+ All Categories
Home > Documents > 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Date post: 18-Feb-2022
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
39
Winglish Coaching Centre, Puduvayal 43 XI Mathematics Made Easy 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles AOB is formed by two rays OA and OB sharing common point O called vertex of angle. If we rotate ray OA about its vertex O and takes position OB, OA and OB are called initial side and terminal side of the angle produced. An anticlockwise rotation generates a positive angle (positive sign), clockwise rotation generates negative angle (negative sign). One full anticlockwise or clockwise rotation of OA back to itself is one complete rotation II. Different Systems of measurement of angle i) Sexagesimal system Right angle is divided into 90 equal Degrees. Degree is divided into 60 equal Minutes Each minute into 60 equal Seconds. 1, 1’ and 1” denote a degree, a minute, a second ii) Centesimal system Right angle is divided into 100 equal Grades Each grade is subdivided into 100 Minutes Each minute is subdivided into 100 Seconds. 1 g denotes a grade. iii) Circular system Radian measure of an angle is introduced using arc lengths in a circle of radius r. 1 c denotes 1 radian measure. III. Degree Measure Unit of angle measurement represented by degree One complete rotation is split into 360 equal parts and each part is one degree, denoted by 1. 1 is 1/360 of one complete rotation. To measure a fraction of angle minutes and seconds are introduced. One minute 1 corresponds to 1/60 of a degree A second (1’) corresponds to 1/60 of a minute (or) 1/3600 of a degree. IV. Classification of a pair of Angles i) congruent angles Two angles that have the exact same measure ii) complementary angles Two angles having their measures adding to 90 0 iii) supplementary angles. Two angles that have measures adding to 180 0 iv) conjugate Angles Two angles between 0 and 360 are conjugate if their sum equals 360. V. Angles in Standard Position An angle is in standard position if its vertex is at origin and initial side is along the positive x-axis. An angle is in first quadrant, if in standard position, terminal side falls in the first quadrant. Angles in standard position having terminal sides along x-axis or y-axis are quadrantal angles. 0, 90, 180, 270 and 360 are quadrantal angles. Degree of quadrantal angle is multiple of 90. VI. Coterminal angles One complete rotation of a ray in anticlockwise direction results in an angle measuring of 360. By continuing the anticlockwise rotation, angles larger than 360 can be produced. If we rotate in clockwise direction, negative angles are produced. Angles in standard position that have the same terminal sides are coterminal angles . If and β are coterminal angles, β = + k(360), k is an integer. Coterminal angles differ by integral multiple of 360
Transcript
Page 1: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 43 XI Mathematics Made Easy

3.1 BASIC RESULTS OF TRIGONOMETRY

I. Angles

AOB is formed by two rays OA and OB sharing

common point O called vertex of angle.

If we rotate ray OA about its vertex O and takes

position OB, OA and OB are called initial side

and terminal side of the angle produced.

An anticlockwise rotation generates a positive

angle (positive sign), clockwise rotation generates

negative angle (negative sign).

One full anticlockwise or clockwise rotation of

OA back to itself is one complete rotation

II. Different Systems of measurement of angle

i) Sexagesimal system

Right angle is divided into 90 equal Degrees.

Degree is divided into 60 equal Minutes

Each minute into 60 equal Seconds.

1, 1’ and 1” denote a degree, a minute, a second

ii) Centesimal system

Right angle is divided into 100 equal Grades

Each grade is subdivided into 100 Minutes

Each minute is subdivided into 100 Seconds.

1g denotes a grade.

iii) Circular system

Radian measure of an angle is introduced using

arc lengths in a circle of radius r.

1c denotes 1 radian measure.

III. Degree Measure

Unit of angle measurement represented by degree

One complete rotation is split into 360 equal parts

and each part is one degree, denoted by 1.

1 is 1/360 of one complete rotation.

To measure a fraction of angle minutes and

seconds are introduced.

One minute 1 corresponds to 1/60 of a degree

A second (1’) corresponds to 1/60 of a minute (or)

1/3600 of a degree.

IV. Classification of a pair of Angles

i) congruent angles

Two angles that have the exact same measure

ii) complementary angles

Two angles having their measures adding to 900

iii) supplementary angles.

Two angles that have measures adding to 1800

iv) conjugate Angles

Two angles between 0 and 360 are conjugate if

their sum equals 360.

V. Angles in Standard Position

An angle is in standard position if its vertex is at

origin and initial side is along the positive x-axis.

An angle is in first quadrant, if in standard

position, terminal side falls in the first quadrant.

Angles in standard position having terminal sides

along x-axis or y-axis are quadrantal angles.

0, 90, 180, 270 and 360 are quadrantal angles.

Degree of quadrantal angle is multiple of 90.

VI. Coterminal angles

One complete rotation of a ray in anticlockwise

direction results in an angle measuring of 360.

By continuing the anticlockwise rotation, angles

larger than 360 can be produced.

If we rotate in clockwise direction, negative

angles are produced.

Angles in standard position that have the same terminal sides are coterminal angles .

If and β are coterminal angles, β = + k(360), k

is an integer.

Coterminal angles differ by integral multiple of

360

Page 2: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 44 XI Mathematics Made Easy

1. Express 59.0854into degrees, minutes, seconds

59.0854 = 59 + 0.0854

= 59 +.0854 o1

60'

= 59 + 5.124’

= 59 +5’ + 0.124’

= 59 +5’ +0.124’ 1'

60"

59.0854 = 595’7.44”

2. Express Complementary of 3618’47”into degrees, minutes, seconds

Complementary = 90 − 3618’47”

= 5341’13”

3. Express Supplementary of 34.8597into degrees, minutes, seconds

34.8597 = 3451’35”

Supplementary = 180 –3451’35”

= 1458’25”

4. Identify the quadrant in which given angle lies

(i) 25 (i) first quadrant

(ii) 825 (ii) second quadrant

(iii) −55 (iii) fourth quadrant

(iv) 328 (iv) fourth quadrant

(v) −230 (v) second quadrant

5. Check whether 417 and −303 are coterminal. If so find another coterminal angle

If , β coterminal angles, β - = k(360)

417− (−303) = 720

= 2 (360)

417 and −303 are coterminal

57, 417 and −303 have same initial side and terminal side but with different amount of rotations, so they are coterminal angles.

6. Write coterminal angles pairs for 30, 280, -85

30, 390 280, 1000

−85, 275

7. Find a coterminal angle with measure of θ such

that 0 ≤ θ < 360

(i) 395 35

(ii) 525 165

(iii) 1150 70

(iv) −270 90

(v) −450 270

I. Radian measure of an angle

Ratio of arc length it subtends, to radius of the circle in

which it is the central angle.

rs r

Hence,

radian

radius

length arc centre. at subtended Angle

slength arc Its

r radius of circle a Consider

II. Properties of Radian measure

i) All circles are similar.

For a given central angle in any circle, the ratio of the

intercepted arc length to the radius is always constant.

ii) When s = r, θ = 1 radian.

1 radian is the angle made at the centre of a circle by

an arc with length equal to radius of the circle.

iii) s and r have same unit

θ is unitless and no notation to denote radians.

iv) θ = k radian measure, if s = kr.

θ = 1 radian measure, if s = r

θ = 2 radian measure, if s = 2r

Radian measure tells us how many radius lengths,

need to sweep out along circle to subtend the angle θ.

v) Radian angle measurement can be related to the

edge of the unit circle.

we measure an angle by measuring the distance

travelled along the edge of the unit circle to where the

terminal side of the angle intercepts the unit circle .

III. Difference b/w Degree and Radian Measures

In measuring temperature, Celsius unit is better

than Fahrenheit as Celsius was defined using 0

and 100 for freezing and boiling points of water.

Radian measure is better for conversion and

calculations.

Radian measure is convenient for analysis;

Degree measure is convenient to communicate

the concept between people.

Scale used in radians is much smaller than the

scale in degrees. Smaller scale makes graphs of

trigonometric functions more visible and usable.

Page 3: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 45 XI Mathematics Made Easy

IV. To convert radians into degrees or degrees into

radians

In unit circle, a full rotation corresponds to 360

or 2π radians, the circumference of the unit circle.

radiansradians

radianradian

radians

1801801

1801801

180

3602

xx.

x x

π radians

oo

oo

o

o

V. Properties of π

i) The ratio of the circumference of any circle to its

diameter is always a constant.

This constant is denoted by irrational number π.

ii) Values of π and 7

22 correct to four decimal places

are 3.1416 and 3.1429

π and 7

22 are approximately equal correct upto

two decimal places.

Hence, π ≈7

22

iii) 1 radian ≈ 57O 17’45”

1o ≈ 0.017453 radian

1’ ≈

60180

≈ 0.000291 radian.

1” ≈

6060180

≈ 0.000005 radian.

VI. Radian measures and corresponding degree

measures for some known angles

VII. Area of the sector

360r2Perimeter

radian in sector of Area

degreein sector of Area

2

2

360

2

2

2

r

r

r

Solved Problems

1. Express following angles in radian measure:

Example : i) 18 ii) −108

radians

radians

radians ii)

radians

radians

radiansi)

5

3180

108108

1801

10

180

1818

1801

oo

o

o

o ..

i) 30 radians6

ii) 135 radians

4

3

iii) −205 radians36

41 iv) 150 radians

6

5

v) 330 radians6

11

2. Find degree measure of given radian measures

o

o

o

200radiansvii)radiansvi)

radiansv)radiansiv)

radiansiii)180

radians ii)

7

180

180radians6 i)

180 radians

180 radians

9

10420

3

7

725

220

9

306

3655

11343

6

6

1

722

o

oo

oo

o

o

o

o

3. What must be the radius of a circular running path, around which an athlete must run 5 times in order to describe 1 km?

meters 31.82

1km nceCircumfere

r path circular of Radius

2522

71000

100025

5

r

mr

4. In a circle of diameter 40 cm, a chord is of length 20 cm. Find the length of the minor arc of chord.

traiangle lequilatera make chord of Ends

cm 20.95

arc minor ofLength

60 Angle Central

20cm circle of Radiuso

3

20

1802060

0

o

r

Page 4: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 46 XI Mathematics Made Easy

5. Find the length of an arc of a circle of radius 5 cm subtending a central angle measuring 15

cm

5

arc the ofLength

angle central

cm circle radiusof

12

18015

18015

15

5

rs

ro

6. What is the length of the arc intercepted by

central angle 41 in a circle of radius 10 ft?

7.16feet

f18

1

10

arc the ofLength

angle central

circle radiusof

t

rs

ftr

o

o

7

2241

18041

41

10

7. Find the degree measure of the angle subtended at the centre of circle of radius 100 cm by an arc of length 22 cm.

'

'.

).(

cm arc the ofLength

angle central

cm circle radiusof

3612

606012

612

22

7

5

922

22180

100

22

100

o

o

o

s

r

8. If arcs of same lengths in two circles subtend

central angles 30, 80, find ratio of their radii.

38

30

80180

80180

30

21

2

1

21

2211

2

2

21

21

::

Given)(

circlesgiven anglestwo central,

arc. the oflength ,

circlesgiven two the of radii

1

rr

r

r

rr

rr

ll

ll

,rr

1

9. If in two circles, arcs of the same length subtend

angles 60,75 at centre, find ratio of their radii.

45

7560

21

21

::

rr

rr oo

10. The perimeter of a sector of a circle is equal to the length of the arc of a semi-circle having the same radius. Express the angle of the sector in degrees, minutes and seconds.

27'16"65 sector of Angle

radian1.1416

2-3.1416

semicircle of arc ofLength Perimeter

leofsemicirc angle Central

sector of angle Central

semicircle and sector Radius r

o

2

2 rrr

11. An airplane propeller rotates 1000 times per minute. Find the number of degrees that a point on the edge of propeller will rotate in 1 second.

sec/

secdeg/360

mindeg/360 rotation

deg360 rotation 1

o

o

o

06000

60

1000

10001000

12. A train is moving on a circular track of 1500 m radius at the rate of 66 km/hr. What angle will it turn in 20 seconds?

o

rs

r

14

1500

203318

6060

radian.

radian

2018.3320sin covered Distance

1000661sin covered Distance

km/hr 66 speed

1500m Radius

13. Circular metallic plate of radius 8 cm thickness 6 mm is melted and molded into a pie of radius 16 cm thickness 4 mm. Find angle of sector

circular metallic plate with thickness is a cylinder

4

3

135

401616

3606088

3602

o

HRh

H

R

h

r

.

.

r

height Areaheight Area

Cylinder of Volume sector of Volume

0.6cm height

8cm Radius

0.4cm height

16cm Radius

2

: Cylinder: Sector

Page 5: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 47 XI Mathematics Made Easy

BASIC TRIGONOMETRIC RATIOS & IDENTITIES

1. Prove that

cos

sin 1

1 sec - tan

1 - sec tan

cos

sin

sectansectan

]sec)[tansec(tansectan

)]tan(sec)[sec(tansectan

)tan)(sectan(sec)sec(tansectan

)tan(secsectanLHS

1

1

11

11

1

22

2. Prove that (secA−cosecA)(1+tanA+cotA)=tanAsecA−cotAcosecA

AecAAA

ecAecAecA

AecA

AecAA

A

ecAecA

A

ecAA

ecA

AecA

ecA

AecAA

A ecAAA

AecAAecAA

A) AecA)(A(

cotcostansecsec

coscoscos

seccos

secseccossec

sec

coscos

sec

cossec

cos

seccos

cos

secseccossec

cotcoscotsec

tancostanseccossec

cottancossec

1

3. Eliminate θ from a cos θ = b and c sin θ = d,

222222

22

2222

2

2

2

222

2

22

2

22

1

21

21

cbdaca

ca

cbda

a

b

c

d

c

d

d θc

a

b

ba

sincos),()(

)...(sin

sin

)....(cos

cos

4. If a cos θ − b sin θ = c, show that

.cba ba 222 cossin

.cba ba

cbaba

ca

b

cba

ab ba

ab

ab ba

abcba

c b a

222

2222

2222

222

22222

22222

22222

22222

22

2

12

)cossin(

)cossin(

)sin(cos

)sin(cos

sincos

sincos)cossin(

(1)Using

cossin

sincos)cossin(

)....(cossinsincos

)sincos(

5. If sin θ + cos θ = m, show that

4

134 2266 ) - (m -

sincos where m2 ≤ 2.

