+ All Categories
Home > Documents > 27_suspension mechanism+

27_suspension mechanism+

Date post: 02-Jun-2018
Category:
Upload: thiago-domingos
View: 219 times
Download: 0 times
Share this document with a friend

of 13

Transcript
  • 8/11/2019 27_suspension mechanism+

    1/13

  • 8/11/2019 27_suspension mechanism+

    2/13

  • 8/11/2019 27_suspension mechanism+

    3/13

    Dimensional synthesis of independent suspension mechanism s 1143

    R ~ chassis R

    . _ 2 : 4

    ndependent g raph

    suspens ion ~ schem at ic

    a ) b ) c )

    NOMENCLATURE

    O -

    vertexepresents

    u s p e n s i o n l in k

    ~ - e d g e re p r e s e n t s j o in t

    ~ ) - v e r t e x w i t h d r c l e r e p r e s e n t s c h a s s i s

    n u m b e r s i n s c h e m a t i c andgraph

    s h o w l in k - t o - v e r t s x

    correspondence

    R - r e v o l u t e j o i n t S - s p h e r i c a l

    joint

    Fig 3 Gra ph representation of independent suspension

    spatial linkage shown in Fig. 3a. This graph-based representation of linkage structure was

    introduced in the mid 1960s and a good account of it may be found in [2]. We examined 26

    automobiles, and graphs representing their suspension structures are shown in Fig. 4. In each graph

    the vertex C represents the chassis, the vertex W represents the wheel hub, and the edges labeled

    R, P, S, C, and K represent revolute, prismatic, spherical, cylindric, and Hooke joints, respectively.

    We found nine distinct graphs which are arranged in order of increasing structural complexity in

    Fig. 4.

    At the low end of the spectrum is the trailing arm suspension. It consists of a single

    revolute joint connecting the chassis to the wheel hub. This is followed by the planar short-long

    arm SLA) suspension which is essentially a four-bar linkage in which the chassis is the base

    link and the wheel hub is the coupler. Next comes the planar MacPherson strut which is a

    slider-crank linkage. This is followed by the Jaguar rear suspension which is a four-bar

    linkage in which one of the cranks can rotate about its own axis and serves as the

    motion transmitting member connecting the vehicle transmission to the wheel. The self-rotation

    of this member is made possible by the Hooke and spherical joints at its ends. It performs this

    motion transmission function in addition to being a suspension member. The next graph is

    that o f the spatial SLA suspension. The outer circuit represents an RSSR linkage in which the wheel

    hub is the coupler. The rotation o f the wheel hub about the axis defined by the two coupler S joints

    is constrained by an additional link known as the tie-rod running from the chassis to the wheel

    hub. This is followed by the graph of the spatial MacPherson strut. It is an RSPS linkage with

    the wheel hub being the coupler. The rotation of the wheel hub about the two S joints in the RSPS

    circuit is constrained by a tie-rod similar to that in the spatial SLA graph. The next graph shows

    the structure of the Nissan multi-link front suspension. The outer circuit of the graph represents

    a spatial five-bar linkage with four revolute joints and one spherical joint. In addition there is a

    tie-rod connecting the chassis to the wheel hub to constrain rotations of the wheel hub as desired.

    This is followed by the graph of the Nissan DARS rear suspension. It has four chains of links and

    joints connecting the chassis to the wheel hub. The final graph is that of the Mercedes five-link

    rear suspension. It has five chains of links and joints connecting the chassis to the wheel hub.

    All of these graphs represent single-degree-of-freedom systems. From the tables in Fig. 4 it is

    clear that the MacPherson strut and the SLA have been very popular over the past decade. In recent

    times, however, designers have turned to more complex multi-link arrangements in order to achieve

    good elastokinematic behavior of the suspension. In particular the last three graphs represent

    suspensions in which unwanted steer motions of the wheel during accelerated motions and

    cornering maneuvers are minimized. We believe that the evolution of these suspension mechanism

  • 8/11/2019 27_suspension mechanism+

    4/13

    1144 MadhusudanRaghavan

    c @ o w

    t r a i li n g a m d

    a l m l , @ l l l l~ m n m

    1 9 8 8 B M W 7 5 0 i L r )

    1 9 8 8 O p e l S e n a t o r B r )

    O p ~ v e = a r)

    1 9 6 4 M e ~ o e d e s 3 8 0 S E r )

    S t roanJ X T ( r )

    i a d m r t - lo n g a r m

    l ~ n m 0

    1 9 ~ T o y o t a S u p r a r ) I

    a m t

    1 s i n J a ~ m r x J s t )

    1 9 8 6 H o n d a P re l u d e f )

    1988 H ond a P re lude {f , r)

    1 9 8 8 H o n d a C iv ic G R X ~ f )

    ~ 4 M e r ~ d ~ SS 0S E r)

    1 9 8 6 Ho nd a ~:-: - :- :, l )

    1 9 8 8 T o y o ta 8 u r n f )

    D v er -c a rm ra i nM li r i um e s

    1 9 8 8 H o n d a C i v b C R X ~ ( r)

    ~ 9 8 6

    N ond a A oGord ( r )

    l l m = P l w m n s t r u t

    t l l l n l r )

    1 9 8 8 U n c o l n C o n t . r )

    I ~ F o rd P r d ~ r )

    1 9 8 S F o rd T - , m s r )

    1 9 8 6 H o n d a P r e ll x le r )

    1 9 8 7 T o y o l a C , J c a r )

    1 9 8 7 T o y o la C a m p / r )

    i d a l N l l r l O U l q l l r I

    1988 J agua r X J 6 ( r ) I

    t i e - r o d t i e - r o d

    M a c l = l l w m n s t r u t

    1 9 8 8 B M W 7 5 0 L ( I)

    1 9 8 8 l . ~ : ~ n C o n t . ( I)

    1988 M z da C 41~ l a ( l , r)

    S u b l r u X T ( f )

    1 9 8 6 H o n d a C iv i c C R X / S i f

    o ~ S e n a o r B 9

    o p e l v ~ t r a p )

    1 9 8 9 F o r d P nobe ( f )

    1 9 8 8 F o r d T a u r u s / S a b l e f )

    1 9 84 M a n ~ 1 90 E (f)

    1 9 8 4 M a z d a R X - 7 f )

    I g 8 7 T o y o t a C e l ~ a ( f )

    1 9 8 7 T o y o t a

    C am ry ( t)

    1 9 8 6 A c u m Im e g r a f )

    A . d i 4 0 0 O O u a t u o f ,r )

    1 9 8 8 F ~ U n o s d e ~ t a (f )

    M~_,.__d~shi r a m (f)

    1 9 8 9 N i s s a r 1 2 4 0 S X f )

    i N la .mn mu l t i- l ink

    1 9 8 9 N il s a n 8 0 0 Z X f ) I

    N im m n D A R S

    ]

    1 9 8 9 N i s u n 2 4 0 S X r ) I

    1 9 8 @ N i s s i m 3 0 0 Z X r ) I

    S S

    I1 Id er ~ d u ve41nk

    9 8 4 M e r c e d e s 1 9 0 E r ) J

    Fig. 4. Survey of indep endent suspension kinem atic structure.

