+ All Categories
Home > Documents > 3 Phase Production Separator C-321

3 Phase Production Separator C-321

Date post: 25-Sep-2015
Category:
Upload: tengku-nizarul-aslami
View: 79 times
Download: 5 times
Share this document with a friend
Description:
inspeksi
Popular Tags:
51
PRESSURE VESSELL ASSESSMENT REPORT 3 PHASE PRODUCTION SEPARATOR TAG NO. C-321 / SERIAL NO. 28829 PT. BINTANG ENERGI PRATAMA Document no. : DTP/2015/R. 1 02/05/15 Issued For Review FE BD 0 17/03/15 Issued For Review FE BD Revision Date Description Prepared Checked Approved PT BIRO KLASIFIKASI INDONESIA (BKI) PT DINAMIKA TEKNIK PERSADA
Transcript
  • PRESSURE VESSELL ASSESSMENT REPORT

    3 PHASE PRODUCTION SEPARATOR TAG NO. C-321 / SERIAL NO. 28829

    PT. BINTANG ENERGI PRATAMA

    Document no. : DTP/2015/R.

    1 02/05/15 Issued For Review FE BD 0 17/03/15 Issued For Review FE BD

    Revision Date Description Prepared Checked Approved

    PT BIRO KLASIFIKASI INDONESIA (BKI) PT DINAMIKA TEKNIK PERSADA

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    SUMMARY OF CHANGE SHEET

    Rev No Date Page Description Approve 0 17/03/15 All Issued For Review

    1 02/04/15 37 Assummed Initial Thickness for Shell

    Page 2 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    DAFTAR ISI

    1. PENDAHULUAN 4

    2. LINGKUP PEKERJAAN 6

    3. DATA UMUM 6

    4. HASIL INSPEKSI 7

    4.1 Inspeksi Visual 7

    4.2 Pengukuran ketebalan UT 8

    5. PERHITUNGAN TEKNIS 9

    5.1 Kondisi Desain - Nameplate 9

    6. MEKANISME KERUSAKAN &

    PERENCANAAN INSPEKSI 22

    6.1. Mekanisme kerusakan 22

    6.2. Perancenaan Inspeksi 28

    7. PENILAIAN KONDISI 34

    7.1 Ketebalan Yang Diperlukan 35

    7.2 Sisa Umur 36

    8.KESIMPULAN & SARAN 38

    LAMPIRAN A REPORT UT THICKNESS

    LAMPIRAN B PERHITUNGAN SISA UMUR

    LAMPIRAN C DRAWING

    TABLE OF CONTENTS

    1. INTRODUCTION 4

    2. SCOPE OF WORK 6

    3. GENERAL DATA 6

    4. INSPECTION RESULTS 7

    4.1 Visual Inspection 7

    4.2 UT Thickness Measurements 8

    5. ENGINEERING CALCULATIONS 9

    5.1 Design Condition - Nameplate 9

    6. DAMAGE MECHANISMS &

    INSPECTION PLAN 22

    6.1. Damage Mechanisms 22

    6.2. Inspection Plan 28

    7. CONDITION ASSESSMENT 34

    7.1 Thickness Requirements 35

    7.2 Remaining Life 36

    8. CONCLUSION &

    RECOMMENDATIONS 38

    APPENDIX A REPORT UT THICKNESS

    APPENDIX B REMAINING LIFE CALCULATION

    APPENDIX C DRAWING

    Page 3 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    1. PENDAHULUAN Laporan ini berisikan penilaian teknis untuk integritas mekanikal bejana tekan 3 Phase Production Separator Tag no. C-321. penilaian ini sesuai dengan peraturan dan code/standard yang berlaku:

    Peraturan Menteri pertambangan No. 06P/0746/M.PE/1991 tentang Pemeriksaan Keselamatan Kerja atas Instalasi Peralatan dan Teknis yang Dipergunakan dalam Pertambangan MIGAS dan Pengusahaan Sumber Daya Panas Bumi.

    SK Dir. Jen. MIGAS No 84.K/38/DJM/1998 tentang Pedoman dan Tata Cara Pemeriksaan Keselamatan Kerja atas Instalasi, Peralatan dan Teknik yang Dipergunakan dalam Usaha Pertambangan Minyak dan Gas Bumi dan Pengusahaan Sumber Daya Panas Bumi.

    Surat edaran Dir. Jen. MIGAS No. 12024/18.05/DMT/2013 perihal Pemeriksaan Peralatan Operasi Migas yang telah melewati umur desain (Design Life) dan yang tidak memiliki data.

    ASME BPV Section VIII, Rules for Construction of Pressure Vessels

    API Publication 510, Pressure Vessel Inspection Code: Inspection, Rating, Repair, and Alteration

    API 572, Inspection Practices for Pressure Vessels

    ASME PCC 3, Inspection Planning Using Risk-Based Methods

    API 571, Damage Mechanisms Affecting Fixed Equipment in the Refining Industry

    API 581, Risk-Based Inspection Technology

    1. INTRODUCTION This report outlines the engineering calculations for mechanical integrity of pressure vessels 3 Phase Production Separator Tag no. C-321. This report according to applicable code/standards.

    Peraturan Menteri pertambangan No. 06P/0746/M.PE/1991 tentang Pemeriksaan Keselamatan Kerja atas Instalasi Peralatan dan Teknis yang Dipergunakan dalam Pertambangan MIGAS dan Pengusahaan Sumber Daya Panas Bumi.

    SK Dir. Jen. MIGAS No 84.K/38/DJM/1998 tentang Pedoman dan Tata Cara Pemeriksaan Keselamatan Kerja atas Instalasi, Peralatan dan Teknik yang Dipergunakan dalam Usaha Pertambangan Minyak dan Gas Bumi dan Pengusahaan Sumber Daya Panas Bumi.

    Surat edaran Dir. Jen. MIGAS No. 12024/18.05/DMT/2013 perihal Pemeriksaan Peralatan Operasi Migas yang telah melewati umur desain (Design Life) dan yang tidak memiliki data.

    ASME BPV Section VIII, Rules for Construction of Pressure Vessels

    API Publication 510, Pressure Vessel Inspection Code: Inspection, Rating, Repair, and Alteration

    API 572, Inspection Practices for Pressure Vessels

    ASME PCC 3, Inspection Planning Using Risk-Based Methods

    API 571, Damage Mechanisms Affecting Fixed Equipment in the Refining Industry

    API 581, Risk-Based Inspection Technology

    Page 4 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau ASME BPV section V, Nondestructive

    Examination.

    Perhitungan teknis diperlukan untuk menentukan integritas mekanik bejana tekan yaitu :

    Tekanan kerja maksimal yang diijinkan (MAWP) pada shell, head dan nozel-nozel.

    ASME BPV section V, Nondestructive Examination.

    The engineering calculations required to determine the mechanical integrity of pressure vessel are:

    Maximum allowable working pressure (MAWP) for shell, head and nozzles

    Page 5 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    2. LINGKUP PEKERJAAN MAWP untuk suatu operasi bejana tekan didasarkan pada perhitungan yang ditentukan dengan menggunakan edisi terbaru yang berlaku dari kode ASME atau kode konstruksi untuk bejana tekan yang dibangun. MAWP dari hasil perhitungan ini tidak boleh lebih besar dari MAWP desain awal. Perhitungan dapat dilakukan jika disain parameter berikut memenuhi persyaratan code yang digunakan: head, shell, dan nozzle, spesifikasi material, tegangan yang diijinkan, efisiensi sambungan, persyaratan inspeksi yang diterima.

    2. SCOPE OF WORK The MAWP for the continued use of a pressure vessel shall be based on computations that are determined using the latest applicable edition of the ASME Code or the construction code to which the vessel was built. The resulting MAWP from these computations shall not be greater than the original MAWP. Computations may be made only if the following essential details comply with the applicable requirements of the code being used: head, shell, and nozzle reinforcement designs; material specifications; allowable stresses; weld efficiencies; inspection acceptance requirements.