4

134

14

131

3

14

1

12

2

22

22

2222

22

323266

2222

2

222

22

) - (m -

)()(m

θ)θθ(θ

θ)θ(

θ)(θ)(θθ

).....()(m

θθ

mθθ

mθθθθ

mθ)θ(

mθθ

using

cossincossin

sincos

sincossincos Now,

cossin

cossin

cossincossin

cossin

cossin Let,

6. If

sincos

sin

1

2 y prove y

sin

sincos

1

1

sin

sincossinsin

)sincos(sin

)sin(sinsin

)sincos(sin

cos)sin(

)sincos(sin

)cossin)(cossin(

)sincos(sin

)sincos)(sincos(

)sincos(sin

)sincos( by multiplysincos

sincos

sincos

sin

1

122

12

121

12

1

12

11

12

11

12

11

1

1

2

2

22

22

y

7. If 1

sin

sin

cos

cos2

4

2

4

prove that

sin

sin

cos

cosii)sinsinsinsini)

2

4

2

42222 2

sin

sin)cosc()cos(cos

cos

cos

sin

sin)cos c()cos(cos

cos

cos

sin

sin)sin sin()cos(cos

cos

cos

sin

sinsincos

cos

cos

sincos sin

sin

cos

cos Let

2

222

2

2

2

222

2

2

2

222

2

2

2

4

2

4

2

4

2

4

22

22

22

22

22

11

os

os

Page 6: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 48 XI Mathematics Made Easy

).....(sinsin

sin sin sinsin sin sin

)sin( sin)sin( sin

cos sin cos sin

sin

sin

cos

cos

)........(coscos

coscos

sin

sin

cos

cos)cos(cos

222222

2222

2222

2

2

2

2

2

2

2

2

22

2

11

1

0

0

22

22

2

2

1

2 22

2222

222244

sin

sin

cos

cos

sin

sin

cos

cos

sin

sin

cos

cosii)

sinsin

sinsinsinsin

sinsinsinsinsinsini)

2

4

2

4

2

4

2

4

2

4

2

4

8. Show that

./k ec

2323 2 costansec if 22 1 ktan

./k

ec

k

k

k

k

232

3

2

2

2

3

33

2

22

22

22

2

1

1

2

2

111

1

)(sec

)(secsec

)tan(sec

sectansec

sin.

cos

sinseccostansec

sec

sec

tan

tan

9. If 2

0 and

0

2

0

2

n

n

n

n θ,yθx sincos

0

22

n

nn θθz sincos Prove that zy xxyz

2222

222

22

32

2

0

2

1

111

1

11

1

1

1

1

11

1

cossinsincos

sincoscos

sincos

. . .

G.P infinitean is...coscos

cos

zy x

zy

xx

xxxx

x

θxn

n

xyz

)cossin(cossin

)cossin(cossin

sincoscossin

cossinsincos

sincos

2222

2222

2222

2222

22

1

1

1

1

1

1

10. If sec θ + tanθ = p, obtain the values of sec θ, tan θ and sin θ in terms of p.

p

p

p

p

p

p

p

p

p

p

p

ppp

p

p

p

p

pp

p p

2

1

2

1

1

1

1

1

1

1

1

412

1

41

11

2

1

1

1

2

2

2

2

2

2

22

22

22

224

22

2

2

2

cos

sintan

)(

)(

)(

)(

secsin

sec

sec2 Adding By

tansectansec

11. If cot θ (1 + sinθ) = 4m and cot θ (1 − sin θ) = 4n, then prove that

mn)- n(m

mn)(

mn)()(

)- n(m

nm

nm

n

n -

n ) -(

m

m

m ) (

222

22

22222

22

22

222

222

16

1

1611

31

516

4

16442

4162

4

341

2162

4

141

sincot

sincotsincot

:Gives)()(Now,

)...(coscot

coscot)(

)(coscot),()(

)...(coscotcoscot

coscot

)..(sincot

)...(coscotcoscot

: sidesboth Squaring

coscot

)......(sincot

Page 7: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 49 XI Mathematics Made Easy

12. If 3 a ec sincos and 3 b cossec ,

then prove that 12222 b aba )(

23

22

23

22

3

23

3

22

32

32

3

3

3

2

1

1

ba

a

a

a

a

a ec

cos

sin Thus,

sin

cos

sin

cos, to powerRaising

sin

cos

sin

sin

sinsin

sincos

1

22

3

2

3

223

2

3

22

3

223

22

3

2

3

23

22

3

23

22

3

223

22

3

2

3

223

223

222

2222

sincos

)(sincos)(coscos

cos

sin

sin

cos)sin(cos

)sin(coscos

sin)sin(cos

sin

cos

cos

sin

sin

cos)sin(cos

cos

sin

sin

cos

cos

sin

sin

cos)(

b aba

13. Eliminate θ from the equations a secθ− ctan θ= b

and b sec θ + d tan θ = c.

22222

22222

2222

22222

22

22

1

1

0

0

)()()(

)()()(

tansec

gingsubtractin andSquaring

tan,sec

tansec

tansec

tansec

tion multiplica crossUsing

tansec

tansec

2

bacbcadbdc

bacbacbcad

bcad

acb

bcad

bdc

bcad

acb

bcad

bdc

bcad

acb

bcad

bdc

bcadacbbdc

θ

cdb

bc-θa

cdb

b c-θa

TRIGONOMETRIC FUNCTIONS

I. Trig. Functions in Cartesian coordinates

The trigonometric ratios to any angle in terms of radian

measure are called trigonometric functions.

Let P(x, y) be a point other than the origin on the

terminal side of an angle θ in standard position .

x

r

y

rec

y

x

x

yr

x

r

y

y x

r. OP

seccos

cottan

cos sin

r

Let

22

i) Since |x| ≤ r, |y| ≤ r,

|sin θ| ≤ 1 and |cos θ| ≤ 1.

ii) Trigonometric functions have positive or negative

values depending on the quadrant in which the

point P(x, y) on the terminal side of θ lies.

iv) Trigonometric functions is independent of the

points on the terminal side of the angle.

II. Trigonometric ratios of Quadrantal angles

Angle in its standard position for which terminal side

coincides with one of the axes, is a Quadrantal angle.

Consider the unit circle x2+y2 = 1.

Let P(x, y) be a point on unit circle where terminal

side of θ intersects the unit circle.

P) of coordinate-( sin

P) of coordinate-( cos

yyy

xxx

1

1

Coordinates of any point P(x, y)

P(cos θ, sin θ).

III. Values of Trig. functions of quadrantal angles.

Page 8: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 50 XI Mathematics Made Easy

i) x and y coordinates of all points on the unit circle

lie between −1 and 1.

Hence, −1 ≤ cos θ ≤ 1, −1 ≤ sin θ ≤ 1, no matter

whatever be the value of θ.

ii) When θ = 360, terminal side coincides with

positive x- axis.

Hence, sine has equal values at 0 and at 360.

Other trigonometric functions follow it.

iii) If two angles differ by an integral multiple of 360

or 2π, then each trigonometric function will have

equal values at both angles.

IV. Geometrical generalization

tan θ is not defined when cos θ = 0

So,tan θ is not defined when θ = (2n +1)π/2,nZ

V. Trigonometric Functions of real numbers

Consider a unit circle with centre at the origin.

Let the angle zero (in radian) be associated with

the point A(1, 0) on the unit circle.

Draw a tangent to unit circle at the point A(1, 0).

Let t be a real number such that t is y- coordinate

of a point on the tangent line.

For each real number t, identify a point B(x, y) on

unit circle such that the arc length AB is equal to t.

If t is positive, choose B(x, y) in anti clockwise

direction, or choose in clockwise direction.

Let θ be the angle subtended by arc AB at centre.

A function w(t) associating a real number t to a

point on the unit circle.

Such a function is called a wrapping function .

Using sin t and cos t, other trigonometric

functions is defined as functions of real numbers.

Wrapping function w(t) is analogous to wrapping

a line around a circle.

The value of a trigonometric function of a real

number t is its value at the angle t radians.

s = rθ

Arc length t = θ.

sin t = sinθ

cos t = cos θ.

sin t = sinθ = y

cos t = cos θ = x.

B(x, y) = B(cos t, sin t) is a point on the unit circle.

−1 ≤ cos t ≤ 1 , −1 ≤ sin t ≤ 1 for any real number t.

VI. Signs of Trigonometric functions

Consider a unit circle with centre at the origin.

Let θ be in standard position.

P(x, y) be point on unit circle corresponding to θ.

values of x and y are positive or negative depending

on the quadrant in which P lies.

cos θ = x,

sin θ = y

tan θ = y/x

First quadrant:

cos θ = x > 0 (positive)

sinθ = y > 0 (positive)

cos θ and sin θ and all

trigonometric

functions are positive

Second quadrant:

cos θ = x < 0 (negative)

sinθ = y > 0 (positive)

sin θ and cosec θ are positive and others are negative.

Third quadrant:

cos θ = x < 0 (negative)

sinθ = y < 0 (positive)

tan θ and cot θ are positive and others are negative

Fourth quadrant:

cos θ = x > 0 (negative)

Page 9: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 51 XI Mathematics Made Easy

sinθ = y < 0 (positive)

cos θ and sec θ are positive and others are negative

If sin θ and cos θ are known, then the reciprocal identities

and quotient identities can be used to find the other four

trigonometric values.

Pythagorean identities are used to find trigonometric

values when one trigonometric value and quadrant known.

VII. Allied Angles

Two angles are said to be allied if their sum or

difference is a multiple of π/2radians.

Any two angles of θ such as,

....,,,

2

3

2

are all allied angles .

VIII. Trigonometric ratios of −θ in terms of θ

Let AOL = θ and AOM = −θ.

Let P(a, b) be a point on OL.

Choose a point P’ on OM

such that OP = OP’.

Draw PN rOA intersecting

OM at P’.

AOP=AOP’

PON= P’ON and PON , P’ON are congruent.

Thus, PN = P’N and point P’ is P’(a,−b)

By definition of trig. functions

cot- )cot(- , sec )sec(-

, cosec- )cosec(- ,tan - )tan(-Thus,

cos)cos('

')cos(

cos

sin)sin('

')sin(

sin

OP

aOP

aOP

a

OP

bOP

bOP

b

−θ is same as θ but it is on other side of x- axis.

Flipping (x, y) to other side of x- axis makes it into (x,−y)

So y-coordinate is negated and sine is negated

x-coordinate is same and cosine is unchanged.

Thus, sin(−θ) = −sin θ, and cos(−θ) = cosθ.

IX. Trigonometric ratios of (90 − θ), 0 < θ <π2

sin(90 − θ) = cosθ,

cos(90 − θ) = sinθ,

tan(90 − θ) = cot θ

cosec(90 − θ) = sec θ,

sec(90 − θ) = cosec θ,

cot(90 − θ) = tanθ.

X. Trig.ratios of of the form (90 + θ), 0 < θ <π/2

Let AOL = θ and AOR = (90 + θ).

Let P(a, b) be a point on OL

Choose a point P’ on OR

such that OP = OP’.

Draw rs PM and P’N

from P and P’ on Ox and

Ox’

AOP’ = 90 + θ.

OPM and P’ON are congruent.

ON = MP nd NP’ = OM

Cordinates of P and P’ are P(a, b) and ’(−b, a),

sin

'

coordinate )ocos(90

cos

'

coordinate )osin(90

OP

b

OP

x

OP

a

OP

y

tan(90 + θ) = −cot θ cosec (90+θ) = sec θ

sec(90 + θ) = −cosec θ cot(90 + θ) = −tan θ.

XI. Trig.function of other allied angles

Page 10: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 52 XI Mathematics Made Easy

XII. Summary of Trig.function of allied angles

i) Allied angles of the form 2n2

θ, n Z

That is, −θ, π θ, 2πθ

Form of trigonometric ratio is unaltered

i.e., sine remains sine, cosine remains cosine etc.

ii) Allied angles of the form (2n+1) 2

θ, n Z

2

θ θ,3

2

θθ

Form of trig. ratio altered to its complementary

Add “co” if it is absent

Remove “co” if it is already present

i.e., sine becomes cosine, cosine become sine etc.

iii) For determining sign,

Find out quadrant

Attach appropriate sign(+or−) according to ASTC

iv) Characteristics of Trig. Functions

i) Sine and cosine functions are complementary

sin (90 − θ) = cos θ and cos (90 − θ) = sinθ.

ii) cos θ and sin θ are satisfy inequalities

−1 ≤ cos θ ≤ 1 and −1 ≤ sin θ ≤ 1.

cos θ, sin θ [−1, 1]

XIII. Periodicity of Trigonometric Functions

A function f is said to be a periodic function with

period p, if there exists a smallest positive number

p such that f(x + p) = f(x) for all x in the domain.

