+ All Categories
Home > Documents > 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell...

3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell...

Date post: 22-Dec-2015
Category:
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
55
3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte
Transcript
Page 1: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 1

3D Displays Overview

Revision 1.3

Copyright 2006 Zachary WartellUniversity of North Carolina Charlotte

Page 2: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 2

3D Displays : Basic Properties

• (1) “retinal disparity”- (also called stereo parallax) display presents a left eye perspective view of a virtual scene to the left eye and different right eye perspective view to the right eye. The retinal disparities in the left and right retinal images induce a perceived 3D image of the scene. Implicitly the user experiences ocular vergence as she fixates on objects at different stereo depths.

• (2) “multi-viewpoint”- (also called motion parallax) image pair presented to the user’s eyes is dependent on the user’s head position; moving or walking around the display; the user perceives the virtual objects from different vantage points. “Multi-viewpoint” means continuous and correct changes to the perceived images as the head moves in any direction.

Page 3: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 3

Taxonomy

3D Displays

Volumetric 3D Displays

Surface 3D Displays

Holographic Stereoscopic

Page 4: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 4

Ideal Surface Display

C

A B

D

Page 5: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 5

unfocused

focused

Depth of Field

blur increases blur increases

unfocused

focused

Depth of Field

blur increases blur increases

Physical world creates natural blur

Page 6: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 6

Ideal Surface Display creates natural blur

out of focus

in focus

Ideal Surface Display

Page 7: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 7

Stereoscopic Surface Display

• cannot create the wavefronts of the synthetic 3D• multi-viewpoint property: a stereoscopic display must :

– determine the user’s head position– render a left and right eye image specifically

computed for that head position; – channel each of the two images to the appropriate

eye.

(while at a given moment a full holographic display outputs an image for every possible eye position, a typical stereoscopic display outputs an image for only the two current eye positions).

Page 8: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 8

Stereoscopic Surface Display Wavefronts

Stereoscopic Display

both in focus

Page 9: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 9

Accommodation and Vergence Link

physical box

eyes

Page 10: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 10

Accommodation and Vergence Link

physical box

fovea fixation point

Page 11: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 11

physical box

foveafixation point

Accommodation and Vergence Link

Page 12: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 12

physical box

accommodation depth = vergence depth

foveafixation point

Accommodation and Vergence Link

Page 13: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 13

blur increases

A) Physical

no blur!

B) Virtual

display

O=C=A

OC < A

blur increases

A) Physical

no blur!

B) Virtual

display

O=C=A

OC < A

Stereoscopic Display versus Physical World

Page 14: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 14

Fixate on farther object

blur increases

A) Physical

no blur!

B) Virtual

OC > A

O=C=A

display

blur increases

A) Physical

no blur!

B) Virtual

OC > A

O=C=A

display

Page 15: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 15

Fixate on even farther objects

blur increases

A) Physical

no blur!

B) Virtual

display

?

O=C=A

O, C=? >> A

blur increases

A) Physical

no blur!

B) Virtual

display

??

O=C=A

O, C=? >> A

Page 16: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 16

Fusion Metrics

Projection Plane

p

Eyes

Virtual Point hva

L R

A

-screen parallax, HVA, vergence difference

Page 17: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 17

Screen Parallax Projection Plane

Eyes

B

B

Projection Plane

Eyes

A

C

Projection Plane

Eyes

C

D

p = -es

p=0

p = +es

Page 18: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 18

Vergence Difference (-)

Projection Plane

Eyes

Virtual Point

Page 19: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 19

Image Cross-talk/Ghosting

filters display

left

right

Page 20: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 20

Experimental Limits in Stereo Display

• Valyus [Valy66] gives a vergence difference range of +/- 1.6 degrees.

• Yeh and Silverstein [Yeh90] – find a fusible HVA range of -4.93 to 1.57 degrees for

viewing durations that allow ocular vergence (2 s) – a HVA range of -27 min arc to 24 min arc for viewing

durations that don’t allow ocular vergence (200ms). They recommend keeping applications to the smaller of these ranges.