    3. DATA UMUM

    Data bejana tekan secara umum dideskripsikan

    pada nameplate sebagai berikut :

    3. GENERAL DATA

    General pressure vesssel data are described at

    nameplate as follow :

    User PT. Bintang Energi Pratama

    Operation 3 Phase Production Separator

    Item no. C-321

    Year Built 2006

    MAWP 600 psig nameplate

    Material SA 516 70

    Dimension 72 OD x 276 (S/S)

    Code ASME Sec. VIII Div. 1

    RT/Joint Eff. Full / 1.00

    Page 6 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    4. HASIL INSPEKSI

    4.1 Inspeksi Visual Inspeksi visual dilakukan untuk memastikan kondisi pada bejana tekan (meliputi flange, shell, heads, nozzles cat, coating, penyangga, dan safety devices) oleh PV Inspector. Secara umum ditunjukkan gambar berikut.

    4. INSPECTION RESULTS

    4.1 Visual Inspection The visual inspection performed to make sure that PV condition (flange, shell, heads, nozzles, painting, coating, support and safety devices) by Inspector. Generally, visual inspection of pressure vessel shown in the following pictures.

    No. Inspection Task Photograph Remarks

    1 Shell, head, support, nozzles, and ladder.

    Generally, this PV is in good condition.

    2 Pressure and Temperature Gauge

    N/A No temperature and pressure gauge are installed at this PV.

    3 PSV N/A No PSV found at this Pressure Vessel.

    4 Nameplate

    Nameplate is installed at this PV, and it is in good condition.

    Page 7 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    4.2 Pengukuran ketebalan UT API 510 memungkinkan inspeksi on-stream dilakukan sebagai pengganti inspeksi internal pada kondisi tertentu. Pengukuran ketebalan dinding bejana tekan, head, dan nozzle diperlukan pada setiap pemeriksaan bejana tekan. Jumlah pengambilan titik pengukuran tebal yang dilakukan pada bejana tekan harus memenuhi/mewakili persyaratan dalam pemeriksaan internal. Jumlah dan lokasi titik pengukuran ketebalan harus mempertimbangkan hasil dari pemeriksaan sebelumnya, jika tersedia, dan potensi konsekuensi akibat kebocoran. Secara umum, bejana tekan dengan laju korosi rendah akan memerlukan lokasi pengukuran ketebalan lebih sedikit dibandingkan dengan bejana tekan dengan laju korosi tinggi.

    Hasil pengujian ketebalan UT dirangkum dalam Lampiran A.

    Tabel dibawah menunjukkan nilai ketebalan minimum pada tiap bagian bejana tekan yang akan digunakan sebagai masukan dalam perhitungan teknis pada bab selanjutnya.

    4.2 UT Thickness Measurements API 510 permits an on-stream inspection to be conducted in lieu of an internal inspection under certain conditions. Thickness measurements of the vessel walls, heads, and nozzles are usually required at each complete vessel inspection.

    When this approach is used, a representative number of thickness measurements must be conducted on the vessel to satisfy the requirements for an internal inspection. A decision on the number and location of thickness measurements should consider results from previous inspections, if available, and the potential consequences of loss of containment. In general, vessels with low corrosion rates will require fewer thickness measurement locations compared to vessels with higher corrosion rates. UT thickness results were summarised in Appendix A.

    Minimum actual thickness each part of pressure vessel which used to perform engineering calculation at next chapter, are shown at table below.

    Component Min. Actual Thickness

    (mm)

    Head I - Left 34.35

    Shell 1 33.12

    Shell 2 32.84

    Shell 3 32.48

    Shell 4 33.05

    Head II - Right 34.72

    Thickness actual (min.) data used for calculation

    Page 8 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    5. PERHITUNGAN TEKNIS 5. ENGINEERING CALCULATIONS

    5.1 Kondisi Desain - Nameplate 5.1 Design Condition - Nameplate

    PV Elite Vessel Analysis Program: Input Data Design Internal Pressure (for Hydrotest) 600.00 psig Design Internal Temperature 300 F Type of Hydrotest UG-99(b) Hydrotest Position Horizontal Projection of Nozzle from Vessel Top 0.0000 in Projection of Nozzle from Vessel Bottom 0.0000 in Minimum Design Metal Temperature 50 F Type of Construction Welded Special Service None Degree of Radiography RT 1 Use Higher Longitudinal Stresses (Flag) Y Select t for Internal Pressure (Flag) N Select t for External Pressure (Flag) N Select t for Axial Stress (Flag) N Select Location for Stiff. Rings (Flag) N Consider Vortex Shedding N Perform a Corroded Hydrotest N Is this a Heat Exchanger No User Defined Hydro. Press. (Used if > 0) 0.0000 psig

    Page 9 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau User defined MAWP 0.0000 psig User defined MAPnc 0.0000 psig Load Case 1 NP+EW+WI+FW+BW Load Case 2 NP+EW+EE+FS+BS Load Case 3 NP+OW+WI+FW+BW Load Case 4 NP+OW+EQ+FS+BS Load Case 5 NP+HW+HI Load Case 6 NP+HW+HE Load Case 7 IP+OW+WI+FW+BW Load Case 8 IP+OW+EQ+FS+BS Load Case 9 EP+OW+WI+FW+BW Load Case 10 EP+OW+EQ+FS+BS Load Case 11 HP+HW+HI Load Case 12 HP+HW+HE Load Case 13 IP+WE+EW Load Case 14 IP+WF+CW Load Case 15 IP+VO+OW Load Case 16 IP+VE+EW Load Case 17 NP+VO+OW Load Case 18 FS+BS+IP+OW Load Case 19 FS+BS+EP+OW Wind Design Code ASCE-7 93 Basic Wind Speed [V] 70.000 mile/hr Surface Roughness Category C: Open Terrain Importance Factor 1.0 Type of Surface Moderately Smooth Base Elevation 0.0000 in Percent Wind for Hydrotest 33.0 Using User defined Wind Press. Vs Elev. N Damping Factor (Beta) for Wind (Ope) 0.0100 Damping Factor (Beta) for Wind (Empty) 0.0000 Damping Factor (Beta) for Wind (Filled) 0.0000 Seismic Design Code UBC 94 UBC Seismic Zone (1=1,2=2a,3=2b,4=3,5=4) 0.000 UBC Importance Factor 1.000 UBC Soil Type S1 UBC Horizontal Force Factor 3.000 UBC Percent Seismic for Hydrotest 0.000 Design Nozzle for Des. Press. + St. Head Y Consider MAP New and Cold in Noz. Design N Consider External Loads for Nozzle Des. Y Use ASME VIII-1 Appendix 1-9 N Material Database Year Current w/Addenda or Code Year Configuration Directives: Do not use Nozzle MDMT Interpretation VIII-1 01-37 No Use Table G instead of exact equation for "A" Yes Shell Head Joints are Tapered Yes Compute "K" in corroded condition Yes Use Code Case 2286 No Use the MAWP to compute the MDMT Yes Using Metric Material Databases, ASME II D No Complete Listing of Vessel Elements and Details: Element From Node 10 Element To Node 20 Element Type Elliptical Description Head I - Left Distance "FROM" to "TO" 2.0000 in