    N O M B I ~ C L A T U R E

    R - r e v o l u t o J o i n t

    p pa~mmc ioim

    s - s p h e d u d J o in t

    K - H o o k e J o i n t

    W - w h e e l h u b

    C - c h a s s i s

    f ) - f r o n t

    r ) - r e a r

    d e s i g n s h a s b e e n f o r t h e m o s t p a r t e m p i r i c a l . T h e r e i s n o g u a r a n t e e t h a t c h a s s i s e n g i n e e r s h a v e

    o v e r t h e y e a r s i d e n t i fi e d a l l u s e a b l e s u s p e n s i o n m e c h a n i s m s . T h e r e f o r e t h i s s u r v e y ra i s e d t h e

    f o l lo w i n g q u es t io n : W h a t o t h e r m e c h a n i s m s a r e p o t e n t i a l c a n d i d a te s f o r u s e a s i n d e p e n d e n t

    s u s p e n s i o n s ? T h i s i s a n s w e r e d i n S e c t i o n 3 w h e r e w e u s e n u m b e r s y n t h e s i s t o s y s t e m a t i c a l l y

    e n u m e r a t e a n a t la s o f i n d e p e n d e n t s u s p e n s io n c a n d i d a t e s .

    3. A N A T L A S O F L I N K A G E S F O R I N D E P E N D E N T S U S P E N S I O N S

    T h e d e s i g n c o n s t r a i n t s f o r t h e n u m b e r s y n t h e s i s a r e a s f o l l o w s .

    i ) S i n g l e - d e g r e e - o f - f re e d o m l i n k a g e s

    T h e e n u m e r a t i o n i s r e s t r ic t e d t o s i n g l e - d e g r ee - o f - fr e e d o m l in k a g e s . T h i s i s b e c a u s e a t y p i c a l

    r e a r s u s p e n s i o n h a s j u s t o n e d e g r e e - o f- f re e d o m p e r m i t ti n g t h e u p - d o w n m o t i o n o f t h e w h e el .

    T h e s te e r m o t i o n o f t h e w h e e l n e ce s s a ry i n f r o n t s u s p e n s io n s m a y b e o b t a i n e d b y a d d i n g a

    s u i t a b l y l o c a t e d r e v o l u t e j o i n t t o s u c h a s i n g l e - d e g r e e - o f -f r e e d o m s u s p e n s i o n m e c h a n i s m .

  • 8/11/2019 27_suspension mechanism+

    5/13

    Dimensional synthesisof indep ende nt suspension mechanisms 1145

    Fig . 5. In-pa rallel linkage.

    i i) I n - p a r a l l e l l i n k a g e s

    W e e n u m e r a t e o n l y f u l l y i n - p a r al l e l li n k a g e s , i. e. l i n k a g e s i n w h i c h t h e r e a r e s e v e r al c h a i n s o f

    l i nks a nd j o in t s c onne c t ing t he c ha ss i s t o t he whe e l hub ( se e F ig . 5 ) . T h i s r e s t r i c t i on i s ne c e ssa r y

    b e c a u s e s u s p e n s i o n l i n k a g e s m u s t w i t h s t a n d l a r g e f o r c e s a n d m o m e n t s d u r i n g a c c e l e r a t e d m o t i o n .

    I n - p a r a l l e l l i n k a g e s a r e s t r u c t u r a l l y w e l l - s u i t e d f o r s u c h a p p l i c a t i o n s .

    i i i ) J o i n t s e t

    T h e jo i n t s e t use d i n t he e n um e r a t i on i s a s f o l l ows : r e vo lu t e ( R) , p r i sm a t i c ( P ) , c y l i ndr i c ( C) ,

    H o o k e ( K ) , a n d s p h e r i c a l (S ) j o i n t s .

    T h e b a s i s f o r t h e e n u m e r a t i o n i s t h e f o l l o w i n g w e l l - k n o w n r e s u lt d u e t o G r u b l e r :

    m = 6(n - 1) - 5nR -- 5rip -- 4nc -- 4nK -- 3ns, (sp atia l l inkag es)

    m = 3(n - - 1) - - 2nR - - 2rip , (pla na r l inkag es)

    I n t h e a b o v e f o r m u l a e , m d e n o t e s t h e n u m b e r o f d e g r e e s - o f - f re e d o m o f t h e l in k a g e a n d n is th e

    t o t a l n u m b e r o f l in k s . T h e s y m b o l s nR , n p, n c , nK , a n d n s a r e t h e n u m b e r o f R , P , C , K a n d S j o i n t s

    in t he l i nka ge , r e spe c t i ve ly . S inc e t he e nu m e r a t i o n i s r e s t r i c t e d t o s i ng l e - de gr e e - of - f r e e do m li nka ge s ,

    m i n t h e a b o v e f o r m u l a e is se t e q u a l t o 1. W e p r o c e e d b y c o m p u t i n g a l l p o s s i b le j o i n t p e r m u t a t i o n s

    l e a d i n g t o v i a b l e s u s p e n s i o n l i n k a g e s f o r e a c h p e r m i s s ib l e i n - p a ra l l el l i n k a g e t o p o l o g y . T h e r e a r e

    t w o s o l u t i o n s t o G r u b l e r ' s f o r m u l a r e p r e s e n t i n g l i n k a g e s i n w h i c h t h e c h a s s i s i s c o n n e c t e d t o t h e

    w h e e l h u b b y a s i n g l e j o i n t . T h e s e s o l u t i o n s a r e s h o w n i n F i g . 6 u n d e r t h e c a t e g o r y s i n g l e - c h a i n

    l i n k a g e s . O n e o f t h e g r a p h s i s t h e w e l l - k n o w n t r a i li n g a r m t y p e s u s p e n s i o n p r e v i o u s l y e n c o u n t e r e d

    i n t h e s u r v e y . T h e o t h e r g r a p h r e p r e s e n t s a n o v e l s u s p e n s i o n t y p e . T h e r e a r e 8 2 d i s t i n c t s o l u t i o n s

    t o G r u b l e r ' s f o r m u l a f o r g r a p h s i n w h i c h t h e w h e e l h u b i s c o n n e c t e d t o t h e c h a s s i s b y t w o c h a i n s

    o f l in k s a n d j o i n ts . T h e s e i n c l u d e b o t h p l a n a r a n d s p a t i a l l in k a g e s . R e p r e s e n t a t i v e m e m b e r s o f b o t h

    t y p e s a re s h o w n i n F i g . 6 u n d e r t h e c a t e g o r y o f t w o - c h a i n s i n p a ra l le l l in k a g e s . T h e p l a n a r S L A

    s u s p e n s i o n , t h e p l a n a r M a c P h e r s o n s t r u t a n d t h e J a g u a r r e a r s u s p e n s io n a r e al l m e m b e r s o f t h i s

    f a m i l y . T h e r e a r e 2 2 4 s o l u t i o n s t o G r u b l e r ' s f o r m u l a r e p r e s e n t i n g t h r e e - c h a i n i n - p a ra l le l l i n k a g e s.

