

    Consider t he c onc rete and s t e e l geometry of Fig. 1 fo r a sec t fon

    of cyl ind ric al containment sh el l .

    Direc t ions

    - 1

    depth.= 165

    St ee l Radial Longitudinal

    Tendons

    Hoop

    pi tch = 165

    iameter = 57

    Concrete

    In sid e Radius = 20 600

    Wall Thickness = 1380

    Figure

    1

    Se cti on Normal t o the Lon gitudin al Axis

    of th e Containment She ll (dimensions i n

    1.

    That is. th e lon gi tu di na l tendons a r e i n th e fonn of two rows of 57 p m

    diameter s t e e l ba rs (one row near each surf ace) with a pi tc h of ap-

    proximately L65

    mm

    The hoop tendons a r e i n th e form of four rows of

    57 mm diameter s t e e l bar s (two rows near each sur fac e).

    Harever the

    p it ch of the hoop tendons i n each row is 200 mm

    2

    Material Properties and Operating Conditions

    For th e s t e e l , Young s Modulus = 210 GPa.

    For the concrete,

    Young s Modulus

    =

    21 GPa and Poi ss on s Ratio = 0.15.

    In the pressur-

    ized condit ion the in ter nal pressure is 350 kPa above the external

    pressure.

  • 7/24/2019 223314spring 2001

    52/326

    Problem Set

    L

    54

    3

    Q u e s t i o n s -

    (a)

    What prest ;ess le ve ls (one le ve l f or a l l longi tudinal tendons,

    another fo r a l l hoop tendons) ar e requi red to prevent t en si le

    st resses in the concrete upon pressurizat ion?

    (b)

    What

    is

    th e mutimum te n s il e S tr es s i n the reb ars upon

    pressurizat ion1

    4. Calculat ional Basis

    I l r sme e l as t i c behavior .

    Consider that the cyl inder is long but consider the regio n near

    t h e b a s e

    mat

    Consider the cy l inder to be bu i l t - in a t t he poa i t ion

    i t

    j o i n s t he

    base mat (zero ra di al deflect ion. zero s lope of r ad ia l def l ec t ion) .

    -Lt'

    Define the f i exura l r i g id i ty on the bas i s o f the sec t io n shown i n

    Fig.

    1

    Consider th at the tendons move in t he long itud ina l dir ec-

    t i o n t h e

    same a s the concrete.

    C a l cu l a te r i g i d i t y on t he bas i s t ha t

    plane sec t ion s remain plane and th at t ransverse Poisson's r a t i o

    can e t reated the same as the concrete.

    Consider &at there is no bending of the sh el l in the unpressur ized

    condit ion.

    Consider

    the

    pr es tr es si ng t o be achieved by post-tensioning .

  • 7/24/2019 223314spring 2001

    53/326

  • 7/24/2019 223314spring 2001

    54/326

  • 7/24/2019 223314spring 2001

    55/326

  • 7/24/2019 223314spring 2001

    56/326

  • 7/24/2019 223314spring 2001

    57/326

  • 7/24/2019 223314spring 2001

    58/326

  • 7/24/2019 223314spring 2001

    59/326

  • 7/24/2019 223314spring 2001

    60/326

  • 7/24/2019 223314spring 2001

    61/326

  • 7/24/2019 223314spring 2001

    62/326

    22.314/1.56/2.084/13.14 Fall 2006

    Problem Set VIII Solution

    Solution:

    Evaluate the impact of changing the longitudinal tendon pitch from 165 mm to 200 mmon the required prestress level to prevent tensile in the concrete upon pressurization.

    Material properties and operating conditions:

    Es =210GPa; Ec =21GPa and =0.15

    Internal pressureP=350 kPa, andR=Rin+t/2= 21.19m

    To calculate the required prestress level, we should go through the following steps:

    At first, compute some constants that will be used:

    ls =2As , where As =

    dt2

    =2551.8mm2

    tpl 44Ass =tp

    PRNl = =3.708MPa m

    2

    P = r

    2

    EcEl =(1ls ) 21

    EcE =

    (1

    s ) 21

    E* = lsEs +El

    and then

    =t

    sEs +E(12El )

    R E *

    =

    E

    E

    *

    Nl +

    1

    t

    r (1s (1 ls )

    E

    E

    *

    )

    cD =E

    2(

    t3+lss

    2t) +Eslss

    2t , wheres =thickness / 2 depth =0.525m

    1

    12According to notes for problem set L54, we get

    c =wp

    =R

    (P

    )R

    R

    lc

    N

    t

    l

    Elc +

    E

    (1

    *

    ls )1

    r

    =

    1

  • 7/24/2019 223314spring 2001

    63/326

    The maximum stress in longitudinal direction occurs at = t

    for2

    c max and lc max

    E clc max =12

    (c max +lc max +bl ) +1

    r

    where

    bl (z) =t d 2w

    2=t2wpe

    z [cosz sinz]2 dz

    1

    4where in turn =

    4DR

    Since c max and lc max reach the maximum value at z , therefore, the strain due

    to bending bl =0 as z .

