+ All Categories
Home > Documents > 3550 info

3550 info

Date post: 26-Oct-2014
Category:
Upload: emmanuel-n-onuzurike
View: 54 times
Download: 0 times
Share this document with a friend
Description:
cisco 3550 multilayer switch
Popular Tags:
46
Corporate Headquarters: © 2005–2007 Cisco Systems, Inc. All rights reserved. Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later Revised September 24, 2008 Cisco IOS Release 12.2(25)SEE1 and later run on all Catalyst 3550 multilayer switches. These release notes include important information about Cisco IOS Release 12.2(25) SEE1, 12.2(25)SEE2, 12.2(25)SEE3, and 12.2(25)SEE4 and any limitations, restrictions, and caveats that apply to them. Verify that these are the correct release notes for your switch: If you are installing a new switch, refer to the Cisco IOS release label on the rear panel of your switch. If your switch is on, use the show version privileged EXEC command. See the “Finding the Software Version and Feature Set Running on the Switch” section on page 5. If you are upgrading to a new release, refer to the software upgrade filename for the Cisco IOS version. See the “Deciding Which Files to Download from Cisco.com” section on page 6. For the complete list of Catalyst 3550 switch documentation, see the “Related Documentation” section on page 45. You can download the switch software from this site (registered Cisco.com users with a login password): http://www.cisco.com/public/sw-center/sw-lan.shtml This Cisco IOS release is part of a special release of Cisco IOS software that is not released on the same 8-week maintenance cycle that is used for other platforms. As maintenance releases and future Cisco IOS releases become available, they will be posted to Cisco.com in the Cisco IOS software area. Contents This information is in the release notes: “System Requirements” section on page 2 “Upgrading the Switch Software” section on page 5 “Installation Notes” section on page 9 “New Features” section on page 9
Transcript
Page 1: 3550 info

Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

Revised September 24, 2008

Cisco IOS Release 12.2(25)SEE1 and later run on all Catalyst 3550 multilayer switches.

These release notes include important information about Cisco IOS Release 12.2(25) SEE1, 12.2(25)SEE2, 12.2(25)SEE3, and 12.2(25)SEE4 and any limitations, restrictions, and caveats that apply to them. Verify that these are the correct release notes for your switch:

• If you are installing a new switch, refer to the Cisco IOS release label on the rear panel of your switch.

• If your switch is on, use the show version privileged EXEC command. See the “Finding the Software Version and Feature Set Running on the Switch” section on page 5.

• If you are upgrading to a new release, refer to the software upgrade filename for the Cisco IOS version. See the “Deciding Which Files to Download from Cisco.com” section on page 6.

For the complete list of Catalyst 3550 switch documentation, see the “Related Documentation” section on page 45.

You can download the switch software from this site (registered Cisco.com users with a login password):

http://www.cisco.com/public/sw-center/sw-lan.shtml

This Cisco IOS release is part of a special release of Cisco IOS software that is not released on the same 8-week maintenance cycle that is used for other platforms. As maintenance releases and future Cisco IOS releases become available, they will be posted to Cisco.com in the Cisco IOS software area.

ContentsThis information is in the release notes:

• “System Requirements” section on page 2

• “Upgrading the Switch Software” section on page 5

• “Installation Notes” section on page 9

• “New Features” section on page 9

Corporate Headquarters:

© 2005–2007 Cisco Systems, Inc. All rights reserved.

Cisco Systems, Inc., 170 West Tasman Drive, San Jose, CA 95134-1706 USA

Page 2: 3550 info

System Requirements

• “Limitations and Restrictions” section on page 10

• “Important Notes” section on page 25

• “Open Caveats” section on page 29

• “Resolved Caveats” section on page 32

• “Documentation Updates” section on page 40

• “Related Documentation” section on page 45

• “Obtaining Documentation, Obtaining Support, and Security Guidelines” section on page 45

System RequirementsThe system requirements for this release are described in these sections:

• “Hardware Supported” section on page 2

• “Device Manager System Requirements” section on page 3

• “Cluster Compatibility” section on page 4

• “CNA Compatibility” section on page 4

Hardware SupportedTable 1 lists the hardware supported by this release.

Table 1 Supported Hardware

Switch Description

Catalyst 3550-12G 10 GBIC1-based Gigabit Ethernet slots and 2 Gigabit Ethernet 10/100/1000BASE-T ports

Catalyst 3550-12T 10 Gigabit Ethernet 10/100/1000BASE-T ports and 2 GBIC-based Gigabit Ethernet slots

Catalyst 3550-24 24 autosensing 10/100 Ethernet ports and 2 GBIC-based Gigabit Ethernet slots

Catalyst 3550-24-DC 24 autosensing 10/100 Ethernet ports, 2 GBIC-based Gigabit Ethernet slots, and an on-board DC power converter

Catalyst 3550-24-FX 24 100BASE-FX ports and 2 GBIC-based Gigabit Ethernet slots

Catalyst 3550-24PWR 24 autosensing 10/100 Ethernet ports, 2 GBIC-based Gigabit Ethernet slots, ability to provide power for Cisco IP Phones and Cisco Aironet Access Points from all 10/100 Ethernet ports, auto-detection and control of inline power on a per-port basis on all 10/100 ports

Catalyst 3550-48 48 autosensing 10/100 Ethernet ports and 2 GBIC-based Gigabit Ethernet slots

2Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 3: 3550 info

System Requirements

Device Manager System RequirementsThese sections describe the hardware and software requirements for using the device manager:

• “Hardware Requirements” section on page 3

• “Software Requirements” section on page 4

Hardware RequirementsTable 2 lists the minimum hardware requirements for running the device manager.

GBIC modules • 1000BASE-SX GBIC

• 1000BASE-LX/LH GBIC

• 1000BASE-ZX GBIC

• 1000BASE-T GBIC

• GigaStack GBIC

• CWDM2 fiber-optic GBIC

• DWDM3 fiber-optic GBIC

Redundant power system Cisco RPS 300 redundant power system4

Cisco RPS 675 redundant power system5

1. GBIC = Gigabit Interface Converter

2. CWDM = coarse wavelength-division multiplexing

3. DWDM = dense wavelength-division multiplexing

4. The Cisco RPS 300 does not support the Catalyst 3550-24-DC or 3550-24PWR switch.

5. The Cisco RPS 675 does not support the Catalyst 3550-24-DC switch.

Table 1 Supported Hardware (continued)

Switch Description

Table 2 Minimum Hardware Requirements

Processor Speed DRAM Number of Colors Resolution Font Size

Intel Pentium II1

1. We recommend Intel Pentium 4.

64 MB2

2. We recommend 256-MB DRAM.

256 1024 x 768 Small

3Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 4: 3550 info

System Requirements

Software Requirements

Table 3 lists the supported operating systems and browsers for using the device manager. The device manager verifies the browser version when starting a session to ensure that the browser is supported.

Note The device manager does not require a plug-in.

Cluster CompatibilityYou cannot create and manage switch clusters through the device manager. To create and manage switch clusters, use the command-line interface (CLI) or the Network Assistant application.

When creating a switch cluster or adding a switch to a cluster, follow these guidelines:

• When you create a switch cluster, we recommend configuring the highest-end switch in your cluster as the command switch.

• If you are managing the cluster through Network Assistant, the switch with the latest software should be the command switch, unless your command switch is running Cisco IOS Release 12.1(19)EA1 or later.

• The standby command switch must be the same type as the command switch. For example, if the command switch is a Catalyst 3750 switch, all standby command switches must be Catalyst 3750 switches.

For additional information about clustering, see the Getting Started with Cisco Network Assistant and the Release Notes for Cisco Network Assistant (not orderable but available on Cisco.com), the software configuration guide, and the command reference.

CNA CompatibilityCisco IOS 12.2(25)SEE and later are only compatible with Cisco Network Assistant (CNA) 3.1 and later. You can download CNA 3.1 from this URL:

http://www.cisco.com/pcgi-bin/tablebuild.pl/NetworkAssistant

For more information about Cisco Network Assistant, see the Release Notes for Cisco Network Assistant on Cisco.com.