Z. n sinx, )2n (xsin .

sinx

. . . )6 sin(x ) 4 sin(x )2 (xsin

ei

sin x , cos x,cosecx,sec x are periodic functions

with period 2π.

tan x,cot x are periodic functions with period π.

XIV. Graph and Important Datas of T- Ratios

Page 11: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 53 XI Mathematics Made Easy

XV. Odd and Even trigonometric functions

Real valued function f(x) is even function if it

satisfies f(−x) = f(x) for all real number x

A real valued function f(x)odd function if it

satisfies f(−x) = −f(x) for all real number x.

As, cos(−x) = cosx for all x, cos x is even function

Also sec x is even function

sin(−x) = −sin x for all x , sin x is odd function.

tan x, cosec x and cot x are odd functions.

f(t) = t − cos t is neither even nor odd function

A function is an even function if its graph is

unchanged under reflection about the y-axis.

A function is odd if its graph is symmetric about

the origin

1. The terminal side of an angle θ in standard

position passes through the point (3,−4).Find the

six trigonometric function values at an angle θ.

Let B(x, y) = B(3,−4), OA be the initial side

OB = terminal side of θ in standard position.

AOB is the angle θ

θ lies in the IV quadrant.

on so andtan

,cos,sin

)(

3

4

5

3

5

4

5

43 22

22

x

yr

x

r

y

yxr

2.

7

62

7

5, is a point on the terminal side of an

angle θ in standard position. Determine the

trigonometric function values of angle θ.

on so andtan

,cos,sin

quadrant. I thein lies

side initial the be OA ,,B = ) ,B( Let

5

62

5

7

7

62

7

5

7

62

149

24

49

25

7

62

7

5

7

62

7

5

22

r

yx

3. If 5

3θsin and angle θ is in second quadrant,

then find other trigonometric functions.

etcecθ

θ

θθ

θθ

3

5

5

3

5

cos,tan,5

4- cos Thus,

quadrant 2in negative cos

4

25

91

sin 1 cos

1 cos sin

nd

2

22

4. Find values of other trigonometric functions

i) 2

1- cos , θ lies in the III quadrant.

Page 12: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 54 XI Mathematics Made Easy

on so and,tan,3

- sin Thus,

quadrant 3in negative sin

3

4

11

cos 1 sin

1 cos sin

nd

2

22

32

2

θ

θ

θθ

θθ

ii) cos θ =2/3, θ lies in the I quadrant.

on so and,tan,5

sin Thus,

quadrant stIin ve sin

5

9

41 sin

2

3

3

3

θ

θ

θ

iii) sin θ = −2/3, θ lies in the IV quadrant.

on so and,tan,5

cos Thus,

quadrantth IVin ve cos

5

9

41 cos

2

3

3

3

θ

θ

θ

iv) tan θ = −2, θ lies in the II quadrant.

on so and1

-

costansin

,1

- cos Thus,

quadrant 2in negative cos

cos

41

tan1 sec

1 tan sec

nd

2

22

5

22

5

5

5

1

5

θ

θ

θθ

θθ

v) sec θ =13/5, θ lies in the IV quadrant.

on so and,tan,12-

sin Thus,

quadrantth IVin ve sin

12

1 sin

13

5cos

5

12

13

13

169

25

θ

θ

θ

5. Find the values of

i) sin(−45) ii) cos(−45) iii) cot(−45)

-1

)cot(45 )cot(-45

1

)cos(45 )cos(-45

1

)sin(45- )sin(-45

2

2

6. Find the value of

i) sin 150 ii) cos 135 iii) tan 120.

3-

)tan(60-

)60 -(180tan 120tan

2

1

)cos(45-

) 45-(180 cos 135 cos

)sin(30

)30-(180sin 150sin

cot

)30 (90 tan120tan

2

1-

)sin(45-

) 45 cos(90 135 cos

)cos(60

)60 sin(90 150sin

o

ooo

o

ooo

o

ooo

o

ooo

o

ooo

o

ooo

2

1

3

30

2

1

θ)(180 Usingθ)(90 Using

7. Find the value of:

iii) cos(300) i) sin(480) v) cot(660)

i) sin 765 iv) tan(1050) ii)sin(−1110)

ii) cosec (−1410)

iii)

4

15-cot vi)

3

19tan vii)

3

11sin

cos 300 = cos(360 -60)

= cos60

= 2

1

sin 480 = sin(360 +120)

= sin120

= sin(180- 60)

= 2

3

sin 765 = sin(2 360 + 45)

= sin45

Page 13: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 55 XI Mathematics Made Easy

= 2

1

cot 660 = cot (2360 -60)

= -cot 60

= - 3

1

tan (1050) = tan (3360 - 30)

= -tan 30

= - 3

1

sin (−1110) = −sin (1110)

= −sin (3360 + 30)

= - sin 30

= 2

1

cosec(−1410) = −cosec (1410)

= −cosec (4360 − 30)

= cosec 30

= 2

4

15-cot =

4-4cot-

=

4cot

3

19tan =

3

6tan

=

3

tan

= 3

3

11sin =

3

4sin

=

3

sin

= 2

3

8. Prove: tan315cot(−405)+cot 495tan(−585)= 2

= tan(360−45)[−cot(360+45)]+cot(360+135)

[−tan (360 + 225)]

= [−tan 45] [−cot 45] + [−tan 45] [−tan 45]

= (−1)(−1) + (−1)(−1)

= 2.

9. Prove that

cotcos))cosec(360tan(- )sin(270

)cos(- )sin(90 )cot(180 2

cotcos

tanot

os cot

)cosec(-tan )os(-

cos os cot

))cosec(360tan(- )sin(270

)cos(- )sin(90 )cot(180

2

2

c

c

c

c

10. Find all the angles between 0 and 360 which

satisfy the equation sin2 θ =34

o

o

1202

3

602

3

2

3

4

,sinwhen

,sinwhen

sin

3 sin 2

11. Prove 2 9

sin18

sin 9

sin 18

sin 2222

47

211918

918

2

cos 9

sin cos 18

sin

2 sin

9 sin

2 sin

18 sin

222

2222

12. Determine whether the functions are even, odd

or neither i) sin2 x − 2 cos2 x − cos x ii) sin (cos(x))

iii) cos (sin(x)) iv) sin x + cos x

i) Let f(x) = sin2 x − 2 cos2 x − cos x

sin(−x) = −sin x and cos(−x) = cos x

f(−x) = f(x)

Thus, f(x) is even.

ii) Let f(x) = sin (cos(x))

f(−x) = f(x)

f(x) is an even function.

iii) f(x) = cos (sin(x)) ,

f(−x) = f(x),

Thus, f(x) is an even function.

iv) f(x) = sinx + cos x

f(−x) f(x) and f(−x) ) − f(x)

Thus, f(x) is neither even nor odd.

Page 14: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 56 XI Mathematics Made Easy

Trigonometric Identities Compound Angles formulas

Compound angles are algebraic sum of two or more angles.

Trigonometric functions do not satisfy the functional

relations like f(x + y) = f(x) + f(y) and f(kx) = kf(x), k is

a real number.

cos(+β) cos +cos β

sin(2) 2sin

tan 3 3tan, . . ..

1. Prove that cos( + β) = cos cos β − sin sin β

Consider the unit circle with centre at O.

Let P = P(1, 0).

Let Q,R and S be points on the unit circle

such that POQ = ,

POR = +β POS = −β

angles , + β and − β are in standard positions. Points Q,R and S are given by

Q(cos , sin )

R (cos( + β), sin( + β))

S (cos(−β), sin(−β)

Since ’POR and ’SOQ are congruent.

sin sin - cos cos ) cos(

sin 2sin cos cos 2 - 2 2)cos( 2-

)]sin(- -[sin )]cos(- - [cos ) (sin 1] - ) [cos(

2SQ 2PR

SQ PR

2222

Arc lengths PR and SQ, subtends angles +β, +(−β)

Thus, PR = SQ.

Distance b/w (cos , sin ) and (cos(−β), sin(−β)) is

same as distance b/w (cos(+β), sin( +β)) and (1, 0).

2. cos( − β) = cos cos β + sin sin β

cos( + β) = cos cos β − sin sin β

cos( − β) = cos[ + (−β)]

= cos cos(−β) − sin sin(−β)

cos( − β) = cos cos β + sin sin β.

i) If = β, cos2 + sin2 = 1.

ii) If = 0.β = x, cos(−x) = cos x

3. Prove: sin( + β) = sin cos β + cos sin β

sin(+β) = cos[ 2 − ( + β) ]

= cos[( 2 −)− β) ]

= cos( 2 −)cosβ+sin( 2

−) sinβ

sin( + β) = sin cos β + cos sin β

If +β = 2 , cos2 + sin2 = 1

4. Prove: sin( − β) = sin cos β − cos sin β

sin(−β) = sin[ + (−β)]

= sin cos (−β) + cos sin (−β)

sin( − β) = sin cos β − cos sin β

5. Prove tanαanαt1

tanβtanαβ)tan(α

β

ββ)(

β

ββ)(

tantan

tantantan

cos cos

sin sin

cos cos

cos cos cos cos

sin cos

cos cos

cos sin

cos cos

sin sin cos cos cos cos

sin cos cos sin

)cos(

)sin(tan

1

6. Prove tanαanαt1

tanβtanαβ)tan(α

β

β

β

ββ)(

tantan

tantan

)tan(tan

)tan(tantan

1

1

7. Prove cotB cotA

1- cotAcotB B) cot(A

cotcot

cotcot

cotcot

cotcot

tantan

tantan

tan

(tancot

1

11

1

1 2

2

2

2

β

β

β)

β)β)(

8. Expand C) B sin(A

Page 15: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 57 XI Mathematics Made Easy

sinC sinAsinB - sinC cosAcosB

cosC cosAsinB cosC sinAcosB

C) cosAsin(B C) sinAcos(B

C)] (B sin[A C) B sin(A

9. Expand : C) B cos(A

.

B, sinAcos sinC

cosA sinC sinB cosC sinAsinB cosC cosAcosB

sinC sinAcosB - cosC AsinBsin

sinC cosAsinB cosC cosAcosB

C) B cos(A

C B A if,

sinC sinAcosB - cosC AsinBsin

sinC cosAsinB cosC cosAcosB

C) sinAsin(B C) cosAcos(B

)](cos[C) B cos(A

0

02

CBA

10. Expand : C) B tan(A

ACC-BB-A-

CBAC-BA

A

CBA

CBA

tantantantantantan

tantantantantantantanC tanB - 1

tanC tanBtanA - 1

tanC tanB - 1

tanC tanBtan

C) tanAtan(B - 1

)tan(tan

C)] (B tan[A )tan(

1

i) If A+B+C = 0 or π,

C.tan tanAtanB tanC tanB tanAHence

0 C) B tan(A

ii) in case of oblique triangles

tan(x − y) + tan(y − z) + tan(z − x)

= tan(x − y) tan(y − z) tan(z − x

iii) If A + B + C = π/2 tanAtanB + tanB tanC + tanC tanA = 1

11. Evaluate : cos(A + x) − cos(A − x)

x

xx

xxxx

sinAsin 2-

sin sinA cos A cos-

sin sinA cos A cos ) - cos(A - ) cos(A

12. Prove that B sin - A sin B) - sin(A B) sin(A 22

Bsin - Asin

Bsin A)sin - (1 - B)sin - (1 Asin

Bsin Acos - Bcos Asin

sinB) cosA - cosB (sinA sinB) cosA cosB A(sin

22

2222

2222

13. Prove that

Asin-Bcos Bsin - Acos B) - cos(A B)cos(A 2222

Bsin - Acos

Bsin A)cos - (1 - B)sin - (1 Acos

Bsin Asin - Bcos Acos

sinB) sinA cosB (cosA sinB) sinA - cosB (cosA

22

2222

2222

14. Prove that sin2Asin2B B) - (Asin - B) (Asin 22

sin2Asin2B

B) A B sin(A B) - AB sin(A

B) - (Asin - B) (Asin 22

15. If 13

12 cos,

17

15 sin yx , 0 < x <π/2, 0 < y <π/2,

Find i) sin(x + y) ii) cos(x − y) iii) tan(x + y).

x,y are in In 1st quadrant

In 1st quadrant, sin y, cos x is always positive

21

220

21

221

221

220

221

21

13

5

17

8

221

171

13

5

17

8

221

220

13

5

17

8

13

5

1

17

8

122

)cos(

)sin()tan(

17

15

13

12

sinsincoscosy)cos(x17

15

13

12

sinsincoscosy)cos(x13

12

17

15

sincoscossin y) sin(x

13

12sin

13

12 cos

17

15cos

17

15 sin

yx

yxyx

yxyx

yxyx

yxyx

y

y

x

x

16. If sinA = 3 and cosB = 9, 0 < A <π2, 0 < B <π/2 find the value of i) sin(A + B) ii) cos(A − B).

In 1st quadrant, sinB, cosA is always positive

205

156

41

40

5

4

205

187

41

40

5

4

41

40

1681

811

5

4

25

91

5

3

41

9

sinsincoscosB)cos(A

41

9

5

3

sincoscossinB) sin(A

sin

41

9 cos

cos

5

3 sin

BABA

BABA

B

B

A

A

Page 16: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 58 XI Mathematics Made Easy

17. If sin x = 4/5( in I quadrant ), cos y =−12/13( in II quadrant), find (i) sin(x − y), (ii) cos(x − y).

In 1st quadrant, cos x is always positive

In 2nd quadrant, siny is always positive

65

16

13

5

5

3

65

63

13

5

5

3

13

5

169

1441

5

3

25

161

5

4

13

12-

sinsincoscos)cos(

13

12-

5

4

sincoscossin)sin(

sin

13

12- cos

cos

5

4 sin

yxyxyx

yxyxyx

y

y

x

x

18. Find cos(x − y), if cos x = −4/5 with π < x <3π/ 2 and sin y = −24/25with π < y <3π/2

In 3rd quadrant, cosy, sin x is always negative

5

4

25

24

5

4

25

7

625

5761

5

3

25

161

5

3

25

7-

sinsincoscos)cos(

cos

25

24- sin

sin

5

4- cos

yxyxyx

y

y

x

x

19. Find sin(x − y), given that sin x = 8/17with 0 < x <π/2 and cos y = −24/25with π < y < 3π/ 2

In 1st quadrant, cos x is always positive

In 3rd quadrant, sin y is always negative

425

87

25

7

17

8

25

7

625

5761

17

15

289

641

17

15

25

24-

sincoscossin)sin(

sin

25

24- cos

cos

17

8 sin

yxyxyx

y

y

x

x

20. Find the value of i) cos 15◦ ii) tan 165◦.

iii) cos 105◦ iv) sin 105◦

iv) tan 7π/12

22

13

2

1

2

1

2

3

2

1

..

