+ All Categories
Home > Documents > 3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK...

3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK...

Date post: 06-Jul-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
9
277 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285 3 : 305-701 373-1 (2002 10 17 , 2003 1 3 ) Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication and Applications Seung-Man Yang and Gi-Ra Yi Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea (Received 17 October 2002; accepted 3 January 2003) (channel drop filter), (optical waveguide), (nanolaser) . 3 . (self-assembly) 3 . Abstract - Photonic crystals are referred to as semiconductors for light and can control the flow of photons in microscopic space since semiconductors do the flow of electrons in ULSI(Ultra Large Scale Integration) circuits. Therefore, photonic crys- tals have attracted enormous attention due to their potential applications including channel-drop filters, nanolasers, optical waveguides and others that are required for the development of next-generation optical telecommunication devices and optical computers. Photonic crystal balls at micrometer scales can be also used as full-color pixel sources in the pioneering microdis- play devices. Here, we review fundamental concepts of photonic crystals, several approaches to fabrication of three-dimen- sional photonic crystals, and their potential application areas. In particular, we emphasize the colloidal self-assembly scheme that is the most attractive to chemical engineers among several synthetic methods. Key words: Photonic Crystals, Photonic Band Gap, Colloidal Crystals, Templating 1. . , . . , (photon) , 21 . (photonic devices) 21 , , (photonic crystal) . 1991 Nature Maddox [1]. “If it were possible to make dielectric materials in which electromagnetic waves cannot propagate at certain frequencies, all kinds of almost-magical things would be possible.” (optical waveguide), (channel- drop filter) , [2, 3]. (photonic band gap) . (semiconductors for light) To whom correspondence should be addressed. E-mail: [email protected]
Transcript
Page 1: 3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285 3 : 305-701 373-1 (2002 10 17 , 2003

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285

� �

3�� ���� ��: � �

���†����

������� �����305-701 � � ��� ��� 373-1

(2002� 10� 17� ��, 2003� 1� 3� ��)

Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication and Applications

Seung-Man Yang† and Gi-Ra Yi

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Korea

(Received 17 October 2002; accepted 3 January 2003)

� �

��� ���� � �� ��� � �� ��� ���� ���� ����� !� "#$� %�(channel

drop filter), �&'!$(optical waveguide), ()*!+(nanolaser), -� ./�0 12 �34 56 789 :;< =!

>?@AB*!0 C9D�? EFG � �H. 2 I��� 3:J ���0 12 KL� MNOM �PQ �R��S �K

TU VFWX� <Y Z[2H. ��� �R �� \ D]�]^0 _/S ` � �� a?!$ 1Rbc(self-assembly)

0 3:J ���d?0 VF� <Y \e�d? �KTU fH.

Abstract − Photonic crystals are referred to as semiconductors for light and can control the flow of photons in microscopic

space since semiconductors do the flow of electrons in ULSI(Ultra Large Scale Integration) circuits. Therefore, photonic crys-tals have attracted enormous attention due to their potential applications including channel-drop filters, nanolasers, optical

waveguides and others that are required for the development of next-generation optical telecommunication devices and optical

computers. Photonic crystal balls at micrometer scales can be also used as full-color pixel sources in the pioneering microdis-

play devices. Here, we review fundamental concepts of photonic crystals, several approaches to fabrication of three-dimen-

sional photonic crystals, and their potential application areas. In particular, we emphasize the colloidal self-assembly scheme

that is the most attractive to chemical engineers among several synthetic methods.

Key words: Photonic Crystals, Photonic Band Gap, Colloidal Crystals, Templating

h

kinds

1. � �

��� ���� � �� ��� ��� ��� ���� ��

�� ������ ��� !�. "� #$, �% &' () *+

, "-. / �0 10 234 5*6� �78 9 %:; <

=>, (?@ A�. BCD �0 0E� �F G;& ��� H�@ I

G& JKL:" M�� NO�P� QRS T�U �� �V IE

WXY" %Z[� !�. �\, "� B �P] :; ^_` � �

, ab c4 d0(photon)� B %e�� fg[� !�h, ijk�

21l(� m ln� � o�� (%�� !�. d�010(photonic

devices)� 21l( �� ��� ��gp�q WX� rs8H tl

% 10�` �g8 u+_` d0� 0vwx f.y !� 1\, z,

d{�(photonic crystal), i|�� �� !�. 1991} ~g Nature

�7�H Maddox� ��& �4 ���� d{� �XY, ���

��[1]. “If it were possible to make dielectric materials in whic

electromagnetic waves cannot propagate at certain frequencies, all

of almost-magical things would be possible.” @(_` ��� i] �

" ������% m, �&gp� �� ��8�� ��� ��y

!� �Y4 m, ��� �Z�D ��� ���� �Vy !

�h "� d{�" d�� 23 rs1\H _��b�" WX �

� d�v] d��"�(optical waveguide), � �w ¡¢(channel-

drop filter)� £¤� d�10] � 23�� ¥¦c� !� d§

¨¢� ©Y�� 10� fª��q WX� 1\ 9 �g10 <, m

, ":�� � «¬ ((_ ­:®�[2, 3]. d{�" ��� ��

y !� m ����%� d¯�°(photonic band gap)"± �h

"� �PE �0_�� ¯�°& ²³8�� �4 o��` d0

_��� ��_ �£´�µ� d¯�°4 d{� ¶·_ ¸\y

�� d0 _�� ¯�°�� ¹ !( º»"�. "] �4 v

�Y�� H�@ d{�, m �PE(semiconductors for light)± ·†To whom correspondence should be addressed.E-mail: [email protected]

277

Page 2: 3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285 3 : 305-701 373-1 (2002 10 17 , 2003

278 �������

¼(P ��[4].