Table 3 Supported Operating Systems and Browsers

Operating System Minimum Service Pack or PatchMicrosoft Internet Explorer1

1. Service Pack 1 or higher is required for Internet Explorer 5.5.

Netscape Navigator

Windows 2000 None 5.5 or 6.0 7.1

Windows XP None 5.5 or 6.0 7.1

4Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 5: 3550 info

Upgrading the Switch Software

Upgrading the Switch SoftwareBefore downloading software from Cisco.com to upgrade the switch software, read this section for important information:

• “Finding the Software Version and Feature Set Running on the Switch” section on page 5

• “Deciding Which Files to Download from Cisco.com” section on page 6

• “Upgrading a Switch by Using Device Manager or Network Assistant” section on page 7

• “Upgrading a Switch by Using the CLI” section on page 7

• “Recovering from a Software Failure” section on page 9

Caution A bootloader upgrade occurs if you are upgrading the switch from a noncryptographic image to cryptographic image, regardless of the current noncryptographic Cisco IOS Release that is running on the switch. The bootloader can take up to 30 seconds to upgrade. Do not power cycle the switch while you are copying this image to the switch. If a power failure occurs when you are copying this image to the switch, call Cisco Systems immediately.

When you upgrade a switch, the switch continues to operate while the new software is copied to flash memory. If flash memory has enough space, the new image is copied to the selected switch but does not replace the running image until you reboot the switch. If a failure occurs during the copy process, you can still reboot your switch by using the old image. If flash memory does not have enough space for two images, the new image is copied over the existing one. Features provided by the new software are not available until you reload the switch.

If a failure occurs while copying a new image to the switch, and the old image has already been deleted, see the “Recovering from Corrupted Software” section in the “Troubleshooting” chapter of the software configuration guide.

Finding the Software Version and Feature Set Running on the SwitchThe Cisco IOS image is stored as a bin file in a directory that is named with the Cisco IOS release. A subdirectory contains the files needed for web management. The image is stored on the system board flash device (flash:).

You can use the show version privileged EXEC command to see the software version that is running on your switch. The second line displays C3550-ipbase9-mz for the IP services image (formerly known as the EMI) or C3550-ipbase-mz for the IP base image (formerly known as the SMI).

Note Although the show version output always shows the software image running on the switch (Layer 2 only or Layer 2 and Layer 3), the model name shown at the end of this display is the factory configuration (SMI or EMI) and does not change if you upgrade the software image.

You can also use the dir filesystem: privileged EXEC command to see the directory names of other software images that you might have stored in flash memory.

5Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 6: 3550 info

Upgrading the Switch Software

Deciding Which Files to Download from Cisco.comCisco IOS Release 12.2(25)SEA and earlier referred to image that provides Layer 2+ features and basic Layer 3 routing features as the standard multilayer image (SMI). The image that provides full Layer 3 routing features and advanced features was referred to as the enhanced multilayer image (EMI).

Cisco IOS Release 12.2(25)SEB and later refers to the SMI as the IP base image and the EMI as the IP services image. Table 4 lists the different file-naming conventions before and after Cisco IOS Release 12.2(25)SEB.

The upgrade procedures in these release notes describe how to perform the upgrade by using a combined tar file. This file contains both the Cisco IOS image file and the files needed for the embedded device manager. To upgrade the switch through the command-line interface (CLI), use the tar file and the archive download-sw privileged EXEC command.

Table 5 lists the software filenames for this release. These files are posted on Cisco.com.

Catalyst 3550 switches are supported by either the IP base image or the IP services image. All Catalyst 3550 Gigabit Ethernet switches are shipped with the IP services image installed. Catalyst 3550 Fast Ethernet switches are shipped with either the IP base image or the IP services image installed. After initial deployment, you can order the IP services Image Upgrade kit to upgrade the Catalyst 3550 Fast Ethernet switches from the IP base image to the IP services image.

Table 4 Cisco IOS Image File Naming Convention

Cisco IOS 12.2(25)SEA and earlier Cisco IOS 12.2(25)SEB and later

c3550-i9q3l2 (SMI) c3550-ipbase-mz

c3550-i5q3l2-tar (EMI) c3550-ipservices-mz

c3550-i9k91l2q3-tar (SMI) c3550-ipbasek9-mz

c3550-i5k91l2q3-tar (EMI) c3550-ipservicesk9-mz

Table 5 Cisco IOS Software Files for Catalyst 3550 Switches

Filename Description

c3550-ipbase-tar.122-25. SEE4.tar Cisco IOS IP base image and device manager files.This image has Layer 2+ and basic Layer 3 routing features.

c3550-ipservices-tar.122-25. SEE4.tar Cisco IOS IP services image and device manager files.This image has Layer 2+ and full Layer 3 features.

c3550-ipbasek9-tar.122-25. SEE4.tar Cisco IOS IP base cryptographic image and device manager files. This image has the Kerberos, Secure Shell (SSH), Layer 2+, and basic Layer 3 routing features.

c3550-ipservicesk9-tar.122-25. SEE4.tar Cisco IOS IP services cryptographic image and device manager files. This image has the Kerberos, SSH, Layer 2+, and full Layer 3 features.

6Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 7: 3550 info

Upgrading the Switch Software

Archiving Software ImagesBefore upgrading your switch software, make sure that you have archived copies of the current Cisco IOS release and the Cisco IOS release to which you are upgrading. You should keep these archived images until you have upgraded all devices in the network to the new Cisco IOS image and until you have verified that the new Cisco IOS image works properly in your network.

Cisco routinely removes old Cisco IOS versions from Cisco.com. See Product Bulletin 2863 for more information:

http://www.cisco.com/en/US/partner/products/sw/iosswrel/ps5187/prod_bulletin0900aecd80281c0e.Html

You can copy the bin software image file on the flash memory to the appropriate TFTP directory on a host by using the copy flash: tftp: privileged EXEC command.

Note Although you can copy any file on the flash memory to the TFTP server, it is time consuming to copy all of the HTML files in the tar file. We recommend that you download the tar file from Cisco.com and archive it on an internal host in your network.

You can also configure the switch as a TFTP server to copy files from one switch to another without using an external TFTP server by using the tftp-server global configuration command. For more information about the tftp-server command, see the “Basic File Transfer Services Commands” section of the Cisco IOS Configuration Fundamentals Command Reference, Release 12.2 at this URL:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/122cgcr/ffun_r/ffrprt2/frf011.htm#wp1018426

Upgrading a Switch by Using Device Manager or Network AssistantYou can upgrade switch software by using the device manager or Network Assistant. From the feature bar, choose Administration > Software Upgrade. For detailed instructions, click Help.

Note When using the device manager to upgrade your switch, do not use or close your browser session after the upgrade process begins. Wait until after the upgrade process completes.

Upgrading a Switch by Using the CLIThis procedure is for copying the combined tar file to the Catalyst 3550 switch. You copy the file to the switch from a TFTP server and extract the files. You can download an image file and replace or keep the current image. This procedure requires a configured TFTP server.

Caution A bootloader upgrade occurs if you are upgrading the switch from a noncryptographic image to a cryptographic image, regardless of the current noncryptographic Cisco IOS release that is running on the switch. The bootloader can take up to 30 seconds to upgrade. Do not power cycle the switch while you are copying this image to the switch. If a power failure occurs when you are copying this image to the switch, call Cisco Systems immediately.

7Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 8: 3550 info

Upgrading the Switch Software

To download software, follow these steps:

Step 1 Use Table 5 on page 6 to identify the file that you want to download.

Step 2 Download the software image file.

Go to this URL, and follow the instructions to register on Cisco.com and download the appropriate files:

http://www.cisco.com/public/sw-center/sw-lan.shtml

To download the IP base image (formerly known as the SMI) and IP services image (formerly known as the EMI) files, select Catalyst 3550 software.

To obtain authorization and to download the cryptographic software files, select Catalyst 3550 3DES Cryptographic Software.

Step 3 Copy the image to the appropriate TFTP directory on the workstation, and make sure that the TFTP server is properly configured. (For more information, see Appendix B in the Catalyst 3550 Multilayer Switch Software Configuration Guide.)

Step 4 Log in to the switch through the console port or a Telnet session.

Step 5 Verify your VLAN 1 configuration by using the show interfaces vlan 1 privileged EXEC command, and verify that VLAN 1 is part of the same network as the TFTP server. (See the Internet address is line near the top of the display.)

Step 6 Download the image file from the TFTP server to the switch. If you are installing the same version of software that is currently on the switch, overwrite the current image by using this privileged EXEC command:

archive download-sw /overwrite /reload tftp:[[//location]/directory]/image-name.tar

The /overwrite option overwrites the software image in flash memory with the downloaded one.

The /reload option reloads the system after downloading the image unless the configuration has been changed and not been saved.

For //location, specify the IP address of the TFTP server.

For /directory/image-name.tar, specify the directory (optional) and the image to download. Directory and image names are case sensitive.