    Now, the maximum longitudinal stress shall be offset by the tendon prestress to get

    zero net concrete stress upon pressurization and therefore we get

    lsprestree =1ls lc maxls

    Similarly, the maximum stress in hoop direction

    E cc max =1 2

    (c max +lc max ) +1

    r

    Then, we get

    1 ssprestree = c maxs

    For the two cases where the longitudinal tendon pitch is equal to 165 mm and 200

    mm, respectively, we just substitute corresponding numbers to the above equations, andobtain the final results:

    165 mm:

    lsprestree =99.5MPa

    sprestree =104.36MPa

    200 mm:

    lsprestree =

    123.7MPa

    sprestree =104.41MPa

    According to these result, when changing the longitudinal tendon pitch from 165mm to 200mm, the required prestress in the longitudinal direction is increased by almost

    25%, however the required prestress in the hoop direction almost remains unchanged.

    2

  • 7/24/2019 223314spring 2001

    64/326

    22.314/1.56/2.084/13.14 Fall 2006

    Problem Set IX

    Due 11/21/06

    This problem set illustrates some features of seismic analysis. A response spectrum

    modal (lumped mass) method is to be used.

    1) Geometry, Properties, Supports: The reactor component of interest isrepresented by a pipe. The pipe is subjected to a seismic ground motion that

    acts parallel to the x-direction. The axis of the pipe in the z-direction.

    The pipe has an outside diameter of 210mm, a wall thickness of 7mm, and a lengthof 3m. The pipe is made of a material with Youngs modulus = 200 Gpa and density= 8500 kg/m3 . Liquid water (density = 750 kg/m3 ) is present both inside and outside

    of the pipe. The added mass coefficient for the outside water is 1.1. Neglect direct

    treatment of fluid friction, fluid drag, and solid friction these effects are incorporatedin the damping matrix of item 2.

    The support at z = 0 is fixed (zero displacement and zero slope). The support at the

    other end (z=L=3 m) is a roller (zero displacement, zero moment, and zero axialforce).

    2)

    Lumped Mass Treatment: Use two equal point masses (located at z = 1 mand at z = 2m). The total mass for the two points should equal the sum of the

    pipe mass, the internal liquid mass, and the added mass of the external

    liquid.

    Massless springs should be chosen to give the same stiffness characteristics at thepoint masses as for a beam with the same supports (the resulting stiffness matrix

    has no zeros).

    The damping matrix should have only two non-zero elements (located on thediagonal). These elements should be equal and should give 2% critical damping for

    vibraton at the system fundamental frequency.

    3) Earthquake Characterization: The ground motion is characterized by the

    response spectrum of Fig 8 in Note M-32 {To provide legibility, use a multiplestraight line set of segments given by:

    [Sd =560mm];[Sv =1.15m /sec];[Sa =1.4g];

    end points (Sq ,Sa )of (5mm,1.4g)and(0.25mm,0.33g)

    and S[ =0.33g];where gis theaccerationof gravitya

    4)

    Questions:

    a) What is the fundamental undamped frequency?

    b)

    What are the peak forces that act on the supports during theearthquake?

  • 7/24/2019 223314spring 2001

    65/326

    2.314/1.56/2.084/13.14 Fall 2006

    Problem Set IX Solution

    Solution:

    The pipe can be modeled as in Figure 1.

    Lumped mass

    BmB PB

    AmA PA

    R

    Pipe Beam with the same support

    Geometry and properties:

    L=3m, R=0.105m and t=0.007m

    E=200GPa, =8500kg/m3and water=750kg/m3

    mA =mB =(R2 Ri

    2)L+(Ri

    2 +1.1R2 )Lwater =133.724Kg2

    The governing motion eqution for dynamic response of this pipe can be expressed as:[M ]{u&&} +[D]{u&} +[K]{u} ={F}where:

    mA 0 [M]=mass matrix,M =

    0 mB

    [D]=damping matrix

    [K]=stiffness matrix

    [F]=vector of loads, earthquake load in our case, {F} = [M ] {Sa}{u}=vector of nodal displacements

    First of all, we should calculate the stiffnes matrix of the pipe using beam theory:Suppose the displacements of point A (L/3) and B (2L/3) are u Aand uB, respectively.

    Assuming that there is only a force PAacting on point A (at L/3), we can calculate thecorresponding displacements of points A and B, satisfying the boundary conditions:

    1

  • 7/24/2019 223314spring 2001

    66/326

    u(0) =0

    u(L) =u(3) =0

    (0) =du(z)

    =0ydz z=0

    ForL>z>L/3:dM

    M =V (3 z) = y (3 z)y xdz

    Solving this equation with the boundary conditionMy(L)=0, we get

    My =C1(3 z)

    Forz

  • 7/24/2019 223314spring 2001

    67/326

    39C2 +

    4PA 13PA 9C2 =02EI EI

    3EI 2EI

    23C2 = PA

    27

    4

    C1 =

    C2 +

    PA =

    PA27

    Then, we obtain

    u

    C2 8 +

    PA +

    9C2

    9C2

    0.1358PA

    A EI 6 EI 2EI 2EI EIu

    =C1 1 9C2 8PA 13PA 9C2

    = PA

    B + + 0.142

    EI 6 EI EI 3EI 2EI EI Similarly, assuming that there is only a force PBacting on point B (at 2L/3), we can

    calculate the corresponding displacements of points A and B, satisfying the boundaryconditions:

    ForL>z>2L/3:

    dMM =V (3 z) = y (3 z)y x

    dzSolving this equation with the boundary conditionMy(L)=0, we get

    My =C1(3 z)