    Page 10 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau Element Outside Diameter 72.000 in Element Thickness 34.350 mm Internal Corrosion Allowance 3.1750 mm Nominal Thickness 0.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 600.00 psig Design Temperature Internal Pressure 300 F Design External Pressure 0.0000 psig Design Temperature External Pressure 0 F Effective Diameter Multiplier 1.2 Material Name SA-516 70 Allowable Stress, Ambient 20000. psi Allowable Stress, Operating 20000. psi Allowable Stress, Hydrotest 26000. psi Material Density 0.2800 lb/in P Number Thickness 31.750 mm Yield Stress, Operating 33600. psi UCS-66 Chart Curve Designation B External Pressure Chart Name CS-2 UNS Number K02700 Product Form Plate Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 -------------------------------------------------------------------- Element From Node 20 Element To Node 30 Element Type Cylinder Description Shell 1 Distance "FROM" to "TO" 72.000 in Element Outside Diameter 72.000 in Element Thickness 33.120 mm Internal Corrosion Allowance 3.1750 mm Nominal Thickness 0.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 600.00 psig Design Temperature Internal Pressure 300 F Design External Pressure 0.0000 psig Design Temperature External Pressure 0 F Effective Diameter Multiplier 1.2 Material Name SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Element From Node 20 Detail Type Nozzle Detail ID N4 3" Dist. from "FROM" Node / Offset dist 5.0000 in Nozzle Diameter 3.0 in. Nozzle Schedule None Nozzle Class 300 Layout Angle 90.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 lbf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B Element From Node 20 Detail Type Nozzle Detail ID N3 4" Dist. from "FROM" Node / Offset dist 15.000 in Nozzle Diameter 4.0 in. Nozzle Schedule None Nozzle Class 300

    Page 11 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau Layout Angle 270.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 lbf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B -------------------------------------------------------------------- Element From Node 30 Element To Node 40 Element Type Cylinder Description Shell 2 Distance "FROM" to "TO" 72.000 in Element Outside Diameter 72.000 in Element Thickness 32.840 mm Internal Corrosion Allowance 3.1750 mm Nominal Thickness 0.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 600.00 psig Design Temperature Internal Pressure 300 F Design External Pressure 0.0000 psig Design Temperature External Pressure 0 F Effective Diameter Multiplier 1.2 Material Name SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Element From Node 30 Detail Type Nozzle Detail ID N1 8" Dist. from "FROM" Node / Offset dist 12.000 in Nozzle Diameter 8.0 in. Nozzle Schedule None Nozzle Class 300 Layout Angle 270.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 lbf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B -------------------------------------------------------------------- Element From Node 40 Element To Node 50 Element Type Cylinder Description Shell 3 Distance "FROM" to "TO" 72.000 in Element Outside Diameter 72.000 in Element Thickness 32.480 mm Internal Corrosion Allowance 3.1750 mm Nominal Thickness 0.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 600.00 psig Design Temperature Internal Pressure 300 F Design External Pressure 0.0000 psig Design Temperature External Pressure 0 F Effective Diameter Multiplier 1.2 Material Name SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 -------------------------------------------------------------------- Element From Node 50 Element To Node 60 Element Type Cylinder

    Page 12 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau Description Shell 4 Distance "FROM" to "TO" 60.000 in Element Outside Diameter 72.000 in Element Thickness 33.050 mm Internal Corrosion Allowance 3.1750 mm Nominal Thickness 0.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 600.00 psig Design Temperature Internal Pressure 300 F Design External Pressure 0.0000 psig Design Temperature External Pressure 0 F Effective Diameter Multiplier 1.2 Material Name SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 -------------------------------------------------------------------- Element From Node 60 Element To Node 70 Element Type Elliptical Description Head II - Right Distance "FROM" to "TO" 2.0000 in Element Outside Diameter 72.000 in Element Thickness 34.720 mm Internal Corrosion Allowance 3.1750 mm Nominal Thickness 0.0000 mm External Corrosion Allowance 0.0000 mm Design Internal Pressure 600.00 psig Design Temperature Internal Pressure 300 F Design External Pressure 0.0000 psig Design Temperature External Pressure 0 F Effective Diameter Multiplier 1.2 Material Name SA-516 70 Efficiency, Longitudinal Seam 1.0 Efficiency, Circumferential Seam 1.0 Elliptical Head Factor 2.0 Element From Node 60 Detail Type Nozzle Detail ID N2 8" Dist. from "FROM" Node / Offset dist 20.000 in Nozzle Diameter 8.0 in. Nozzle Schedule None Nozzle Class 300 Layout Angle 90.0 Blind Flange (Y/N) N Weight of Nozzle ( Used if > 0 ) 0.0000 lbf Grade of Attached Flange GR 1.1 Nozzle Matl SA-106 B Element Thickness, Pressure, Diameter and Allowable Stress : | | Int. Press | Nominal | Total Corr| Element | Allowable | From| To | + Liq. Hd | Thickness | Allowance | Diameter | Stress(SE)| | | psig | mm | mm | in | psi | --------------------------------------------------------------------------- Head I - L| 600.00 | ... | 3.1750 | 72.000 | 20000. | Shell 1| 600.00 | ... | 3.1750 | 72.000 | 20000. | Shell 2| 600.00 | ... | 3.1750 | 72.000 | 20000. | Shell 3| 600.00 | ... | 3.1750 | 72.000 | 20000. | Shell 4| 600.00 | ... | 3.1750 | 72.000 | 20000. | Head II -| 600.00 | ... | 3.1750 | 72.000 | 20000. | Element Required Thickness and MAWP :

    Page 13 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau | | Design | M.A.W.P. | M.A.P. | Minimum | Required | From| To | Pressure | Corroded | New & Cold | Thickness | Thickness | | | psig | psig | psig | mm | mm | ---------------------------------------------------------------------------- Head I - L| 600.000 | 691.295 | 777.602 | 34.3500 | 29.7622 | Shell 1| 600.000 | 663.659 | 735.059 | 33.1200 | 30.2817 | Shell 2| 600.000 | 657.371 | 728.754 | 32.8400 | 30.2817 | Shell 3| 600.000 | 649.290 | 720.650 | 32.4800 | 30.2817 | Shell 4| 600.000 | 662.087 | 733.483 | 33.0500 | 30.2817 | Head II -| 600.000 | 699.615 | 786.275 | 34.7200 | 29.7621 | Minimum 649.290 720.649 MAWP: 649.290 psig, limited by: Shell 3. Internal Pressure Calculation Results : ASME Code, Section VIII, Division 1, 2013 Elliptical Head From 10 To 20 SA-516 70 , UCS-66 Crv. B at 300 F Head I - Left Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*Do*Kcor)/(2*S*E+2*P*(Kcor-0.1)) per Appendix 1-4 (c) = (600.000*72.0000*0.995)/(2*20000.00*1.00+2*600.000*(0.995-0.1)) = 26.5872 + 3.1750 = 29.7622 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (2*S*E*t)/(Kcor*Do-2*t*(Kcor-0.1)) per Appendix 1-4 (c) = (2*20000.00*1.00*31.1750)/(0.995*72.0000-2*31.1750*(1.00-0.1)) = 706.810 psig Maximum Allowable Pressure, New and Cold [MAPNC]: = (2*S*E*t)/(K*Do-2*t*(K-0.1)) per Appendix 1-4 (c) = (2*20000.00*1.00*34.3500)/(1.000*72.0000-2*34.3500*(1.000-0.1)) = 777.602 psig Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Kcor*Do-2*t*(Kcor-0.1)))/(2*E*t) = (600.000*(0.995*72.0000-2*31.1750*(0.995-0.1)))/(2*1.00*31.1750) = 16977.678 psi Straight Flange Required Thickness: = (P*Ro)/(S*E+0.4*P) + ca per Appendix 1-1 (a)(1) = (600.000*36.0000)/(20000.00*1.00+0.4*600.000)+3.175 = 30.282 mm Straight Flange Maximum Allowable Working Pressure: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00 * 1.00 * 31.1750 )/(36.0000 - 0.4 * 31.1750 ) = 691.295 psig Factor K, corroded condition [Kcor]: = ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))2)/6 = ( 2 + ( 1766.450/( 2 * 443.200 ))2)/6 = 0.995233 Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 8.143 % Note: Please Check Requirements of UCS-79 as Elongation is > 5%. MDMT Calculations in the Knuckle Portion: Govrn. thk, tg = 34.350 , tr = 28.710 , c = 3.1750 mm , E* = 1.00

