+ All Categories
Home > Documents > 3 Constant Failure Rate Models

3 Constant Failure Rate Models

Date post: 04-Mar-2016
Category:
Upload: eeitnizam
View: 257 times
Download: 1 times
Share this document with a friend
Description:
CFR
21
7/21/2019 3 Constant Failure Rate Models http://slidepdf.com/reader/full/3-constant-failure-rate-models 1/21  !"#$% ! "#$%&#% (  &)*+,- ,  &%- . "/-*$  0
Transcript
Page 1: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 1/21

 

!"#$%

!"#$%&#% ( &)*+,-

, &%- ."/-*$ 

0

Page 2: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 2/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

3.1  Exponential Reliability Function

3.2  Failure Modes

3.3  Poisson Process

3.4  Redundancy

Page 3: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 3/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

3.1  Exponential Reliability Function 

•  A failure distribution that has a constant failure rate (CFR) is called an

exponential probability distribution.

•  It is one of the most common failure distributions in reliability engineering

that is referred to the exponential, or CFR, model.

•  It should dominate during the useful life of a system or a component.

! Refer to the bathtub curve.

•  Assuming that ! (t ) = ! , t  ! 0, !  > 0, from Eq. 1.14: 

 R t ( ) = exp  !   !    "t ( ) d  "t 0

 # $%&

'()= e

!! t  ,   t  * 0   (3.1)

and,

F t ( ) =1! e!! t 

 

Page 4: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 4/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

Then

 f t ( ) =!dR t ( )

dt 

= ! e!! t 

 

•  From these relations: 

MTTF =!   e!! t 

dt 0

"

 #    =

e!! t 

!! 0

"

=

1

!   (3.2)

! 2= !   t  !

 1

"

#$

%

&'" e

!" t dt 

0

(

 )    =

1

" 2   (3.3)

Hence, the standard deviation is 1 / !  = MTTF.

Page 5: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 5/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

 R(t )

t

0.25 1.0 2.5 5.0

0

0.2

0.4

0.6

0.8

1.0

1.2

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

 F (t )

t

0.25 1.0 2.5 5.0

0

1.0

2.0

3.0

4.0

5.0

6.0

0 0.5 1 1.5 2

 f (t )

t

0.25 1.0 2.5 5.0

Page 6: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 6/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

•  For a given reliability R: 

 R t  R( ) = e

!! t  R= R  

Then, t  R  = !

1

! ln R   (3.4)

When R = 0.5, t  R  = t 

med   (3.5)

• 

The CFR model is memoryless, i.e., o  It is not dependent on how long the component has been operating,  

o  There is no aging and wear-out effect. 

•  In other words, a burn-in period has no subsequent effect on reliability and

will not improve the component’s reliability. 

Page 7: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 7/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

•  Example 3.1:

A microwave transmitter has exhibited a constant failure rate of

0.00034 failure per operating hour. Calculate:

(a)  MTTF,

(b)  median of the distribution,

(c)  reliability over 30 days of continuous operation,

(d)  design life for a reliability of 0.95. 

•  Find (a) MTTF; (b) t med; (c) R(30!24 hr); (d) t 0.95.

( Ans: 2941 hr; 2039 hr; 0.7829; 150.9 hr)

Page 8: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 8/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

3.2  Failure Modes 

•  Complex systems will fail through various causes, which can be

categorised based on failure modes.

•  If  Ri(t ) is the reliability function for the ith  failure mode, then, assuming

independence among the failure modes, the system reliability is

 R t 

( )=   R

i  t 

( )i=1

n

!   (3.6)

Page 9: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 9/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

•  Let ! i(t ) be the failure rate function for the ith failure mode. Then,

 Ri  t ( ) = exp  !   ! 

i  "t ( ) d  "t 

0

 # 

$

%&

'

() 

and  R t ( ) =   exp  !   ! i  "t ( ) d  "t 

0

 # $%&

'()

i=1

n

*  

= exp  !   ! i  "t ( )

i=1

n

#  d  "t 

0

 $ 

%

&'

(

)*

= exp  !   !    "t ( ) d  "t 0

 $ %&'

()*

 

where !   t ( ) =   ! i  t ( )

i=1

n

!   (3.7)

Page 10: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 10/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

10 

•  For the CFR model, if a system consists of n  independent, serially related

components each having a constant failure rate ! i, then

!    t ( ) = !   =   ! i

i=1

n

!  

and  R t ( ) = exp  !   !   d  "t 0

 # $%&

'()= e

!! t 

 

where MTTF =

1

! =

1

! i

i=1

n

!=

1

1 MTTFi

i=1

n

!, MTTFi

  =

1

! i

  (3.8)

•  If the components are also all identical, i.e., ! i = ! 1 for i = 1, 2, …, n, then

!   = n! 1

  and MTTFi  =

1

n! 1

  (3.10)

Page 11: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 11/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

11 

•  Example 3.2:

An aircraft engine consists of three modules having constant

failure rate of ! 1 = 0.002, ! 2 = 0.015 and ! 3 = 0.0025 failure peroperating hour. Calculate the corresponding MTTF.