½ ¾_`� � ��_ %$ ����(omnidirectional perfect reflection)

YG, �"� 3t� d{� fª] ­: �¿ Àj_ %$ ÁÂ�

�, 'u'0� rs8�� (@y !� �"�� ":� d{

� () Àj_ %$` �f Ä� Å. Æ y o"�.

2. ��(Photonic Crystals) ��

d{�(photonic crystals)4 `� �Ç ÈÉÊ(Ë� v�J ), Ì�

ÍG" ÎÏ8�� ÐÑ[. {�Ò0� "-� !� ÍG�`, {�Ó

Ô ÍG" m, ��� ���� YG, �"�q` �.N "Õ"

�(Fig. 1)[5, 6]. m" ª�[Ö, ×� d{� ¶·_ ØØ ÎÏ8H

Ò0Ù_ $ 2Ú[� m(scattered light)�"_ +Û(interference)�

J" �Ü8�� Ý.D �E8�� m" B ÍG ¶·� �&�� Þ

�x ®�. ß±` ÍG_ à �� �� � ª�® m4 ��� ��

� !�. m 2Ú �J4 d' $á(( âV� H�@ 2Ú®

m l(] Àã� a0 ä(] ÓJ_ åæ" !�" çR�( g

L� "è d'��×�� ¹ �� 1 µm�é D=a0 À2n

ä(] ©ªÀá_ ê:[.A�q, 5*_� m, f.�( #� ¥X

��H d¯�° "ë_ (ì"ë�� ":[� !� o"�.

"C� 2Ú m +Û�J, íî8�� $á�� o4 19l( Í

�'0 Maxwell" lU ��ï, �$` y !�. Ý�8��

Maxwell ��ï4 �0(�" JKL:, �� ×�_� ðx ñ��

��é, d{�& �4 m, à �� �� �ò©ª_ %$`� ó$

ô, �$ d{�_ %� �Y, �õy !�. Yablonovitch] John[7, 8]

� 1987}_ ØØ ö÷8�� m, à �� �� ¥(8 ÍG ©ª�

�� ��_ %�@ ��YG, �ø, ���� "C� Maxwellï,

":�@ "ë8�� B ¸\� Äù���, "è ú"ä��_ %$

�û8 b�" "-.ü�[9]. d{� ý©_` �� ås, �Sjy

rsÍY4 d¯�°(photonic bandgap)Hq, "� ��� d{� ©ª

_ ¸\y �� d0 _�� ¯�°��` "� �PE �0_

�� ¯�°& ²³8�� ��. ��, d0 _��� ��_ �£´

�µ� d¯�°4 �� d{� ©ª� ��� ��gþ !� m

�� ��%� ¹ !�. d¯�°4 d{� ¶·_ ÐÑ® Z ÍG

�" ÈÉÊ t" Ë� ÍG" ÐÑ® Ò0 ¥(_ ß± ÿ ��

. ��� Æ�� !� 3t� ×� d¯�°4 �"� d{� ©ª�

�� oP I� .��. DBR(Dielectric Bragg Reflection) �?& �"

1t� ×� ¥(8 ©ªé, ��^ d¯�°, �, !�é, 2t

� Ë� 3t� d{� ©ª ×�_� Ø t�_ �� {� ©ª�

Ì��±P �� d¯�°, ©��� ª�4 I� 6���h, �f8

H fL�ô" ���� Þ�� oP 3t� d¯�°�� ý©[� !

� ©ª� f��� !�. �f� � ×� 3t� {� ©ª_P

�©�� d¯�°, ù�$ �^ ��� d¯�°, �"�� Þ��

!�. z, � ��(omnidirectional)_ %$ ���" 100%H m ��

%� ¸\�� ���. "� "ë8�� b�® o�� �û_`P

��, ̂ sa�E {�_` ���� �� �7[x ÐÑ�� !� [111]

�^_ �H[111] ���� �&�� m_ %$`é ̄ �°, �"�

o�� �� [. !�. ���, "] �" «¬ ���� NO

�� m_ %$`� ¯�°" ��D ��� ���� a��� m_

%$`é ��Y, �"� ×� "º ��� ��[� m ����

%� v� ¯�°(pseudo-bandgap)"± ��[10].

ß±` d�1\� ê:[( #� 3t� d{� ©�, #� ý©

� ÈÉÊ" �&8�� ÐÑ® Ò0©ª "ë8 ��, i|�� B

©ª ��8H fª_ %� ý©� ¥� �� !�h, 5*_� d¯

�° ªÉ(tuning) Ë� ��, #� £à �ÈÉÊ \� 8:_

å� ý©ÅP "-.�� !�.