30sin sin45 30 coscos45

)30-cos(45 15 cosoooo

ooo

31

31

165tan Thus,

1 tan 45

3- 30 cot-

)30 tan(90 120tan

tan 45 120tan - 1

tan 45 120tan

) 45tan(120 165tan

o

o

o

ooo

oo

oo

ooo

22

31

2

3

2

1

2

1

2

1

60

..

60sin sin45 60 coscos45

)cos(45 105 cosoooo

ooo

22

13

2

3

2

1

2

1

2

1

60

..

60sin cos45 60 cossin45

)sin(45 105sin oooo

ooo

)(

tan tan - 1

tan tan

tan 12

7tan

32

31

31

31

31

31

13

43

43

43

21. Prove that

i) 2

330

x x-x) ( o sincos

cos

2

3

2

1

2

3

303030

x x-

xx

xxx)( ooo

sincos

sincos

sinsincoscoscos

ii) cos(π + θ) = −cos θ

cos

sin)(cos)(cos

cossin

)sin(sin)cos(cos

sinsincoscoscos

01

090190

90909090

)(

)(

iii) sin(π + θ) = −sin θ.

sin

sin)(cos)(

sincoscossinsin

10

)(

Page 17: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 59 XI Mathematics Made Easy

22. Find quadratic equation with roots sin15,cos15

0162

04

1

2

6

0

4

1

22

13

22

13

2

6

2

2

2

3

2

32

22

13

22

13

22

1315

22

13

2

1

2

1

2

3

2

1

15

2

2

2

xx

xx

xx

o

)(

:QE Required

20(i): problem [see cos

..

30sin cos45 cos30sin45

)30-sin(45 sin let

o

oooo

oo

23. Prove that i) sin(45◦

+ θ) − sin(45◦ − θ) =√2 sinθ.

..sincos

sin45coscos45sin) sin(45

sincos

sin45coscos45sin) sin(45

ooo

ooo

2

2

sin 2

sincos

sincos)sin(45-)sin(45 oo

22

ii) sin(30◦ + θ) + cos(60◦ + θ) = cos θ

cos

sincossincos),()(

)....(sincos

sin6coscos6sin) sin(60

)...(sincos

sin3coscos3sin) sin(30

ooo

ooo

2

3

2

321

22

3

00

12

3

00

24. If a cos(x + y) = b cos(x − y), show that (a + b) tanx = (a − b) cot y.

y. (a - b) x b) (a

xxba

y

yba

yxbayxba

yxbyx byxayxa

(x - y)b y)(xa

cottan

cossin)(

sin

cos)(

sinsin)(coscos)(

sinsincoscossinsincoscos

coscos

25. Prove that sin 105◦ + cos 105◦ = cos 45◦.

o45

2

122

31

22

31

22

31

22

31

cos

105 cos105sin

(iv)](iii), 20 :No ProblemSee[

105sin , 105 cos

o

oo

26. Prove that sin 75◦ − sin 15◦ = cos 105◦ + cos 15◦.

2

122

13

22

13

22

13

22

13

oo

o

o

o

15sin 75 sin

15cos

15)-sin(90 75 sin

22] :No problem See[ 15sin

27. Show that tan 75◦ + cot 75◦ = 4.

4

13

1313

13

13

13

13

13

13

1

13

13

22

22

)(

)()(

75 cot75tan

30 cot45cot

-30 cot45cot

)30 (45 cot 75 cot

20] : No problem See[

)30 (45tan 75tan

oo

oo

oo

ooo

ooo

28. Prove that cos(A+B) cosC − cos(B +C)cosA=sinB sin(C −A)

A) - sin(C sinB

sinsinBcoscossinsinBSubtract,

sinsincosAcoscoscosAcosAC)cos(B

cosCsinsin cosCcoscos

cosC)sinsincoscos(B)cosCcos(A

CCAC

CBCB

BABA

BABA

29. Prove that sin(n+1)θ sin(n−1)θ +cos(n+1)θ cos(n−1)θ = cos2θ

= cos(n+1)θ cos(n−1)θ + sin(n+1)θ sin(n−1)θ

= cos[(n+1)θ – (n−1)θ]

= cos2 θ

30. If x cos θ = y cos_θ +2π3_= z cos_θ +4π3_ , find the value of xy + yz + zx.

Page 18: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 60 XI Mathematics Made Easy

0

1

22

3

2

1

2

3

2

1

3

4

12

3

2

1

2

3

2

1

3

2

3

4

3

2

34

34

32

32

zxyz xy

zxyz xy

z

x

y

x

z

x

y

x

z

x

zx

y

x

y

x

y

x

yx

zy x

(2) and (1)Adding

).....(tan

sincoscos

sinsincoscoscos

coscos

)....(tan

sincoscos

sinsincoscoscos

coscos

coscoscos

31. Show that

i) tanA - 1

tanA1 A)tan(45o

tanA - 1

tanA1

tan45tan-1

tan45tan A)tan(45

o

oo

A

A

ii) tanA 1

tanA1 A)tan(45o

tanA 1

tanA1

tan45tan1

tan45tan A)tan(45

o

oo

A

A

32. If 12

1

1

ny

n

nx tan,tan find tan(x + y)

1122

122

122

12

12

1

11

12

1

1

1

12

1

1

2

2

2

2

nn

nn

nnnn

nnn

nn

nnn

n

yx

yxy).(x

ny

n

nx

][

tantan

tantantan

tan,tan

33. Prove .4

tan4

tan that 13

1

1

1

1

13

4

43

1

1

1

4

4

4

tan

tan

tan

tan

4tan

4tan

tan

tan

tan4

tan

tan

tan

tantan

tantan

4tan

34. Prove that cos 8θ cos 2θ = cos2 5θ − sin23θ

3528

353528

22 sincoscoscos

)cos()cos(coscos

BcosAcosB)B)cos(Acos(A 22

35. Find the values of tan(α+β), given that

),(),,(,- sec , cot 22

035

21

11

2

3

81

3

42

1

3

4

19

25

1

35

221

2

tantan

tantan)tan(

II] Quadrantin is [

sectan

- sec

I] Quadrantin is [tan

, cot

36. If cos(α − β) + cos(β − γ) + cos(γ− α) = −3/2, prove

that cos α + cos β + cos γ = sinα + sinβ + sinγ = 0

2cos(α − β) + 2cos(β − γ) + 2cos(γ− α) +3=0

02

22

2

22

0

22

2222

222

222

2222

22

coscos

coscoscoscoscoscoscos

sinsin

sinsinsinsinsinsinsin

cossincossin

cossinsinsincoscos

sinsincoscossinsincoscos

(cos α + cos β + cos γ)3 + (sinα + sinβ + sinγ)3 = 0

cos α + cos β + cos γ = sinα + sinβ + sinγ = 0

Page 19: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 61 XI Mathematics Made Easy

37. If θ + φ = α and tan θ = k tan φ, then prove that

sin )sin1

1

k

k - (

(k

k -

k

k -

k

k

k

k

)sin

sinsin

)sin(sin

sin

)sin(

)sin(

)sin(

sincoscossin

sincoscossin

tantan

tantan

tan

tantan

tan

tantan

tan

tan

tantan

sin)sin(

1

1

1

1

1

1

38. Show that

cos2A+cos2 B−2cosAcosB cos(A+B) = sin2(A+B)

)cos(coscoscoscos

)sinsincoscos(

coscoscoscos

sincoscossin

coscoscoscos

sincoscossin

coscoscoscoscoscos

sincoscossin

)cos(coscos)cos(

sincoscossin

sincoscossin

)sincoscos(sin

B)]sin(A[

B)(Asin2

2

BABABA

BABA

BABA

BABA

BABA

BABA

BAABAB

BABA

BABA

BABA

BABA

BABA

2

2

2

2

2

2

11

2

22

22

2222

222222

2222

2222

2

3.5. MULTIPLE -SUBMULTIPLE ANGLES

I. Double-Angle Identities

.

A

A A

A

A A -

AA

A A - A

A

A

AA AA

AA A

A A -

A A

A) (A A

.

A A) - - (

A - A -

AAA - A

A) (AA

.

AA A A

A) (AA

Atan 1

A tan -1 cosA

Atan -1

tanA 2sin2A

Atan -1

tanA 2tan2A

Asin 2 -1 2A cos

1 -A 2cos 2A cos

Asin -Acos cos2A

A 2sinAcos 2Asin

2

2

2

2

2

2

22

2

22

2

22

22

22

2

2

22

22

22

2

2

22

1

2

1

1

2

2

cos

sincos

cos

sincos

cossin

sincoscosv)

cos

cos

cossincossin

cossinsiniv)

tantan

tantan

tantaniii)

sinsin

)cos(cos

sinsincoscos

coscosii)

cossincossin

sinsini)

II. Power reducing or Reduction identities

A

AA

A

A

A

A

AA

A A. -

AA

A A -

21

212

212

212

21

221

2

21

212

2

2

2

2

2

2

2

cos

costan

cos

cos

cos

sin

cossin

cossin

coscos

coscos

III. Triple-Angle Identities

Page 20: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 62 XI Mathematics Made Easy

A

AA

AA

A

AA

AAA

AA

AAA

A. A -

A-AA -A -

AAA A - A -

AA A - A

A) A ( A

AA -

AA - AA

AA - A A

AAAAA

AAAA

A) A ( A

2

3

2

2

3

23

2

3

22

22

2

31

3

1

21

1

221

2

23

34

122

212

22

23

43

212

22

21

22

23

tan

tantan

tantan

tan

tantan

tantantan

tantan

)tan(tan iii)

coscos

)cos(coscoscos

sincossincos)cos(

sinsincoscos

coscos ii)

sinsin

sinsin)sin(sin

sinsincossin

sin)sin(coscossin

sincoscossin

sinsin i)

IV. Half-Angle Identities

.A

A -

A

A -

A

A

A -

A

A

A - A

- A

A

A

- A

A

.AA

A

.AA

A

21

21

2

21

22

21

22

2

221

12

2

22

222

222

2

2

2

2

2

2

2

2

22

tan

tancosv)

tan

tansiniv)

tan

tantaniii)

sincos

coscos

sincoscosii)

cossinsin

cossinsini)

V. Prove that AAA-AA 33 444 sincoscossinsin

A.

A A)(

AA)A(

A AA

AA - AARHS

AA A - A A

4

222

222

24

4

44422

33

sin

cossin

coscossin

coscossin

)sin(coscossin

sincoscossinsin

1. Prove that

1010

10

2222

xxxx cos...coscossinsin

1010

10

22

22

2222

22222

222

222

xxxx

xxxx

xxx

xxx

cos...coscossinsin

repeatedly angle half applyAgain

coscossinsinThus,

cos2sinsin

angle, half applyAgain

cossinsin

2. θθθ

θθtan

coscos

sinsin

21

2

θ

θθ

θθθθ

θθθ

tan

)cos(cos

)cos(sincoscos

cossinsin

21

21121

22

3. xx

xxx

cossin

cossinsin

33

22

11

x

xx

xx xx

xxxx xx

xx

xxRHS

22

11

2

21

1

22

33

sin

cossin

cossincossin

)cossincos(sincossin

cossin

cossin

4. Find x such that −π ≤ x ≤ π and cos 2x = sinx

6

5

62

6

5

62

2

1

4

31

012

21

2

2

2

,,Thus

,,1

is sin if

1,- is sin if

2

1or

sin

:formula quadraticUsing

sinsin

sinsin

sincos

x

xx

xx

x

xx

xx

xx

5. Find the values of

i) sin 18◦ ii) cos 18◦ iii) sin 72◦iv) cos 36◦

v) sin 54◦

or Verify that

sin 18◦ = cos 72◦, cos 18◦

= sin72◦ and cos 36◦

= sin54◦

Page 21: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 63 XI Mathematics Made Easy

5

54sin

36cos )36 - sin(90 54sin

72sin

cos18

)18 - sin(90 72sin

5 cos

5

sin cos

sin cosUsing

5

sin - 1 cos

5 sin or

)(

4(4)(-1)- 4 2- sin

sinsin

sinsin

cossin

coscoscossin

cossin

sinsin

2

4

1

4

5210

4

136

4

11

182136

212

4

5210

4

11

1818

4

118

42

0124

3142

342

342

32

3902

3902

9023

905

18

2

2

2

2

2

2

2

3

o

oooo

o

o

ooo

o

oo

oo

o

o

o

o

o

o

AA

-

) - - (

-

. -

) - (

-

6. ooec 20203 seccos

4

202

60604

20202

206020604

20202

202

120

2

3

4

2020

20203

20

1

20

13

0

)sin(

)sin(

cossin

sincoscossin

cossin

sincos

cossin

sincos

cossin

o

oo

oo

ooo

oo

oo

oo

oo

oo

7.

cos

coscos,tantan

a

a

a

a

121

1

2

cos

cos

)cos(sin)sin(cos

)cos(sin)sin(cos

sin)(cos)(

sin)(cos)(

cos

sin

cos

sin

tan

tan

tan

tancos

,tantan

a

a

a

a

aa

aa

a

a

a

a

a

a

a

a

a

a

1

11

11

1

11

1

11

1

11

1

11

1

1

21

1

2

22

22

22

22

22

22

22

22

22

22

22

22

222

22

22

2

22

22

222

2

8. A

A AAAAA

n

nn-

sin

sincos...coscoscoscos

2

2222 1232

A

A

AAAAA

AAAAAA

AAAAAAA

n

n

n-

n-

n-

sin

sin

get we process, the Continuing

cos...coscossinsin

cos...coscoscossinsin

cos...coscoscoscossinsin

2

2

2242

1

22222

1

22222

1

1232

2

1232

1232

9. Find the value ofo

2

122sin

2

22

2

122

2

1

2

1

2

2

1

2

21

21

22

o

sin

45cos45sin

45 take,cos

sin

cossin

oo

o

10. Find sin 2 θ if 13

12sin

169

120

13

5

13

122

2213

51 169

144

cossinsin

cos

Page 22: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 64 XI Mathematics Made Easy

11. If A + B = 45°, show that (1 + tanA) (1 + tanB) = 2

2 tanB) (1 A)tan (1

2 tanB tanA tanB tanA 1

tanB tanA - 2 tanB tanA 1 .

sidesboth on 1 Add

tanB . tanA - 1 Btan tanA .