This example shows how to download an image from a TFTP server at 198.30.20.19 and to overwrite the image on the switch:

Switch# archive download-sw /overwrite tftp://198.30.20.19/c3550-i5q3l2-tar.122-25.SEE4.tar

You can also download the image file from the TFTP server to the switch and keep the current image by replacing the /overwrite option with the /leave-old-sw option.

8Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 9: 3550 info

Installation Notes

Upgrading with a Nondefault System MTU Setting

If the switch was running Cisco IOS Release 12.1(8)EA1c or earlier and you had used the system mtu global configuration command to configure a nondefault system maximum transmission unit (MTU) size on your switch, follow these steps to upgrade your switch to Cisco IOS Release 12.1(11)EA1 or later:

Step 1 Upgrade the Cisco IOS software to Cisco IOS Release 12.1(11)EA1 or later.

Step 2 If a system MTU size of greater than 2000 is configured on a Gigabit Ethernet switch (Catalyst 3550-12T or Catalyst 3550-12G) use the system mtu global configuration command to set it to the maximum supported MTU size. The maximum allowable system MTU for Catalyst 3550 Gigabit Ethernet switches is 2000 bytes.

Step 3 Save the running configuration by entering the copy running-config startup-config privileged EXEC command.

Step 4 Reload the switch with the new Cisco IOS software.

Step 5 When the switch comes back up with Cisco IOS Release 12.1(11)EA1 or later, reload the switch a second time by using the reload privileged EXEC command so that the system mtu command takes effect.

Recovering from a Software FailureIf the software fails, you can reload the software. For detailed recovery procedures, see the “Troubleshooting” chapter in the software configuration guide.

Installation NotesYou can assign IP information to your switch by using one of these methods:

• Express Setup program, as described in the switch getting started guide.

• CLI-based setup program, as described in the switch hardware installation guide.

• DHCP-based autoconfiguration, as described in the switch software configuration guide.

• Manually assigned IP address, as described in the switch software configuration guide.

New FeaturesThese sections describe the new supported hardware and the new software features provided in this release:

• “New Hardware Features” section on page 9

• “New Software Features” section on page 10

New Hardware FeaturesFor a list of supported hardware, see the “Hardware Supported” section on page 2.

9Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 10: 3550 info

Limitations and Restrictions

New Software FeaturesThere are no new software features in this release.

Limitations and RestrictionsYou should review this section before you begin working with the switches. These are known Cisco IOS limitations that will not be fixed, and there is not always a workaround. Some features might not work as documented, and some features could be affected by recent changes to the switch hardware or software.

This section describes the limitations and restrictions:

Cisco IOS Limitations and RestrictionsThese sections describe the Cisco IOS limitations for features on the switch:

• “IEEE 802.1x” section on page 11

• “ACLs” section on page 11

• “Connected Devices” section on page 11

• “Configuration” section on page 13

• “DHCP” section on page 14

• “HSRP” section on page 14

• “IGMP” section on page 15

• “IP” section on page 15

• “MAC Addressing” section on page 16

• “MIBs” section on page 16

• “Multicasting” section on page 16

• “Port Security” section on page 18

• “QoS” section on page 19

• “Routing” section on page 21

• “SNMP” section on page 22

• “SPAN and RSPAN” section on page 23

• “Spanning Tree” section on page 23

• “VLAN” section on page 24

10Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 11: 3550 info

Limitations and Restrictions

IEEE 802.1x

These are IEEE 802.1x limitations:

• When an IEEE 802.1x-authenticated client is disconnected from an IP phone, hub, or switch and does not send an EAPOL-Logoff message, the switch interface does not transition to the unauthorized state. If this happens, it can take up to 60 minutes for the interface to transition to the unauthorized state when the re-authentication time is the default value (3600 seconds).

The workaround is to change the number of seconds between re-authentication attempts by using the dot1x timeout re-authperiod seconds global configuration command. (CSCdz38483)

• On a switch running Cisco IOS Release 12.1(12c)EA1 or later, if the switch MTU value is set to a value greater than 1500 and the authentication server and the intermediate devices are not configured with a compatible MTU value, IEEE 802.1x authentication with EAP-Transparent LAN Services (TLS) might fail.

The workaround is to reset the switch MTU value to the default value or to configure the same MTU value on the switch, the authentication server, and the intermediate devices. (CSCea05682)

ACLs

These are access control list (ACL) limitations. For ACL limitations with quality of service (QoS), see the “QoS” section on page 19.

• If you apply a large ACL and it fills the entire ternary content addressable memory (TCAM), the MVR IP multicast data packets are sent to the switch CPU and are not forwarded to the MVR receiver ports.

There is no workaround. (CSCdx80751)

• If the output from the show tcam inacl 1 statistics privileged EXEC command shows that the TCAM is not full and you are applying an ACL, this system message might appear:

%FM-3-UNLOADING: Unloading input vlan label 1 feature from all TCAMs

There is no workaround. (CSCea25658)

Connected Devices

These are limitations related to connections with specific devices:

• When you configure an EtherChannel between a Catalyst 3550 switch and a Catalyst 1900 switch, some of the Catalyst 3550 links in the EtherChannel might go down, but one link in the channel remains up, and connectivity is maintained.

The workaround is to disable the Port Aggregation Protocol (PAgP) on both devices by using the channel-group channel-group-number mode on interface configuration command. PAgP negotiation between these two devices is not reliable. (CSCdt78727)

• If a switch and a Cisco redundant power system (RPS) 300 or 675 are connected to different power sources and the switch power supply fails, the Cisco RPS supplies power to the switch. However, after the switch power supply is restored, the Cisco RPS continues providing power to the switch.

When the switch stops receiving power from the Cisco RPS and uses its own power supply to power the switch, pressing the Standby/Active button on the Cisco RPS might cause the switch to reload.

11Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 12: 3550 info

Limitations and Restrictions

Note We recommend that you connect the switch and the Cisco RPS to the same power source. For more information, see the Cisco RPS installation guide.

There is no workaround. (CSCdx81023)

• When you insert a GigaStack GBIC in a GBIC module slot, the CPU utilization increases by 6 percent. This increase occurs for each GigaStack GBIC added to the switch. Other types of GBICs do not cause additional CPU utilization.

There is no workaround. (CSCdx90515)

• When the link between a device with an AC power supply and a Catalyst 3550-24PWR switch is 10 Mbps and half duplex, and the AC power supply is turned off, the switch is in the error-disabled state.

The workaround is remove the AC power supply, disconnect the Ethernet cable, and then reconnect the Ethernet cable. This ensures that the switch uses inline power. (CSCdz16265)

• The Catalyst 3550 switch does not adjust the power allocation based on the IEEE class of the power device. When an IEEE powered-compliant device is connected to a switch, it allocates 15 W (the default) to the port.

There is no workaround. (CSCdz37516)

• When a Catalyst 3550 switch is connected to a three-port Gigabit Ethernet module in a Cisco 12000 Gigabit Switch Router (GSR) that is configured for Ethernet over Multiprotocol Label Switching (EoMPLS), the switch does not reliably send frames to the GSR.

The workaround is to configure the Catalyst 3550 Gigabit Ethernet interface with the spanning-tree portfast interface configuration command. (CSCea04746)

• If a cable on an ingress interface is disconnected, an Alteon A184 cannot detect when a 1000BASE-X link between two Catalyst 3550 switches is down.

There is no workaround. (CSCea09786)

• When three or more Catalyst 3550-24PWR switches are connected through GigaStack GBICs, you can access all the VLANs on the uplink switch, but you can only access VLAN 1 on the other switches.

The workaround is to enter the switchport mode trunk interface configuration command on all of the GigaStack interfaces and to do one of these:

– Use the shutdown and then the no shutdown interface configuration commands on the ports.

– Save the switch configuration by using the copy running-config startup-config privileged EXEC command, and reload all the switches. (CSCec86258)

• The undersize error counter is incrementing when no undersize packets are present. This condition occurs on IEEE 802.1Q tunnel ports connected to a Nortel or an Alteon Load Balancer.

There is no known workaround. (CSCed73388)

• If four switches are connected in a cascaded stack through the GigaStack GBICs, the link between the second and third switches goes down, and then the GBICs on the second and third switches are reconnected, the GBIC LEDs flash amber, and the ports take approximately 1 minute to come up. Some of the GBIC ports might not come up.