    A l l o f t h e se l i n k a g e s a r e s p a t i a l a n d s o m e r e p r e s e n t a ti v e m e m b e r s o f t h i s f a m i l y a r e s h o w n i n F i g . 6 .

    T h e s p a t i a l S L A a n d t h e s p a t i a l M a c P h e r s o n s t r u t a r e m e m b e r s o f th i s fa m i l y . T h e r e a r e 1 60

    d i s t i n c t s o l u t i o n s t o G r u b l e r ' s f o r m u l a r e p r e s e n t i n g g r a p h s o f f o u r - c h a i n i n - p a r a l l e l l i n k a g e s . A s

    s h o w n i n F i g . 6 t h e N i s s a n D A R S r e a r s u s p e n s i o n i s a m e m b e r o f t h i s f a m i l y . F i n a l l y t h e re a r e

    5 6 s o l u t i o n s t o G r u b l e r ' s f o r m u l a r e p r e s e n t i n g g r a p h s o f f iv e - c h a in i n -p a r a l le l l in k a g e s . T h e

    M e r c e d e s f i v e- li n k re a r s u s p e n s i o n b e l o n g s t o t h i s f a m i l y . T h e r e i s n o p o i n t i n l o o k i n g a t l i n k a g e s

    w i t h s i x a n d h i g h e r n u m b e r o f c h a i n s b e c a u s e th e s e h a v e z e r o o r n e g a t i v e m o b i l i ty .

    I n s u m m a r y , w e h a v e a n a t l a s o f 5 2 4 i n d e p e n d e n t s u s p e n s i o n s g e n e r a t e d b y n u m b e r s y n t h e s i s .

    A l l e x i s t i n g i n d e p e n d e n t s u s p e n s i o n l i n k a g e t y p e s l i s t e d i n F i g . 2 a p p e a r i n t h e a t l a s a s n a t u r a l

    p r o d u c t s o f t h e e n u m e r a t i o n p r o c e ss . T h e a t l a s a l s o i n c lu d e s s e v er a l n e w s u s p e n s i o n t y p e s . F u r t h e r

    d e t a i ls o f t h e e n u m e r a t i o n p r o c e s s m a y b e f o u n d i n [3 ].

    4. D I M E N S I O N A L S Y N T H E S I S O F S U S P E N S I O N S

    I n t h e p r e s e n t s o l u t i o n w e d i m e n s i o n s o m e o f t h e s u s p e n s i o n s i n t h e a t la s f o r t h e s a m e s e t o f

    p e r f o r m a n c e a n d p a c k a g i n g c o n s t r a i n t s . T h e r e s u l t i n g l i n k a g e s a r e t h e n a n a l y s e d i n S e c t i o n 5 t o

    s e e h o w w e l l t h e y m e e t t h e s p e c if ie d p e r f o r m a n c e r e q u i r e m e n t s . T h i s p e r m i t s a r a n k i n g o f th e

    v a r i o u s c a n d i d a t e l i n k a g e s f o r a g i v e n a p p l i c a t i o n . A n i n d e p e n d e n t s u s p e n s i o n m u s t s a t i s f y

    k i n e m a t i c a n d c o m p l i a n c e r e q u i r e m e n t s . T h e k i n e m a t i c r e q u i r e m e n t s t y p i c a l ly s p e c if y c a m b e r ,

  • 8/11/2019 27_suspension mechanism+

    6/13

    1 1 4 6 M a d h u s u d a n R a g h a v a n

    c @ R 0 w c ~ r 0 w

    t ra i li n g a m

    S t n a l e - c h a i n l i n k a o e s

    C R C C R

    R R

    I R

    W R W p

    MsePkersml strut p l s u r )

    [ = lo n e r h v o - c h a i n i n - o a r a l l e l I i n k a a e s

    c @ ~ c ~ : : ~ c ~ ~ ~ cqp :: ~ a

    C

    R R S R S R

    S S C w K ~ S

    Jsg--r towr-bsr

    S n a t l a l t w o - c h a l n I n - o a r a l l e l I i n k a a e s

    R

    R W

    skort - long arm p O u r )

    R - r e v o l u t e j o i n t , W w h e a l h u b

    P - p r i s m a t i c j o i n t , C ~ , r t e x ) .

    K - H o o k e o l n f , c h a s s is I

    S - s p h e r i c a l j o i n t , C e d g e ) - i

    r v l i n d r l c J o i n t I

    W R W W

    P s p

    w w

    K C K R P

    W

    W W W W W

    S S S S S

    s b m 4 oe S a rm S o a f l s l t h r e e - c h a i n I n - o s r a l l e I i n k a a e s Mscl~erson

    s t r u t

    W - S - W - S - W - - S - - W

    S P a t i a l fo u r - c h a i n i n - D a r s I le l I i n k a a e s N i s u n D A R S

    K K K K

    W W

    S S S

    8 p a l l a l f i v e - c h a i n i n - P a r a l l e l I i n k a o e s M er ce de s f l ~ - I i nk

    F i g 6 A n a t l a s o f i n d e p e n d e n t s u s p e n s i o n s

    track, and toe changes of the wheel versus jounce-rebound. Refer to Fig. 7 for a description of

    camber, track, and toe. Camber and toe influence the stability of the vehicle during cornering

    because they determine the magnitude of the lateral force available at the tire-road contact patch.

    Track change during jounce- rebound determines the extent of vehicle roll during cornering. The

    suspension (mechanism, spring, shock-absorber) may be treated as a generalized spatial structure

    described by the following equation

    ~ = ~ r , 1 )

    where 8~ is a 6 x 1 vector representing the force and moment exerted by the environment (road)

    on the suspension at the tire contact patch, 6 ~ is a 6 x 1 vector representing the displacement of

    the wheel as a result of 6~~', and ~ is a 6 x 6 stiffness matrix representing the suspension. The

    compliance requirements are usually specified by prescribing values for the entries of ~ at the

    nominal operating position of the suspension. In this paper, we work with only the kinematic

    requirements. Further, we restrict the discussion to front-view kinematics, i.e. camber and track

    only. Toe can always be added on to a system designed in this way by including an appropriately

    located steer or kingpin axis.