    Forz

  • 7/24/2019 223314spring 2001

    68/326

    C1 (3 z)3 9C2 5PB z

    9C2 19PB

    u(z) = ydz =

    EI

    C2

    6

    (3 z

    +

    )32

    +

    EI

    PB

    +2

    z2

    EI

    +

    9C

    2

    2

    z

    EI

    9

    C2

    6EI

    EI 6 2EI 2EI 2EIAt last, we have another boundary condtion, u(L)=0

    So that

    3

    9C2 +5PB

    9C2 19PB =0

    2EI 2EI 2EI 6EI

    13C2 = PB

    27

    14C1 =C2 +PB = PB

    27Then, we obtain

    u

    C2 8 +PB +

    9C2 9C2

    0.142PB

    A EI 6 2EI 2EI 2EI EIu =C1 1 9C2 5PB 9C2 19PB = PB B + + 0.247 EI 6 EI EI 2EI 6EI EI

    So that, according to superposition when PAand PBact on the system simultaneously,

    uA 1 0.1358 0.142 PA = uB

    EI 0.142 0.247 PB

    In the meantime,

    PA uA P

    =K u B B We can get

    K =

    EI0.1358 0.142

    1

    =

    EI18.46232 10.614

    =

    4.6046 10618.46232 10.614

    0.142 0.247 10.614 10.15054 10.614 10.15054

    Secondly, we should compute the damping matrix:The damping matrix has only two non-zero elements, located on the diagonal. These

    elements are equal and give two percent critical damping for vibration at the system

    fundmental frequency.Thus, we should calculate the undamped fundmental frequency first.[ ]{u&&} +[K ]{u} =0

    133.724 0 u&&A 18.46232 10.614 uA +EI =0 0 133.724u&&B 10.614 10.15054uB Solving this equation by assuming uA =Ae

    t and uB =Be

    t , we get

    4

  • 7/24/2019 223314spring 2001

    69/326

    133.7242 +18.46232EI 10.614EI A

    10.614EI 133.7242 +10.15054EI B=0

    (133.7242 +18.46232EI )(133.7242 +10.15054EI ) 112.657(EI )2 =0

    17882.14 +

    3826.226EI2 +

    74.7455(EI )2 =

    0

    2 = 1.00126 105or

    8.851105

    Then, the fundamental undamped frequencys are

    1 =940.8, 2 =316.43 in radius/s; note that =2fand corresponding eigenvectors are

    0.826 0.56364u1 = ,u2 =

    0.56364 0.826

    Then, we should also calculate the critical damping matrix,Suppose that the critical damping of lumped mass is considered seperately:

    C1 0 D =cr

    0 C2

    [M ]{u&&} +[D]{u&} +[K ]{u} =0N

    and the solution is u(t) =An cosntunn=1

    Multiply the above equation with ANTleftly, and also replace {u} with AN{u}, where

    0.826 0.56364AN =[u1 u2 ]=

    0.56364 0.826

    we get

    133.7242 +C+25.7EI 0 A1

    1

    2 =0 0 133.724 +C2+2.9EI A2 If there are nontrivial solutions for A1and A2, we obtain

    133.7242 +

    C1+25.7EI =0

    133.7242 +

    C2+2.9EI =0So that critical damping matrix:

    C1 0 251592.2 0 Dcr = =

    0 C2 0 84514.2

    Dcr =ANDcrANT =

    198513 77788 77788 137593.5

    Damping matrix in this case

    5031.844 0 D=0.02D =cr

    0 1690.284

    5

  • 7/24/2019 223314spring 2001

    70/326

    At last, the force due to earthquake

    {F} = [M ] {u&&g }

    Natural frequency

    f1 =1 =50.36 and f2 =

    2 =149.72 2

    According to the response spectrum of Fig 8 in note M-32, extrapolating to the calculatedfrequencies, we obtain the maximum displacements corresponding to Sa=0.33g are

    Sd1 Sa

    2=

    0.33 92

    .8=3.6538 106 m

    1 940.8

    Sd 2 Sa

    2=

    0.33 9.8=3.23105 m

    2 316.432

    So

    133.724 0 {F} = 0 133.724

    u&&g

    Finally, we obtain133.724 0 u&&A 5031.844 0 u&A 25.7EI 0 uA T 133.724

    &&+

    &+ =AN u&

    0 133.724uB 0 1690.284uB 0 2.9EI uB 133.724

    u&&A 37.63 0 u&A 1 25.7EI 0 uA 0.2624u&&

    + 0 12.64u& +

    133.724 0 2.9EI u = 1.39

    u&&g B B B Then, maximum displacement

    7.92 107

    u1,max =0.2624 Sd1 u1 = 7

    5.4 10

    2.53105 u2,max =

    1.39

    Sd 2

    u2 =

    5 3.7110

    2 2 0.5P1,max =[(Cu) +(Ku) ]

    198513 77788 7.92 107 2

    18.46232 10.614 7.92 107 2

    0

    =0.02 940.8

    77788 137593.55.4 10

    7

    +EI

    10.614 10.15054

    5.4 10

    7

    3.75 2

    93.72 2

    0.5

    93.795=

    2.56

    + 63.95

    = 64

    6

  • 7/24/2019 223314spring 2001

    71/326

    2 2 0.5P2,max =[(Cu) +(Ku) ]

    =

    0.02 316.43198513 77788

    2.5310

    5

    5

    2

    +

    EI 18.46232 10.614

    2.5310

    5

    5

    2

    0.