There is no workaround. (CSCef17198)

12Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 13: 3550 info

Limitations and Restrictions

• The Cisco RPS 300 redundant power system supports the Catalyst 3550 multilayer switch and provides redundancy for up to six connected devices until one of these devices requires backup power. If a connected device has a power failure, the Cisco RPS 300 immediately begins supplying power to that device and sends status information to other connected devices that it is no longer available as a backup power source. As described in the device documentation, when the RPS LED on the switch is amber, the Cisco RPS 300 is connected but down. However, this might merely mean that the Cisco RPS 300 is in standby mode. Press the Standby/Active button on the Cisco RPS 300 to put it into active mode. You can view the Cisco RPS 300 status through the CLI by using the show rps privileged EXEC command. For more information, see the Cisco RPS 300 documentation.

Configuration

These are configuration limitations:

• When changing the link speed of a Gigabit Ethernet port from 1000 Mbps to 100 Mbps, there is a slight chance that the port will stop forwarding packets.

The workaround is to shut down the port, and to re-enable it by using the shutdown and no shutdown interface configuration commands. (CSCds84279)

• When you use the no interface port-channel global configuration command to remove an EtherChannel group, the ports in the port group change to the administratively down state.

The workaround, when you remove an EtherChannel group, is to enter the no shutdown interface configuration command on the interfaces that belonged to the port group to bring them back on line. (CSCdt10825)

• In the show interface interface-id privileged EXEC command output, the output buffer failures field shows the number of packets lost before replication, whereas the packets output field shows the successfully transmitted packets after replication. To determine actual discarded frames, multiply the output buffer failures by the number of VLANs on which the multicast data is replicated.

There is no workaround. (CSCdt26928)

• Remote Monitoring (RMON) collection functions on physical interfaces, but it is not supported on EtherChannels and Switched Virtual Interfaces (SVIs). (CSCdt36101)

• If a switch stack contains both Catalyst 3550 switches and Catalyst 2900 XL or Catalyst 3500 XL switches, Cross-Stack UplinkFast (CSUF) is not enabled if the management VLAN on the Catalyst 2900 XL or 3500 XL switches is changed to a VLAN other than VLAN 1 (the default).

The workaround is to make sure that the management VLAN of all Catalyst 2900 XL or 3500 XL switches in the stack is set to VLAN 1. (CSCdv79737)

• The 5 minute input rate and 5 minute output rate fields in the output of the show interfaces privileged EXEC command show both rates as 0 bits/sec. If you enter the show interfaces command more than once, these fields might show values greater than 0 bits/sec.

There is no workaround. (CSCdz06305)

• Performing an extended ping from one interface to another interface on the same switch can cause high CPU utilization. This can occur when a large number of ping packets are sent and received and is the expected behavior.

The workaround is to not perform a ping from one interface to another on the same switch. (CSCea19301)

• When port security is enabled on an interface in restricted mode and the switchport block unicast interface command has been entered on that interface, MAC addresses are incorrectly forwarded when they should be blocked.

13Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 14: 3550 info

Limitations and Restrictions

The workaround is to enter the no switchport block unicast interface configuration command on that specific interface. (CSCee93822)

• When connected to some third-party devices that send early preambles, a switch port operating at 100 Mbps full duplex or 100 Mbps half duplex might bounce the line protocol up and down. The problem occurs only when the switch is receiving frames.

The workaround is to configure the port for 10 Mbps and half duplex or to connect a hub or a nonaffected device to the switch. (CSCed39091)

• Storm control or traffic suppression (configured by using the storm-control {broadcast | multicast | unicast} interface configuration command) is supported only on physical interfaces. It is not supported on EtherChannel port channels, even though you can enter these commands through the CLI.

DHCP

These are DHCP limitations:

• The DHCP option-82 format on the Catalyst 3550 switch is inconsistent with other Cisco switches. When the Catalyst 3550 switch is used as the relay agent with DHCP snooping and the option-82 feature using the VLAN-module-port (vlan-mod-port) format, the switch does not assign the correct value to the port identifier (circuit ID suboption). The value is offset by 1 from the actual interface module- and port-number values. The circuitID/port-identifier for Fast Ethernet and Gigabit Ethernet interfaces also have the same module-number but different port-number values. For example, on a Catalyst 3550-24 switch, fastethernet0/1 is reported as module 0/port 0 and gigabitethernet0/1 is reported as module 0/port 24.

There is no workaround. (CSCed29525)

HSRP

This is the Hot Standby Router Protocol (HSRP) limitation:

• After the no interface tunnel0 global configuration command is entered to remove the tunnel interface, the output from the show running-config privileged EXEC command still shows the tunnel interface that was removed.

This can occur if HSRP interface tracking is configured on another interface to track a tunnel interface, if the no interface command was entered before the HSRP tracking configuration was removed, or if the no standby tunnel0 global configuration command was entered on the other interface to disable tracking.

These are the workarounds:

– Before removing the tunnel interface from the configuration, remove the HSRP interface tracking commands in the configuration that specify the tunnel interface.

– Use the no standby track global configuration command without specifying an interface to disable HSRP tracking. (CSCdz66450)

14Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 15: 3550 info

Limitations and Restrictions

IGMP

These are IGMP limitations:

• Internet Group Management Protocol (IGMP) packets classified by QoS to map the DSCP value and the class of service (CoS) value in a QoS policy map might modify only the DSCP property and leave the CoS value at zero.

There is no workaround. (CSCdt27705)

• When IGMP filtering is enabled and you use the ip igmp profile global configuration command to create an IGMP filter, reserved multicast addresses cannot be filtered. Because IGMP filtering uses only Layer 3 addresses to filter IGMP reports and due to mapping between Layer 3 multicast addresses and Ethernet multicast addresses, reserved groups (224.0.0.x) are always allowed through the switch. Aliased groups can also leak through the switch. For example, if a user is allowed to receive reports from group 225.1.2.3, but not from group 230.1.2.3, aliasing causes the user to receive reports from 230.1.2.3. Aliasing of reserved addresses means that all groups of the form y.0.0.x are allowed through.

There is no workaround. (CSCdv73626)

• If you use the ip igmp max-groups interface configuration command to set the maximum number of IGMP groups for an interface to 0, the port still receives group reports from reserved multicast groups (224.0.0.x) and their Layer 2 aliases (y.0.0.x).

There is no workaround. (CSCdv79832)

• When IGMP snooping is disabled and you enter the switchport block multicast interface configuration command, IP multicast traffic is not blocked. The switchport block multicast command is only applicable to non-IP multicast traffic.

There is no workaround. (CSCee16865)

• After you configure a switch to join a multicast group by entering the ip igmp join-group group-address interface configuration command, the igmp join sent by the client might be suppressed. If this happens, the switch port where the client is connected might be removed from the IGMP snooping forwarding table.

Use one of these workarounds:

– Cancel membership in the multicast group by using the no ip igmp join-group group-address interface configuration command on an SVI.

– Disable IGMP snooping on the VLAN interface by using the no ip igmp snooping vlan vlan-id global configuration command. (CSCeh90425)

IP

This is the IP limitation:

• The switch does not create an adjacent table entry when the ARP timeout value is 15 seconds and the ARP request times out.

The workaround is to not set an ARP timeout value lower than 120 seconds. (CSCea21674)

15Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 16: 3550 info

Limitations and Restrictions

MAC Addressing

These are MAC address limitations:

• After a MAC address is relearned on a new interface, traffic might not be immediately forwarded to the MAC addresses.

There is no workaround. (CSCdz75459)

• The switch uses the same MAC address for all VLAN interfaces. If the destination MAC address in a packet is the same as the MAC address of the VLAN interface, and the VLAN interface for that VLAN is shut down or does not exist, the switch drops the packet.

There is no workaround. (CSCed12004)

• If MAC addresses with the destination address 0000.0000.0000 are received, they are processed by the CPU. The CPU utilization might become high if a large number of such addresses is received, and the protocol packets might be dropped.

There is no workaround. (CSCee67900)

• If packets with a bad cyclic redundancy check (CRC) are received on a port, the switch might learn the source MAC address of the bad packet.

There is no workaround. (CSCef15178)

MIBs

These are MIB limitations:

• When you access the CISCO-STACK-MIB portTable, the mapping might be off by one from the mapping given by the switch. The objects in this table are indexed by two numbers: portModuleIndex and portIndex. The allowable values for portModuleIndex are 1 through 16. Because 0 is not an allowable value, the value 1 represents module 0.

The workaround is to use the value 1 to represent module 0. (CSCdw71848)

• The Catalyst 3550 switch only supports the read operation in the sysClearPortTime MIB object (.1.3.6.1.4.1.9.5.1.1.13) in the CISCO-STACK-MIB. Use the clear counters privileged EXEC command to clear the counters.