    Page 14 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau Stress Ratio = tr * (E*)/(tg - c) = 0.921 , Temp. Reduction = 8 F Min Metal Temp. w/o impact per UCS-66, Curve B 46 F Min Metal Temp. at Required thickness (UCS 66.1) 38 F MDMT Calculations in the Head Straight Flange: Govrn. thk, tg = 34.350 , tr = 29.305 , c = 3.1750 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.940 , Temp. Reduction = 6 F Min Metal Temp. w/o impact per UCS-66, Curve B 46 F Min Metal Temp. at Required thickness (UCS 66.1) 40 F Cylindrical Shell From 20 To 30 SA-516 70 , UCS-66 Crv. B at 300 F Shell 1 Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*Ro) / (S*E+0.4*P) per Appendix 1-1 (a)(1) = (600.000*36.0000)/(20000.00*1.00+0.4*600.000) = 27.1067 + 3.1750 = 30.2817 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*1.00*29.9450)/(36.0000-0.4*29.9450) = 663.659 psig Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*1.00*33.1200)/(36.0000-0.4*33.1200) = 735.059 psig Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Ro-0.4*t))/(E*t) = (600.000*((36.0000-0.4*29.9450))/(1.00*29.9450) = 18081.588 psi Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 1.844 % Minimum Design Metal Temperature Results: Govrn. thk, tg = 33.120 , tr = 29.305 , c = 3.1750 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.979 , Temp. Reduction = 2 F Min Metal Temp. w/o impact per UCS-66, Curve B 44 F Min Metal Temp. at Required thickness (UCS 66.1) 42 F Cylindrical Shell From 30 To 40 SA-516 70 , UCS-66 Crv. B at 300 F Shell 2 Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*Ro) / (S*E+0.4*P) per Appendix 1-1 (a)(1) = (600.000*36.0000)/(20000.00*1.00+0.4*600.000) = 27.1067 + 3.1750 = 30.2817 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*1.00*29.6650)/(36.0000-0.4*29.6650) = 657.371 psig

    Page 15 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*1.00*32.8400)/(36.0000-0.4*32.8400) = 728.754 psig Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Ro-0.4*t))/(E*t) = (600.000*((36.0000-0.4*29.6650))/(1.00*29.6650) = 18254.521 psi Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 1.829 % Minimum Design Metal Temperature Results: Govrn. thk, tg = 32.840 , tr = 29.305 , c = 3.1750 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.988 , Temp. Reduction = 1 F Min Metal Temp. w/o impact per UCS-66, Curve B 44 F Min Metal Temp. at Required thickness (UCS 66.1) 42 F Cylindrical Shell From 40 To 50 SA-516 70 , UCS-66 Crv. B at 300 F Shell 3 Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*Ro) / (S*E+0.4*P) per Appendix 1-1 (a)(1) = (600.000*36.0000)/(20000.00*1.00+0.4*600.000) = 27.1067 + 3.1750 = 30.2817 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*1.00*29.3050)/(36.0000-0.4*29.3050) = 649.290 psig Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*1.00*32.4800)/(36.0000-0.4*32.4800) = 720.650 psig Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Ro-0.4*t))/(E*t) = (600.000*((36.0000-0.4*29.3050))/(1.00*29.3050) = 18481.719 psi Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 1.808 % Minimum Design Metal Temperature Results: Govrn. thk, tg = 32.480 , tr = 29.305 , c = 3.1750 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 1.000 , Temp. Reduction = 0 F Min Metal Temp. w/o impact per UCS-66, Curve B 43 F Cylindrical Shell From 50 To 60 SA-516 70 , UCS-66 Crv. B at 300 F Shell 4 Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*Ro) / (S*E+0.4*P) per Appendix 1-1 (a)(1) = (600.000*36.0000)/(20000.00*1.00+0.4*600.000) = 27.1067 + 3.1750 = 30.2817 mm

    Page 16 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*1.00*29.8750)/(36.0000-0.4*29.8750) = 662.087 psig Maximum Allowable Pressure, New and Cold [MAPNC]: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00*1.00*33.0500)/(36.0000-0.4*33.0500) = 733.483 psig Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Ro-0.4*t))/(E*t) = (600.000*((36.0000-0.4*29.8750))/(1.00*29.8750) = 18124.520 psi Percent Elongation per UCS-79 (50*tnom/Rf)*(1-Rf/Ro) 1.840 % Minimum Design Metal Temperature Results: Govrn. thk, tg = 33.050 , tr = 29.305 , c = 3.1750 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.981 , Temp. Reduction = 2 F Min Metal Temp. w/o impact per UCS-66, Curve B 44 F Min Metal Temp. at Required thickness (UCS 66.1) 42 F Elliptical Head From 60 To 70 SA-516 70 , UCS-66 Crv. B at 300 F Head II - Right Material UNS Number: K02700 Required Thickness due to Internal Pressure [tr]: = (P*Do*Kcor)/(2*S*E+2*P*(Kcor-0.1)) per Appendix 1-4 (c) = (600.000*72.0000*0.995)/(2*20000.00*1.00+2*600.000*(0.995-0.1)) = 26.5871 + 3.1750 = 29.7621 mm Max. Allowable Working Pressure at given Thickness, corroded [MAWP]: = (2*S*E*t)/(Kcor*Do-2*t*(Kcor-0.1)) per Appendix 1-4 (c) = (2*20000.00*1.00*31.5450)/(0.995*72.0000-2*31.5450*(1.00-0.1)) = 715.469 psig Maximum Allowable Pressure, New and Cold [MAPNC]: = (2*S*E*t)/(K*Do-2*t*(K-0.1)) per Appendix 1-4 (c) = (2*20000.00*1.00*34.7200)/(1.000*72.0000-2*34.7200*(1.000-0.1)) = 786.275 psig Actual stress at given pressure and thickness, corroded [Sact]: = (P*(Kcor*Do-2*t*(Kcor-0.1)))/(2*E*t) = (600.000*(0.995*72.0000-2*31.5450*(0.995-0.1)))/(2*1.00*31.5450) = 16772.209 psi Straight Flange Required Thickness: = (P*Ro)/(S*E+0.4*P) + ca per Appendix 1-1 (a)(1) = (600.000*36.0000)/(20000.00*1.00+0.4*600.000)+3.175 = 30.282 mm Straight Flange Maximum Allowable Working Pressure: = (S*E*t)/(Ro-0.4*t) per Appendix 1-1 (a)(1) = (20000.00 * 1.00 * 31.5450 )/(36.0000 - 0.4 * 31.5450 ) = 699.615 psig Factor K, corroded condition [Kcor]: = ( 2 + ( Inside Diameter/( 2 * Inside Head Depth ))2)/6 = ( 2 + ( 1765.710/( 2 * 443.015 ))2)/6 = 0.995231