3. �� �����(Bandgap Engineering)

�` ��� i] �" �:Y" !� d{�, fª�( #$`�

m& m" �&�� IG JKL:, $á�@j ��q, IG" m,

à �� �� ×� � ·0( «�� ö÷8H Maxwell ��ï, ":

�@ �2«�� �x ®�. a0� ^sa�E {�Ò0� u(

u�(cavity)" IG �_ ÐÑ® z, Fig. 2(a)] �4 ��® �(inverse

opal)4 "C� �2 «�� �$ «¬ ��_ %$ d¯�°, ���

o, Fig. 2(c)] �" �Hy !�[11, 12]. ��® �©ª_ %� 0

l� $á {&_ ß¼^, "] �4 ��® � ©ª� ��� 3t�

¯�°, Ì( #$`� IG& u( ÈÉÊ £� 51� 2.8"J"

[.j ��q, "C� ÍG4 �f� �gd ��_` m, à ��

�� �"���(TiO2) <, ":�@ fª� !�. ��® �,

é�� �ô4 Ã�"� ¥Óô(templating)_ ̀Jl� �-(� ��. �

�, �\ d��_` �"� ��" 1.4-1.6µmH �#"µ� " ��

d{� fª� d�� ý©0_x I� �X� ý© ¥f"�. @C

ÍG �Uq, �� 4 " �� ��¶ m, à �� ��h ÈÉÊ

" %! 3.4�P�` d�� d{�, #$ I� 8î� ÍG, ç

!�. �� �\ �010� �� �PE� �:�� !�µ�

�� , IG� �:� d{�4 d�10� �Y& fª�ô ^_

` ­: �¿Y" ä�� y !�. �f� Fig. 2(b)_ D�" �0

��× "��� �� , IG� �@ fª® d{���` I� ¥

¦ c#�h, m ���Y�� ù�� {& �g Fig. 2(c)� �^ «

¬ ���� ����% m, � 99% ��gþ !�, �@¥

� !�[12, 13].

Fig. 1. Schematic of multiple light scattering in a photonic crystal and its reflectance as a function of the wavelength.

���� �41� �3� 2003� 6�

Page 3: 3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285 3 : 305-701 373-1 (2002 10 17 , 2003

3� �� �� 279

"C� ��® � ©ª �gd ��_` 3t� d¯�°, ©

�y !� �¿Y_ �©��, � d¯�°4 �f d'10�

` ­:[(_� $À� %� Þ��� Ù" !. "� &ò�( #

�@ �" %4 ¯�°, �"� ÍG ©ª� ©�$ ¶R� gP�

@C �� «'Å, fg[. A�. B {& ©� ^sa�E {�Ò

0©ª� ÐÑ® o��� �"�(� )1�0� ÐÑ® o& �

4 �^E(tetrahedron) ©ª� Ì� o" �� %4 ¯�°, Ì� o

�� çRS !�. 5* d{� �û ý©� �"�(� ©ª� Ì

� ÍG, ©���q 7�[� !�h, B �¿Y, �@* {&Å

, �� d{� fª_` t´%� Á¹ o"�[14]. "+_P �

PE u�, ":� ��� 3t� d{� ©ª_ %� «'" fg[

. A�é, ò,� fªu� < ��8 »f� äx ¥¦ c� Þ

�� !�. BCD éÝ -.�� /(8�� + � fª u�, �

��^, �` ��� �& �" �g �0 ¥¦ c, �¿YP Ð

fy ��µ� «¬ d¯�° 1��.2, Ë� d{� «' ý©

� I� �X�� �3�.

4. LiGA��� ��� �� ��

�f� �"�(� ©ª� �û8�� ©��(� Ã�"� {�&

V� I� .R�µ�, �46� çRN ()4 ¥� �l�u()

(LiGA; Lithographe, Galvanoformung, Abformung)H ïØô_ i|,

Z� !�. B � �� %�8H {&�� 5*_ Cuisin <[15]" Fig.

3(a)] �" �ÈÉÊ, Ì� v�E �^ #_ Ù�(point circle)Å,

5ØÓ�6(triangular array), "-h ÐÑ�P7 89, é¬ è Ø Ù�

#_` 3 ² ̀ � �Ç ���� s: x-� ïØô(deep x-ray lithography)

�� ©;, ¶. Fig. 3(b) SEM "��] �4 ©ª� �, !�

, �H o"�. " ©ª� �Yablonovitch_ $ �� fe® o�

�` l ² x-� <" ú¥ó� ·À_`� u( u�" äx ÓY

[� "Å4 `� ý{[. !�h = u�4 �"�(�_` )1�

0] �4 Ò0#ó_ >"x ®�. �f u�" ��� ©� ��µ

� ÿÓ® �"�(� ©ª"�é, n2 {&_ ß¼^ �� �� Ó

Y® Yablonovitch©ª d{�4 ^sa�E �� �� �_

£�@ ? 4Ð "J %4 d¯�°, �H�. �� "C� �E ©ª

� <_ $ ïØ�� �ï& V� :@� A� �^` ¿�8��

d�0(¿, â�y !� Ù Ë� �Óu+(point or line defects)

, �B0_ fª�� �ïP �û8�� �� [Ö�q, "� 8:ô

(layer-by-layer assembly)�� �C��. " �ô4 Kyoto %'D_`

��� 1# E"F :G(wafer fusion)ô" %�8H Ä"�[16, 17].