  • 8/11/2019 27_suspension mechanism+

    7/13

    Dim ension al synthes is of indepe ndent suspension mecha nisms 1147

    I

    t r a c k

    t o p v i e w

    vertical

    _ i e e l p l a n e

    l o n g i t u d i n a l

    L .~ j , , ~

    axls of vehlcle v ll ne of

    I n t e r s e c t i o n o f

    w h e e l p l a n e

    e n d r o a d s u r f a c e

    T r a c k C a m b e r a n d T o e

    c a m b e r I n c l in a t i o n o f w h e e l p l a n e t o t h e v e r t ic a l

    t r a c k l a t e ra l d i s t a n c e b e t w e e n c e n t e r s o f t ir e c o n t a c t o f a p a i r o f w h e e l s

    t o e a n g l e b e t w e e n l o n g i t u d i n a l a x i s o f v e h i c l e a n d li n e o f i n t e r s e c ti o n

    o f w h e e l p l a n e a n d r o a d s u r f a c e

    Fig. 7 . Cam ber t rack and toe .

    T h e w h e e l m o t i o n r e l a t iv e t o t h e c h a ss i s m a y b e d e s c r i b e d a n a l y t i c a l l y b y a f f ix i n g c o o r d i n a t e

    s y s t e m s 2~ a n d E t o t h e c h a s s i s a n d t h e w h e e l , r e s p e c t i v e l y . L e t X a n d E b e l o c a t e d s o t h a t t h e y

    a r e c o i n c i d e n t a t t h e n o m i n a l w h e e l p o s i t i o n z e r o j o u n c e ) w i t h t h e ir x a x e s a l o n g t h e r o a d s u r f a c e

    a n d t h e i r y a x e s n o r m a l t o t h e r o a d s u r f a c e a s s h o w n i n F ig . 8. L e t d x , d y ) a n d 0 d e s c r i b e a g e n e r a l

    d i s p l a c e m e n t o f E i n 2L F o r t h e e x a m p l e s i n th i s p a p e r t h e d e s i r e d w h e e l m o t i o n i s s h o w n i n F i g . 9.

    I t i s a s t r a i g h t l i n e i n t h e

    dy O

    p l a n e e n s u r in g z e r o t r a c k c h a n g e a n d a l i n ea r c a m b e r c h a n g e . T h e

    v a l u es o f d y a t fu l l j o u n c e a n d f u ll r e b o u n d a r e + 8 0 m m a n d - 9 5 m m . T h e s lo p e o f th e c a m b e r

    c u r v e i s 3 / 8 0 / m m . T h e r o o m a v a i l a b l e f o r p a c k a g i n g t h e s u s p e n s i o n i n o u r e x a m p l e i s s h o w n i n

    f r o n t v ie w

    / / / 7 E J x

    Fig. 8 . Coordinate sys tems.

    e

    3 d e g .

    95

    Jounce

    x

    Fig. 9 . Desi red wheel mot ion.

  • 8/11/2019 27_suspension mechanism+

    8/13

    1148 MadhusudanRaghavan

    7 0 0 m m ~

    Fig. 10. R oo m for packaging suspension.

    f r o n t v i e w

    Fig. 10. Th e fam i ly of l inkages syn thes ized in thi s sec t ion is sho wn in Fig. 11. These l inkages

    c ons t i t u t e t he s i mpl e s t one - a nd t wo-c ha i n l i nka ge s i n t he a t l a s . The p re se n t syn t he s i s p rob l e m i s

    a n i ns t anc e o f t he c la s s ic a l r ig i d -bod y gu i da nc e p rob l e m . I t is we ll kno wn t ha t t he d i me ns i ona l

    syn t he s i s o f a n i n -pa ra l le l l i nka ge fo r r i g i d -b ody g u i da nc e re duc e s t o t he se pa ra t e syn t he s is o f t he

    i nd i v i dua l c ha i ns c ompr i s i ng t he l inka ge . As a r e su lt , t he de s ign a nd e va l ua t i on o f t he l inka ge s i n

    F i g . 1 1 m a y b e a c c o m p l is h e d b y m e r e l y s y n th e s iz in g t h e f o u r c h ai n s R - R , R - P , P - R , a n d R

    c omp r i s ing t he se li nka ge s. Th i s c ha i nwi se de c ou pl i ng i s a lso t rue fo r spa t i a l l inka ge s . The ge ne ra l

    t he ory a nd de s i gn e qua t i ons fo r t he va r i ous c ha i ns a re a va i l a b l e i n C ha p t e r 8 o f [4 ] a nd i n [5 ].

    4.1. R R chain design equations

    The pos i t i on ve c t or o f a n a rb i t r a ry po i n t P i n E a s s e e n in 2 : is

    w h e r e

    d x )

    o y + d y

    ( c o s 0 - s i n 0 ~

    R0 = \ sin 0 co s 0 ]

    i s the chan ge oi: bas i s mat r ix re la t ing E an d 2;, and ~ is the p os i t ion vec tor of P in E . I f the R

    j o i n t c on ne c t i ng t he R -R c ha i n t o E i s t o be l oc a t e d a t P on E , t he n P mu s t lie on a c ir c le in 2 :

    a t each des ign pos i t ion. Analyt ica l ly thi s i s s ta ted as

    d x ) _ f t . d x ) _ f i = k 2

    ( R [ J + k , y , ] } ( R + \ d y } , ]

    (2)

    whe re subsc r i p t i i nd i c a te s t he i t h de s i gn po s i t ion , ~ i s the p os i t i on v e c t or o f t he c e n t e r o f t he c i rc le ,

    a nd k i s t he r a d i us o f t he c ir cl e. Ve c t or s ~ a nd r a re e a c h e qu i va l e n t t o t w o sc a l a r unkn ow ns , k

    i s e qu i va l e n t t o one a n d so we ma y de s i gn fo r a m a xi m um of f ive de s i gn pos i ti ons .

    c

    s w i n g a x l e s h o r t l o n g a m M a c P h e r s o n s t r q t

    ( p l n , , , ) ( p b e o m r ) N o m e n c l a t u r e

    P . p d s m e t lc o l n t

    W - w h ~ l h u b

    C - c h a s s is

    Fig. l l. Plan ar one- and two-chain linkages.