    Page 17 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau Percent Elong. per UCS-79, VIII-1-01-57 (75*tnom/Rf)*(1-Rf/Ro) 8.229 % Note: Please Check Requirements of UCS-79 as Elongation is > 5%. MDMT Calculations in the Knuckle Portion: Govrn. thk, tg = 34.720 , tr = 28.710 , c = 3.1750 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.910 , Temp. Reduction = 9 F Min Metal Temp. w/o impact per UCS-66, Curve B 46 F Min Metal Temp. at Required thickness (UCS 66.1) 37 F MDMT Calculations in the Head Straight Flange: Govrn. thk, tg = 34.720 , tr = 29.305 , c = 3.1750 mm , E* = 1.00 Stress Ratio = tr * (E*)/(tg - c) = 0.929 , Temp. Reduction = 7 F Min Metal Temp. w/o impact per UCS-66, Curve B 46 F Min Metal Temp. at Required thickness (UCS 66.1) 39 F Hydrostatic Test Pressure Results: Pressure per UG99b = 1.3 * M.A.W.P. * Sa/S 844.077 psig Pressure per UG99b[36] = 1.3 * Design Pres * Sa/S 780.000 psig Pressure per UG99c = 1.3 * M.A.P. - Head(Hyd) 934.244 psig Pressure per UG100 = 1.1 * M.A.W.P. * Sa/S 714.219 psig Pressure per PED = 1.43 * MAWP 928.485 psig UG-99(b), Test Pressure Calculation: = Test Factor * MAWP * Stress Ratio = 1.3 * 649.290 * 1.000 = 844.077 psig Horizontal Test performed per: UG-99b Please note that Nozzle, Shell, Head, Flange, etc MAWPs are all considered when determining the hydrotest pressure for those test types that are based on the MAWP of the vessel. Stresses on Elements due to Test Pressure: From To Stress Allowable Ratio Pressure ---------------------------------------------------------------------- Head I - Left 21776.6 26000.0 0.838 846.68 Shell 1 23037.0 26000.0 0.886 846.68 Shell 2 23236.3 26000.0 0.894 846.68 Shell 3 23497.6 26000.0 0.904 846.68 Shell 4 23086.5 26000.0 0.888 846.68 Head II - Right 21536.4 26000.0 0.828 846.68 ---------------------------------------------------------------------- Stress ratios for Nozzle and Pad Materials: Description Pad/Nozzle Ambient Operating ratio ---------------------------------------------------------------------- N4 3" Nozzle 17100.00 17100.00 1.000 N4 3" Pad 20000.00 20000.00 1.000 N3 4" Nozzle 17100.00 17100.00 1.000 N3 4" Pad 20000.00 20000.00 1.000 N1 8" Nozzle 17100.00 17100.00 1.000 N1 8" Pad 20000.00 20000.00 1.000 N2 8" Nozzle 17100.00 17100.00 1.000 N2 8" Pad 20000.00 20000.00 1.000 ---------------------------------------------------------------------- Minimum 1.000

    Page 18 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau Stress ratios for Vessel Elements: Description Ambient Operating ratio ---------------------------------------------------------------------- Head I - Left 20000.00 20000.00 1.000 Shell 1 20000.00 20000.00 1.000 Shell 2 20000.00 20000.00 1.000 Shell 3 20000.00 20000.00 1.000 Shell 4 20000.00 20000.00 1.000 Head II - Right 20000.00 20000.00 1.000 ---------------------------------------------------------------------- Minimum 1.000 Elements Suitable for Internal Pressure. Nozzle Flange MAWP Results : Nozzle ----- Flange Rating Description Operating Ambient Temperature Class Grade|Group psig psig F ---------------------------------------------------------------------------- N4 3" 655.0 740.0 300 300 GR 1.1 N3 4" 655.0 740.0 300 300 GR 1.1 N1 8" 655.0 740.0 300 300 GR 1.1 N2 8" 655.0 740.0 300 300 GR 1.1 ---------------------------------------------------------------------------- Minimum Rating 655.000 740.000 psig (for Core Elements) Note: ANSI Ratings are per ANSI/ASME B16.5 2009 Edition Nozzle Schedule: Nominal Flange Noz. Wall Re-Pad Cut Description Size Sch/Type O/Dia Thk ODia Thick Length in. Cls in. mm mm mm mm ------------------------------------------------------------------------------ N4 3" 3.000 300 WNF 3.000 6.120 8.00 33.160 110.14 N3 4" 4.000 300 WNF 4.000 12.720 8.00 33.200 110.79 N1 8" 8.000 300 WNF 8.000 13.400 12.00 32.230 114.91 N2 8" 8.000 300 WNF 8.000 13.080 12.00 32.200 226.54 General Notes for the above table: The Cut Length is the Outside Projection + Inside Projection + Drop + In Plane Shell Thickness. This value does not include weld gaps, nor does it account for shrinkage. In the case of Oblique Nozzles, the Outside Diameter must be increased. The Re-Pad WIDTH around the nozzle is calculated as follows: Width of Pad = (Pad Outside Dia. (per above) - Nozzle Outside Dia.)/2 For hub nozzles, the thickness and diameter shown are those of the smaller and thinner section. Nozzle Material and Weld Fillet Leg Size Details: Shl Grve Noz Shl/Pad Pad OD Pad Grve Inside Nozzle Material Weld Weld Weld Weld Weld mm mm mm mm mm ------------------------------------------------------------------------------ N4 3" SA-106 B 12.700 7.620 15.240 254.000 - N3 4" SA-106 B 12.700 12.700 25.400 254.000 - N1 8" SA-106 B 32.840 12.700 25.400 660.400 -

    Page 19 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau N2 8" SA-106 B 34.719 12.700 25.400 711.200 - Note: The Outside projections below do not include the flange thickness. Nozzle Miscellaneous Data: Elevation/Distance Layout Projection Installed In Nozzle From Datum Angle Outside Inside Component in deg. mm mm ---------------------------------------------------------------------------- N4 3" 5.000 90.00 76.20 0.00 Shell 1 N3 4" 15.000 270.00 76.20 0.00 Shell 1 N1 8" 84.000 270.00 76.20 0.00 Shell 2 N2 8" 90.00 152.40 0.00 Head II - Ri Nozzle Calculation Summary: Description MAWP Ext MAPNC UG45 [tr] Weld Areas or psig psig Path Stresses --------------------------------------------------------------------------- N4 3" 663.66 ... ... OK 4.80 OK Passed N3 4" 663.66 ... ... OK 5.02 OK Passed N1 8" 657.37 ... ... OK 7.16 OK Passed N2 8" 675.55 ... ... OK 7.16 OK Passed N2 8" 689.90 ... ... OK 7.16 OK Passed --------------------------------------------------------------------------- Min. - Nozzles 657.37 N1 8" Min. Shell&Flgs 649.29 40 50 720.65 Computed Vessel M.A.W.P. 649.29 psig Note: MAWPs (Internal Case) shown above are at the High Point. Check the Spatial Relationship between the Nozzles From Node Nozzle Description X Coordinate, Layout Angle, Dia. Limit 20 N4 3" 7.000 90.000 26.579 20 N3 4" 17.000 270.000 22.863 30 N1 8" 86.000 270.000 26.687 60 N2 8" 0.000 90.000 13.940 The nozzle spacing is computed by the following: = Sqrt( ll + lc ) where ll - Arc length along the inside vessel surface in the long. direction. lc - Arc length along the inside vessel surface in the circ. direction If any interferences/violations are found, they will be noted below. No interference violations have been detected ! ASME Code, Section VIII, Division 1, 2013 Diameter Spec : 72.000 in OD Vessel Design Length, Tangent to Tangent 280.00 in Specified Datum Line Distance 2.00 in Shell Material SA-516 70 Nozzle Material SA-106 B Re-Pad Material SA-516 70 Internal Design Temperature 300 F Internal Design Pressure 600.000 psig