@(`� �� & �" ÈÉÊ" = v�E� ïØô, �` @C ²

Fig. 2. (a) Schematic of inverse opaline structure [11] and (b) scanning electron micrograph of silicon inverse opal [12], (c) band diagram of siliconinverse opal [13].

Fig. 3. (a) Schematic of the fabrication of diamond-like photonic crystalsby deep X-ray lithography and (b) its scanning electron micro-graph [15].

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

Page 4: 3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285 3 : 305-701 373-1 (2002 10 17 , 2003

280 �������

H%( «��� éÅ� Ý�� +Ò�� H%(� �^ #_ DÚ

� ÐÑ�@ ::" Ax ®�. Z 0I : H%(Å4 J 0I :

H%(_ �Ø ���� A� l 0I : H%(� J 0I :&

� DÚ�x A�q H%] H%� éD� Ù_ �"�(� ©ª )

1#ó� �( #$ Fig. 4(a)] �" l 0I : H%(Å #ó�

J 0I : H%(Å �" u+ #_ �P7 AP7 ���. úK

��� L 0I : H%(Å4 Z 0I : H%(] DÚ�x Ð

Ñ[. !�h #ó� Z 0I H%(Å �" u+ #_ #ó��. Ø

:, A, ºú� Ñ, ��@ H%(Å" :GJÔ_` `� Mî"

[P7 ��. "] �" 4 :ú� �4 ©ª� [P7 v�E H%(

� �ò8�� A�^ PNO %� �"�(� ©ª %4 d¯�

°, �"x ®�.

8:ô4 ::" A�D�� u�"µ� ðx m" ��$ P !

� Ù 9 �Óu+, �n ·fLy !.` d��"�] �4 d1

0 fª� :"� �Ù" !�. Fig. 4(b)� E"F :Gô�� fª

® d{�, ":�@ �n® �� d��"� �0��× "��

� D�"�. d{� ¯�° #ó] �£� H%( Q(, ÐÑ¥

( 9 ÈÉÊ_ ß± ÿ ��. �� d{� ¯�° �# ¶_ !

� m" BR& �" S��� a�[^ " d{�" ¯�° �# ¶

m4 ��� ���µ� �n® TH ���é NO�x � o"�. "

] �" d{� 10� ":�^ �¥ U4 u+_` m NO��,

� iV !�h m, �W P !�. Íë d�v(optical fiber)

� ":$P m ��, iV !�D "� ���_ ¸�µ� �

lu+_`� 8:y ��. "] �" E"F :Gô" @C �� �

Ù" !�qP �©�� ��6� �: _ .RX, Y� "v� u

�" ò,�� £Z�� Ù º»"�.

+���P ×fY" !� LiGA()� ¥¦c� !� o" [�B

\(holography)� ":� ïØô"�. " ()4 @C d���·¢

�� m" éD` é�� +Û]^� _dY �À0 photoresist(PR)_

é¬ è �î[� �� ·À, `@ ¶. d{� ©ª� éÅ. "�

[18, 19]. Fig. 5(a)] �" 4² d���·¢ �� m4 ̂ sa�E ©

ª +Û�a]^� éŵ� "� �Y PR_ ���^ b4 ]^·

À_`é _d_ � d�î" Ý.c o"�. �Jd�� _d" e

® ·À, f��^ �À0� "-.N �, �, !�. " �À

0 � �"u+, beô(CVD)"D B + �ô, �` ÈÉÊ"

= �� "D TiO2� �U è Ñ, ��@ �À0� À$ ·f��^

�� ���, �, !�. " �ô4 {�" �� {�, �

, !� �Ù" !, fé ��± u�" + �@ �:Y" g o

�� (%®�.

5. ���� � !(Colloidal Templating)

�` ��� � � ����% m_ %� 2ÚÙ 7î4 IG_

À2® Ý�� ä( Ã�"� a0� hi"D bâ, �$ ``�

{� gj��� �, !�. Ã�"� {�(colloidal crystals)"±

� ·¼� " ©ªÍ4 Fig. 1 �Ç� Bk] �" �� {� ��

�� a�® m � ��� �� m_ %$`é l4 ���, �,

ðx Äùy !�. BCD �` ��� i] �" Ã�"� a0

7� 3t� ©ª"m ��é ��_ ß± ��[. D�D� m

����%(�)� «Z �¼�. z, «¬ ��_ %$ u�8�� �

�[� m ��, z, 3t� d¯�° �Y, Ì� ©ª� ���. ß

±` "� Á½ i] �" " ÿÓ® ©ª, z u�" IG �_ Ò

0©ª� ÐÑ® Ã�"� {� ��® ©ªÍ, fªy !.j

�3�. 5* d{� �ûý©0Å4 "C� ©ª� ©�$ ¶( #�

Fig. 4. (a) Schematic procedure for the fabrication of photonic crystal by wafer-fusion method and (b) scanning electron micrograph of its waveguidestructure [16, 17].

Fig. 5. (a) Beam arrangement for an fcc interference pattern and (b) scanningelectron micrographs of various polymeric photonic crystal struc-tures fabricated by holographic lithography with different fillingratios [18].