1 tanB . tanA - 1

tanB tanA

tan45 B) (Atan

BA o45

12. )())()(( oooo 441312111 tan...tantantan is a

multiple of 4 – Prove

2 tanB) (1 A)tan (1

2 tanB tanA tanB tanA 1

tan45 B) (Atan

Let

BA o45

11

22

4

2

22222

231221

4312144111

termsupto....

]tantan

]...tantan][tantan

))((

))(())((oo

oooo

13. Prove )(

-

22

2

1

144

tan

tantansin

)(

-

-

22

2

2

2

2

1

14

1

1

1

22

24

tan

tantan

tan

tan

tan

tan

cossinsin

14. Prove that

2244

tantantan

221

21

2121

1

11

1

1

1

1

11

44

2

2

22

2

22

4

4

4

4

tantan

tantan

tantantantan

tan

)tan()tan(

tan

tan

tan

tan

tantan

tantan

tantan

tantan

tantan

15. Find cos 2A, A lies in the first quadrant, when

63

16 tanA iii)

5

4 sinA ii)

17

15 i)cosA

A

AA

2

2

1

12

tan

tancos

63

16 tanA iii)

4225

3713

25

7

212

289

161

122 22

AAAA sincos

5

4 sinA ii)

coscos

17

15 cosAi)

16. Prove that 64322

17

o

cot

64322

17

13

13

13

1322

13

1322

1

15

151

2

21

1527

2213

2213

21

o

o

o

oo

cot

sin

cos

sin

coscot

17. Prove if

3

3 1

2

13

1

2

1

aa

aa cos,cos

31

2

1

341

2

1

2381

138

1

21

21

3

3

33

3

3

3

3

2

3

3

2

33

cos

coscos

coscos

cos

cos

cos

aa

aa

aa

aa

aa

aa

aa

18. θθθ)(θ)θ)(( nn cottansec...secsec 2214121

θθ

θ

θ

θ

θθθθ

θθθθ

θ

θ

θ

θ

θ

θ

n

n

n

n

nn

n

n

n

n

n

n

n

n

n

n

2

2

2

2

1222

2

2222222

2

2222222

2

2222222

2222

222222

2

21

2

21

2

21

11

22

22

22

32

122222

2

2

tancot

cos

sincot

cos)cossin(

sin

cos

this like Proceedingcos

cos)..cos)(cossin(

sin

cos

cos

cos)..cos)(cos)(sincos(

sin

cos

cos

cos)..cos)(cos)(cos(cos

cos...coscoscos

coscoscoscos

cos

cos...

cos

cos

cos

cos

Page 23: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 65 XI Mathematics Made Easy

19. Prove 3612244848

332

coscoscoscossin)(

36

32

66232

61212234

6122424238

6122448482316

sin

cossin)

coscossin)(

coscoscossin)(

coscoscoscossin)(

20. Prove that θθθ - θ coscoscoscos 520165 35

θθθ - coscoscos

coscoscoscos

coscoscoscos

)cos)cos(cos)cos((

coscoscoscos

)cossincossin(

coscoscoscos

cossin)sinsin(

)cos)(coscos(

sinsincoscos

)coscos(

52016

8866

3468

1816

3468

86

3468

243

1234

2323

23

35

33

335

42

335

42

335

3

23

21. If θ is an acute angle, then find

i)25

1

24

sin,sin ii)

9

8

24

sin,cos

5

32

24

25

11

2

1

12

1

24

2221

2

1

222

222

1

24

222

1

24

422424

2

222

sin

sinsin

sincos

sincossincossin

sidesboth squaring

sincossin

cossincossinsin

23

1

24

222

1

24

cos

sincoscos

above as proceeding

PRODUCT TO SUM AND SUM TO PRODUCT

2

DCsin

2

DC2sin - cosD - cos

2

DCcos

2

DCcos 2 cosD cos

2

D-Csin

2

DCcos 2 sinD - sin

2

D-Ccos

2

DCsin 2 Dsin sin

IVIII,II,I,in eSubstistut2

DCB ,gives(2)(1)

2

DCA ,gives(2)(1)

(2).... D B - A

.....(1), C B A Let

......

sinB sinA cosB cosA B) - cos(A

sinB sinA - cosB cosA B) cos(A

.

sinB cosA - cosB sinA B) - sin(A

sinB cosA cosB sinA B) sin(A

C

C

C

C

I

IVsinB 2sinA - B) -cos(A -B) cos(A

IIcosB cosA 2 B) -cos(A B) cos(A

..IIsinB cosA 2 B) -sin(A -B) sin(A

..IcosB sinA 2 B)-(A sin B) sin(A

1. Express as a sum or difference

.sin 4 5viii)sin 2 cos 5 vii)cos

cos2 sin10 vi)cos2x sin4x v)28 cos iv)sin35

2cos

2sin iii) sin55cos110 ii) cos30sin40 i)

oo

oooo

θθθθ

θθ

xx 3

]cos3 7 [cos2 cos 5 vii)cos

]sin55[sin165

)55 sin(110 - )55 sin(110 sin552cos110 ii)

]sin8 12[sin cos2 sin10 vi)

sin2x] 6x[sin cossinv)

]sin7[sin6328 cosiv)sin35

]sinsin[2

1

22sin

22sin

2cos

2sin iii)

]sin10[sin70

)]30sin(40)30[sin(40cos30sin40i)

oo

oooooo

oooo

oo

oooooo

2

1

2

1

2

12

124

2

1

2

33

2

13

2

12

1

θθ

θθ

xx

xx -

xxxxxx

B) -cos(A B) cos(A cosAcosB 2

B) -sin(A -B) sin(A cosAsinB 2

B) -sin(A B) sin(A cosBsinA 2

Page 24: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 66 XI Mathematics Made Easy

]cos9 [cos.sin 4 5viii)sin

2

1θθ

B) cos(A B) cos(A sinAsinB 2

2. Express as Product

ooooo

ooooo

oo

4cos - 64 cos 34n viii)si75 cos - 35 cos vii)

sin4050vi)sin cos15v)cos6535sin -iv)sin75

2cos -

2 cos iii) cos2 6 cos ii) sin20 sin50 i)

xx

θθ93

20sin 2sin55 75 cos - 35 cos vii)

sinsin

sinsin2

cos -2

cos iii)

C

coscoscos15cos65v)

coscos cos2 6 cos ii)

20sin 2cos5535sin -sin75iv)

5 cos 2sin45sin4050sin vi)

cossin

2

2050cos

2

20 502sin sin20 sin50 i)

oooo

o

oooo

oooo

oooooo

23

23

29

23

29

32

222

93

25402

242

15352

x

xxxx

oo

oo

x

xx

θθ

2

CDsin

2

D2sin cosC -cosD

2

DCcos

2

DCcos 2 cosD Ccos

2

D -Csin

2

D C2cos sinD sinC

2

D -Ccos

2

D C2sin sinD sinC

0

2

ooo

oooooo

30sin 34sin 34sin

] 4cos - 64 cos [ 34sin 4cos - 64 cos 34sin

Prove that

3. 3A cos4

1 A) cosAcos(60 A) - cos(60 oo

A3cos4

13cosA -A cos

4

1

A cosA cos

A cosA cos

A) cos-(1 -A cos

A) sin-60A·(cos cos

A)]A)cos(60-cos(60 cosA[

3

343

243

241

22

oo

4. 3Asin 4

1 A) sinAsin(60 A) - sin(60 oo

3Asin 4

13Asin

sinA 2AsinA cos

sinA ]120 cos - 2A [cos

sinA A) sin(60. A) - sin(60

o

o

2

1

2

12

1

2

12

1

5. tan3A A) tanAtan(60 A) -tan(60 oo

tan3A

A)]A)cos(60-cos(60 cosA[

sinA A) sin(60 A) - sin(60

cos

sin

oo

oo

4343

A

A

6. 16

1 144 cos 108 cos 72 cos 36 cos oooo

16

1

4

15

4

1522

o2o2

oooo

ooooooo

oooo

18sin36 cos

36 cos 18sin 18sin 36 cos

36 - )cos(18018)cos(9018 -cos(90cos36

144 cos 108 cos 72 cos 36 cos

7. 8

1 54sin sin 48 12sin ooo

8

17

721

4

1

7

721

4

1

8

363621

4

1

8

368821

4

1

36821

2

1

2

1

2

12

12

1

41

41

]22sin

sin[

])2-2cos[90

sin[

]2cos1

cossin[

]cos1

cos1cos1sin[

]cos1sin[

)]18sin 54(sin -[1

)18sin 90(sin 54sin -

]54sin 36 c54sin 60 c[

54sin ]60 c36 [cos

o

o

o

o

o

oo

o

ooo

oo

oo

ooo

oooo

ooo

osos

os

8. 16

3 70 cos 50 cos 30 cos 10 cos oooo

16

3

308

3

1034

1

2

3

0

cos

)(cos

]10cos(60 )10-(60 cos 10 [cos 30 cos

]70 cos 50 cos 10 [cos 30 cosoooooo

oooo

o

9. 3

1

oo

oo

15 cos 75 cos

15sin - 75sin

Page 25: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 67 XI Mathematics Made Easy

3

130

22

22

o

oo

oo

oooo

oooo

tan30 cos 45cos

30sin 45cos

1575 cos

1575 2cos

1575sin

15752sin

10. 128

1

15

7

15

6

15

5

15

4

15

3

15

2

15

coscoscoscoscoscoscos

128

1

15

3

15

15

3

15128

1

15

3

15

15

3

15

128

1

15

3

15

15

12

15

16

128

1

15

322

15

322

1542

1542

2

1

15

6

15

3

15

8

15

4

15

2

152

1

15

6

15

3

2

1

15

8

15

4

15

2

15

sinsin

sinsin

sinsin

sinsin

sinsin

sinsin

sin

sin

sin

sin

coscos)coscoscoscos

coscos)cos(coscoscos

11. tan2x.sinsincoscos

cossincossin

x x x - x

x x x - x

432

368

tan2x.cos

sincoscos

sinsincoscos

coscos

]coscoscos[cos

]cossincos[sin

x

xxx

xx x x

x x

x x x x

x x x - x

2

22102

210273

37

73

3979

2121

12. 1. )6 cos - 4(cos )sin - 5(sin

)sin2 (sin8 )3 cos - (cos

θθθθ

θθθθ

1.