    Page 20 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau External Design Temperature 0 F Maximum Allowable Working Pressure 649.290 psig Hydrostatic Test Pressure 844.077 psig Required Minimum Design Metal Temperature 50 F Warmest Computed Minimum Design Metal Temperature 43 F Wind Design Code ASCE-93 Earthquake Design Code UBC-94 Element Pressures and MAWP: psig Element Desc | Design Pres. | External | M.A.W.P | Corrosion | + Stat. head | Pressure | | Allowance --------------------------------------------------------------------- Head I - Left 600.000 0.000 691.295 3.1750 Shell 1 600.000 0.000 663.659 3.1750 Shell 2 600.000 0.000 657.371 3.1750 Shell 3 600.000 0.000 649.290 3.1750 Shell 4 600.000 0.000 662.087 3.1750 Head II - Right 600.000 0.000 699.615 3.1750 Element "To" Elev Length Element Thk R e q d T h k Joint Eff Type in in mm Int. Ext. Long Circ ----------------------------------------------------------------------- Ellipse 0.0 2.0 34.4 29.8 4.7 1.00 1.00 Cylinder 72.0 72.0 33.1 30.3 No Calc 1.00 1.00 Cylinder 144.0 72.0 32.8 30.3 No Calc 1.00 1.00 Cylinder 216.0 72.0 32.5 30.3 No Calc 1.00 1.00 Cylinder 276.0 60.0 33.0 30.3 No Calc 1.00 1.00 Ellipse 278.0 2.0 34.7 29.8 4.7 1.00 1.00 Element thicknesses are shown as Nominal if specified, otherwise are Minimum Weights: Fabricated - Bare W/O Removable Internals 28782.1 lbm Shop Test - Fabricated + Water ( Full ) 70185.2 lbm Shipping - Fab. + Rem. Intls.+ Shipping App. 28782.1 lbm Erected - Fab. + Rem. Intls.+ Insul. (etc) 28782.1 lbm Empty - Fab. + Intls. + Details + Wghts. 28782.1 lbm Operating - Empty + Operating Liquid (No CA) 28782.1 lbm Field Test - Empty Weight + Water (Full) 70185.2 lbm

    Page 21 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    6. MEKANISME KERUSAKAN & PERENCANAAN INSPEKSI

    6.1. Mekanisme kerusakan Bejana tekan rentan terhadap berbagai jenis kerusakan oleh beberapa mekanisme. Jenis kerusakan umum dan mekanisme adalah sebagai berikut:

    A. General and local metal loss: Sulfidation; Oxidation; Microbiologically induced corrosion; Naphthenic acid corrosion; Erosion/erosion-corrosion; Galvanic.

    B. Surface connected cracking: Fatigue; Caustic stress corrosion cracking; Sulfide stress corrosion cracking. C. Subsurface cracking: Hydrogen induced cracking.

    D. Microfissuring/microvoid formation: High temperature hydrogen attack; Creep.

    E. Metallurgical changes: Graphitization; Temper embrittlement.

    F. Blistering: Hydrogen blistering.

    G. Dimensional changes: Creep and stress rupture Thermal.

    6. DAMAGE MECHANISMS & INSPECTION PLAN

    6.1. Damage Mechanisms Pressure vessels are susceptible to various types of damage by several mechanisms. Typical damage types and mechanisms are as follows:

    A. General and local metal loss: Sulfidation; Oxidation; Microbiologically induced corrosion; Naphthenic acid corrosion; Erosion/erosion-corrosion; Galvanic.

    B. Surface connected cracking: Fatigue; Caustic stress corrosion cracking; Sulfide stress corrosion cracking. C. Subsurface cracking: Hydrogen induced cracking.

    D. Microfissuring/microvoid formation: High temperature hydrogen attack; Creep.

    E. Metallurgical changes: Graphitization; Temper embrittlement.

    F. Blistering: Hydrogen blistering.

    G. Dimensional changes: Creep and stress rupture Thermal.

    Page 22 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    H. Material Properties Changes Brittle fracture.

    Pressure vessel and Fluid data as following:

    H. Material Properties Changes Brittle fracture.

    Pressure vessel and Fluid data as following:

    No Description Data

    1 Service Gas & Oil

    2 Material Carbon Steel

    3 Design Pressure (psig) 600

    4 Operating Pressure (psig) -

    5 Design Temperature (0F) 300

    6 Operating Temperature (0F) -

    7 Flow Hydrodinamic

    8 Loading Static

    9 Insulation No

    10 PH -

    11 CO2 (mole%) Yes

    12 H2S (mole%) Yes

    13 H2O (mole%) Yes

    Page 23 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Damage Mechanisms Screening Table:

    Page 24 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Page 25 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Page 26 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Dari tabel diatas, beberapa kemungkinan jenis damage mechanisms yang diduga terjadi pada bejana tekan adalah sebagai berikut :

    From the above screening table, the following damage mechanisms are expected to occurs at pressure vessel:

    No Damage Mechanisms Mode Possibility

    1 Uniform Corrosion Thinning Medium

    2 Pitting Corrosion Thinning Low

    3 Erosion - Corrosion Thinning Low

    4 Sulfide Stress Cracking Cracking Low

    Page 27 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    6.2. Perancenaan Inspeksi Perencenaan inspeksi dilakukan berdasarkan pada kemungkinan dari damage mechanisms. Metode serta pelaksanaan NDE akan di evaluasi untuk meyakinkan bahwa metode tersebut dapat mengidentifikasi damage mechanisms dan beberapa kemungkinan kerusakan yang lain. Pemeriksaan berjangka harus dijadwalkan, berdasarkan berikut : Jenis kerusakan Laju dari kerusakan Toleransi peralatan kepada jenis

    kerusakan Kemungkinan dari metode NDE yang

    digunakan untuk identifikasi kerusakan.

    Jangka waktu maksimum yang disebutkan pada codes dan standart.

    6.2. Inspection Plan The inspection plan is developed based on present or possible types of damage mechanisms. The methods and the extent of NDE shall be evaluated to assure they can adequately identify the damage mechanism and the severity of damage. Examinations must be scheduled at intervals that consider the: Type of damage Rate of damage progression Tolerance of the equipment to the

    type of damage Probability of the NDE method to

    identify the damage

    Maximum intervals as defined in codes and standards

    Page 28 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Inspection and Monitoring Methods

    Page 29 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Page 30 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Page 31 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Page 32 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Berdasarkan dari metode inspeksi dan monitoring diatas, perencanaan inspeksi yang diajukan untuk bejana tekan ini adalah sebagai berikut :

    Based on the above inspection and monitoring methods, the proposed inspection plan for this pressure vessel as follow:

    No Damage

    Mechanisms Inspection methods

    Coverage Interval

    1 Uniform corrossion Visual Inspection

    Visual inspection of 100% of the exposed surface area with follow-up by UT or pit gauge as required. (Shell, head, nozzle and supports)

    Next 3 years,

    for next

    SKPP

    2 Pitting Corrosion UT Thickness

    Scanning

    Minimal 20% examination, and followed by spot external ultrasonic thickness measurements. (Shell, head and nozzle)

    3 Erosion-Corrosion

    4 Sulfide Stress

    Cracking

    UT Flaw Scanning

    of MPI

    Minimal 20% examination of weldments (Nozzles to shell, T- joints)

    Page 33 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    7. PENILAIAN KONDISI

    Salah satu fokus utama dari inspeksi bejana tekan adalah pembentukan kemampuan bejana tekanan untuk aman melanjutkan operasi . Kondisi penilaian harus menjadi bagian resmi dari setiap pemeriksaan, dan penentuan kondisi bejana tekan yang diterima harus didokumentasikan secara resmi . Kondisi ini umumnya akan didefinisikan sebagai : 1) kondisi "seperti baru", tidak memerlukan tindakan tambahan sebelum jadwal pemeriksaan berikutnya; 2) perbaikan kecil seperti mengecat, membersihkan, atau pekerjaan permukaan 3) membutuhkan perbaikan besar atau penggantian semua atau bagian bejana tekan. Membandingkan parameter desain dan kondisi asli (atau kondisi pada saat penilaian formal terakhir) dari bejana tekan dengan kondisi saat ini , adalah bentuk paling dasar penilaian kondisi . Inspektur harus mengevaluasi apakah bejana tekan memenuhi parameter konstruksi asli dengan memeriksa kondisi dinding bejana tekan, lasan, internal , peralatan pendukung , dll Jika inspektur menentukan bejana tekan memenuhi spesifikasi awal , bejana tekan dapat diidentifikasi berada di kondisi memuaskan. Namun, degradasi , kerusakan , atau masalah potensial lainnya harus diperhatikan. Dalam kasus saat seorang inspektur menempatkan degradasi bejana tekan, perawatan harus dilakukan untuk memastikan bahwa degradasi ini baik: 1) Tidak mempengaruhi kemampuan bejana tekan untuk melanjutkan operasi yang aman , 2) Apakah diganti oleh perbaikan atau

    7. CONDITION ASSESSMENT

    One of the primary focuses of the pressure vessel inspection is the establishment of a pressure vessels ability to safely continue operation. Condition assessment should be a formal part of every inspection, and the determination of acceptable vessel condition should be formally documented. The condition will generally be defined as:

    1) like new condition, not requiring any

    additional actions before the next scheduled inspection;

    2) requiring minor repairs such as repainting, cleaning, or minor surface work;

    3) requiring major repair or replacement of all or a section of the vessel.