���� �41� �3� 2003� 6�

Page 5: 3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285 3 : 305-701 373-1 (2002 10 17 , 2003

3� �� �� 281

@ @C �� �ôÅ, fg$ A�q B � Ã�"� ¥Óô(colloidal

templating)4 3t� d{�, fªy !� �� ¥¦c� !� �ô

"�[20-26]. "� �g ©E8�� ÁÂ�^, Fig. 6& �" Ã�"�

¥Óu� A] Bu��� + � Pï y !�. " � u� B� �

46�  � �"� o��` f.�R� m ��� �P( n D=

�¢ ä() �Õ, Ì� ä(� oÝ� PSD PMMA] �4 �À0

�� "-.N À2 Ã�"� ©Å, {�Ò0� "-P7 ÐÑ�

��, {� Ò0a0 �" u+, l4 ÈÉÊ, ��h m, à

�� �� TiO2(rutile)] �4 l±p�� ÿq� !� �©E

(precursor)� ��� �­, NOgr è, ¶· Ò0a0� Ñ, ��

�D :I� ":�@ ��8�� f����� Fig. 2(b)] �4 ��

® �©ª� �� o"�. u� B_` Ã�"� {� �"u+, l

±p �©E� ��� �� beô, ":�@ �� & �4 �ÈÉ

Ê v�E� �? !�. ��, u� A_`� m ��� �P �

Õ, Ì� À2 Ã�"� ©] �¥ �l� s D=�¢ ä( l

±p D=a0� �g_ À2gr è À2n� tu�^ = �À0 ©

Å" Ò0#ó� ÐÑ[^` {� �& �g_ L4 D=a0Å4 B

�"u+, ��x ®�. " º Ñ, ��^ �À0 ©Å4 À$[. f

�[� D=a0Å4 1{[. IG, ÓY��. u� A� B_ £�@

+ � �Ù" !�D {�" �� {� JÔ d{�, �( #$

`� Ø J Ñ u Ë� vw �P] Ã�"� {� u&Ê(void

fraction), �R�@ = �À0 � a0] l±p D=a0 ·\À

�(volume fraction), ��� n2�@ À2gþ !.j ��.

�` ��� i] �" ��� d{�, ":�@ �gd� ��

m, f.�R^ d{� IG� �x�� ÍG4 m, à �� �

� 2 ÍG".j ��. BCD %·À 2 ÍG4 ÈÉÊ" y�µ

� #] �4 ^sa�E {�©ª�� %4 ¯�°, (%y ��.

��, Ã�"� {�" {�, ã��� !� ×�_� v�� d¯�

°" �±�� »fÙ, �"� !�. �` ��� �� ���P

��" %! 1.2µm "� m, à �� ×�" !�µ� �gd�

��_` d¯�°, ��� Þ��. Ý�8��, Ã�"� {�4 ¶

·_� Wý8�� P�� �4 ¶· {�(defect), ã��� !�h

{� ä(� I� L�� »fÙ, ��� !�µ�, Ã�"� ¥

Óô�� fª® 3t� d{�4 �:Y_ �n� �z +_ ��.

ß±` 3t� d{�, ©��( #$`� Ã�"� {� {�, {

Ý !� T�U �ô, �e��D �� %4 d¯�°, Ì� ©ª

� ��j ��. "� ${�( #� �e �D�` f�® u+

(confined geometry)_` Ã�"� {�" Ý.DP7 vP�@ {�|

Y, }f�� gP� NO[� !�h 5*_ ~4 ¥¦, c� !�.

f� u+��� ú"ä��g��� fL[� �l89" ¥� �"

h �n® �l89 �_` D= #E� 0(ª÷, �P7 vP�@

��� ©ª] Ð�, Ì� {�, 78y !�. ¿�8 d�(¿,

â��� Ù 9 �Óu+& �4 H#8H {�, éÅ( #$`� Í

�8 ��� [� ÓÔ 89, �n�Pa�^ [� o"�. "�x

���� Ã�"� {�" Ì� !� f� »f� ${�& �g_ d

{� ¶·_ d�(¿, â�y !� ¿�8 u+, �ny !x

��. x�9 %' XiaB�" "C� ý©� ¥P�� !�q, Fig.

7(a)] �" ��� ä(� {�® 89, dïØô Ë� 'ïØô,

":�@ fª�� B #_ Ã�"� {�, ��� ÓÔ� Y� gþ

!�[27]. �� �l�9, ":�@ Fig. 7(b)_ D�" o& �4

ú"ä��¢ ä( ��, �N Ã�"� d{��(photonic crystal

chip), fªy P !�. ��, "C� 89, ":�@ Fig. 7(c)] �4

Ã�"� 7î #(colloidal clusters)� �, P !�. " {&� Xia

B�_` ��� o�� oÝ� �l 89, dïØô(photolithography)

�� fª�� ý©� O�� Í bâ&�_` n^, 8É� ª

É�@ oÝ� ÓÔ Ã�"� 7î #E� �, !�, �� �

��[28]. "C� Ã�"� 7î #� T�U d{��� fª_ 8

: �¿y o�� (%�� !�.