    77788 137593.53.7110 10.614 10.150543.7110

    13.522

    337.62 0.5 337.87

    = +

    =19.85 497.4

    497.8

    Now, given the forces of PAand PB, we calculate the forces acted on supports:

    FL

    BPB

    APA

    F0

    Assuming the forces that act on the supports are F0and FL, respectively, as in the above

    figure.

    dM dK 4 14FL

    y= =EI y = PA + PBdz dz 27 27

    z=L z=L

    23 13

    F0 =

    PA +

    PB

    FL =

    PA +

    PB27 27For P1,max:

    F0 1 23 13 110.71F1 = = P1,max =

    FL

    27 4 14 47.08 Likewise, for P2,max:

    F =F0 1 23 13

    P =527.5

    2 FL

    =

    27

    4 14

    2,max 308.2

    2Again, F =[F1 +F22

    ]0.5 =

    539 Newton311.8 So, the peak forces that act on the supportz=0andz=Lare 539and 311.8 Newton,

    respectively.

    7

  • 7/24/2019 223314spring 2001

    72/326

    Department of Nuclear Engineering22.314

    :

    Structural Mechanics In Nuclear

    PowerTechnologyQuiz No.1 Fall Term 2006

    Open Book, 1.5 hours

    Please state your assumptions and the definition of symbols appearing in your equations

    clearly.

    Note that there is an opportunity to get a score over 100 if you solve all questions

    correctly.

    Question #1 (45%)

    For future sodium-cooled reactors, uranium carbide may be used as fuel. The fuel pin

    will be of cylindrical geometry and housed in a stainless steel clad. The dimensions aswell as the physical and mechanical properties of the fuel material and the clad are given

    in Table 1.

    1.1 What is the maximum linear hear generation rate (in kW/m) that the fuel

    pin can operate at if the fuel is not to experience any fracture for r < 0.4R,

    where R is the pellet radius? You may assume the pressure at the pellet-

    clad gap to be 0.3 MPa.

    1.2 Does the clad design satisfy the ASME criteria for structural integrity

    under static loads? The fission gases will build up within the clad until thegas plenum pressure reaches 5.0 MPa. You may assume the coolant

    pressure to be 0.3 MPa and the maximum operating linear heat generation

    rate is 45 kW/m.

    Question #2 (45%)

    A long, thin-walled cylindrical tank is used in transporting radioactive gases. While it is

    being filled, the tank is subjected to radial constraint that can be approximated by a rigid

    boundary that allows slip in the axial direction (see Figure 1).

    2.1 What is the maximum pressure that should be allowed in the tank in order

    to avoid plastic deformation of the membrane?Material Properties:

    Youngs Modulus, E = 30,000 ksi (1ksi = 1000 psi)Poissons Ratio, = 0.3

    Yield Stress, y = 36ksi

    State any assumptions you make.

    2.2 Is fatigue a factor in limiting the lifetime of the tank if the maximum gas

    pressure is limited to 400 psi (see attached data in Figure 2)?

  • 7/24/2019 223314spring 2001

    73/326

    Consider the utilization factor suggested by Soderberg for cyclical

    loading: 1+N

    a

    y

    m

    Where m is the mean stress during a cycle, y is the yield stress,

    a is the alternating stress, and Nis the stress intensity causing failure

    after 105cycles.

    Table 1

    Fuel Pellet Radius = 20mm

    Clad Inner Radius = 21mmClad Outer Radius = 23mm

    Active Fuel Height = 1.5m

    UO2 UC SteelYoungs Modulus E (GPa) 200 210 70

    Poissons Ratio 0.32 0.30 0.30

    Fracture Strength f( Pa) 150 300

    Yield Strength y ( Pa) 330

    Thermal Conductivity k(W /mC) 3 20 20

    Thermal Expansion Coefficient ( m /mC) 10 10 16

  • 7/24/2019 223314spring 2001

    74/326

    Figure by MIT OCW.

  • 7/24/2019 223314spring 2001

    75/326

    Question #3 (20%)

    Consider a beam as shown in Figure 3, subjected to an axial force, F2 and a lateral force,F1. Evaluate the value of F2 that will lead to a limit load condition for elastic behavior

    of the beam when F1 = 8 MN.

    Steel Data: Youngs Modulus, E = 191 GPaPoissons Ratio, = 0.28

    Yield Stress, Sy = 345 Pa

    Figure by MIT OCW.

  • 7/24/2019 223314spring 2001

    76/326

  • 7/24/2019 223314spring 2001

    77/326

  • 7/24/2019 223314spring 2001

    78/326

  • 7/24/2019 223314spring 2001

    79/326

  • 7/24/2019 223314spring 2001

    80/326

  • 7/24/2019 223314spring 2001

    81/326

    Effectiveness of the damping of a pipe during earthquakes

    Prepared By: Julien Beccherle

    Prepared For: 22.314

    Prepared On: December 7th

    , 2006

  • 7/24/2019 223314spring 2001

    82/326

    Effectivenessofthedampingofapipeduring

    earthquakes

    JulienBeccherle

    January10,2007

    Contents

    1

    Introduction

    2

    1.1 Naturalfrequencyoftheharmonicoscillator . . . . . . . . . . . . 21.2 Forced excitation: earthquake . . . . . . . . . . . . . . . . . . . . 3