    Comparing design parameters and original conditions (or conditions at the time of the last formal assessment) of the pressure vessel to current conditions, is the most basic form of condition assessment. The inspector should evaluate if the vessel meets the original construction parameters by inspecting the condition of the vessel walls, welds, internals, supporting equipment, etc. If the inspector determines the vessel to meet the original specifications, the vessel may be identified to be in satisfactory condition. However, any degradation, damage, or other potential issues should be noted. In cases where an inspector locates degradation in a pressure vessel, care must be taken to ensure that this degradation either:

    1) Does not affect the ability of the vessel to continue safe operation,

    2) Is removed by repair or replacement of the

    Page 34 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    penggantian komponen bejana tekan yang mengalami degradasi. 3) bahwa integritas struktur dan parameter desain bejan tekan dipertahankan atau dievaluasi kembali untuk memastikan bejana tekan tersebut memenuhi kode konstruksi yang berlaku.

    7.1 Ketebalan Yang Diperlukan Dari hasil inspeksi di atas dan perhitungan teknis yang telah dilakukan, kondisi bejana tekan pada saat ini ditampilkan dalam tabel berikut.

    vessel component experiencing the degradation.

    3) that the structural integrity and design parameters of the vessel are maintained or reevaluated to ensure the vessel meets the applicable code of construction.

    7.1 Thickness Requirements From the above inspection results and engineering calculations performed, the current conditions of pressure vessel was presented in the following table.

    Design Condition = 600 psig

    Component Min. Actual Thickness (mm) Required

    Thickness (mm) Remarks

    Head I Left 34.35 29.76 Acceptable

    Shell 1 33.12 30.28 Acceptable

    Shell 2 32.84 30.28 Acceptable

    Shell 3 32.48 30.28 Acceptable

    Shell 4 33.05 30.28 Acceptable

    Head II - Right 34.72 29.76 Acceptable

    Component Min. Actual Thickness (mm) Required

    Thickness (mm) Areas or stresses

    N1 8 13.40 7.16 Passed

    N2 8 13.08 7.16 Passed

    N3 4 12.72 5.02 Passed

    N4 3 6.12 4.80 Passed

    MPI Pengujian ini tidak dilakukan pada bejana tekan ini.

    MPI This test is not performed at this pressure vessel.

    Page 35 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Corrosion Rate (ST) =

    t previous - t actual time between t previous and t actual (years)

    Or Corrosion Rate (LT) =

    t initial - t actual time between t initial and t actual (years)

    Dimana : t awal : tebal awal sama dengan CML sebagai t aktual. Baik pada pengukuran ketebalan pertama pada saat CML atau ketebalan pada saat awal sebuah laju korosi lingkungan baru, dalam mm. t aktual : ketebalan sebenarnya sebuah CML, dalam mm, diukur saat inspeksi terakhir. ST (Short Term): Laju korosi yang dihitung menggunakan ketebalan hasil pengukuran inspeksi sebelumnya (Short Term). LT (Long Term) : laju korosi yang dihitung dari ketebalan nominal (awal dibangun). CML (Condition Monitoring Location) : titik yang dianjurkan /difokuskan untuk diambil nilai ketebalan dindingnya (pada umumnya titik yang diangap kritis).

    Sisa Umur Sisa umur dari bejana tekan (dalam tahun) dapat dihitung dengan rumus berikut ini :

    Where : t initial : the initial thickness at the same CML as t actual. Its either the first thickness measurement at this CML or the thickness at the start of a new corrosion rate environment, in mm. t actual : the actual thickness of a CML, in mm, measured during the last inspection. ST (Short Term): The corrosion rate is calculated using the previous inspection thickness measurement results (Short Term). LT (Long Term) : corrotion rate which is calculated from initial thickness. CML (Condition Monitoring Location) : measurement point which is where is wall thickness measurement are taken (usually critical point) . Remaining Life The remaining life of the pressure vessel (in years) shall be calculated from the following formula:

    7.2 Sisa Umur Laju Korosi Laju korosi untuk penipisan penyebab kerusakan mekanis ditentukan dengan perbedaan antara pembacaan dua ketebalan dibagi dengan interval waktu antara pembacaan. Laju korosi dihitung berdasar rumus berikut :

    7.2 Remaining Life Corrosion Rate Corrosion rate for thinning damage mechanisms is determined by the difference between two thickness readings divided by the time interval between the readings. The corrosion rate was calculated from the following formula:

    Page 36 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Remaining Life =

    t actual - t required corrosion rate

    Dimana : t aktual : tebal aktual pada sebuah CML, dalam mm, diukur saat inspeksi terakhir t dibutuhkan : tebal yang diperlukan pada CML atau komponen, dalam mm, sebagai pengukuran t aktual. Dihitung dengan rumus desain. CML (Condition Monitoring Location) : titik yang dianjurkan /difokuskan untuk diambil nilai ketebalan dindingnya (pada umumnya titik yang diangap kritis).

    Where : t actual : the actual thickness of a CML, in mm, measured during the last inspection. t required : the required thickness at the same CML or component, in mm, as the t actual measurement. It is computed by the design formulas. CML (Condition Monitoring Location) : titik yang dianjurkan /difokuskan untuk diambil nilai ketebalan dindingnya (pada umumnya titik yang diangap kritis).

    Hasil perhitungan laju korosi dan sisa umur ditampilkan dalam tabel berikut :

    Calculation results of corrosion rate and remaining life was summarised in the following table :

    Component Initial

    Thickness (mm)1

    Min. Actual Thickness (mm)

    Required Thickness (mm)

    Corrosion rate (mm/year)2

    Remaining Life

    (Years)3

    Head I Left 34.93 34.35 29.76 0.072 63

    Shell 1 34.93 33.12 30.28 0.226 12

    Shell 2 34.93 32.84 30.28 0.261 9

    Shell 3 34.93 32.48 30.28 0.306 7

    Shell 4 34.93 33.05 30.28 0.235 11

    Head II - Right 34.93 34.72 29.76 0.026 193

    Note 1: Initial thickness based on nameplate for shell, initial thickness assummed from head . 2: Because T initial > T actual, Corr. rate and RL calculation can not be performed. 3:This calculation performed using API 510

    Page 37 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    8.KESIMPULAN & SARAN Dapat disimpulkan bahwa 3 Phase Production Separator (Tag no. C-321 / Sn. 28829) dalam kondisi yang baik untuk beroperasi dengan parameter sebagai berikut :

    8. CONCLUSION & RECOMMENDATIONS

    This 3 Phase Production Separator (Tag no. C-321 / Sn. 28829) is in good condition to safely operated based on parameter below :

    MAWP : 600 PSIG

    Design Temperature : 300 oF

    Tidak ada temuan signifikan selama inspeksi yang berpengaruh terhadap kinerja bejana tekan untuk lanjut beroperasi.