ïØô�� fª® �l89 %�_ ú"äë ä( �l� d8

(droplet), f� u+�� ê:y P !�. z, Ã�"� ©Å, ã�

�� !� ��d(suspension), 8É� �ô, �` d8�� À2g

p� B �_` Ã�"� ©Å" {� � NO[P7 �^ 5í8�

� Ã�"� d{�©(photonic balls)� �, !�. " &�_` �

� �X� åÙ4 .�x �^ oÝ� ä( d8, �, !Q��

o"�. oÝ� d8, fª��q ¥� �"� �ô��� �(À]ô

(electrospray), Fig. 8(a)] �4 ú"ä�\�, ":� � À�(shear

rupture), �lvE10(microfluidic device)� ":� �ô" !�[29-

31]. " u�Å4 d8 n^" fu�� f� u+ ���� 7î

Fig. 6. Schematics of colloidal templating for 3D photonic crystals.

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

Page 6: 3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285 3 : 305-701 373-1 (2002 10 17 , 2003

282 �������

# ¶_ {�" 84 {�, �, !�� �Ù, ��� !�µ�,

Ã�"� {�, �� px Fig. 8(b)] �" ú"äë ä( d{�©

� éÅ !�[30]. ��, 5*_ Å. "] �4 ä(� oÝ� d{

�©� �&8�� fªy !� �ô �_ �D� "�¥Óô(double

templating)" �� [Ö�[32]. "�¥Óô_`� 1 n ¥Óu�_`

� ú"äë ä( �" � ©(hollow spheres)� `� ý{[P7

ÐÑ�� 2 n ¥Óu�_`� �" � ©� f� u+�� �:�@

B �_` Ã�"� d{�©� Y�gp� o"�. "C� ú"äë

ä( d{�©� "� ©Y�� Ã�"� a0 ä(_ ß± ��

8�� `� �Ç �� m, ��y !� �Y" !�µ� d{�

©� ÐÑ�@ tl% �l�g10_` 0ý�, â�y !�

1: 1\� ­:y !� o�� çRS !�.

Ã�"� {� fª� d{� ©ª ©�& �M åæ" !� o

�� @C �� P©Å, ":�@ B »fÙÅ" �D W� $1[.

A�, ç !�. 5*_� "C� Ã�"� {� ¶_ {�, 0v

0f� |Yy !� �ô" �� [Ö�q, Ã�"� {� ¶_` "

d0�î(two-photon polymerization) �­, Ý�p� o"�. Ý�=

"%' BraunB�_` ��� " �ô4 ��� 3t� d��"��

�n�fLy !�, g��� Æ»�� Nature_ �"±"�� 1

²[(P N�[33, 34]. "� 0l� ÁÂ�^, Fig. 9(a)_ D�" i]

�" f.�R� m ��� ä( �Õ, Ì� ��� ©� "-.

N Ã�"�� �l89 #_` Y�g� {�" �� {�, é¬ �

� "d0�î, Ý�p� ;E] ²gf� {� u+_ �U�. 3t

� {�¶· �n® u+_`é "d0�î" Ý.c !P7 Fig.

9(b)] �" u�Ù��×(confocal microscope), ��@ ��ì �"

�(femtosecond-laser)� ª�� è ��­ ·À, :I� f���. ú

�H n_`� Ã�"� {� � u+, beô, �` �� �

� ��� ��� ©� �2(HF)�� f��� "d0�î�� ÓY®

�À0� ÑÀ$�^ Fig. 9(c)] �4 d��"�� 5í8�� ���. "

�x �4 d{�4 ¯�° "¶ ��, Ì4 m, ��� ��gp

µ� Fig. 9(d)_ D�" i] �" ÓY® � , ��@ d�K� �

Fig. 7. (a) Colloidal crystals with (100) plane surface were grown in largearea on micropatterned substrates [27]. (b) colloidal photonic crystalchip that was assembled inside microchannels. (c) self-assembled col-loidal clusters [30].

Fig. 8. (a) Schematic of the generation of spherical photonic crystal ballsand (b) their scanning electron micrograph [30].

���� �41� �3� 2003� 6�

Page 7: 3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285 3 : 305-701 373-1 (2002 10 17 , 2003

3� �� �� 283

�[� �� �V� !�.

�46� d{� ©ª fª_ å� ý©� ��$ �#�. �_`

��� i] �", "ë8 n2_ ß¼^, �"�(� Ò0©ªD, ��

Ó D= #E ^sa�©ª� �� � %4 d¯�°, �v���

� d�010�` ­:�ó� l4 o�� çRS !�. �\6�

LiGA� ":� u�, E"F :Gu�" f�8"Dú "� �b8�

� �H Ä"�. BCD "C� u�Å4 �f 23 _ WX� 10

%; |2, ���(_� ò,�� £×f8H u�"�. "� &ò�

( #$ Pa® o" Ã�"� ¥ÓôHq �\6� � ©Ó a0

^sa�©ª, " ��©ª� Yu8�� fª[Ö�. ��� ý©

��4 Ã�"� 7îE u�, ":�@ �"�(� ©ª] �4 d

¯�°" %4 d{�, fª�� o�� "_ %� ý©� �� NO

�"�. Fig. 10_ �H D=��, ":� d{� fª u�4 B �D

Ä"�[35]. £7 u�0E� ò,�� �ò8".` ×f8H ^_

` äx ¥¦ c� Þ��é, Ã�"�� ":� J �û8 ý© {&

±� ù^_` I� � !� ��± �3�.