)sin5 (2sin )sin2 3 (2cos

)cos3 (2sin5 )sin 2(2sin

θθθθ

θθθθ

13. ).cos (1 sinsinsinsin xxx x x 2232

).cos (1 sin

sincos.sin

sin)sin(sin

xx

xxx

x x x

22

222

23

14. xx x

x x 3

24

24tan

coscos

sinsin

x

xx

xx

3

32

32

tan

coscos

cossin

15. x.xx x x x 3246421 coscoscoscoscoscos

x.xx

xxx

xxx

x x x

324

52

522

64212

coscoscos

)cos(coscos

coscoscos

)cos(cos)cos(

16. sinsinsinsinsinsin 22

11

2

3

2

7

2

θθθθ

sinsin

coscos

coscoscoscos

2

732

1

7432

1

17. 4

1245453030 AA)(-A)(A)(-A)( oooo coscoscoscoscos

4

12

214

1

22

1

4

3

4530

2

2

2222

A

A

A

AA- oo

cos

sin

sin

sincossincos

18. .tancoscoscoscos

sinsinsinsinx

xxx x

xxx x4

753

753

.tancoscos

cossincoscos

sinsin

)cos(coscos

sinsincoscoscoscoscos

cossincossin

)cos(cos)cos(cos

)sin(sin)sin(sincoscoscoscos

sinsinsinsin

x xx

xxxx

xx

xxx

x)x x(xxx x

xxxx

xxxx

xxxxxxx x

xxx x

4242

242124

124

12422

124222122242

2122242

573

573753

753

19. B). tan(A2A) - (4B cos 2B) - (4A cos

2A) - sin(4B 2B) - (4Asin

B). tan(A)cos(

)sin(

cos 2cos

os 2sin

2

2A) 4B2B - (4A

2

2A) - 4B2B - (4A

2

2A) 4B2B - (4A

2

2A) - 4B2B - (4A

BA

BA

c

20. 2sin2A 1

2A cos 4 )15 - (Atan - )15 (A cot oo

2sin2A 1

2A cos 4

sin

cos

]sin[sin

)15 A15 (A c

)15 (Asin )15 - (A cos

)15 (Asin )15 - (Asin - )15 - (A )cos15 (A cos

oo

oo

oooo

21

21

2

22

302

A

A

A

os

Page 26: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 68 XI Mathematics Made Easy

CONDITIONAL TRIGONOMETRIC IDENTITIES

that prove 180 C B AIf o

1. sinC 4sinAsinB sin2C sin2B 2Asin

sinC sinB sinA 4

sinB} sinA {2 2sinC

B)} cos(A - B) - {cos(A sinC 2

B)} A - cos(180 B) - {cos(A sinC 2

cosC} B) - {cos(A 2sinC

cosC 2sinC B) - cos(A 2sinC

sin2C B) - cos(A C) - 2sin(

sin2C B) - cos(A B) 2sin(A

sin2C sin2B) (sin2A

2. 2

Csin

2

Bcos

2

A 4cos 1- cosC - cosB cosA

222

2B A

2B A

2

2B A

22B A

2

22B A

2

22

2B A

2

22

B A22

22

2B A

2B A

sin cos 4cos 1-

1 ] cos [cos 2sin

1 }] - {sin [cos 2sin

1]sin [cos sin 2

1 2sin cos sin 2

1C2sin cos ) -( cos 2

12sin cos cos 2

CBA

C

C

CC

CC

C

C

3. 2

Csin

2

Bsin

2

A 4sin 1- cosC cosB cosA

222

2B A

2B A

2

2B A

22B A

2

22B A

2

22

2B A

2

22

B A22

22

2B A

2B A

sin sin 4sin 1

1 ] cos [cos 2sin

1 }] - {sin - [cos 2sin

1]sin - [cos sin 2

1 2sin cos sin 2

1C2sin cos ) -( cos 2

12sin cos cos 2

CBA

C

C

CC

CC

C

C

4. 8

1

2

Csin

2

Bsin

2

Asin

08

04

02

2

1

u

acb

u

u

uCBA

2B A2

2B A

2B A

2B A2

2B A

2B A

2B A

2

222

cos

cos cos cos

]cos cos [cos-

sin sinsin

81

81

2B A2 cosu

5. 2

31 cosC cosB cosA

23 cosC cosB cosA 1

81 4 1 cosC cosB cosA

1 cosC cosB cosA

6. 4

C-sin

4

B-sin

4

A-sin

2

Csin

2

Bsin

2

Asin

1

444

42442444

42444

44444

442

444

442

442

222222

1

22221

21

21

221

212

CBA

BAABBAABC

BAABC

CABC

CABC

CABBA

CBA

sinsinsin

sinsin)sin(

)]cos())[cos(sin(

)]sin())[cos(sin(

)(sin)cos()sin(

)(sin)cos()cos(

)cos()cos()cos(

7. cosC 2cosAcosB 2 C sin B sin A sin 222

cosC 2cosAcosB 2

1]- B)] (A cos B) -(A [cos C [-2cos

1]- B)}] (A - { cos -B) - (A [cos C [-2cos

1] - C cos -B) - (A [cos C cos 2 - [

1]- 2cos2C B) -(A cos C cos 2- [

1] - C2cos B) -(A cos C) -( cos 2 [

1] -C2cos B)- (A cos B) (A cos 2 [

] Ccos cos2B 2A [cos

] Ccos1 cos2B 1 2A 2cos[1

2

2

21

23

21

23

21

23

21

23

21

23

21

23

21

23 2

22

1

8. cosC 2sinAsinB Csin - B sin A sin 222

C cos Bsin Asin 2

C)] -(Bsin -C) A[sin(Bsin

C)] -(Bsin -A[sinAsin

C)- (Bsin Asin A sin

C)-C)sin(B B sin( A sin

Csin-Bsin A sin

2

2

222

9. 12

Atan

2

Ctan

2

Ctan

2

Btan

2

Btan

2

Atan

1

01

01

1

1

22

22

2B

2C

2C

2B

2B

2A

2B

2C

2C

2B

2B

2A

2C

2B

2A

2C

2B

2A

2B

2C

2C

2B

2B

2A

2B

2C

2C

2B

2B

2A

2C

2B

2A

2C

2B

2A

tantantantantantan

tantantantantantan

tantantan-tantantan

tantantantantantan

tantantantantantan

tantantan-tantantan

tantan CBA

CBA

10. 222 coscos cos 4 sinC sinB sinA CBA

222

222

22B A

2

222B A

2

22B A

2

222B A

2

222B A

22

222B A

2B A

coscos cos 4

}cos cos {2 cos2

}cos {cos cos 2

)} - sin( {cos cos 2

}in {cos cos2

cossin cos cos2

cossin cos )-2sin(

cos2sin cos 2sin

CBA

BAC

BAC

BAC

CC

CCC

CCC

CC

s

2

2

Page 27: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 69 XI Mathematics Made Easy

11. C. cos cosAcosB 2-1 C cos B cosAcos 222

cosC 2cosAcosB 1

1]- B)] (A cos B) -(A [cos C [-2cos

1]- B)}] (A - { cos -B) - (A [cos C [-2cos

1] - C cos -B) - (A [cos C cos 2 - [

1]- 2cos2C B) -(A cos C cos 2- [

1] - C2cos B) -(A cos C) -( cos 2 [

1] -C2cos B)- (A cos B) (A cos 2 [

] Ccos cos2B 2A [cos

] Ccos1 cos2B 1 2A 2cos[1

2

2

21

23

21

23

21

23

21

23

21

23

21

23

21

23 2

22

1

12. sinC 4sinAsinB C) - B sin(A B) - A sin(C A) - C sin(B

Csin Bsin Asin 4

2Csin 2Bsin 2Asin

2C) -(sin 2B)-sin( 2A)-sin(

C) -C-(sin B)-B-sin( A)-A-sin(

C) - B sin(A B) - A sin(C A) - C sin(B

13. If A + B + C = 2s, then prove that sin(s − A) sin(s − B) + sins sin(s − C) = sinAsinB.

sinAsinB

]2

cos2

A-B[cos2

1

]2

cos2Ccos

2cos

2A-B[cos

2

1

]2

C-scos2Ccos

2B)(A-2s

cos2

A-B[cos2

1

]2

C-sscos2

Cs-scos

2BsA-scos

2Bs-A-s[cos

2

1

C) - sin(s sin B) - A)sin(s-sin(s

AB

ABC

s

2

14. If x + y + z = xyz, then prove that

. z2 - 1

2z

y2- 1

2y

x2 - 1

2x

z2 - 1

2z

y2- 1

2y

x2 - 1

2x

. - z

z

- y

y

- x

x

- z

z

- y

y

- x

x

CBACBA

nC BA

nCB A

CB A C BA

xyzzyx

CzB,yA,x

222222 1

2

1

2

1

2

1

2

1

2

1

2

222222

2222

tantantantantantan

tantantantantantan

Now

tantantanLet

If A + B + C =2

, prove the following

15. cosC 4cosAcosB sin2C sin2B 2Asin

sinC} B) - {cos(A C2cos

cosC 2sinC B) - cos(A 2cosC

sin2C B) - cos(A C) - 2sin(

sin2C B) - cos(A B) 2sin(A

sin2C sin2B) (sin2A

2

cosC 4cosAcosB

cosB} cosA {2 2cosC

B)} cos(A B) - {cos(A C cos 2

B)} A (- sin( B) - {cos(A cosC 2 2

16. sinC 4sinAsinB 1 cos2C cos2B 2A cos

Csin 4sinAsinB 1

1 B)] (A cos B) -(A [cos C2sin

1B)} (A - {sin -B) - (A [cos C2sin

1C]sin -B) - (A [cos Csin 2

1 C2sin B) -(A cos Csin 2

1C2sin B) -(A cos C) -( cos 2

1C2sin B)- (A cos B) (A cos 2

2

2

22

2

If ABC is a right triangle and if 2

A , then

prove that

17. 1 C cos B cos 22

1

0

0

0

90

2222

CC C B

CB

CB

CB

CB

CB

o

o

o

o

cossincoscos

sincos

)cos(cos

18. 1 C sin B sin 22

1

2222

CC C B sincossinsin

above as Proceeding

19. 2

Csin

2

Bcos22 1- cosC - cosB

2sin

2cos

2 4cos 1-

1 ]2

B A cos 2

B A [cos 2

2sin

1 }]2

B A - 2

{sin 2

B A [cos 2

2sin

1]2

sin 2

B A [cos 2

sin 2

1 2

22sin 2

B A cos 2

sin 2

1C22sin 2

B A cos )2

-2

( cos 2

12

22sin 2

B A cos 2

B A cos 2

cosC - cosB CosA cosnsider,

CBA

C

C

CC

CC

C

C

2

Csin

2

Bcos22 1- cosC - cosB

2

Csin

2

Bcos

4 4cos 1- cosC - cosB

2Cos

Page 28: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 70 XI Mathematics Made Easy

TRIGONOMETRIC EQUATIONS

Principal Solution

Smallest numerical value of unknown angle satisfying the equation in the interval [−π, π] is

taken for defining principal solution.

Principal values

Function interval Quadrant

Sine ],[ 22 I or IV

Cosine [0, π] I or II

tangent ],[ 22 I or IV

General solution of trigonometric equations.

1. Solve the equation sin θ = k (−1 ≤ k ≤ 1) :

Let sin = k, numerically smallest angle

Z., n)(-n

Znn

Znn

Znn

Znn

-

n

1

222

02

1122

122

02

022

2

0

,Combining

)...(,

,sinor

)...(,)(

,)(cosEither

sincos

sinsin

sinsin

2. Solve equation of the form cos θ = k (−1 ≤ k ≤ 1)

Z., nn

Znn

Znn

Znn

Znn

2

222

02

122

02

022

2

0

,Combining

)...(,

,sinor

)...(,

,sinEither

sinsin

coscos

coscos

3. Solve equation of the form tan θ = k (−∞ < k < ∞)

Znn

Znn

,

,

)sin(

sincoscossincos

sin

cos

sin

tantan

0

0

4. Solve an equation of the form a cos θ+b sin θ = c

znn

znn -

) -(

ba

c) -(

r

c ) -(

cr r

c baa

bbar

r , b r a

,

,

(say)coscos

cos

cos

sinsincoscos

sincos

tan,

sincos Take

2

2

22

22

5. Find the principal solution of

2

1iii)cos2,- ii)cosec

1sin i)

2

3

3

00

0

6

6

02

coscos

quadrant Iin lies valueprincipal

],in[ lies cos of valueprincipal,2

1iii)cos

6

6sin sin

quadrant IVin lies valueprincipal2

1- sin

2,- sin

1ii)

sinsin

quadrant Iin lies valueprincipal

],in[ lies sin of valueprincipal1

sini)

2

22-

6. Find the general solution of

i)2

- sin 3

ii) sec θ = −2 iii) tan θ =√3

Page 29: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 71 XI Mathematics Made Easy

Znnπ

Znnπ

Znnπ

n

n

n

,3

(-1) or

,3

-(-1)

,(-1)

:solution general

3-sin sin

1

ii) sec θ = −2

Znnπ

Znnπ

,3

, solution general

3cos cos

3-cos cos

2

1-cos

22

2

2

iii) tan θ =√3

Znnπ

Znnπ

,3

,

:solution general

3tan tan

7. Find the principal solution and general solution

33

1

2 coti)itanii)

1sin i) i

42

1sin i)

Znnπ

Znnπ

Znnπ

n

n

n

,3

(-1) or

,3

-(-1)

,(-1)

:solution general

1

66

03

1

tantan

tanii)

Znnπ

Znnπ

,3

, solution general

3coti)ii

Znnπ

,6

solution general

tantan

tan

66

03

1

8. Solve the following equations for which solutions lies in the interval 0◦ ≤ θ < 360◦

i) sin4 x = sin2 x

220

2

2

01

0

01

0

22

2

2

22

24

,,,

sinsin

sinor

sin Either,

)(sinsin

sinsin

x

x

x

x

x

x

xx

x x

ii) 2 cos2 x + 1 = −3 cos x

,,

cos

cosOr

coscos

)(cosEither,

)cos)((cos

cos 3 cos 2 2

3

4

3

23

2

2

1

012

01

0121

01

x

xx

x

xx

x

xx

xx

iii) 2 sin2x+1 = 3sinx

6

5

62

62

1

012

01

0121

01

,,

sin

sinOr

,sinsin

)sin(Either,

)sin)(sin(

sin 3 sin 2

22

2

x

xx

x

xx

x

x

xx

iv) cos 2x = 1− 3 sinx.