There is no workaround. (CSCdz87897)

Multicasting

These are the multicasting limitations:

• Modifying a multicast boundary access list does not prevent packets from being forwarded by any multicast routes that were in existence before the access list was modified if the packets arriving on the input interface do not violate the boundary. However, no new multicast routes that violate the updated version of the multicast boundary access list are learned, and any multicast routes that are in violation of the updated access list are not relearned if they age out.

After updating a multicast boundary, the workaround is to use the clear ip mroute privileged EXEC command to delete any existing multicast routes that violate the updated boundary. (CSCdr79083)

16Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 17: 3550 info

Limitations and Restrictions

• The show ip mroute count privileged EXEC command might display incorrect packet counts. In certain transient states (for example, when a multicast stream is forwarded only to the CPU during the route-learning process and the CPU is programming this route into the hardware), a multicast stream packet count might be counted twice.

The workaround is to not trust the counter during this transient state. (CSCds61396)

• In IP multicast routing and fallback bridging, certain hardware features are used to replicate packets for the different VLANs of an outgoing trunk port. If the incoming speed is line rate, the outgoing interface cannot duplicate that speed (because of the replication of the packets). As a result, certain replicated packets are dropped.

There is no workaround. (CSCdt06418)

• Multicast router information appears in the show ip igmp snooping mrouter privileged EXEC command output when IGMP snooping is disabled. Multicast VLAN Registration (MVR) and IGMP snooping use the same commands to display multicast router information. In this case, MVR is enabled, and IGMP snooping is disabled.

There is no workaround. (CSCdt48002)

• When you use the ip pim spt-threshold infinity interface configuration command, you want all sources for the specified group to use the shared tree and not use the source tree. However, the switch does not automatically start to use the shared tree. No connectivity problem occurs, but the switch continues to use the shortest path tree for multicast group entries already installed in the multicast routing table.

The workaround is to enter the clear ip mroute privileged EXEC command to force the change to the shared tree. (CSCdt60412)

• Configuring too many multicast groups might result in an extremely low memory condition and cause the software control data structure to go out of sync, causing unpredictable forwarding behavior. The memory resources can only be recovered by entering the clear ip mroute privileged EXEC command.

The workaround is to not configure more than the recommended number of multicast routes on the switch. (CSCdt63480)

• If the number of multicast routes configured on the switch is greater than the switch can support, it might run out of available memory, which can cause it to reboot. This is a limitation in the platform-independent code.

The workaround is to not configure the switch to operate with more than the maximum number of supported multicast routes. You can use the show sdm prefer and show sdm prefer routing privileged EXEC commands to view approximate maximum configuration guidelines for the current SDM template and the routing template. (CSCdt63354)

• Multicast traffic can be temporarily lost when a link comes up in a redundant network and causes the reverse path forwarding (RPF) to change. This only occurs when there are multiple paths between the rendezvous point (RP) and the multicast source.

There is no workaround. (CSCdw27519)

• When the switch receives multicast traffic and IGMP join for requests a multicast group at the same time and it begins to forward the multicast packets, some of the packets might be dropped.

There is no workaround. (CSCdy80326)

17Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 18: 3550 info

Limitations and Restrictions

• When one Fast Ethernet port on a switch (Switch A) is connected to a packet generator, and another Fast Ethernet port on the switch is connected to a Gigabit Ethernet interface on another switch (Switch B), multicast traffic sent from Switch A to Switch B is incorrectly counted. The output from the show mls qos interface interface-id statistics command for the Gigabit Ethernet interface is incorrect.

There is no workaround. (CSCee19574)

Port Security

These are port security limitations:

• If IP source guard and port security are both enabled on a port, and the port is flooded with a large number of unknown MAC addresses, the CPU utilization becomes very high. (CSCeg53423)

• If a port is configured as a secure port with the violation mode as restrict, the secure ports might process packets even after maximum limit of MAC addresses is reached, but those packets are not forwarded to other ports.

There is no workaround. (CSCdw02638)

• Certain combinations of features create conflicts with the port security feature. In Table 6, No means that port security cannot be enabled on a port if the referenced feature is also running on the same port. Yes means that both port security and the referenced feature can be enabled on the same port at the same time. A dash means not applicable.

Table 6 Port Security Compatibility with Other Features

Type of Port Compatible with Port Security

DTP1 port2

1. DTP = Dynamic Trunking Protocol

2. A port configured with the switchport mode dynamic interface configuration command

No

Trunk port Yes

Dynamic-access port3

3. A VLAN Query Protocol (VQP) port configured with the switchport access vlan dynamic interface configuration command

No

Routed port No

SPAN source port Yes

SPAN destination port No

EtherChannel No

Tunneling port Yes

Protected port Yes

IEEE 802.1x port Yes

Voice VLAN port4

4. You must set the maximum allowed secure addresses on the port to two plus the maximum number of secure addresses allowed on the access VLAN.

Yes

18Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 19: 3550 info

Limitations and Restrictions

QoS

These are QoS limitations:

• If you assign both tail-drop threshold percentages to 100 percent by using the wrr-queue threshold interface configuration command and display QoS information for this interface by using the show mls qos interface statistics privileged command, the drop-count statistics are always zero even if the thresholds were exceeded. To display the total number of discarded packets, use the show controllers ethernet-controllers interface-id privileged EXEC command. In the display, the number of discarded frames includes the frames that were dropped when the tail-drop thresholds were exceeded.

• The behavior of a software access control list (ACL) with QoS is different from a hardware ACL with QoS. On the Catalyst 3550 switch, when the QoS hardware rewrites the DSCP of a packet, the rewriting of this field happens before software running on the CPU examines the packet, and the CPU sees only the new value and not the original DSCP value.

When the security hardware ACL matches a packet on input, the match uses the original DSCP value. For output security ACLs, the security ACL hardware should match against the final, possibly changed, DSCP value as set by the QoS hardware. Under some circumstances, a match to a security ACL in hardware prevents the QoS hardware from rewriting the DSCP and causes the CPU to use the original DSCP.

If a security ACL is applied in software (because the ACL did not fit into hardware, and packets were sent to the CPU for examination), the match probably uses the new DSCP value as determined by the QoS hardware, whether or not the ACL is applied at the receiving or sending interface. When packets are logged by the ACL, this problem can also affect whether or not a match is logged by the CPU, even if the ACL fits into hardware and the permit or deny filtering was completed in hardware.

To avoid these issues, whenever the switch rewrites the DSCP of any packet to a value different from the original DSCP, security ACLs should not test against DSCP values in any of their access control elements (ACEs), whether or not the ACL is being applied to an IP access group or to a VLAN map. This restriction does not apply to ACLs used in QoS class maps.

If the switch is not configured to rewrite the DSCP value of any packet, it is safe to match against DSCP in ACLs used for IP access groups or for VLAN maps because the DSCP does not change as the packet is processed by the switch.

The DSCP field of an IP packet encompasses the two fields that were originally designated precedence and type of service (ToS). Statements relating to DSCP apply equally to either IP precedence or IP ToS. (CSCdt94355)

• Ternary content addressable memory (TCAM) generation might fail when there are multiple ACLs in a policy-map. If you add an entry that checks TCP flags to an access list that is used for QoS classification, the system might report that a hardware limitation has been reached for the policy map. This can occur when the policy map already contains several other access list entries that check different TCP flags or that check TCP or User Datagram Protocol (UDP) port numbers by using an operation different from equal (eq), such as not equal (ne), less than (lt), greater than (gt), or range. When the hardware limitation is reached, the service-policy input policy-map-name interface configuration command is removed from the running configuration of the interface.

Checking for TCP flags and TCP/UDP port numbers using operators other than eq share some of the same hardware resources. The switch supports no more than six checks within a single policy map. An identical check repeated in multiple entries in the same policy map counts as a single instance. If this limit is reached during a TCP or a UDP port number check, the software can often work around the problem by allocating extra entries in the TCAM. There is no workaround if the limit is reached during a check against the TCP flags in the packet. Similar checks in a port ACL applied to the same physical interface as the policy map also count toward the limit.

19Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 20: 3550 info

Limitations and Restrictions

Because these resources are allocated on a first-come, first-serve basis, rearranging the order of ACLs within a policy map or the order of entries within a single ACL, placing the TCP flags checks as early as possible, might enable the policy map to be loaded into the hardware.