• William’s and Parrish’s experiments suggest a viewing volume of –25% through +60% of the head-to-screen distance.

Page 21: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 21

Comparing Far Fusible Depth

maximum depth planes

screen

pmax1

pmax2dmaxA2dmaxA1

AB dmaxB2

Page 22: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 22

Far Depth Limits

Head to Screen Distance (m)

A B

Far

Dep

th L

imit

(m)

Solid line – Valyus’s+1.6 vergence difference; Dash line – Yeh’s +1.57 HVA; Dash-dot - Valyus’s max parallax approximation; Circles – William and Parrish limits.

Page 23: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 23

Nearest Portrayable Depth

maximum depth planes

screen

pmax1

pmax2dmaxA1dmaxA2

AB

dmaxB2

Page 24: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 24

Limitations of Fusibility Limits

• varies with display technology• varies with contrast of given image• scenes have arbitrary distribution of depth –

experiments usually use single stimuli • individual differences, etc.

Page 25: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 25

View Frustums in Stereo

PRP

View Window

near clippingplane

far clipping plane

PRP

View Window

near clippingplane

far clipping plane

u

vn

Page 26: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 26

View Frustum ≠ Eye Pupil and Retina

• Recall ideal surface display (slide 6) versus stereoscopic display (slide 8)

left

right

pupils!

retina

Page 27: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 27

View Frustum = Eye Pupil and Physical Pixels

• graphics pipeline (frustum) knows nothing of retina’s shape, that is the brains problem!

left

right

physicalpixels!

pupils!

retina

Page 28: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 28

View Frustum = Eye Pupil and Physical Pixels

• Recall ideal surface display (slide 6) versus stereoscopic display (slide 8)

pupils! projection =physicalplane pixels

near clippingplanes

far clippingplanes

Page 29: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 29

HMD

HeadsetDisplays(Internal)

Head Mounted Display (HMD)

Page 30: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 30

HTD (Head-tracked Display)

3D Glasses

Head Tracker

Stationary Display

Desktop Stereo HTD

Page 31: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 31

View Coordinate Hierarchy (Simplified)

Platform

Tracker

Head-Sensor

Eyes

Projection Plane

? A Generic

Display-Sensor

Platform

Tracker

Head-Sensor

Eyes

Projection Plane

Platform

Tracker

Eyes Projection Plane

Head-Sensor

Platform

Tracker

Eyes Projection Plane

Head-Sensor

B HTD C HMD D “Free” HTD

Page 32: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 32

View Coordinate Hierarchy

• platform-to-world – position/orientation/scale – UI manipulates

• tracker-to-platform – fixed by physical display arrangement

• headSensor-to-tracker – dynamically determined by tracker hardware

• eyes-to-headSensor – fixed by physical display arrangement

• projectionPlane-to-(headSensor/platform) - fixed by physical display arrangement

Page 33: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 33

Small object closer by (=/≠) Large object far away

COP

Proj. Plane

Page 34: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 34

Platform Scale DOF

Object zoomed-out location Eye

Display Surface

Head Displacement

Projected Points

Eyes

Object start location

Unfusible Screen Parallax

Object zoomed-in location

A

B

Object zoomed-out location

Eye

Object start location

Frustum

C

Page 35: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 35

Four Eye Separations

Physical Virtual (Physical * Platform Scale)

True

True Physical Eye Separation (subject’s interocular)

True Virtual Eye Separation

Modeled

Modeled Physical Eye Separation (software value)

Modeled Virtual Eye Separation

Physical Virtual (Physical * 106)

True

True Physical Eye Separation 6.0 cm

True Virtual Eye Separation 60km

Modeled

Modeled Physical Eye Separation 3.0 cm

Modeled Virtual Eye Separation 30 km

Page 36: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 36

Proj. Window 5 x 5m (phys)

(virtual)12km

(physical)5m

Platform

Tracker

Head-Sensor

Eyes

Projection Plane

SW←Plat=SParent(Plat)←Plat=2400

y

xz

Plat.