,

possible Notsin

sinOr

,

sinEither,

)sin(sin

sin 3 sin 2

sinsin2

02

3

032

0

0

032

0

3121 2

x

x

x

x

x

xx

xx

x- x

Solve the following equations:

1. 3 cos2 θ = sin2 θ

Page 30: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 72 XI Mathematics Made Easy

znn

znn

-

,

,

)cos(cos

cos

cos

cos

coscos

3

32

3

2

22

22

2

2

12

4

1

2

214

1

13

2. sin x + sin5x = sin3x

Z n ,6

n x (or)3

n xsolution general

Z n ,6

n x 3

2n 2x

3cos 2x cos , 2x cos If

. Z n ,3

n x

. n 3xthen 0, 3xsin If

2x cos (or) 0 3xsin Either

0 1) - 2x cos (2 3xsin

sin3x 2x cos sin3x 2

. sin3x sin5x xsin

2

1

2

1

3. cos x + sinx = cos2x + sin2x

znn

x

n

znnxnx

xx - x x -

x xx x

xx

xx

xx

x

xxx

xxxx

xxxxxxxx

,

,tan

cossin

]cos[sin Or

,

sin Either

]cos[sinsin

sincossinsin

sincossinsin

sinsincoscos

sincossincos

63

2

1

0

22

0

0

22

22

22

22

423

23

23

23

23

23

2

23

23

2

223

223

22

22

22

22

4. sin 9θ = sinθ

znn

n

(or)

znnn

-

,

sin

)()(

cosEither

sincos

sinsin

sinsin

44

0410

122

125

05

0452

09

9

5. tan 2x = −cot )( 3x

znnx

znxnx

x x

x x

x -x

,

,

)tan(tan

)tan(tan

)cot(tan

65

65

65

32

3

2

2

2

2

6. sin x − 3 sin2x + sin3x = cos x − 3 cos 2x + cos3x

Z. n ,

tan

cossin

cossincossin

coscossin

coscoscossincos

coscoscossinsinsin

coscoscossinsinsin

82

12

22

032022

03222

23222322

233233

323323

n x

x

x x

x -ce x x -

)x-x)(x-(

x x - xx x - x in

xx -xx x - x

xxx - x x x -

7. 0 1 - 1)tan - 3( tan 3 2

znn

or

znn

4-

-1tanthen 0 1tan If

0 1tan

,

tan

3

1tan 0,1 -tan 3(If

01-tan 3(Either

0 1) 1)(tan -tan 3(

0 1 - tan-tan 3 tan 3

0 1 - 1)tan - 3( tan 32

2

6

6

8. sin x + cos x = 1 + sinx cos x

Znnxnx

nx

x

xx

xx

x x

ttt

t

txx txx

txx

,,

coscos

coscossincos

cossin

cossin

)(

1teqn,given in sub

cossincossin

cossinLet

222

42

4

44

2

1

44

12

1

2

12

1

01012

2

1

2

121

22

2

22

9. √ 3 sinθ − cos θ =√2

Page 31: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 73 XI Mathematics Made Easy

Znn

n

. bar; c b ; -a

46

46

46

2

1

66

2

2

2

1

2

3

2231 22

n

n

(-1)

(-1)

sinsin

sincoscossin

cossin

10. sin θ + cos θ =√2

Znn

n

,)(

coscos

coscossinsin

cossin

418

024

04

144

2

2

2

1

2

1

11. sin θ +√3 cos θ = 1

Znn

n

,

coscos

coscossinsin

cossin

632

32

6

36

2

1

66

2

1

2

3

2

1

12. cot θ + cosecθ = √3

Znn

n

,

coscos

coscossinsin

sincos

sincos

sinsin

cos

33

22

3

22

3

33

2

1

33

2

1

2

3

2

1

13

31

13. cos 2θ = 4

15

10

2022

362

n

n

o ]5:Problem62,:pagesee[coscos

14. 2 cos2 x − 7 cos x+3 = 0

32

2

1

012

3

0123

0372 2

nxx

x

x

xx

xx-

cos

cos Or,

possibleNotcosEither,

)cos)((cos

coscos

15. 2 cos2 θ + 3sinθ − 3 = 0

61

2

1

012

1

1

01

0121

01

03

03

n

n

n

n

)(sin

sinOr

)(,sinsin

sin

)sin(Either,

)sin)(sin(

sin 3 sin

sin 3 sin-2

sin 3 cos 2

22

2

2

2

16. 2 sin2 x + sin2 2x = 2

Z , n nx

x

x or

Z, n)n (x

x

x - x

x)x (x

xx

4

4

2

12

12

0

01

222

222

22

2

22

22

22

sinsin

sin

cosEither

][sincos

cossinsin

sinsin

17. sin 5x − sin x = cos3x

Z n,12

n or6

1)(2n solution

Z n ,12

n x 6

2n 2x

6sin 2xsin

2xsin (or)

Z n ,6

1)(2n x ,2

1)(2n 3x

0 3x cosEither

0 1) - 2x(2sin 3x cos

cos3x 3x cos sin2x 2

. 3xcos sinx 5xsin

xx

2

1

18. cos θ + cos3θ = 2cos2θ

0122

02222

0223

) -(

-

-

coscos

coscoscos

cos]cos[cos

Page 32: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 74 XI Mathematics Made Easy

Znn

-or,

Z, n)n (

, n Z )n (

,

coscos

cos

2

1014

12

2122

02

19. sin θ + sin3θ + sin5θ = 0

Z n ,3

n (or)3

n xsolution general

Z n ,3

n 3

2n 2

3cos 2 cos , 2 cos If

. Z n ,3

n

. n 3then 0, 3sin If

2 cos (or) 0 3sin Either

0 1) 2 cos (2 3sin

sin3 2 cos sin3 2

sin3- sin5 sin

2

2

2

1

21

20. sin 2θ − cos 2θ − sin θ + cos θ = 0

Znn

n

Znnn

632

4

1

0

22

0

0

02

0

23

tan

sincos or

,

sin Either

)sin(cossin2

sinsinsin2cos

)cos cos2()sin 2(sin

23

23

23

2

23

23

2

223

223

21. tan θ + tan )( 3 + tan )( 3

2 =√3

183

6

2

3

2

3

2

3232

3

3

32

3

3

63

3

1

31

3

331

83

331

8

331

3

31

3

311

3

n

n

tan

tan

tantan

tan

tantantan

tan

tantan

tan

tan

tan

tantan

tantan

tantan

tantan

tantantan

)(tan)(tantan

PROPERTIES OF TRIANGLE

1. Law of Sines

In any triangle, lengths of the sides are proportional to the sines of the opposite angles

RC

c

B

b

A

a2

sinsinsin

RC

c

B

bA

a R

R

a A

R

a - A) (or

BD

BCBDC

- A BDC

BAC BDC

D. circle ato meet theoduce BO t

.

R A

a

R

BC

A

a

R A

a

R

aA or

BD

BCBDC

BCD

ABDC

BAC BDC

.

o

o

o

o

o

2

2

2

2180

180

180

2

1

290

2

2

90

sinsin simillarly

sin

sin

sin

sin

Pr

sin

sinsin

ABC. of BC side theon is O

.sin

sin

sin

]semicircle ain .[angle

segment] samein [angles

D at circle the meet to BO Produce

.

obtuse is A :III Case

angle right is A :II Case

acute is A :I Case

2. Napier’s Formula

22

2222B

ac

acAC

A

cb

cbCBC

ba

baBA

cottan

cottan,cottan

Page 33: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 75 XI Mathematics Made Easy

22

222

2222

222

22

2

2

222

22

2

22

22

22

22

BAC

ba

ba

CBAC

CBAC

CBABA

C

C

BA

BA

C

BRAR

BRARC

ba

ba

BRbARa

RB

bR

A

a

BABA

BABA

tancot

cottantan

cottancot

cottancot

cotcossin

sincos

cotsinsin

sinsin

cotsinsin

sinsincot

sinsinsinsin

Law sine

3. Law of Cosines

ab

-cabC

ca

-bacB

bc

-acbA

2

22222

222222

cos

cos,cos

bc

-acbA

Cab - b a c

Cab - b a

Cab - CCb a

CabC - baC b

C)(a - b C) (b c

C a - b

BC - DC BD

C b AD

C AC

AD

BDAD c

BDADABΔABD

2

2

2

2

2

222

222

22

2222

22222

222

222

222

cos

cos

cos

cos)cos(sin

coscossin

cossin

cos

sin

sin

,In

ABCin BCAD Draw

4. Projection Formula

A b B a iii) c

C a A c ii) b

B, c C b i) a

coscos

coscos

coscos

B c C b a

C)b (B)c (

ACAC

DCAB

AB

BD

DC BD

BC a

BCDraw AD

BC ABC,a In

coscos

coscos

5. Area of the Triangle

C.ab

C b AD C AC

AD

Bac

Abc C ab

sin

height base ,Thus

sin sinADC,In

BCAD draw ABC,In

sin

sinsin triangle of Area

21

21

21

21

21

6. Area of the segment of a circle

θθ (θ(θ r

θ rθ - r

sin

sin

OABof Area -Area Sector ABD segment of Area

221

2212

21

7. Half-Angle formula

bc

c) - b)(s - s(s - a)(s

bc

s(s - a)

bc

- c)(s - b)(s

AAA

bc

- c)(s - b)(s

bc

c)s - b)(s - (

bc

bcbaccba

bc

cbacba

bc

cba

bc

acbbc

bc

acb

A

AA

bc

- c)(s - b)(s Aiii)

s(s - a)

- c)(s - b)(s Aii)

bc

s(s - a)Ai)

cba s

s In ABC

2

2

222

4

2222

4

22

4

4

4

2

21

2

1

2

1

22

2

22

2

22

222

222

2

cossinsin

))((

))((

)(

cos

sinsin

sin

tancos

ABCofΔf perimeter-semiif

8. Heron’s formula

c) - b)(s - s(s - a)(s

ab

s(s - c)

ab

- a)(s - b)(s ab

ab

C.ab

CC

2221

21

2 cossin

sin

Page 34: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 76 XI Mathematics Made Easy

In a ABC, prove that 1. b2 sin 2C+c2 sin 2B = 2bc sinA

A.sin 2bc

sinA 2R

c

2R

b 8R

sinA sinC sinB 8R

A) - (sin sinC sinB 8R2

C) sin(B sinC sinB 8R

cosB) sinC cosC (sinB sinC sinB 8R

CsinBcosBsinsinCcosC B2sin 4R

sin2B Csin 4Rsin2C Bsin 4R

sinsinsinsinsinsin

Law, Sine

2

2

2

2

222

2222

2

222

2

CR B; c R A; b R a

R C

c

B

b

A

a

2. 2

Acos

a

c - b

2

C - Bsin

2

C - Bsin

sin

2cos

2

C - Bsin

cos

cossin

2

C Bcos

2

C - B2sin

cos2RsinA

2RsinC - 2RsinB

2

Acos

a

c - b

sinsinsinsinsinsin

:Law Sine

2

2

2

222

2

222

2

A

A

A

AA

A

CR B; c R A; b R a

R C

c

B

b

A

a

3. If the three angles in a triangle are in the ratio 1 : 2 : 3, then prove that the corresponding sides are in the ratio 1 :√3 : 2.

131

22

3

2

1

::::

::

90 sin60 sin:30sin::

90sin60sin30sin

:Law Sine

90 ,60 ,30 angles

30

180. 32

3 ,2 , angles the Let

ooo

ooo

ooo

o

cba

cba

cba

4. (b+c) cosA+(c+ a) cosB + (a + b) cosC = a + b + c = b cosA+c cosA+c cosB+a cosB + a cosC+b cosC = b cosC +c cosB+c cosA+a cosC+b cosA+a cosB = a + b + c [by projection formula]

5. The angles of a triangle ABC, are in Arithmetic

Progression and if b : c = √3 :√2, find A.

o

oo

o

o

A

CBA

CC

C

B

c

bC

c

B

b

: b : c

B

B

BCABB

CAB

CBA

75

4560

2

3

23

60

1803

2

2

)(

sin

sin

sin

sinsinsin

LawSin

A.Pin are,,

6. B(A - C)

C(A - B)

ca

ba

coscos

coscos

1

122

22

CR B; c R A; b R a

R C

c

B

b

A

a

sinsinsinsinsinsin

Law Sine

222

2

B(A - C)

C(A - B)

C)R(A)R(

B)R(A)R(

ca

ba

coscos

coscos

C) - cos(A C) cos(A - 1

B) - cos(A B) cos(A - 1

C) sin - A(cos- 1

B) sin - A(cos- 1

Csin Acos - 1

B sin Acos - 1

C sin A sin

B sin Asin

sinsin

sinsin

1

1

22

22

22

22

22

22

22

22

22

22

22

22

7. Cb - a

Bc - a

C

B

cos

cos

sin

sin

C

BCR

BRAc

Ab

C - a AcCa

B - a AbBa

Cb - a

Bc - a

sin

sinsin

sincos

cos

cos)coscos(

cos)coscos(

cos

cos

2

2

8. a cosA + b cosB + c cosC = 2a sinB sinC.

CBa

CBR

CBAR

CB A R

CCRBBRAAR

C cBbA a

Ra

sinsin

)sinsin(

)sinsinsin(

)sinsin(sin

cossincossincossin

coscoscos

2

4

4

222

222

2

Page 35: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 77 XI Mathematics Made Easy

9. C)(A

(A - C)

b

-ca

sin

sin2

22

C)(A

(A - C)

C)(A

(A - C)CA

CA

CACA

B

CACAB

CA

BR

CRAR

b

-ca

CR B; c R A; b R a

R C

c

B

b

A

a

sin

sin

sin

sin)sin(

])[sin(

)sin()sin(

sin

)sin()sin(sin

sinsin

sin

sinsin

sinsinsinsinsinsin

:Law sine

2

2

2

22

22

2222

2

22

4

44

222

2

10. 222222 - ba

(A -B)c

- ac

(C - A)b

- cb

(B - C)a sinsinsin

R- ba

(A -B)c

- ac

(C - A)b

- cb

(B - C)a

R- ba

(A -B)c R

ACAC

(C - A)B

R- ac

(C - A)b R

A

A

R

CBCB

(B - C)A

R

CRB- R

(B - C)A R

- cb

(B - C)a

2

1

2

12

1

2

12

1

2

1

2

144

2

222222

22

22

222222

sinsinsin

sin

)sin()sin(

sinsinsin

)sin(

sin

)sin()sin(

sinsinsinsin

sinsinsin

11.