  • 8/11/2019 27_suspension mechanism+

    9/13

    Dimensional synthesis of independent suspension mechanisms 1149

    4 .2 . R - P cha in des ign equa t i ons

    F o r t h i s c a se w e m u s t d e t e r m i n e b y t h e d e s i g n p r o c e s s , t h e li ne o r l in e s i n E w h i c h a r e c o n c u r r e n t

    i n al l t h e d e s i g n p o s i t io n s . T h e P j o i n t a x i s m a y b e l o c a t e d o n o n e o f th e s e l in e s a n d t h e p o i n t

    o f c o n c u r r e n c y i s t h e R j o i n t l o c a t i o n . L e t

    U , x + U 2 y

    + U 3 = 0 b e t h e e q u a t i o n o f t h e P j o i n t a x i s

    i n E . T h e n i n t h e i t h d e s i g n p o s i t i o n , t h e e q u a t i o n o f t h is l in e i n 2~ i s

    (U~ co s 0r - U2 s in

    Or)x + (U~

    s in 0i + U2

    c o s

    Oi)y q- d ~,U~ + d~rU2 +

    U 3 ) :

    0 (3)

    w h e r e d x i = - d x r c o s 0 r - d y r s i n 0 r, d Yr = d x r s i n 0 r - d y r c o s 0 r , a n d ( d x r , d y r , 0 r ) d e f i n e t h e

    d i s p l a c e m e n t o f E i n Z a t t h e i t h d e s i g n p o s i t i o n . T h e c o o r d i n a t e s o f t h e R j o i n t i n , r , ( XR , y R ) ,

    m u s t b y d e f i n i t i o n s a t i s f y ( 3 ) f o r a l l i . T h e r e f o r e ( 3 ) m a y b e r e w r i t t e n a s

    U I c o s O r U2

    s in

    O,)XR + (G

    sin 0r + U2

    c o s

    Or)yR + dx rU l Jr- d~yrU2 +

    U 3 =

    0 (4)

    U ) , U 2, a n d U 3 t o g e t h e r r e p r e s e n t t w o i n d e p e n d e n t s c a la r u n k n o w n s , w h i l e x R a n d y R r e p r e s e n t o n e

    e a c h , s o w e h a v e a to t a l o f f o u r u n k n o w n s a n d m a y d e s i g n f o r a m a x i m u m o f f o u r d es i g n p o s it i o n s .

    4 .3 . P - R cha in des ign equa t i ons

    F o r t h e P - R c h a i n , a t e a c h d e s i g n p o s i t io n , t h e R j o i n t o n E m u s t l ie o n t h e P j o i n t s l in e o f

    s l i d e i n Z . L e t

    U~x + U2y

    + U 3 = 0 b e t h e e q u a t i o n i n S o f th e P j o i n t s l in e o f s l id e . L e t ( x R , y R )

    b e t h e c o o r d i n a t e s i n E o f th e R j o in t . T h e n a t th e i t h d e s ig n p o s i t i o n t h e e q u a t i o n s t a ti n g t h a t

    t h e R j o i n t i s o n t h e P j o i n t s l in e o f s li d e is :

    U I C O S O r X R

    s in OryR + d x r ) + U f f s i n

    OrXR + c o s

    OryR + dyr) + U3 = 0 (5)

    w h e r e ( d x i , d y r, 0 r) d e f i n e t h e d i s p l a c e m e n t o f E i n 2 ;. T h e R j o i n t c o o r d i n a t e s x R a n d y R a r e e a c h

    e q u i v a l e n t t o o n e s c a l a r u n k o w n . U ~, U 2, a n d U 3 t o g e t h e r a r e e q u i v a l e n t t o t w o s c a l a r u n k o w n s .

    T h e r e f o r e , w e m a y d e s i g n t h e P - R c h a i n f o r a m a x i m u m o f f o u r d e s ig n p o s it io n s .

    4.4 . R chain des ign equat ions

    T o s y n t h e s iz e t h e R c h a i n s u s p e n s i o n c o n n e c t i n g t h e w h e e l E t o t h e s p r u n g m a s s 2~, w e m u s t

    d e t e r m i n e a p o i n t i n E w h i c h o c c u p i e s t h e s a m e p o s i t i o n i n _r f o r a ll t h e d e s i g n p o s i t i o n s . I f ~ i s

    t h e p o s i t i o n v e c t o r o f a n a r b i t r a r y p o i n t P i n E , t h e n i ts p o s i t i o n i n S a t t h e i th d e s i g n p o s i t i o n i s

    c o s Oi - s i n 0 , ~ . ( d x r ~

    s in 0 r c o s 0 , ) P + \ d y J

    F o r P t o b e t h e R j o i n t l o c a t i o n , i ts p o s i t i o n i n t h e ( i + 1 ) th d e s i g n p o s i t i o n m u s t c o i n c i d e w i t h

    t h a t i n t h e i t h d e s i g n p o s i t i o n . S o

    ( c o s 0 r + l - - s i n 0 r + ) [ d x r + ) [ c o s O r - s i n 0 i ~ .

    [ d x i ~

    s in 0r+ ~ c o s0 r +~ P + \ d y r + i = \ s i n 0 r c o s 0 r ) P + \ d y r J

    (6)

    E q u a t i o n ( 6 ) i s a si n g le v e c t o r e q u a t i o n e q u i v a l e n t t o t w o i n d e p e n d e n t s c a la r e q u a t i o n s . I t

    c o n t a i n s o n e v e c t o r u n k o w n ~ e q u i v a l e n t t o t w o s c al a r u n k o w n s . S o t h e R ch a i n m a y b e sy n t h e s i z e d

    f o r j u s t t w o d e s i g n p o s i t i o n s .

    E a c h o f th e a b o v e c h a i n s w a s s y n t h e s i ze d f o r th e m a x i m u m p e r m i s s i b le n u m b e r o f p re c i s io n

    p o s i t io n s . I n a l l c a s e s t h e p r e c i si o n p o s i t io n s w e r e c h o s e n e v e n l y s p a c e d o n t h e w h e e l m o t i o n

    r e q u i r e m e n t s o f F ig . 9 . N o n e o f th e c h a in s s y n t h e s i z e d t h u s w e r e p a c k a g e a b l e w i t h i n t h e s p a c e

    s h o w n i n F i g . 1 0. S o t h e s y n t h e s is w a s r e p e a t e d w i t h f e w e r d e si g n p o s i t i o n s f o r e a c h c h a i n . F o r

    t h e R - R c h a i n t h e f o u r - a n d t h r e e - p o s i t io n s y n t h e s is c a se s w e r e u n s u c c e ss f u l. F o r t h e t w o - p o s i t i o n

    p r o b l e m w e h a v e t w o d e s i g n e q u a t i o n s o b t a i n e d f r o m ( 2) w i t h i g o i n g f r o m 1 t o 2 . T h i s i s a s y s t e m

    o f t w o e q u a t i o n s i n th e f iv e s c a l ar u n k n o w n s r e p r e s e n t e d b y p , t , a n d k . W e u s e o n e e q u a t i o n t o

    e l im i n a t e k f r o m t h e o t h e r e q u a t i o n t o g e t a s in g l e e q u a t i o n i n ~ a n d ] . T h e d e s i g n e r t h e r e f o r e h a s

    t h r e e f r e e c h o i c e s s u b j e c t t o t h e p a c k a g i n g c o n s t r a i n t s . T h e p a r a m e t e r p ~ i s s e t e q u a l t o 0 a n d 3q

    i s s e t e q u a l t o - 3 5 0 . ( H e r e p j a n d f r e p r e s e n t t h e j t h c o m p o n e n t s o f p a n d ] , r e s p e c t i v e l y .) T h e

    MMT 31/8--F

  • 8/11/2019 27_suspension mechanism+

    10/13

    1150 Mad husud an Raghav an

    r e s u l ti n g e q u a t i o n i n p 2 a n d ~ g i v es t h e l o c u s o f d e s ig n s . T h e d e s i g n p o s i t i o n s f o r t h e t w o - p o s i t i o n

    s y n t h e s i s a r e s h o w n i n T a b l e 1.