    Direkomendasikan untuk merawat kondisi bejana tekan dalam keadaan siap beroperasi seperti rekomendasi berikut:

    Inspeksi rutin oleh operator untuk mendeteksi dini kebocoran, tumpahan dan kondisi operasi tidak normal yang lain (API Std 510 5.5.4)

    Melakukan pemasangan serta perawatan rutin dan re-setting pada katup pengaman tekanan (API Std 510- 6.6, API RP 576)

    Inspeksi internal pada bejana tekan sesuai rekomendasi API Standards, termasuk perbaikan jika diperlukan (API Std 510 5.5.2, 6.5)

    Melakukan pemasangan alat pengukur tekanan dan suhu pada bejana tekan.

    Melakukan pemasangan sistem grounding untuk beroperasi dengan aman

    Melakukan verifikasi ulang untuk pengambilan titik UT thickness dikarenakan ketebalan dinding minimum > ketebalan dinding pada saat awal pembuatan.

    There was no significant anomaly found uring inspection that might affect the ability of the pressure vessel to continue safe operation.

    It is recommended to maintain the vessel conditions to stay in fit for services as the following recommendations:

    Perform routine inspection by operator to detect early stage of leakage, spills and other abnormal operating conditions (API Std 510 5.5.4)

    Install PSV and perform routine maintenance (re-setting) of pressure safety valves.(API Std 510- 6.6, API RP 576).

    Perform internal inspection of pressure vessel as per recommendations of API Standards, including repair as required (API Std 510 5.5.2, 6.5).

    Install pressure and temperature gauge at this pressure vessel.

    Install grounding system for safe operation

    Perform verification for UT thickness measurement, found that minimum actual thickness > thickness nominal (initial).

    Page 38 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    Perencanaan inspeksi yang dianjurkan : Recommeded next Inspection Plan:

    No Damage

    Mechanisms Inspection methods

    Coverage Interval

    1 Uniform corrossion Visual Inspection

    Visual inspection of 100% of the exposed surface area with follow-up by UT or pit gauge as required. (Shell, head, nozzle and supports)

    Next 3 years,

    for next

    SKPP

    2 Pitting Corrosion UT Thickness

    Scanning

    Minimal 20% examination, and followed by spot external ultrasonic thickness measurements. (Shell, head and nozzle)

    3 Erosion-Corrosion

    4 Sulfide Stress

    Cracking

    UT Flaw

    Scanning of MPI

    Minimal 20% examination of weldments (Nozzles to shell, T- joints)

    Page 39 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    LAMPIRAN A LAPORAN NDT

    Page 40 of 42

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    LAMPIRAN B PERHITUNGAN SISA UMUR

    Page 41 of 42

  • REMAINING LIFE CALCULATION PRESSURE EQUIPMENT

    EQUIPMENT : 3 Phase Production SeparatorTAG No : C-321Operator : PT Bintang Energi PratamaLocation :

    Data Head I (Left)- t initial : 34,93 mm- t actual : 34,35 mm- t required : 29,76 mm- year built / operate : 2006- year last inspection : 2014

    Corrosion rate : 0,072 mm/year

    Remaining Life : 63,86 years

    Remarks

    -

  • REMAINING LIFE CALCULATION PRESSURE EQUIPMENT

    EQUIPMENT : 3 Phase Production SeparatorTAG No : C-321Operator : PT Bintang Energi PratamaLocation :

    Data Shell 3- t initial : 34,93 mm- t actual : 32,48 mm- t required : 30,28 mm- year built / operate : 2006- year last inspection : 2014

    Corrosion rate : 0,306 mm/year

    Remaining Life : 7,18 years

    Remarks- Thickness actual is greater than initial, assumed T shell = T Heads

    -

  • REMAINING LIFE CALCULATION PRESSURE EQUIPMENT

    EQUIPMENT : 3 Phase Production SeparatorTAG No : C-321Operator : PT Bintang Energi PratamaLocation : -

    Data Shell 1- t initial : 34,93 mm- t actual : 33,12 mm- t required : 30,28 mm- year built / operate : 2006- year last inspection : 2014

    Corrosion rate : 0,226 mm/year

    Remaining Life : 12,55 years

    Remarks- Thickness actual is greater than initial, assumed T shell = T Heads

  • REMAINING LIFE CALCULATION PRESSURE EQUIPMENT

    EQUIPMENT : 3 Phase Production SeparatorTAG No : C-321Operator : PT Bintang Energi PratamaLocation : -

    Data Shell 4- t initial : 34,93 mm- t actual : 33,05 mm- t required : 30,28 mm- year built / operate : 2006- year last inspection : 2014

    Corrosion rate : 0,235 mm/year

    Remaining Life : 11,79 years

    Remarks- Thickness actual is greater than initial, assumed T shell = T Heads

  • REMAINING LIFE CALCULATION PRESSURE EQUIPMENT

    EQUIPMENT : 3 Phase Production SeparatorTAG No : C-321Operator : PT Bintang Energi PratamaLocation : -

    Data Shell 2- t initial : 34,93 mm- t actual : 32,84 mm- t required : 30,28 mm- year built / operate : 2006- year last inspection : 2014

    Corrosion rate : 0,261 mm/year

    Remaining Life : 9,80 years

    Remarks- Thickness actual is greater than initial, assumed T shell = T Heads

  • REMAINING LIFE CALCULATION PRESSURE EQUIPMENT

    EQUIPMENT : 3 Phase Production SeparatorTAG No : C-321Operator : PT Bintang Energi PratamaLocation : -

    Data Head II (Right)- t initial : 34,93 mm- t actual : 34,72 mm- t required : 29,76 mm- year built / operate : 2006- year last inspection : 2014

    Corrosion rate : 0,026 mm/year

    Remaining Life : 193,56 years

    Remarks

  • 3 Phase Production Separator (Tag No. C-321 / SN. 28829)

    SP III Limau

    LAMPIRAN C DRAWING

    Page 42 of 42

  • C-321PRODUCTION SEPARATOR (NEW)

    CAPACITY : 40.000 BFPDSIZE : 72" OD X 276" S/SDESIGN : 600 PSIG/300OFOPERASI : 310 PSIG/227OF

    276"

    72"

    8"

    2" 2" 1"

    PIC321

    -VG-30(TYP-2)

    2"3"

    2"2"-VB-30

    8" 2" 4" 2"

    C-321

    SET @ 600 PSIG2"-300# X 3"-150#

    EMP MALACCA STRAIT S.A

    DRAWING TITLE

    SELATAN FACILITIES MODIFICATIONPRODUCTION SEPARATOR (C-321)

    3 Phase Production Separator C-3211. INTRODUCTION1. PENDAHULUAN2. SCOPE OF WORK2. LINGKUP PEKERJAAN3. GENERAL DATA3. DATA UMUM4. INSPECTION RESULTS 4.1 Visual Inspection4.2 Pengukuran ketebalan UT4.2 UT Thickness Measurements

    4. HASIL INSPEKSI 4.1 Inspeksi Visual

    5. ENGINEERING CALCULATIONS5.1 Kondisi Desain - Nameplate5.1 Design Condition - Nameplate

    5. PERHITUNGAN TEKNIS6. DAMAGE MECHANISMS & INSPECTION PLAN 6.1. Damage Mechanisms 6.2. Perancenaan Inspeksi 6.2. Inspection Plan

    6. MEKANISME KERUSAKAN & PERENCANAAN INSPEKSI 6.1. Mekanisme kerusakan

    7. CONDITION ASSESSMENT 7.1 Thickness Requirements7.2 Sisa Umur7.2 Remaining Life

    7. PENILAIAN KONDISI7.1 Ketebalan Yang Diperlukan

    8. CONCLUSION & RECOMMENDATIONS 8.KESIMPULAN & SARANLAMPIRAN ALAPORAN NDT

    Bintang Energi pratama data PV3 Phase Production Separator C-321LAMPIRAN BPERHITUNGAN SISA UMUR

    RLRL

    3 Phase Production Separator C-321LAMPIRAN CDRAWING

    Drawing-1Drawing1.vsdxPage-1


Recommended