22

BABA

ba

bacottan

22

222

222

22

22

BABA

BABA

BABA

BA

BABRAR

BRAR

ba

ba

cottan

sincos

cossin

sinsin

sinsinsinsin

sinsin

12. Derive cosine formula using the law of sines

CR B; c R A; b R a

R C

c

B

b

A

a

sinsinsinsinsinsin

:Law Sine

222

2

cosAsinC 2

A) - sin(C A) sin(CsinC sinB 2

A)] - sin(C [sinB sinBsinC sinB 2

A) - sin(C A) sin(C Bsin

(2RsinC) (2RsinB) 2

(2RsinA) - (2RsinC)(2RsinB)

2

222222

bc

- acb

2

13. Derive Projection formula from Law of sines,

BcCba

BCRCBR

CBR

CBR

AR a

R A

a

coscos

cossincossin

]sin[

])[sin(

sinsin

,Law Sine

22

2

2

2

2

14. Derive Projection formula from Law of cosines.

aCbBca

a

a

-cab-bca

ab

-cabb

ac

-bcacCbBc

ab

-cabC

ac

-bcaB

coscos

coscos

cos,coslaw,cosine

2

2

2

22

22

2

222222

222222

222222

15. Using Heron’s formula, show that equilateral triangle has maximum area for fixed perimeter. Let ABC be a triangle with constant perimeter 2s.

c) - b)(s - s(s - a)(s

is maximum, when (s−a)(s−b))(s−c) is maximum

27

s c) - b)(s - a)(s - (s

A.M. G.M

3

273

33 s (s - c) (s - b) (s - a) )(s - c)(s- a)(s-b

Equality occurs when s − a = s − b = s − c.

when a = b = c, maximum of(s − a)(s − b))(s − c)=27

3s

For fixed perimeter 2s, area is maximum if a = b = c

Maximum area 3327

23 sss sq.units.

16. In a ABC, if C) - sin(B

B) - sin(A

sinC

sinA , prove that a2, b2,

c2 are in Arithmetic Progression.

B) B)sin(A - sin(AC) - C)sin(Bsin(B

C) - sin(B

B) - sin(A

B)sin(A

C)sin(B

C) - sin(B

B) - sin(A

B])[A-sin(

C])[B-sin(

Page 36: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 78 XI Mathematics Made Easy

222

2222

2

222

cab

bacb

R

c

R

b

R

a

BACB

sinC,sinB,sinA law, sine

sinsinsinsin 2222

a2, b2, c2 are in Arithmetic Progression.

17. If sinB 2

sinA cosC , show that triangle is isosceles.

isoceles Hence

sinB 2

sinA cosC Now

cos

:lawcosine

sin,sin,sin

: law sine

ac

cb

a-cab

b

R

R

a

ab

-cab

ab

-cabC

R

cC

R

bB

R

aA

22

2222

222

222

2

2

22

2

222

18. Prove that

2

2B - C

a c b cos if A = 60o

22

2602

22

602

2

222

2

22260

B - Ca cb

B - Ca

B - Ca

cb

B - CAa

cb

B - CCBacb

CBaAcb

AbBaAcCacb

o

o

o

cos

coscos

coscos

coscos

)coscos(cos)(

)cos(coscos)(

coscoscoscos

19. 2

2 2 Ac) (b C) Ba( sincoscos

22

211

1

2

2

Ac) (b

Acb

Acb

AcbAbc

CaB aC) Ba(

sin

)sin)((

)cos)((

coscos

coscoscoscos

20. 22

A c) (b B

Aa sinsin

BA

a

A c) (b

2

2

sin

sin

21. (a2 − b2 + c2)tanB = (a2 + b2 − c2) tanC

CabC

CaCabaC) cb (a

Cabc

Cbca

BcaB

BccBcaB )cb(a

cBcaba

sincos

sin)cos(tan

sin

sin

sincos

sin)cos(tan

cos

2

2

2

2

2

2

2

22222

22222

222

22. An Engineer has to develop a triangular shaped park with a perimeter 120 m in a village. The park

to be developed must be of maximum area. Find out the dimensions of the park. For fixed perimeter, and maximum area the triangle should be equilateral

40

120

120

120

a

a

cba

cba

3

since

Perimeter

23. A rope of length 12 m is given. Find the largest

area of the triangle formed by this rope and find the dimensions of the triangle so formed.

sq.m

s Area Max

3

Perimeter

2

34

33

6

33

4

12

12

2

a

a

24. Government plans a circular zoological park of diameter 8 km. Find separate area in the form of a segment formed by a chord of length 4 km is to be

allotted for a veterinary hospital in the park.

234

22

332

2

3

38

3

2

1

8

m

rr

][

segment of Area

2(4)(4)

4- 4 4cos

]sin[

sin2

1

2

1

OAB.of Area - sector of Area segment of Area

m4r, .AOB

park. circular of centre O

chord AB Let

222

Page 37: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 79 XI Mathematics Made Easy

3.11.APPLTICATION OF TRIGNOMETRY

Working Rule: In a right triangle, two sides determine third side

via Pythagorean theorem and one acute angle

determine other using the fact that acute angles in

a right triangle are complementary.

If all sides of triangle are given, use either cosine

formula or half-angle formula to calculate all the

angles of the triangle.

If two angles and one of sides opposite to given

angles given, use sine formula to find other sides.

If two sides and included angle given, use law of

cosines to calculate other side and other angles of

triangle. In this case we have a unique triangle.

Solving an oblique triangle require that length of

atleast one side must be provided.

SOLVED PROBLEMS

1. In a ABC, a = 3, b = 5 and c = 7. Find the values

of cos A, cosB and cos C

.

2

1- cosC ,

14

11 cosB

14

13

2(5)(7)

32 - 72 52

a - c b cosA

:formula Cosine By222

bc2

2. In ABC, A = 30,B = 60,c = 10, Find a and b.

3590

10

60

590

10

30

90

10

6030

bb

aa

baC

c

B

b

A

a

oo

oo

ooo

oooo

sinsin

sinsin

sinsinsin

sinsinsin law sine

90 90 - 180 C ,60 B,30 A o

3. If the sides of a ABC are a = 4, b = 6 and c = 8,

then show that 4 cosB + 3cosC = 2.

243

486

B C

B C

aB c C b

coscos

coscos

coscos

:Formula Projection

4. In a ABC, if a = 2√2, b = 2√3 and C = 75, find

the other side and the angles

o

o

o

BCAB

AA

A

c

ab

- cba

C

60180

452

1

13234

1334

13234

834812

13222

13

22

13

2

75222

)(

cos

)(

)(

)(cos

)(68

c - 12 8

coscos

2

5. In a ABC, if a =√3 − 1, b =√3 + 1 and C = 60,

find the other side and other two angles.

o

o

o

BB

AA

A

c

C

10575180

1522

13

1323

233

1323

332

13232

13613

62

1

1313

1313

60

0

22

22

cos

)(

)(

)(

)(

)()(cos

))((2

c - )( )(

coscos2

6. Find area of triangle : sides 13 cm, 14 cm,15 cm.

sq.cm. 84

15) - 14)(21 - 13)(21 - 21(21

c) - b)(s - a)(s - s(s triangle of Area

cm. 21 15 14 13

c b a s

2

2

7. In a ABC, if a = 12 cm, b = 8 cm and C = 30,

then show that its area is 24 sq.cm.

sq.cm

sin

sin

24

308122

12

1

o

Cab

8. In a ABC, if a = 18 cm, b = 24 cm and c = 30 cm,

then show that its area is 216 sq.cm.

Page 38: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 80 XI Mathematics Made Easy

sq.cm. 216

61836

c) - b)(s - a)(s - s(s triangle of Area

cm. 33 24 18

c b a s

12

62

02

9. InABC prove that abc

CcBbAa28

coscoscos

Refer to problem 8, page : 76

abcCcBbAa

abaca

CB a CcBbAa

28

222

2

coscoscos

sinsincoscoscos

10. In any ABC, prove that the area = A

- acb

cot4

222

A

- acb

AA

- acb

Abc

A

- acbbc

bc

- acbA

cot

sincos2

1

sin2

1Triangle of Area

cos

coslaw, cosine

4

2

2

2

222

222

222

222

11. A boat travels 10 km from the port towards east

and then turns 60 to its left. If the boat travels

further 8 km, how far from the port is the boat?

km612 BP

. 244km

120 cos 8 10 2-8 10 BP

formula, cosineUsing

distance. required BP

o222

12. Two cell phone towers located at 6 km apart,

east to west. A cell phone is north of highway.

The signal is 5 km from the first tower and √31

km from the second tower. Determine the

position of the cell phone north and east of the

first tower and how far it is from the highway.

o

22

60

cos

cos 60 -3625 31

cos 6 5 2 - 6 531

2

1

2

km3 5

5sin60 .

sin60

o

o

highway fromposition sphone’ of distance

2

5

x

x

x

13. Two radar stations located 100km apart, detect a

fighter aircraft between them. Angle of

elevation measured by first station is 30. Angle

of elevation measured by the second station is

45. Find altitude of the aircraft at that instant.

)(

sin

)(

sinsin

105 ) 45 (30 -180 A oooo

1350

30

13100

13

22100

1

2

105

100

45

x

a

x

a

a

a

o

oo

14. Two soldiers A and B in two underground

bunkers spot an intruder atthe top of a hill. The

angle of elevation of the intruder from A and B

to the ground level in the eastern direction are

30 and 45. If A and B stand 5km apart, find the

distance of the intruder from B.

13

25

13

225

1

2

105

5

30

BC

BC

BCoo sinsin

105 ) 45 (30 -180 A

detectionduring intruder ofposition C oooo

15. A researcher wants to determine the width of a

pond from east to west. From a point P, he finds

the distance to eastern-most point of the pond to

be 8 km, distance to the western most point from

P to be 6 km. If the angle between the two lines

of sight is 60, find the width of pond.

km132 a

. 52km

60 cos 8 6 2-6 8 a

A cos c2-c b a

formula, cosineUsing

o222

222

b

16. Two Navy helicopters A and B are flying over

the Bay of Bengal at same altitude to search a

missing boat apart 10 km from each other. If the

Page 39: 3.1 BASIC RESULTS OF TRIGONOMETRY I. Angles

Winglish Coaching Centre, Puduvayal 81 XI Mathematics Made Easy

distance of boat from A is 6 km and if the line

segment AB subtends 60 at the boat, find the

distance of the boat from B.

km192 a

. 76km

60 cos 1 6 2-10 6 a

A cos c2-c b a

formula, cosineUsing

o222

222

0

b

17. A surveyor observes two extremities A and B of

the tunnel to be built from point P in front of

mountain. If AP = 3km, BP = 5 km APB = 120,

find the length of the tunnel to be built.

7km a

. 49km

120 cos 8 6 2-5 3 a

A cos c2-c b a

formula, cosineUsing

o222

222

b

18. A farmer purchase a triangular shaped land

with sides 120feet and 60feet and angle included

between these two sides is 60. If the land costs

Rs.500/sq.ft, find amount he needed to purchase

the land. Also find the perimeter of the land.

1558800500318005001

31800

26900

131333333030

30330303303309033090

33090

2

2

Cost,.

))()()((

))(())((

))()((

36060120s

360 a

10800

7200-3600 14400 a

formula, cosineUsing 2

Rsft

csbsass

19. A fighter jet has to hit a small target by flying a

horizontal distance. When the target is sighted,

angle of depression is 30. If after 100 km, target

has an angle of depression of 45, how far is the

target from the fighter jet at that instant?

Refer to Problem 13 , page 79

20. A plane is 1 km from one landmark and 2 km

from another. From the planes point of view the

land between them subtends an angle of 45.

How far apart are the landmarks?

km 22-5 a

. km22-5

45cos 2 1 2-2 1 a

A cos c2-c b a

formula, cosineUsing

o222

222

b

21. A man starts his morning walk at a point A

reaches two points B and C and finally back to A

such that A = 60 and B = 45 , AC = 4km in

the ABC. Find the total distance he covered

during his morning walk.

)(DistanceTotal

)(

sinsin

sinsin

132624

132

22

1324

45

4

75

62

2

324

45

4

60

75105180

AB

AB

BC

BC

C

oo

oo

o

22. Two vehicles leave the same place P along two

roads. One vehicle moves at an average speed of

60km/hr and the other vehicle moves at an

average speed of 80 km/hr. After half an hour

vehicle reach the destinations A and B. If AB

subtends 60 at the initial point P, then find AB.

km1320 a

. 5200km

800-60 80 a

A cos c2-c b a

formula, cosineUsing

222

222

4

b

23. A satellite in space, an earth station and the

centre of earth all lie in the same plane. Let r be

radius of earth and R be distance from the

centre of earth to satellite. Let d be distance from

the earth station to the satellite. Let 30 be angle

of elevation from the earth station to satellite. If

the line segment connecting earth station and

satellite subtends angle α at the centre of earth,

then prove that cos)( 1R Rr

Rrd 22

cos)( 1R

cos r

(1R

cos rR

2

2

Rr

Rrd

R

r

R

rRd

2

2

2

2

2

2

22


Recommended