    T h e r e su l t i ng e qu a t io n ( l oc us o f v i a b l e de s igns ) in p2 a n d ~ i s:

    - -5.62 1 x 10-~t~p2 + 134.8p2 - 17 5 ~- - 1312.5 = 0

    (7)

    F o r t h e R - P c h a i n , t h e f o u r - a n d t h r e e - p o s i t i o n s y n t h e s i s e f f o r ts w e r e u n s u c c e ss f u l. F o r t h e

    t w o - p o s i t i o n c a s e th e d e s i g n e q u a t i o n s a r e g i v e n b y ( 4) w i t h i = 1 , 2 . O n e o f t h e se e q u a t i o n s i s u s e d

    to e l im ina t e U3 f r om the o the r t o ge t a s i ng l e e q ua t ion i n xR, YR, U~, a n d Uz. U2 i s e qu a l t o + 1

    a n d xR to - 350. T he s e a r e f r e e c ho i c e s a va i l a b l e t o t he de s igne r . T h e U2 va lue i s c ho se n a r b i t r a r i l y ,

    t h e XR v a l u e is c h o s e n t o m e e t t h e p a c k a g i n g r e q u i r e m e n t s o f F i g . 1 0. T h e t w o d e s i g n p o s i t i o n s

    u s e d f o r t h i s c h a i n a r e t h e s a m e a s t h o s e f o r t h e R - R c h a i n ( s e e T a b l e 1 ) . T h e r e s u l t i n g e q u a t i o n

    in U~ a n d yR, r e pr e se n t ing t he l oc u s o f pa c ka g e a b l e so lu t i ons i s:

    - - 0 . 0 5 7 U l y R + 2 . 8 1 0 1 0 4 y R 0 . 7 6 0 U i - - 6 7 . 4 1 = 0

    8 )

    F o r t h e P - R c h a i n t h e f o u r - p o s i t i o n s y n t h e s i s d o e s n o t g i v e p a c k a g e a b l e s o l u t i o n s . T h e d e s i g n

    p o s i t i o n s f o r t h e t h r e e - p o s i t i o n s y n t h e s i s c a s e a r e s h o w n i n T a b l e 2 . T h e s y s t e m o f d e s ig n e q u a t i o n s

    i s g i v e n b y (5 ) w i t h i = 1 . . . . 3 . T w o o f th e s e e q u a t i o n s a r e u s e d t o e l i m i n a t e U~ a n d U2 f r o m

    the r e m a in ing e qu a t ion . T h i s g ive s a s i ng l e e qu a t io n i n XR, yR, a n d U3. T he pa r a m e te r /-/3 i s s e t

    t o 1 ( f re e c ho i c e ) a nd t he r e su l t i ng e q ua t ion i n XR a n d yR i s

    --5 .56 3 x 10-Sy ~ - 4.173 10-4yR -- 5.563 10-SX~ -- 0.085XR = 0

    (9)

    F o r t h e R - c h a i n , t w o - p o s i t i o n s y n t h e s i s d o e s n o t g i v e a p a c k a g e a b l e d e s i g n . F o r o n e - p o s i t i o n

    s y n t h e s i s t h e d e s i g n p o i n t i s a t t h e c e n t e r o f th e j o u n c e - r e b o u n d r a n g e , i .e .

    ( d x , d y , 0 ) = ( 0, - 7 . 5 , - 0 . 2 8 1 2 ) . I f t h e w h e el h u b i s m o v e d t o t h i s p o s i t io n a n d t h e n a n y p o i n t

    o n t h e w h e e l h u b i s s e le c te d f o r t h e R j o i n t t h e r e s u l t in g s u s p e n s i o n i s g u a r a n t e e d t o s a t i s f y t h e

    d e s i g n p o s i t i o n . T h e p o i n t ( - 3 5 0 , 2 5 0) i n 2~ w a s a r b i t r a r i l y s e le c te d f o r t h e R j o i n t l o c a t i o n , a s

    i t m e e t s t h e p a c k a g i n g r e q u i r e m e n t s .

    I n t h e f o l l o w i n g s e c ti o n w e s h o w h o w t h e d e s i g n e q u a t i o n s d e v e l o p e d s o f a r m a y b e u s e d t o c r e a t e

    s u s p e n s i o n l i n k a g e s w i t h s a t i s f a c t o r y p e r f o r m a n c e a n d p a c k a g i n g . F o r e a c h l i n k a g e , w e s el e ct c h a i n

    p a r a m e t e r s f r o m t h e a p p r o p r i a t e s o l u t i o n l o c i f o r t h e i n d i v i d u a l c h a i n s . T h i s d e f i n e s t h e l i n k a g e .

    A k i n e m a t i c a n a l y s i s i s t h e n p e r f o r m e d t o d e t e r m i n e t h e a c t u a l t r a c k a n d c a m b e r c h a r a c t e r i s t i c s

    o f t h e l i n k a g e .

    5 . E V A L U A T I O N O F S U S P E N S I O N S

    5.1 . R -R , R - R planar short -long arm suspension)

    W e s e l e ct tw o p o i n t s s a t i s f y i n g ( 7) a n d a l s o m e e t i n g t h e h e i g h t a n d w i d t h c o n s t r a i n t s o f F ig . 1 0.