6. "#$%& ��� ���� � ��

Í�8H �ô_ ¸�� �� |ÍÀ0 H�¿>_ (ì� d{

� ©ª �n_ %� ý©P gL[Ö�q, DNA] �4 |ÍÀ0

0(ª÷ 89, ":�R� gP� B %�8H Ä"�[36, 37]. |Í

E DNA� ©Y�� ;EH r2_� �qF(A), ©�F(G), ��

(T), g��(C) <& �4 4² �(� ̧ \�h "Å JK+ J�8

(A-T, G-C)"� ��8H 1{î_ $ DNA "� D� ©ª�

ÓY®�� Ù4 �% À0 |Í' �� rs8H ý© Y& � �D

±� y !�. "C� �( J�Y, D=a0 {�E fª_ 8

:y º I� ÎÏ8H D=a0 ÐÑ, ��8�� �, !�. z,

��� �(`Ñ(sequence), �N ����g����(oligonucleotide)

� D=a0 �^_ àegr � àe® �(`Ñ& J�8�� {î

y !� �(`Ñ, �F Ë �Ç ����g����� ê:�@

Ã�"� JÔ� fª® D=a0� `� {îg� "Å a0� ÎÏ

8�� ÐÑy !� o"�. ©E8�� Fig. 11& �" DNA� "

:� D=a0 {� &�, Pï y !�. ��, Z í� D

=a0(A, B) �^_ J�Y" �� �(`Ñ, �N Z í� ��

��g����� àegr è "� À2IJ_ À2gr�. " º D

=a0] àe, vP�( #�@ ����g����   , à

egpR� �^ �Y_ ß± ��(, ��ò�( Ë� ��(] �

4 å¿((functional group)� óq�@j ��. 4 a0 ×�_�  

(� ��(� óq� ����g����� ¥� �:��. a0_

àe® ����g����Å" J�Y" ��µ� Z í� a0Å

" ­7[� �� e�� À2n� "-x ®�. ��, àe_ �:�

Z í� ����g����] J�Y" !� �(`Ñ, �¡_ �

F ý{I²0(linker) DNA� e� ® À2J_ ¢��^ J�Y" !

� �(`Ñ£� 1{î_ �@ D=a0 A, B� ¤%� ý{[

. {�Ò0� "¥ o"�. "] �" DNA� ":� {�4 /P�

l@ ¥^ �g \À2" Ý.Dx ®�. "C� �ï�� fª® D=

{�E� d{� ÍG"D ¦` <, #� 1\� ê:� !�h

DNA ��8 {î �Y, ":� §H <, fª�@ �0 �g10,

DNA � < v:� 10� fªy !�. Fig. 12� "C� �ï, ú

Fig. 9. Photonic crystal waveguide by two-photon polymerization insidecolloidal crystals [34].

Fig. 10. Diamond-like photonic crystals fabricated by nanorobotic manip-ulation of microspheres. Scale bar is 5 and the diameter of par-ticles is 0.9 [35].

Fig. 11. Schematic of DNA-mediated colloidal crystallization of nanospheres.

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003

Page 8: 3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285 3 : 305-701 373-1 (2002 10 17 , 2003

284 �������

oads

-

als:

y

, S.

O.,

, F.,

Y.,

b-

tm.

K.-

.,

.,

,

"ä�a0_ 8:gr {&�` Z �� ä( ú"ä� a0� �

$N �ï�� 7î[Ö��� ���[37]. �� ��� Ã�"� ©ª

6� f.® {&� ���é, d¨� fª� #� �&8H �ô��

` �¿Y, $À� g�� ��"�.

7. ' (

�% IT23 *+, "-. / �010234 5*6� �78

� #� =>, (?@ A�D, �0� �F �8 f�Y�� H�@

%! 2010}×_� 78P] �����P �n_ "¼x ®�. "

� H�@ d�023 �XY" �$ �� !�h, "� #� d��

10 ²â& D�� d§¨¢� #� (�() ²â4 ()�N©,

���� ��_x g%8 X©± �3�. d{�4 �` fg® i] �

" ���023& �g1023_ H%� () X� !, o�� (%

®�. d{� "ë8, �û8 �¿Y, ���� fg� Yablonovitch

� 5* Scientific American_ â�� ª�_` 0(ª÷Ó d{�

­:Àj�� ���0 23 rs10H d{��v, D=�"�, ì

n� P�(ultrawhite pigment), ±«� ¥� e¬D, reflectors, light-

emitting diodes(LED), d�0��(photonic integrated circuits)<, Å

Ö�[4]. d{� u�4 �% &'() ý© kÕ" BC�­" Í�',

', �0u' < ��� ��� íî8�� 8:$j��. B � d

{� fªu��� �� ¥¦ c� !� Ã�"� 0(ªî ()4 B

rs (� () ÀjH a0 fª] 7îE ÓY ()"®_ �­u

', vE�' < 'u' rs (½ "ë, *+�� �� !( º

»_ 'u'0Å" (@y !� ·À" I� ~�. 21l �� ¥

¦c� rs ()� Hï[� !� d{� () Àj(�"�¯� 1999

}P 12° 17Ý K �ª)_ 'u'0Å" ~4 ås, ��� ()8

H (@� y !(� iÚ�.

) *

½ ý©� 21l( kë�.�3�� �÷® �¿Ó ú"ä�g¯±

�3 ���� "-.ü�, b²��.

+,-.