    2

    Decoupled

    differential

    equations

    of

    a

    system

    6

    2.1 Lumped masses analysis method . . . . . . . . . . . . . . . . . . 62.2 Modeling the pipe . . . . . . . . . . . . . . . . . . . . . . . . . . 72.3 Differentialequationgoverningthebeammotion . . . . . . . . . 82.4 Naturalfrequenciesoftheundampedsystem . . . . . . . . . . . 102.5 Uncoupled differential equation . . . . . . . . . . . . . . . . . . . 11

    3

    Earthquake

    data

    11

    3.1 Hectormine,Joshuatreeearthquake,CA . . . . . . . . . . . . . 113.2

    New Hampshires 1982 earthquake

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    14

    4

    Response

    of

    the

    pipe

    to

    an

    earthquake

    15

    4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.2 CalculationsfortheJoshuaTreesearthquake . . . . . . . . . . . 16

    4.2.1 = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.2.2 Summary of the results . . . . . . . . . . . . . . . . . . . 17

    4.3 CalculationsfortheNewHampshiresearthquake . . . . . . . . . 184.4 Interpreting the results. . . . . . . . . . . . . . . . . . . . . . . . 204.5 Conclusions and comments . . . . . . . . . . . . . . . . . . . . . 21

    5

    Overview

    of

    cost-effectiveness

    design

    method

    21

    5.1 Evaluatingtheprobabilityofoccurrenceoffailure . . . . . . . . 21

    6

    Conclusion

    23

    1

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/24/2019 223314spring 2001

    83/326

    Abstract

    The

    paper

    presents

    two

    methods

    to

    assess

    the

    cost

    effectiveness

    of

    a

    steam

    generator

    pipe.

    The

    first

    method

    is

    a

    time

    series

    analysis

    with

    real

    earthquakedata. Thesecondmethod isaprobabilisticassessmentwhich

    leads

    to

    the

    evaluation

    of

    a

    life-time

    mean

    cost.

    1 Introduction

    When performing a seismic design of a power plant, an engineer is faced withthe following dilemma : damping systems for pipes, vessels, steam generatorare very costly equipment but on the other hand they enable the structure towithstandalargerearthquake. Therefore,selectingtheminimumdampingisamatterofcarefulevaluation.

    1.1

    Natural

    frequency

    of

    the

    harmonic

    oscillator

    This dilemma can be trivially illustrated by a single oscillator connected to awallbyaspringandwithadampingsystemthatwewilltakeasparametric.

    Figure1: Harmonicoscillator

    Thefundamentalequationgoverningthissystem is:

    d2u

    du

    m =F(t)k(u)d( ) (1)dt2 dt

    Here F(t) represents the force of the earthquake on the system. Actuallythe earthquake is not really a force external to the system that is applied toit. Anearthquakeisreallyanaccelerationofthegroundwhichwassupportingthestructure. Thusequation(1)canberewrittenassumingthattheground is

    2

    http://-/?-http://-/?-
  • 7/24/2019 223314spring 2001

    84/326

    movingwithdisplacementuG(t)as :

    m(

    d2u d2uG) =

    k(u

    uG)d(du duG)m d2uG (2)dt2

    dt2 dt

    dt dt2

    Letsdefiney(t) =u(t)uG(t). (2)becomesthesimpleequation:

    md2y

    +ddy

    +ky=m d2uG

    (3)dt2 dt dt2

    Letusdefine0 =k and2Q0 =

    d. Thenthehomogeneouspartof (3)m m

    canbewrittensimplyas:

    d2y

    dy 2+ 2Q0 +0 y=0 (4)

    dt2 dt

    Thecharacteristicequation is

    r

    2 + 2Q0r+0

    2 = 0

    Forourproblem,wellconsiderthat0

    isfixedwhereasQ istheparameter(actuallyQiscalledthequalityfactoranditisdirectlyrelatedtothedamping).

    The delta of this equation is then =(2Q0)240. Thus =0 whenQ

    =1 this is called critical damping, >0 ifQ >1 and

  • 7/24/2019 223314spring 2001

    85/326

    Figure2: Amplitudeamplification

    Figure3: Amplificationoftheforceduetothemotionoftheground

    4

  • 7/24/2019 223314spring 2001

    86/326

    FdynamicQ

    Fstatic

    0.01 50.00.02

    25.0

    0.05 10.00.1 5.00.2 2.60.5 1.2

    Table1: MaximumdynamicamplificationvariationswithQ

    Figure(3) isaplot fordifferentvaluesofQ : it is importanttonoticethatfor Q

  • 7/24/2019 223314spring 2001

    87/326

    2 Decoupleddifferentialequationsofasystem

    2.1

    Lumped

    masses

    analysis

    method

    Theharmonicoscillatorapproachgivesinterestingresultsfortheplant,butitissomehowtoosimpletocapturethecomplexityofthepipingsysteminanuclearplant.