    F o r t h i s e x a m p l e t h e f o l l o w i n g c h a i n s w e r e s e l ec t ed :

    0 . 0 ) ~ = / - 3 5 0 . 0 ]

    Up pe r R - R c ha in : P = 581.8 ' \ 440 .0 J

    Table 1. R -R chain design positions

    dx(mm) dy(mm) 0()

    0.0 36.25 1.35

    0.00 5 1 . 2 5 1 . 9 2

    Table 2. P -R chain design positions

    dx(mm ) dy(mm ) 0()

    0.0 50.83 1.9

    0.00 - 7.5 -- 0.28

    0.0 - 65.83 - 2.46

  • 8/11/2019 27_suspension mechanism+

    11/13

    D i m e n s i o n a l s y n t h es i s o f i n d e p e n d e n t s u s p e n s io n m e c h a n i s m s

    1151

    0 . 0 ) r = - 3 5 0 . 0

    L o w e r R - R c h a i n : P = 2 9 5 .5 \ 2 2 0 .0 J

    T h e t r a c k a n d c a m b e r c u r v e s f o r t h is s u s p e n s i o n l i n k a g e a r e s h o w n i n F i g . 1 2. W h i l e t h e c a m b e r

    c u r v e i s s a t i s f a c t o r y , t h e t r a c k c h a n g e c u r v e s h o w s a n 8 m m d e v i a t i o n f r o m t h e i d e a l a t t h e

    f u l l - j o u n c e a n d f u l l - r e b o u n d e d e x t r e m e t i e s .

    5 .2 . R - R , R - P p la n ar M a c P h e r s o n s t r u t)

    T h e M a c P h e r s o n s t r u t is c o m p r i s e d o f a n R - R c h a i n a n d a n R - P c h a in . W e s e le c t o n e p o i n t

    e a c h f r o m t h e s o l u t i o n l o c i o f (7 ) a n d ( 8 ), r e s p e c ti v e l y , k e e p i n g i n m i n d t h e p a c k a g i n g c o n s t r a i n t s

    o f F i g . 1 0. T h e c h a i n s s e l e c te d f o r t h i s e x a m p l e w e r e :

    R - R c h a i n :

    R - P c h a i n :

    0 . 0 ) r = - 3 5 0 . 0

    P = 295 .5 \ 220 .0 }

    (XR, yR) = ( - 350 .0 , 500 .0 )

    (U, , U2, U3) = (2 .289, 1 .0 , 303.87)

    T h e t r a c k a n d c a m b e r c u r v e s f o r t h i s s u s p e n s i o n a r e s h o w n i n F i g . 1 2 . T h e t r a c k c u r v e s s h o w s

    a d e v i a t i o n o f a s m u c h a s 1 5 m m f r o m t h e id e a l . T h e c a m b e r c u r v e t o o s h o w s s i g n i fi c a n t d e v i a t i o n s

    f r o m t h e i d e a l , p a r t i c u l a r l y i n j o u n c e .

    5 . 3 . R - R , P - R

    T h i s l in k a g e is c o m p r i s e d o f a n R - R c h a i n a n d a P - R c h a in . A s b e f o r e , w e s el ec t p o i n t s f r o m

    t h e s o l u t i o n l o c i o f (7 ) a n d ( 9) s u b j e c t t o t h e p a c k a g i n g c o n s t r a i n t s o f F i g . 1 0. F o r t h i s p a r t i c u l a r

    e x a m p l e , t h e c h a i n s s e l e c t e d w e r e :

    P - R c h a i n :

    X R , y R ) = - -

    189 .55 , 500 .0 )

    R - R c h a i n :

    U,, U2, U3) = (2 .677, 1 .0 , 7 .499)

    o o ~=

    = 295 .5 220 .0 J

    C A N D I D A T E S

    C R

    C R

    C R

    C R

    C R

    R W

    c P

    R w

    ~lOa

    g

    - 1 0

    t m o k c h n g e

    r a m ) 1 0

    i ) .

    requ i rement

    I s

    ~ deg)

    P E R F O R M A N C E C H A R A C T E R I S T IC S

    F i g . 1 2 . R e su l t s o f d i m e n s i o n a l sy n t h e s is .

  • 8/11/2019 27_suspension mechanism+

    12/13

    1152 Madhusudan Rag havan

    The t r a c k a nd c a mbe r c urve s fo r t h i s suspe ns i on l i nka ge a re shown i n F i g . 12 . The t r a c k c urve

    show s a 15-20 mm de v i a t i on f rom t he i de a l a nd t he c a mbe r c urve shows a te nde nc y t o ho ok i n

    j ounc e , qu i t e si mi la r t o t ha t o f t he p l a na r M a c Ph e rson s t ru t.

    5.4. R-P R- P

    The t w o R -P c ha i ns c ompr i s i ng t h i s li nka ge we re se le c t ed f rom t he so l u t i on l oc us o f 8 ) sub j e c t

    t o t he pa c ka g i ng c ons t ra i n t s o f F ig . 10.

    U p p e r R - P c ha in :

    L o w e r R - P c h a i n :

    XR, yR)

    U,, U2,

    xR, yR)

    G , U2,

    - 3 5 0 . 0 , 5 2 0 . 0 )

    U3) = 2 .203 , 1 .0 , 253 .67 )

    - 3 5 0 . 0 , 2 5 0 . 0 )

    U3) = 4 .467 , 1 .0 , 1318 .54)

    The t r a c k a nd c a mbe r c urve s fo r t h i s suspe ns i on l i nka ge a re shown i n F i g . 12 . The t r a c k c urve

    show s sma ll < 5 mm ) de v i a t i ons f rom t he ide a l. The c a m be r c urve is i nd i s ti ngu i sha b le f rom t he

    ideal .

    5.5. R-P P- R

    The R -P a nd P-R c ha i ns c ompr i s i ng t h i s l i nka ge a re s e l e c t e d f rom t he so l u t i on l oc i o f 8 ) a nd

    9) sub j e c t t o t he usua l pa c ka g i ng c ons t ra i n t s .

    R -P c ha in : XR ,yR) = - -35 0.0, 500.0)

    U~, U2, U3) = 2.289, 1.0, 303.85)

    P - R c h a i n : X R , y R ) = - - 15.618, 150.0)

    U~, U2, U3) = 10.084, 1.0, 7.499)

    The t r a c k a nd c a mbe r c urve s fo r t h i s suspe ns i on l i nka ge a re shown i n F i g . 12 . The t r a c k shows

    a goo d m a t c h < 1 mm de v i a t i on) wi t h t he i dea l . The c a mb e r c urve i s a l so fa i rl y we ll be ha ve d .

    5.6. P-R P- R

    The t wo P-R c ha i ns c ompr i s i ng t h i s l i nka ge a re s e l e c t e d f rom t he so l u t i on l oc us o f 9 ) sub j e c t

    t o t he usua l pa c ka g i ng c ons t ra i n t s .

    U p p e r P - R c h a in : X R ,yR) = -- 115.36, 400.0)

    U~, U2, U3) = 3.532, 1.0, 7.499)

    L o w e r P - R c h a i n : x R , y R ) = - - 7 . 0 6 7 , 100.0)

    U ,, U2, U 3 )= 15.211, 1.0, 7.499)

    The t r a c k a nd c a mbe r c ha ra c t e r i s t i c s fo r t h i s suspe ns i on l i nka ge a re shown i n F i g . 12 . B ot h

    t ra c k a nd c a mbe r a re i nd i s t i ngu i sha b l e f rom t he i de a l , ma ki ng t h i s l i nka ge a ve ry a t t r a c t i ve

    c a ndi da t e fo r t h i s e xa mpl e .