Similar limits apply for any combination of input VLAN maps, input router ACLs, output VLAN maps, and output router ACLs that share the same VLAN label. The switch supports eight checks for all features on the same VLAN label. When the limit is reached, the system might forward packets by using the CPU rather than through hardware, greatly reducing system performance. To determine the VLAN label assigned to a VLAN or interface on input or output, use the show fm vlan or show fm interface privileged EXEC commands. Then use the show fm vlan-label privileged EXEC command to determine which set of features (input VLAN map, input router ACL, output VLAN map, or output router ACL) share this label.

These are the workarounds:

– Re-arrange the order of classes within the policy map and the order of entries within the individual access lists in the policy map or within any IP port ACL applied to the interface so that checks for TCP flags are made as early as possible within the policy map. You can also re-arrange the order of the individual ACLs within a VLAN map and the order of the individual entries in a security ACL.

– Add an extra entry to the front of an ACL that checks for the same TCP flags that are checked later on in the ACL. If the first entry of the ACL already matches only the TCP protocol, you can duplicate the entry and add a check for the appropriate TCP flags.

– Reduce the number of different combinations of TCP flags being tested.

If the other workarounds fail, avoid combining any check against the TCP flags with gt, lt, ne, or range checks within the policy map and port ACL configured on the interface or within the VLAN maps and router ACLs that share the same VLAN label. (CSCdx24363)

• If you apply an ACL to an interface that has a QoS policy map attached and the ACL is configured so that the packet should be forwarded by the CPU or if the configured ACL cannot fit into the ternary content addressable memory (TCAM), all packets received from this interface are forwarded to the CPU. Because traffic forwarded to the CPU cannot be policed by the policer configured on the interface, this traffic is not accurately rate-limited to the configured police rate.

The workaround, when QoS rate limiting is configured on an interface, is to configure applied ACLs so that packets are not forwarded by the CPU or reduce the number of ACEs in the ACL so that it can fit into the TCAM. (CSCdx30485)

• If you create a policy map by using the policy-map policy-map-name global configuration command, enter the class class-map-name policy-map configuration command, and then immediately exit from the policy-map class configuration mode, the policy map does not show its class-map association.

The workaround is to enter another command (such as the police, trust, or set policy-map class configuration commands) after entering the class class-map-name policy-map configuration command. (CSCdx81650)

• If a switch configuration contains a large ACL and a per-port per-VLAN policy map and both are attached to two interfaces, when you are copying it to the running configuration, this process might fail because the switch runs out of memory.

These are the workarounds:

– Copy the new configuration file to the config.txt file, and reboot the switch.

20Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 21: 3550 info

Limitations and Restrictions

– Save the configuration file as two files: one containing only the ACL configuration and one containing the rest of the configuration (including the QoS and interface configuration). Add the first configuration file to the running-configuration file, and then add the second file to the running-configuration file. (CSCdz54115)

• If you are configuring a policy map on an interface by using named ACLs and the policy map has 13 named ACLs that include deny statements, these messages might appear when you add an ACL:

QoS: Programming TCAM failed: Unsuccessful ACL merge Service Policy attachment failed Service Policy xxxx not attachedQM-4-HARDWARE_NOT_SUPPORTED: Hardware limitation has reached for policymap xxxx

Use one of these workarounds:

– Use numbered ACLs.

– Do not use deny statements because the end of an ACL has an implicit deny statement. (CSCec46594)

• Catalyst 3550 switches do not take into account the Preamble and IFG when rate limiting traffic, which could result in a slightly inaccurate policing rate on a long burst of small frames, where the ratio of the Preamble and IFG to frame size is more significant. This should not be an issue in an environment where the frames are a mix of different sizes.

• Certain combinations of features create conflicts with the port security feature. In Table 6, No means that port security cannot be enabled on a port if the referenced feature is also running on the same port. Yes means that both port security and the referenced feature can be enabled on the same port at the same time. A dash means not applicable.

Routing

These are routing limitations:

• Open Shortest Path First (OSPF) path costs and Interior Gateway Routing Protocol (IGRP) metrics are incorrect for switch virtual interface (SVI) ports.

The workaround is to configure the bandwidth of the SVI manually by using the bandwidth interface configuration command. Changing the bandwidth of the interface changes the routing metric for the routes when the SVI is used as an sending interface. (CSCdt29806)

• The dec keyword is not supported in the bridge bridge-group protocol global configuration command. If two Catalyst 3550 switches are connected to each other through an interface that is configured for IP routing and fallback bridging, and the bridge group is configured with the bridge bridge-group protocol dec command, both switches act as if they were the spanning-tree root. Therefore, spanning-tree loops might be undetected.

There is no workaround. (CSCdt63589)

• When the switch is operating with equal-cost routes and it is required to learn more unicast routes than it can support, the CPU might run out of memory, and the switch might fail.

The workaround is to remain within the documented recommended and supported limits. (CSCdt79172)

• If a Catalyst 3550 switch is connected to two routers (Router 1 and Router 2) in this topology:

– The link between Router 1 and the switch is a BVI (bridge virtual interface) that belongs to two VLANs (VLAN 100 and VLAN 110) and uses one IP address. The IP subnet for the BVI is the same for both VLANs. The ports in both VLANs operate as Layer 2 interfaces. An SVI with an IP address is configured only on VLAN 100.

21Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 22: 3550 info

Limitations and Restrictions

– The link between Router 2 and the switch is an IP interface that only belongs to VLAN 110.

IP connectivity then exists between Router 1 and the switch. There is no IP connectivity between Router 2 and the switch.

The workaround is to configure another SVI with an IP address on the Catalyst 3550 switch that would be reachable from Router 2. (CSCdy82042)

• When the switch has many routes that use loadsharing among multiple next hops, some of the routes might not loadshare but instead pick only one of the next hops for forwarding all packets on that route. This happens when the portion of the adjacency RAM that has been allotted for multipath routes has been used up.

There is no workaround. (CSCed22152)

• Packets received from media types that require SNAP encapsulation of IPv4 packets require the switch to forward SNAP-encapsulated packets. Layer 2 forwarding of IPv4 in SNAP encapsulation ordinarily takes place in hardware (unless a VLAN map or port ACL contains an IP ACL). However, on the Catalyst 3550 switch, Layer 3 forwarding of IPv4 in SNAP can only be done in software. SNAP-encapsulated IPv4 packets that are directed to the router MAC address or the HSRP group MAC address (if this device is the active router in the HSRP group) are forwarded to the switch CPU, potentially causing high CPU utilization levels.

This is a hardware limitation, and there is no workaround. (CSCed59864)

• When multi-VRF-CE is enabled on the switch, the switch does not support the ip directed-broadcast interface configuration command used to enable forwarding of IP-directed broadcasts on an interface.

There is no workaround. (CSCee05670)

• When an IP packet with a cyclic redundancy check (CRC) error is received, the per-packet per-Differentiated Service Code Point (DSCP) counter (for DSCP 0) is incremented. Normal networks should not have packets with CRC errors.

There is no workaround. (CSCdr85898)

SNMP

This is the SNMP limitation:

• The switch might reload when it is executing the no snmp-server host global configuration command. This is a rare condition that can happen if SNMP traps or informs are enabled and the SNMP agent attempts to send a trap to the host just as it is being removed from the configuration and if the IP address of the host (or the gateway to reach the host) has not been resolved by Address Resolution Protocol (ARP).

The workaround is to ensure that the target host or the next-hop gateway to that host is in the ARP cache (for example, by using a ping command) before removing it from the SNMP configuration. Alternatively, disable all SNMP traps and informs before removing any hosts from the SNMP configuration. (CSCdw44266)

22Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 23: 3550 info

Limitations and Restrictions

SPAN and RSPAN

These are SPAN and RSPAN limitations:

• A Remote Switched Port Analyzer (RSPAN) source session does not forward monitored traffic to the RSPAN destination session if there is an egress SPAN source port in the session with port security or IEEE 802.1x enabled.

There is no workaround. (CSCdy21035)

• Not all traffic is properly mirrored by RSPAN when a port is monitored for egress traffic and the RSPAN VLAN is carried through a Layer 2 protocol tunnel to the RSPAN destination switch.

This happens because the MAC addresses for the original packets as well as the mirrored RSPAN packets are all learned on the tunnel VLAN, so the RSPAN traffic is no longer properly segregated on the tunneling switches.

The workaround is to not include any RSPAN VLANs in any Layer 2 protocol tunnels unless the tunnel is dedicated to a single RSPAN VLAN. (CSCdy37188)

• Ingress forwarding on a SPAN destination port does not work if there is an egress SPAN source port in the session with port security or IEEE 802.1x enabled.