    Theapproachbroadlyusedinseismicanalysisistheso-calledlumpedanal-ysis. The piping system of the nuclear plant is modeled as a succession ofharmonic oscillator with mass mi, coupled to one another by a spring and anabsorber. Ofcoursewehavemi

    =Mtotal. Andtherelationbetweenthedifferentoscillatorsisgivenbythebeamtheory. Thestrengthofthisapproachisthatitenablestheengineertoreducetheoriginalcontinuouspipetoasuccessionoflinked masseswhichonly have one degreeof freedom(horizontal displacementif the pipe is vertical). The fundamental principle of dynamic applied to the

    mass

    mi yields

    d2ui dui duGmi

    dt2=ki,i+1(ui+1

    ui)ki1,i(ui1

    ui)ci(dt

    dt

    ) (8)

    Aswedidbefore,wewilldefineyi =uiuG therelativedisplacement. We

    0 0y m . . .1 1

    =

    y2...

    ,M =

    0 m2 0alsodefineY . . .. . ... .

    yn mn...m1

    k1,1

    k1,2

    .

    .

    .

    k1,n

    m2

    .

    .

    ,K

    =

    k2,1

    .

    .

    k2,2

    . .

    k2,n

    .

    .

    0 0 .

    is

    the

    matrix

    defined

    as

    ,

    m

    =

    ..

    .

    kn,1

    kn,2

    kn,n

    mn

    . . .

    F1F2

    ...Fn

    the static response of the beam to a force F on each mass. So=

    F =KY. Distheso-calleddampingmatrix andrepresentstheabilityofthe

    systemtotransformkineticenergyintoheatandthustodissipatesomeenergy.Equation(8)canthenbewrittenas :

    M Y +DY +KY =muG

    (9)

    Equation

    (9)

    is

    not

    trivial

    to

    solve

    as

    is.

    But

    it

    can

    be

    reduced

    to

    a

    linearlyindependentsystemofnequationsbydecomposingthehomogeneousequation

    intermsofharmonicsolutions.

    6

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/24/2019 223314spring 2001

    88/326

    2.2

    Modeling

    the

    pipe

    After

    this

    brief

    theoretical

    overview

    of

    the

    modeling

    method,

    we

    will

    in

    thissectioneffectivelymodelasteamgeneratorpipe. Wewillafterwardsstudythe

    effectofanearthquakeonthepipewithdifferentdampingvalues.

    Figure5: Modelingthepipe: twolumpedmasses,fixedatz=0andz=L

    The pipe will be considered to be fixed between two walls. We will model

    the

    pipe

    as

    two

    lumped

    masses,

    each

    of

    mass

    Mtotal

    at

    a

    distance

    Ltotal

    from

    2 3

    thewall. Seefigure(5).Some usual figures for the pipes geometry and properties are summarized

    below:

    Pipelength: Ltotal

    = 3m

    Pipeoutsidediameter21mm,materialthicknessof1.5mm

    Pipecomposedofstainlesssteelgrade304: =8000kg/m3,E=193GP a

    Pipefilledandsurroundedwithwaterat70M P a(water =750kg/m

    3)

    Virtualmasscoefficientof1.1

    From

    these

    properties,

    we

    can

    directly

    compute

    some

    useful

    information

    onthepipe. FirstitsmassisMtotal inside+M

    w WhereMpipe ==Mpipe+M

    w

    moved.(R2 inside =R

    2 Lwater andM

    w =CvirtualR

    2 Lwater.outRin2 )Ltotal,Mw in moved out

    ThisgivesMpipe

    = 2.545kg,Mw = 0.779kg,Mw = 1.120kg. Weendinside moveduphavingatotalmassMtotal

    of4.444kg. Thuseach lumpedmasswillhaveamassm= 2.222kg.

    7

    http://-/?-http://-/?-
  • 7/24/2019 223314spring 2001

    89/326

    Another parameter of importance is I

    the moment of inertia of the pipe

    around its x-axis. It is defined as I =A

    x2dA. In our case, using polar

    coordinates

    we

    get

    x

    =

    r.cos

    and

    dA

    =

    rdrd.

    Thus

    I

    =

    02

    RR

    i

    o r3cos2drd,

    I=

    2

    cos2d

    Ro r3dr. SowegetI = 6.739109 m4.0

    Ri

    2.3

    Differential

    equation

    governing

    the

    beam

    motion

    Recallingequation(9)wehavetofindthematrixK.Kisrelatedtotheresponsein displacements of the beam when a force F is applied at masses locations.

    We introduce the matrix A defined as Y = AF where Y =y1 and F =

    y2F1

    .F2

    Giventhelinearityofthisequation,wecanstudytheeffectofF1

    aloneand

    F2 alone.ForinstanceF1

    willinduceadisplacementatz=L/3andalsoatz= 2L/3proportionaltoF1.

    Tofindthisrelation,onehastosolvethefundamentalequationofthebeamdynamicmotion. I isthemomentofinertiaofthepipearoundthex-axis.

    4u Mtotal 2u f

    z 4+

    EI t2=

    EI

    Inourcase,weareinterestedinstaticresponse( =0)andthelinearforcest

    f issimplyF1(z=L/3)where(z=L/3)istheDiracfunction.Sothedifferentialequationwehavetosolve is:

    4u F1(z=L/3)

    =

    (10)z 4 EI

    Giventhegeometryofthepipe,thereisnodisplacementattheboundaries,andthereisnoangulardeviationaswell. Wehavethefollowingboundaryconditions:

    u(z=0)=0andu(z=L) = 0u

    (z=0)=0and u(z=L) = 0

    z zBy solving equation (10) we get figure (6). So A F

    01

    =yy

    1

    2=

    0.0988F1EI

    0.0679F1EI

    Given the symmetry of the system we can predict that similar results will

    be

    found

    for

    F2.