    F i gure 12 p rov i de s a v i sua l c om pa r i son of the pe r form a nc e c ha ra c t e r is t ic s o f t he va r i ous

    l inka ge s . A ra nk i ng of t he li nka ge s in t e rms of how we l l t he y ma t c h t he t r a c k a nd c a m be r

    re qu i re me nt s i s shown i n Ta b l e 3 .

    T h e f o l l o w i n g o b s e r v a t i o n s i n T a b l e 3 m a y b e m a d e f r o m t h e a b o v e r a n k i n g s :

    1 . The l inka ge s wi t h t wo pr i sma t i c j o i n t s m a t c h t he t r a c k a nd c a m be r r e qu i re m e nt s o f t h is

    e xa mp l e ve ry we ll . In pa r t ic u l a r , t he P - R , P -R ) l i nka ge i s ou t s t a nd i ng i n bo t h c a te gor i e s .

    2 . The t wo-c ha i n l inka ge s wi t h a n e ve n num be r o f p r isma t i c j o i n t s i .e . 0 o r 2 ) f a re be t te r t ha n

    t h o s e w i t h a n o d d n u m b e r o f p r i sm a t i c j o i n ts , viz . t h e R - R , P - R ) l in k a g e a n d t h e R - R , R - P )

    l inkage.

    3. The planar two-cha in l inkages a re super ior to the planar s ingle-cha in l inkage .

    H o w e v e r o n e s h o u l d b e a r i n m i n d t h a t t h e r a n k in g s i n T a b le 3 m a y c h a n g e i f t h e w h e e l -m o t i o n

    re qu i re me nt s c ha nge .

  • 8/11/2019 27_suspension mechanism+

    13/13

    Dime nsional synthesis of independen t suspension mechan isms 1153

    Table 3 . Ranking of candidates

    Track C amber

    1 . (P -R , P -R ) 1 . (P -R , P -R ) , (R -P , R -P) , (R -R , R -R )

    2 . (R -P , P -R ) 2 . (R -P , P -R ) ,

    3 . (R -P , R -P) 3 . (R -R , R -P)

    4 . (R -R , R -R ) 4 . (R -R , P -R )

    5. (R- R, R-P ) 5 . R

    6 . (R -R , P -R )

    7. R

    6. C L O S U R E

    T h i s p a p e r d e s c r i b e s th e s y n t h e s i s o f i n d e p e n d e n t s u s p e n s i o n l i n k a g e s s u b j e c t t o p a c k a g i n g

    c o n s t r a i n t s . W e e n u m e r a t e a n a t l a s o f i n - p a r a l l e l s u s p e n s i o n l i n k a g e s u s in g n u m b e r s y n t h e si s . W e

    t h e n d i m e n s i o n a s et o f se v e n s im p l e p l a n a r s u s p e n s i o n c a n d i d a t e s f r o m t h is a tl a s t o m e e t m o t i o n

    r e q u i r e m e n t s w i t h z e r o t r a c k c h a n g e a n d l i n ea r c a m b e r c h a n g e . T h e m e t h o d o l o g y f o r d i m e n s i o n i n g

    t h e l i n k a g e s r e l ie s o n t h e s e l e c t io n o f p r e c i s i o n p o s i t i o n s , t h e f o r m u l a t i o n o f d e s ig n e q u a t i o n s

    m o d e l i n g t h e l in k a g e , a n d t h e s o l u t i o n o f th e s e e q u a t i o n s f o r t h e l i n k a g e d i m e n s i o n s . W e u s e f e w e r

    t h a n t h e m a x i m u m p e r m i s s ib l e n u m b e r o f d es i g n p o s it i o n s fo r e ac h l i n k a g e in o r d e r t o b r i n g t h e

    p a c k a g i n g c o n s t r a i n t s e x p l i c i t l y i n t o t h e p r o b l e m . A c o m p a r i s o n o f t h e s y n t h e s iz e d l i n k a g e s s h o w s

    t h a t f o r t h e c o n s t r a i n t s i n o u r e x a m p l e , p l a n a r t w o - c h a i n i n - p a r a l l e l l i n k a g e s w i t h t w o p r i s m a t i c

    j o i n t s h a v e s u p e r i o r k i n e m a t i c c h a r a c te r i st i cs . T h e i r d y n a m i c p e r f o r m a n c e u n d e r c o n d i t i o n s o f h ig h

    l o a d s , v i b r a t i o n s , a n d j o i n t f r i c ti o n , i s y e t t o b e e v a l u a t e d .

    R E F E R E N C E S

    I. S. Mola,

    Fundamentals of Vehicle Dynamics.

    General Motors Institute (1967).

    2. L. D obrjan skyj and F. Freudenstein,

    Trans. ASM E J. Engng Ind.

    89B, 153 (1967).

    3. M. Raghavan,

    SAE Passengers Car Meeting and Exposition

    Nashville, Tennessee (September 16-1 9, 1991), also

    appears in

    Car Suspension Syst. Vehicle Dyn.

    SP-878.

    4. O. Bottema and B. Roth,

    Theoretical Kinematics.

    North-H olland (1979).

    5. P. Chen and B. Roth,

    Trans. ASME J. Engng Ind.

    91B , 209 (1969).

    S Y N T H E S E P R N O M B R E S E T D I M E N S I O N S D E M I~ C N I SM E S D E

    S U S P E N S I O N S I N D l ~ P E N D A N T E S

    So mm aire- -So nt expos6es ici l 6tude et la classification structurelle de suspensions fi roues ind6pendantes.

    No us avons cr66 un a tlas des m6canismes de suspensions parall~les au moyen d u ne synth~se par nombres.

    Tou tes les suspe nsions/t roues ind6pendantes existantes figurent dans Fatlas comme p rodu its naturels du

    proc6d6 d 6num 6ration. No us avons 6stabli le dimensionn emen t de sept suspensions possibles tir6es de

    cet atlas pour un ensemble donn6 de niveaux de performance et de volumes disponibles. La m6thode de

    dimensionnement retenue exige la s61ection de positions de pr6cision, la formulation d 6qua tions

    mod61isant le m6canisme et la r6solution d e ces 6quations p our les dimensions du m6canisme. Nous avons

    eu recours fi un nom bre inf6rieur au maximum permissible de positions de pr6cision pour chaque

    m6canisme afin d obt enir des concepts po uvan t 6tre incorpor6s d ans la volume disponible. U ne

    com paraiso n des m6canismes ainsi synth6tis6s est 6galement pr6sent6e.


Recommended