( Ans: 51.28 hr)

Page 12: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 12/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

12 

•  Certain components that operate on a cyclical basis may fail on demand.

Hence, the failure rate in failures per clock unit of time is

! eff   = t I

t I + t 

O

! I + t O

t I + t 

O

! O +  p

t I + t 

O

  (3.10)

where ! I  = the average failure rate while idle;

! O = the average failure rate while operating;

 p  = the probability of failure on demand;

t I  = average length of the idle time period per cycle;t O  = average length of the operating time per cycle. 

•  A renewal process, in which a failed component is immediately replaced

with a new one, will cause the system to reach a steady CFR state.

Page 13: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 13/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

13 

•  Example 3.3:

An air conditioning compressor operates once for an average time

of 20 minutes each hour. While operating, it has experienced afailure rate of 0.01 failure per operating hour, and while idle has

experienced a dormant failure date of 0.0002 failure per idle hour.

The probability that the compressor fails on demand is 0.03.

Calculate the probability that the compressor will not fail over a

24-hour period.

•  Find ! eff . Then, find R(24).

( Ans: 0.9092)

Page 14: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 14/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

14 

•  If a failure will never occur prior to some specified time t 0, then t 0  is a

minimum or threshold time, also known as the guaranteed lifetime. Hence,

 f t ( ) = ! dR t ( )dt 

= ! e!!   t !t 0( ) , 0 < t 

0 " t  <#   (3.11)

 R t ( ) = e!!   t !t 0( )

,   t  > t 0   (3.12)

•  From Eq. 3.11 and Eq. 3.12, the failure rate is still ! , but the mean of the

distribution has shifted to a distance t 0. Hence,

MTTF =   ! te!!   t !t 

0( )dt 

t 0

!

 "    = t 0 +1

!   (3.13)

 R t med( ) = e

!!   t med!t 0( )= 0.5   (3.14)

t med

  = t 0 +

ln0.5

!! ,   t 

 R  = t 

0 +

ln R

!!   (3.15)

Page 15: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 15/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

15 

•  Example 3.4:

Let !  = 0.001 and t 0 = 200. Calculate the MTTR, t med, t 0.95 and " .

( Ans: 1200; 893.15; 251.3; 1000)

Page 16: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 16/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

16 

3.3  Poisson Process 

•  If a component having a constant failure rate !  is immediately repaired or

replaced upon failing, the number of failures observed over a time period t  has a Poisson distribution.

•  The probability of observing n  failures in time t   is given by the Poisson

 probability mass function pn(t ):

 pn  t ( ) =

e!! t 

! t ( )n

n!n = 0, 1, 2,…   (3.16)

•  The Poisson process is often used in inventory analysis to determine the

number of spare components when the time between failures is

exponential.

Page 17: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 17/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

17 

•  If S  spare components are available to support a continuous operation over

a time period t , then the cumulative probability of S   or fewer failures

occurring during time t  is

 RS   t ( ) =   p

n  t ( )

n=0

!   (3.17)

Page 18: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 18/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

18 

•  Example 3.5:

A specially designed welding machine has a non-repairable motor

with a constant failure rate of 0.05 failures per year. The companyhas purchased two spare motors. If the design life of the welding

machine is 10 years, what is the probability that the two spares

will be adequate?

•  Find Pr{ X  " 2} for !  = 0.05.( Ans: 0.9856)

Page 19: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 19/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

19 

3.4  Redundancy 

•  Consider the case of two independent and redundant components each

having the same constant failure rate ! , where the system failure will occuronly when both components have failed.

•  Since the probability that both components will fail by time t  is 1! e!! t ( )

2

 

(see Topic 5), the system reliability is given by,

 RS   t ( ) =1!   1! e

!! t ( )2

=1!   1!2e!! t 

+ e!2! t ( )

 

 RS   t ( ) = 2e!! t 

! e!2! t 

  (3.18)

Page 20: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 20/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

20 

•  Thus, the hazard rate in this case is (which is not constant ),

! S 

  t 

( )=

 f S    t ( )

 RS    t ( )  =

2! e!! t 

!2! e!2! t 

2e!! t !e!2! t   

! S   t ( ) =

!   1! e!! t ( )

1!   1

2 e

!! t    (3.19)

• 

The system MTTF can be determined as follows,

MTTFS   =   R

S   t ( ) dt 

0

!

 "    =   2e#! t  # e

#2! t ( )  dt 0

!

 "    =

2

! #  1

2! =

3

2!  

MTTFS   =

1.5

!   (3.20)

Page 21: 3 Constant Failure Rate Models

7/21/2019 3 Constant Failure Rate Models

http://slidepdf.com/reader/full/3-constant-failure-rate-models 21/21

Constant Failure Rate Models KKKP6324 Quality Systems and Reliability  

21 

•  Example 3.6:

For the microwave transmitter described in Example 3.1, a

second redundant transmitter is added. Calculate:

(a)  MTTF,

(b)  reliability over 30 days of continuous operation,

(c)  design life for a reliability of 0.95. 

•  Derive for the system RS (t ). Then, find (a) MTTFS ;(b) RS (30!24 hr); (c) t 0.95.

( Ans: 4412 hr; 0.9529; 744.4 hr)


Recommended