    Thus

    putting

    all

    the

    results

    together

    we

    get

    A.

    1 0.0988 0.0679A=

    EI

    0.0679 0.0988

    8

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/24/2019 223314spring 2001

    90/326

    Figure6: DisplacementresponseofthepipeatforceF1

    It is importantto notethatA issymmetric,thus A1 isdefined. The wayA isdefined it isclearthatK=A1.

    K=EI

    19.180613.1818

    13.181819.1806

    (11)

    9

  • 7/24/2019 223314spring 2001

    91/326

    2.4

    Natural

    frequencies

    of

    the

    undamped

    system

    The

    fundamental

    equation

    of

    the

    undamped

    system

    with

    no

    excitation

    is

    thefollowing:

    MY +KY =0 (12)

    To obtain the natural frequencies,

    ety1

    . Equation(12)becomesy2

    2My+Ky= 0

    Inordertohaveanontrivialsolution(i.e. y=0) shallverify:

    Det(

    2M

    +K)=0 (13)

    Solving(13)weget

    we will solve equation (12) for Y =

    1 =59.3rad/sor f1 = 9.4Hz2 =137.6rad/sorf2 =21.9Hz

    Correspondingtothesevalues,wegettheY1 andY2 vectorsolutions. Y1 =12

    1111

    This two modes represents the two fundamentals oscillation modes of the

    Y2 =12

    beam,andcanberepresentedonfigure(7)

    Figure7: Fundamentalmodesofthebeam: for1

    inblue,for2

    inred.

    10

    http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/24/2019 223314spring 2001

    92/326

    2.5

    Uncoupled

    differential

    equation

    Now

    that

    we

    have

    the

    two

    fundamental

    modes

    of

    the

    beam,

    we

    will

    rewrite

    ourinitialprobleminthiscoordinatesystem. Todoso,wedefinethemodalmatrix

    associatedwiththisbase :

    1 1P

    = Y1 Y2 =12 1 1ThenewcoordinatevectorX issuchthatY =P X. Wealsohaveacritical

    dampingmatrixDcr. SothefundamentalequationMY+DcrY +KY =muG

    canberewrittenas

    PtM PX +PtDcrP X +PtKP X=PtmuG (14)

    We find that PtMP = M. We define a new critical damping matrix

    D = PtDcrP as: cr

    =d0

    1

    d02

    . Computing K = PtKP we getcr

    D

    0.7802 0

    3.1424K =104 . Wealsohavem =Ptm=

    0 4.2091 0Soequation(14)becomessimply

    MX

    +D X +KX =muGcr

    AndifwetakeX=x1 ,thenwecanwritethenewsetofequationasx2

    theuncoupledfollowingsystemofequations:

    mx1 +d x1 + 7.80103 =3.14

    mx2 +d1 x2 + 4.21104

    xx

    1

    2 = 0uG (15)

    2

    Wenowneedtogetvaluesford1

    andd2

    . Wecanfindthecriticaldampingvalues,

    and

    then

    express

    the

    total

    damping

    of

    the

    system

    as

    a

    fraction

    of

    the

    criticaldamping. Bydefinitionofthecriticaldampingofasingleharmonicoscillatorwegetdcr,1

    =

    4m7.80103263.3kg/sanddcr,2

    =

    4m4.21104263.3kg/s.

    263.3 0D =cr

    0 611.6

    3 Earthquakedata

    The next step is to use ourmodel and to compute the displacement when thepipe is subject to an earthquake. To do this, we will use data obtained from

    real

    earthquake

    (taken

    from

    [1])

    and

    apply

    it

    to

    our

    model.

    3.1

    Hector

    mine,

    Joshua

    tree

    earthquake,

    CA

    This earthquake occurred on October 16, 1999 in California. The data comefromtheonlinedata-baseCOSMOSStrongMotionProgram. Theseismograph

    11

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/24/2019 223314spring 2001

    93/326

    waslocatedat48.4kmfromtheepicenter(verticalprojectionofthefocus),andtheearthquakewasrated7.1ontheRichterscale(whichgoesupto9.0).

    Figure8: Joshuatree: earthquake location

    The data consists of a list of 3000 acceleration recorded during 60 seconds(i.e. onerecordevery0.02s).

    Also of interest is the Fourier spectrum of this signal. The acquisition frequencyis 0.

    102

    =50Hz. ThePowerSpectralDistribution(orFourierSpectrum)

    isdefinedas |F2(f

    )|2 whereF(f) isthe fouriertransformofthegroundacceleration.

    12

  • 7/24/2019 223314spring 2001

    94/326

    Figure9: Est-WestaccelerationofthegroundduringHectorMinesEarthquake

    Figure10: FourierspectrumoftheHectorMinesseismograph

    13

  • 7/24/2019 223314spring 2001

    95/326

    3.2

    New

    Hampshires

    1982

    earthquake

    This

    earthquake

    occurred

    on

    January

    19,

    1982

    in

    New

    Hampshire.

    It

    was

    rated4.5 on the Richter scale, so it was muchmore modest thanthe precedent one,

    buteverycannotbesittingrightontheSanAnreasFaultzone! TheaccelerographwewillusewasrecordedatFranklinFallsDam,NHat10.8kmfromtheepicenter(notethatthedatawereacquiredmuchclosertotheepicenter).