physical: 1m virtual: 2400m

y

x

z

Eyes

HTD Example

modeled e.s. phy: 3.0cm

vir: 72m

true e.s. phy: 6.5cm

vir: 156m

S W←?=2400

S Parent(?)←?=1

Page 37: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 37

Goals for 3D Display

• generating fusible stereoscopic imagery• generating accurate stereoscopic imagery• maximizing the added value of stereoscopic

depth images • minimizing frame cancellation • bringing manipulated stereoscopic imagery

within arms’ reach to improve direct manipulation

Page 38: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 38

Generate Fusible Imagery

• hardware:– need ideal surface display (hologram)– dynamic depth image plane– multi-planar display

• software: geometric scene manipulation to reduce screen parallax

Page 39: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 39

Fusion Control

• heuristic limits on portrayed range of stereoscopic depth

• heuristic limits on portrayed range of stereoscopic depth

Comfortable Near Fusion

LimitComfortable

Far Fusion LimitScreen

Page 40: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 40

Fusion Control

Screen

• heuristic limits on portrayed range of stereoscopic depth

• heuristic limits on portrayed range of stereoscopic depth

Comfortable Near Fusion

LimitComfortable

Far Fusion Limit

Page 41: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 41

Fusion Control

Screen

• heuristic limits on portrayed range of stereoscopic depth

• heuristic limits on portrayed range of stereoscopic depth

Comfortable Near Fusion

LimitComfortable

Far Fusion Limit

Page 42: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 42

Frame cancellation/window violation

frustum virtual object

display frame

Page 43: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 43

Frame cancellation/window violation

A B

Page 44: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 44

Spatial Distortion

Virtual Modeled Adapted

Perceived

-perceptual matching-magnitude estimation-category estimation-mapping

-registration exp. -subjective magnitude

viewscale factor

fusioncontrol

technique

individual differences

& procedureeffect and

error

anaytic/geometricanalysis

experimentalanalysis

Displayed

calibrationerrors

Page 45: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 45

Displayed Distortion

• assume no modeled→adaptation distortion:

ImageDisplay= T * ImageModeled

• sources:– stereo-no tracking– stereo with eye pair offset error– stereo with tracking latency error– stereo with tracking & calibration error

Page 46: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 46

near space

Stereo-No Tracking: Induced Stereo Motion

• assume projection window is correctly measured and model eye separation = true eye sep.!

modeledmodeled

=true

=displayed

displayed

true

true

displayed

near space far spacex

z

Page 47: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 47

modeled

Induced Stereo Motion: Lateral-Near Space

=true

true

displayed

true

displayed

near space far space

Near Space Far Space

with head motion

opposite head motion

x

z

Page 48: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 48

near space

Induced Stereo Motion: Perpendicular-Far Space

modeledmodeled

=true

=displayed

true

far space

displayed

true

displayedtrue

x

z

Page 49: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 49

modeled

near space

Induced Stereo Motion: Perpendicular/Near Space

modeledtrue

far space

=true

true true Near Spc Far Spc

Hd Forw. forward backHd Back back forward

x

z

Page 50: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 50

Induced Stereo Motion: Shape

near space far space

Page 51: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 51

Tracking ideally removes induction stereo motion

Page 52: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 52

Eye Pair Offset Error

• modeled eye location pair is at constant translation offset true eye locaiton pair– constrant translational tracking error– translational mis-calibration between

coordinate systems in view hierarchy

Page 53: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 53

Tracking Latency Error

Page 54: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 54

Calibration Error

• miss-measure eye separation or screen size

Page 55: 3/23/2005 © Dr. Zachary Wartell 1 3D Displays Overview Revision 1.3 Copyright 2006 Zachary Wartell University of North Carolina Charlotte.

3/23/2005 © Dr. Zachary Wartell 55

Fusion Adaptation Distortions

• assume no modeled→display distortion: ImageAdapted= T * ImageModeled


Recommended