There is no workaround. (CSCdy44646)

• Whenever a single frame is subject to both ingress and egress SPAN, and both the ingress and the egress SPAN are sent to the same SPAN destination port, the egress copy of the spanned frame is sent out the SPAN destination port before the ingress copy of the spanned frame is sent out the SPAN destination port.

There is no workaround. (CSCef97043)

• RSPAN does not work when the RSPAN source session and the RSPAN destination session are on the same switch. If an RSPAN source session is configured with a particular RSPAN VLAN and an RSPAN destination session for that RSPAN VLAN is configured on the same switch, then the RSPAN destination session's destination port will not transmit captured packets from the RSPAN source session.

The workaround is to use SPAN instead of RSPAN.(CSCeg08870)

Spanning Tree

These are spanning tree limitations:

• If a port on the Catalyst 3550 switch that is running the Multiple Spanning Tree Protocol (MSTP) is connected to another switch that belongs to a different multiple spanning tree (MST) region, the Catalyst 3550 port is not recognized as a boundary port when you start the protocol migration process by using the clear spanning-tree detected-protocols interface interface-id privileged EXEC command. This problem occurs only on the root bridge, and when the root bridge is cleared, the boundary ports are not shown because the designated ports do not receive any bridge protocol data units (BPDUs) unless a topology change occurs. This is the intended behavior.

The workaround is to configure the Catalyst 3550 switch for Per-VLAN spanning-tree plus (PVST+) by using the spanning-tree mode pvst global configuration command bridge, and then change it to MSTP by using the spanning-tree mode mst global configuration command. (CSCdx10808)

23Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 24: 3550 info

Limitations and Restrictions

• When you reboot a Catalyst 3550-24-FX switch, it might loop back packets received on a 100BASE-FX port to its link partner. This can occur before the Cisco IOS software takes control of the system and lasts for about 200 milliseconds.

As a result, the link partner might shut down the port when it detects loopback packets, or MAC addresses might be learned on the wrong ports on upstream switches. The network might be unable to deliver packets to a few devices for up to 5 minutes after rebooting the Catalyst 3550-24-FX switch when:

– The Catalyst 3550-24-FX switch is connected to one or more switches in the network.

– Spanning tree is disabled in the network or the Port Fast feature is enabled on the ports connected to the Catalyst 3550-24-FX switch.

– The Catalyst 3550-24-FX switch is powered cycled or reloaded from the CLI.

– One or more devices in the network transmit a broadcast or multicast packet during the 200-millisecond timing window while the Catalyst 3550-24-FX switch is booting.

This problem corrects itself after five minutes or when these devices transmit a broadcast or multicast packet, whichever comes first.

The workaround is to enable spanning tree in the network and to make sure that the Port Fast feature is disabled on all ports connected to the Catalyst 3550-24-FX switch. (CSCdx45558)

• When a switch receives a bridge STP bridge protocol data unit (BPDU) from an access port and the egress port is a trunk port, the switch assigns the BPDU a CoS value of 0 instead of 7.

There is no workaround. (CSCdz54043)

• CSCef18020

In a switch stack with GigaStack GBICs, cross-stack UplinkFast (CSUF) convergence might be slow when the root port fails.

There is no workaround.

VLAN

These are VLAN limitations:

• When a VLAN interface has been disabled and restarted multiple times by using the shutdown and no shutdown interface configuration commands, the interface might not restart following a no shutdown command.

The workaround is to re-enter the shutdown and no shutdown interface configuration commands to restart the interface. (CSCdt54435)

• When a large number of VLANs and a large number of trunk ports with allowed VLAN lists are configured on the switch, if you enter the no switchport trunk allowed vlan interface-range command to remove the allowed list for all the trunk ports, the SYS-3-CPUHOG system message might appear.

The workaround is to use the no switchport trunk allowed vlan interface configuration command on each trunk port to remove the allowed list for all the trunk ports. (CSCdx17189)

24Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 25: 3550 info

Important Notes

• When 1000 VLANs and more than 40 trunk ports are configured, and the spanning-tree mode changes from MSTP to PVST+ or the reverse, this message appears on the console:

%ETHCNTR-3-RA_ALLOC_ERROR: RAM Access write pool I/O memory allocation failure

There is no workaround. However, we recommend that you reload the switch by using the reload privileged EXEC command. To avoid this problem, configure the system with fewer VLANs and fewer trunk ports, or use the switchport trunk allowed vlan interface configuration command to reduce the number of active VLANs on each trunk port. (CSCdx20106)

• If the switch fails for any reason while you are exiting VLAN database configuration mode (accessed by entering the vlan database privileged EXEC command), there is a slight chance that the VLAN database might get corrupted. After resetting from the switch, you might see these messages on the console:

%SW_VLAN-4-VTP_INVALID_DATABASE_DATA: VLAN manager received bad data of type device type: value 0 from vtp database

$SW_VLAN-3-VTP_PROTOCOL_ERROR: VTP protocol code internal error

The workaround is to use the delete flash:vlan.dat privileged EXEC command to delete the corrupted VLAN database. Then reload the switch by using the reload privileged EXEC command. (CSCdx19540)

• When you perform a ping from a VLAN to another VLAN on the same switch, the VLAN counter does not change.

There is no workaround. (CSCdz17863)

Important NotesThese sections describe the important notes related to this software release:

• “Cisco IOS Notes” section on page 25

• “Device Manager Notes” section on page 27

Cisco IOS NotesThese are the important Cisco IOS configuration notes related to this release:

• In Cisco IOS Release 12.2(25)SEC, the implementation for multiple spanning tree (MST) changed from the previous release. Multiple STP (MSTP) is now compliant with the IEEE 802.1s standard. Previous MSTP implementations were based on a draft of the IEEE 802.1s standard.

• In Cisco IOS Release 12.1(19)EA1, the implementation for the option-82 subscriber identification changed from the previous release. The new option-82 format uses a different circuit ID and remote ID suboption, vlan-mod-port. The previous version uses the snmp-ifindex circuit ID and the remote ID suboption.

If you have option-82 configured on the switch and you upgrade to Cisco IOS Release 12.1(19)EA1 or later, the option-82 configuration is not affected. However, when you globally enable DHCP snooping on the switch by using the ip dhcp snooping global configuration command, the previous option-82 configuration is suspended, and the new option-82 format is applied. When you globally disable DHCP snooping on the switch, the previous option-82 configuration is re-enabled.

25Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 26: 3550 info

Important Notes

To provide for backward compatibility, you can select the previous option-82 format by using the ip dhcp snooping information option format snmp-ifindex global configuration command when you enable DHCP snooping. When DHCP snooping is globally enabled, option-82 information (in the selected format) is only inserted on snooped VLANs.

For more information about using the previous version of option 82 without enabling DHCP snooping, see the software configuration guide for this release.

• In Cisco IOS Release 12.1(14)EA1, the implementation for IEEE 802.1x changed from the previous release. Some global configuration commands became interface configuration commands, and new commands were added.

If you have IEEE 802.1x configured on the switch and you upgrade to Cisco IOS Release 12.1(14)EA1 or later, the configuration file does not contain the new commands, and IEEE 802.1x does not operate. After the upgrade is complete, make sure to globally enable IEEE 802.1x by using the dot1x system-auth-control global configuration command. For more information, see the software configuration guide for this release.

• When you enable port security on an interface that is also configured with a voice VLAN, you must set the maximum allowed secure addresses on the port to 2 plus the maximum number of secure addresses allowed on the access VLAN. When the port is connected to a Cisco IP Phone, the telephone requires up to two MAC addresses. The address of the Cisco IP Phone is learned on the voice VLAN, and it might or might not be learned on the access VLAN. Connecting a PC to the Cisco IP Phone requires additional MAC addresses.

• If you configure a port ACL on a physical interface on a switch that has VLAN maps or input router ACLs configured, or if you configure a VLAN map or input router ACL on a switch that has port ACLs configured, a CONFLICT message is generated, but the configuration is accepted. The port ACL action has priority on that port over actions in a router ACL or VLAN map applied to the VLAN to which the port belongs.

The result is that packets received on that physical port are permitted or denied based on the port ACL action, without regard to any permit or deny statements in any router ACL or VLAN map. Packets received on other physical ports in the VLAN are still permitted or denied based on any router ACLs or VLAN maps applied to the VLAN. If the port ACL is applied to a trunk port, it overrides any other input ACLs applied to all VLANs on the trunk port.