1. Maddox, J., Nature, 348, 481(1990).

2. Joannopoulos, J. D., Villeneuve, P. R., Fan, S., Nature, 386, 143(1997).

3. Ryu, H.-Y., Park, H.-G., Lee, Y.-H., IEEE Journal of Selected Top-

tics in Quantum Elec. 8, 891(2002).

4. Yablonovitch, E., Sci. Am. 285, 35(2001).

5. Johnson, S. G., Joannopoulos, J. D., “Photonic Crystals: The R

from Theory to Practice,” Kluwer Academic Publishers, Massachu

setts(2002).

6. Joannopoulos, J. D., Meade, R. D., Winn, J. N., “Photonic Cryst

Molding the Flow of Light,” Princeton University Press, New Jerse

(1995).

7. Yablonovitch, E., Phys. Rev. Lett., 58, 2059(1987).

8. John, S., Phys. Rev. Lett., 58, 2488(1987).

9. Yablonovitch, E., Gmitter, T. J., Knight, P. L.: Phys. Rev. Lett., 67,

2259(1991).

10. Yi, G.-R., Yang, S.-M., J. Opt. Soc. Am. B, 18, 1156(2001).

11. John, S., Phys. Rev. E. 58, 3896(1998).

12. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S., Leonard

W., Lopez, C., Meseguer, F., Mondia, J. P., Ozin, G. A., Toader,

van Driel, H. M., Nature, 405, 437(2000).

13. Vlasov, Y. A., Bo, X. Z., Sturm, J. C., Norris, D. J., Nature, 414, 289

(2001).

14. Garcia-Santamaria, F., Lopez, C., Meseguer, F., Lopez-Tejeira

Sanchez-Dehesa, J., Miyazaki, H. T., Appl. Phys. Lett., 79, 2309

(2001).

15. Cuisin, C., Chelnokov, C., Lourtioz, J.-M., Decanini, D., Chen

Appl. Phys. Lett., 77, 770(2000).

16. Noda, S., Tomoda, K., Yamamoto, N., Chutinan, A.: Science, 289, 604

(2000).

17. Noda, S.: Physica B, 279, 142(2000).

18. Cambell, M., Sharp, D. N., Harrison, M. T., Denning, R. G., Tur

erfield, A. J., Nature, 404, 53(2000).

19. http://www.itg.uiuc.edu/publications/forums/2001-12-13/2002-04-25/index.h

20. Imhof, A., Pine, D. J., Nature, 389, 948(1997).

21. Velev, O. D., Jede, T. A., Lobo, R. F., Lenhoff, A. M., Nature, 389,

447(1997).

22. Braun, P. V., Wiltzius, P., Nature, 402, 603(1999).

23. Subramania, G., Constant, K., Biswas, R., Sigalas, M. M., Ho,

M., Appl. Phys. Lett., 74, 3933(1999).

24. Subramanian, G., Manoharan, V. N., Thorne, J. D., Pine, D. J., Adv.

Mater. 11, 1261(1999).

25. Yan, H., Blanford, C. F., Holland, B. T., Parent, M., Smyrl, W. H

Stein, A., Adv. Mater. 11, 1003(1999).

26. Vlasov, Y. A., Yao, N., Norris, D. J., Adv. Mater., 11, 165(1999).

27. Yin, Y, Xia, Y. N., Adv. Mater., 14, 605(2002).

28. Yin, Y, Xia, Y. N., Adv. Mater., 13, 267(2001).

29. Yi, G.-R., Moon, J. H., Yang, S.-M., Adv. Mater., 13, 1185(2001).

30. Yi, G.-R., Manoharan, N., Klein, S., Brzezinska, K. R., Pine, D

Lange, F. F., Yang, S.-M., Adv. Mater., 14, 1137(2002).

31. Thorsen, T., Roberts, R. W., Arnold, F, H., Quake, S. R., Phys. Rev.

Lett. 86, 4163(2001).

32. Yi, G.-R., Moon, J. H., Manoharan, V. N., Pine, D. J., Yang, S.-M.J.

Am. Chem. Soc., 124, 13354(2002).

32. Lee, W., A. Pruzinsky, A., Braun, P., Adv. Mater., 14, 217(2002).

Fig. 12. Scanning electron micrographs of sample set of colloidal build-ing blocks assisted by DNA as linker molecules. (a, b) partiallyformed, (c) completely formed, and (d) larger aggregates. Scalebar is 400 nm [37].

���� �41� �3� 2003� 6�

Page 9: 3 Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication … · 2003-06-26 · 277 HWAHAK KONGHAK Vol. 41, No. 3, June, 2003, pp. 277-285 3 : 305-701 373-1 (2002 10 17 , 2003

3� �� �� 285

.,

33. Taton, T. A., Norris, D. J., Nature, 416, 685(2002).

34. Garcia-Santamaria, F., Miyazaki, H. T., Urquia, A., Ibisate, M., Bel-

monte, M., Shinya, N., Meseguer, F., Lopez, C., Adv. Mater., 14,

1144(2002).

35. Mirkin, C. A., Inorg. Chem., 39, 2258(2000).

36. Storhoff, J. J., Lazaorides, A. A., Mucic, R. C., Mirkin, C. A

Letsinger, R. L., Schatz, G. C., J. Am. Chem. Soc., 122, 4640(2000).

HWAHAK KONGHAK Vol. 41, No. 3, June, 2003


Recommended