    Figure11: Est-WestaccelerationofthegroundduringNHsEarthquake

    Even though the earthquake had some large acceleration peaks, its duration (about 20 seconds) is much shorter than the previous earthquake. Theacquisitionfrequencyis200Hz.

    14

  • 7/24/2019 223314spring 2001

    96/326

    Figure12: FourierspectrumofNewHampshire1982earthquakesseismograph

    4 Responseofthepipetoanearthquake

    Now that we both have the uncoupled equation and some sample of groundmotion we can solve (15) with the data of the two different earthquakes and

    study

    the

    evolution

    of

    the

    displacement

    of

    the

    lumped

    masses

    and

    the

    force

    on

    thesupportcausedbythegroundmotionasafunctionofthedamping.

    4.1

    Methodology

    Foreachearthquakewewillproceedasfollow:

    Pickadampingvalue(percentofcriticaldamping)

    Solve the uncoupled differential equation using a step-by-step algorithm

    (weonlyknowuG

    atdiscreettimes): MatLabsode45solver isused

    Computethemaximumdisplacementofthe lumpedmasses

    Deduce

    the

    forces

    applied

    on

    the

    support

    for

    that

    particular

    Incrementandstartover...

    Thiswillgiveusacurveofamplificationversusdampingratio.

    15

    http://-/?-http://-/?-
  • 7/24/2019 223314spring 2001

    97/326

    4.2

    Calculations

    for

    the

    Joshua

    Trees

    earthquake

    4.2.1

    = 0.01

    Firstofallwenotethatthesecondequationofequationset(15)isanunexcitedharmonic oscillator. If we assume that the pipe was originally at rest (initialdisplacement and velocity are zero) then x2(t) = 0 all along the earthquake.Thismeansthaty1(t) =y2(t). Theonlyvariableof interest isx1(t).

    AMatLabsolveofthisproblemgivesthefollowingsolutionforx1(t).

    Figure13: x1 asafunctionoftfor= 0.01

    We also get the maximum value of x1(t) = 1.3513103 cm. We can

    alsocomputethevalueofthemaximumaccelerationofthe lumpedmass. Themaximum acceleration is 65.2882103 cm/s2 and the maximum velocity is285.28103 cm/s.

    WecanformulateouranswerwiththemaximumdisplacementvectorXmax

    1.3513as: Xmax

    =0

    103 cm

    0.9555ThenY =P X soYmax =P Xmax. WefindYmax =

    0.9555

    103 cm.

    We

    also

    recall

    that

    F

    =

    KY

    ,

    so

    Fmax = KYmax and therefore Fmax =263.66263.66

    N.

    Now given the symmetry of the problem, it is clear that the force on thesupports are the same. In addition we havejust proved that F1 =F2 so by a

    16

    http://-/?-http://-/?-
  • 7/24/2019 223314spring 2001

    98/326

    trivialforcebalanceonthepipewegetthatFsupport =263.66N.

    4.2.2

    Summary

    of

    the

    results

    Ifweapplythesamereasoningandcalculationsfordifferentvaluesofthedampingratiowegettheresultssummarized intable

    ymax103 incm Fmax inN Amplificationratio FmaxM

    ax(M

    uG)

    0.01 0.9555 263.66 3.0000.02 0.9032 249.24 2.2840.03 0.8920 246.13 1.9040.04 0.8872 244.82 1.6160.05 0.8861 244.53 1.4370.06 0.8847 244.12 1.2470.07 0.8857 244.40 1.161

    0.08

    0.8926

    246.30

    1.070

    0.09 0.8971 247.55 1.0160.10 0.9022 248.94 0.9800.20 0.9043 249.53 0.7400.50 0.8177 225.65 0.5361.00 0.7956 219.53 0.432

    Table2: resultsforJoshuaTreesearthquake

    Thisresultscanbesummarizedonaplot:

    17

  • 7/24/2019 223314spring 2001

    99/326

    Figure14: Variationoftheforcedampingwithdampingratio

    4.3

    Calculations

    for

    the

    New

    Hampshires

    earthquake

    18

  • 7/24/2019 223314spring 2001

    100/326

    ymax

    103 in

    cm

    Fmax in

    N

    Amplification

    ratio

    FmaxMax(MuG)

    0.01 1.2641 348.81 1.6800.02 1.1089 305.99 1.4750.03 1.0134 279.64 1.2640.04 0.9909 273.43 1.1960.05 0.9703 267.74 1.1040.06 0.9179 253.28 1.1000.07 0.9190 253.58 0.9940.08 0.8908 245.80 0.9600.09 0.8611 237.62 0.9270.10 0.8368 230.91 0.9710.20 0.6889 190.08 0.8740.50 0.5876 162.14 0.5241.00

    0.5713

    157.63

    0.340

    Table3: ResultsforNHsearthquake

    Figure15: Variationoftheforcedampingwithdampingratio

    19

  • 7/24/2019 223314spring 2001

    101/326

    4.4

    Interpreting

    the

    results

    The

    general

    idea

    here

    is

    to

    be

    able

    to

    determine

    the

    force

    that

    applies

    on

    thesupportduringanearthquake. Fromtheresultsandthesketchesshowedbefore

    one concludes that apart from a puzzling rise around 0.07 % for the Joshua-Treeearthquake,theamplificationofthegroundmotionisdecreasingwiththedampingratio.

    WealsonotethateventhoughtheJosh


Recommended