• The default system MTU for traffic on the Catalyst 3550 switch is 1500 bytes. The IEEE 802.1Q tunneling feature increases the frame size by 4 bytes. Therefore, when you configure IEEE 802.1Q tunneling, you must configure all switches in the IEEE 802.1Q network to be able to process maximum frames by increasing the switch system MTU size to at least 1504 bytes. You configure the system MTU size by using the system mtu global configuration command.

• When you are configuring a cascaded stack of Catalyst 3550 switches by using the GigaStack GBIC module and want to include more than one VLAN in the stack, be sure to configure all the GigaStack GBIC interfaces as trunk ports by using the switchport mode trunk interface configuration command and to use the same encapsulation method by using the switchport encapsulation {isl | dot1q} interface configuration command. For more information about these commands, refer to the switch command reference for this Cisco IOS release.

• If the 1000BASE-T GBIC (WS-G5482) module is not securely inserted, the switch might fail to recognize it or might display an incorrect media type following a show interface privileged EXEC command entry. If this happens, remove and reinsert the GBIC module.

• After you upgrade a Catalyst 3550 switch to Cisco IOS Release 12.2(25)SE or later, the SNMP order of the index changes.

The workaround is to enter the snmp-server ifindex persists interface command after upgrading the switch. (CSCeg69592)

26Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 27: 3550 info

Important Notes

• When you configure a dynamic switchport by using the switchport access vlan dynamic interface configuration command, the port might allow unauthorized users to access network resources if the port mode changes from access to trunk through Dynamic Trunking Protocol (DTP) negotiation.

The workaround is to configure the port as a static access port. (CSCdz32330)

• If a spanning-tree loop occurs, this message might appear:

MALLOCFAIL, alignment 0. -Process=Syslog Traps -Traceback= 1A3740

This message appears because the switch has run out of I/O memory and is unable to allocate a packet buffer to report the error. You can also verify if the switch runs out of I/O memory by using the show memory privileged EXEC command.

The workaround is to reconfigure the spanning tree to remove the loop. (CSCdz51522)

• Beginning in Cisco IOS Release 12.1(13)EA1, these are the default settings for an IP phone connected to a switch:

– The port trust state is to not trust the priority of frames arriving on the IP phone port from connected devices.

– The CoS value of incoming traffic is overwritten and set to zero. (CSCdz76948).

• Catalyst 3550-24-FX switches support both full- and half-duplex modes, and the default duplex mode is half duplex. Autonegotiation of the duplex mode is not supported.

On a Catalyst 3550-24-FX switch, when you upgrade to Cisco IOS Release 12.1(13)EA1 or later, all ports are reset to half-duplex mode. This causes a duplex setting mismatch if the switch is connected to another device operating in full-duplex mode. After upgrading to Cisco IOS Release 12.1(13)EA1 or later, configure the Catalyst 3550-24-FX switch to operate in full-duplex mode, if necessary. (CSCdz29482)

• If the switch requests information from the Cisco Secure Access Control Server (ACS) and the message exchange times out because the server does not respond, a message similar to this appears:

00:02:57: %RADIUS-4-RADIUS_DEAD: RADIUS server 172.20.246.206:1645,1646 is not responding.

If this message appears, check that there is network connectivity between the switch and the ACS. You should also check that the switch has been properly configured as an AAA client on the ACS.

Device Manager NotesThese notes apply to the device manager:

• This release supports the same switch cluster compatibilities supported in Cisco IOS Release 12.1(22)EA1. However, you cannot create and manage switch clusters through the device manager. To create and manage switch clusters, use the CLI or Cisco Network Assistant.

• When you are prompted to accept the security certificate and you click No, you see only a blank screen, and the device manager does not launch.

The workaround is to click Yes when you are prompted to accept the certificate. (CSCef45718)

• We recommend this browser setting to speed up the time to display the device manager from Microsoft Internet Explorer.

From Microsoft Internet Explorer:

1. Choose Tools > Internet Options.

2. Click Settings in the “Temporary Internet files” area.

27Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 28: 3550 info

Important Notes

3. From the Settings window, choose Automatically.

4. Click OK.

5. Click OK to exit the Internet Options window.

• The HTTP server interface must be enabled to display the device manager. By default, the HTTP server is enabled on the switch. Use the show running-config privileged EXEC command to see if the HTTP server is enabled or disabled.

Beginning in privileged EXEC mode, follow these steps to configure the HTTP server interface:

• The device manager uses the HTTP protocol (the default is port 80) and the default method of authentication (the enable password) to communicate with the switch through any of its Ethernet ports and to allow switch management from a standard web browser.

If you change the HTTP port, you must include the new port number when you enter the IP address in the browser Location or Address field (for example, http://10.1.126.45:184, where 184 is the new HTTP port number). You should write down the port number through which you are connected. Use care when changing the switch IP information.

If you are not using the default method of authentication (the enable password), configure the HTTP server interface with the method of authentication used on the switch.

Beginning in privileged EXEC mode, follow these steps to configure the HTTP server interface:

Command Purpose

Step 1 configure terminal Enter global configuration mode.

Step 2 ip http authentication {aaa | enable | local}

Configure the HTTP server interface for the type of authentication that you want to use.

• aaa—Enable the authentication, authorization, and accounting feature. You must enter the aaa new-model interface configuration command for the aaa keyword to appear.

• enable—Enable password, the default method of HTTP server user authentication.

• local—Local user database, as defined on the Cisco router or access server.

Step 3 end Return to privileged EXEC mode.

Step 4 show running-config Verify your entries.

Command Purpose

Step 1 configure terminal Enter global configuration mode.

Step 2 ip http authentication {enable | local | tacacs}

Configure the HTTP server interface for the type of authentication that you want to use.

• enable—Enable password, the default method of HTTP server user authentication.

• local—Local user database, as defined on the Cisco router or access server.

• tacacs—TACACS server.

28Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 29: 3550 info

Open Caveats

• If you use Internet Explorer Version 5.5 and select a URL with a nonstandard port at the end of the address (for example, www.cisco.com:84), you must enter http:// as the URL prefix. Otherwise, you cannot launch the device manager.

Open CaveatsThese are the Cisco IOS severity-3 open configuration caveats with possible unexpected activity in this software release:

• CSCdx95501

When a community string is assigned by the cluster command switch, you cannot get any dot1dBridge MIB objects by using a community string with a VLAN entity from a cluster member switch.

The workaround is to manually add the cluster community string with the VLAN entity on the member switches for all active VLANs shown in the show spanning-tree summary display. This is an example of such a change, where cluster member 3 has spanning tree on vlan 1-3, and the cluster commander community string is public@es3.

Mbr3(config)# snmp community public@es3@1 ROMbr3(config)# snmp community public@es3@2 ROMbr3(config)# snmp community public@es3@3 RO

• CSCef80151

If a switch is reloaded without a vlan.dat file, the VTP and VLAN configuration from the start-up configuration is not used.

There is no workaround.

• CSCeg09032

Open Shortest Path First (OSPF) routes might not appear in the routing table after a topology change if Incremental SPF (iSPF) is enabled.

The workaround is to disable iSPF.

• CSCeg35537 (Catalyst 3550-24PWR switches only)

If the power inline never and duplex full interface configuration commands are configured on a routed interface, the interface resets to half duplex after the switch is reloaded.

The workaround is to configure the speed and duplex to auto by using the speed auto and duplex auto interface configuration commands.

• CSCei63394

When an IEEE 802.1x restricted VLAN is configured on a port and a hub with multiple devices is connected to that port, no syslog messages are generated.

This is not a supported configuration. Only one host should be connected to an IEEE 802.1x restricted VLAN port.

Step 3 end Return to privileged EXEC mode.

Step 4 show running-config Verify your entries.

Command Purpose

29Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 30: 3550 info

Open Caveats

• CSCin33082

If the distance of two or more static IP routes is changed in a particular order, some routes do not appear in the routing table.

The workaround is to use the clear ip route privileged EXEC command.

• CSCsb75245

When you configure a Cisco IP Phone to use Network Admission Control, the CDP packet is delayed, and the phone is identified as an agentless host without an identity profile.

The workaround is to enter the eou initialize ip address switch configuration command to revalidate the host that CDP has learned.

• CSCsb74648

When a Cisco device configured for Network Admission Control and the EAP over UDP port number is changed from its default value and then changed back with the eou default switch configuration command, the port change does not take effect, and EAP over UDP sessions can remain in a hold state.

The workaround is to reset the EAP over UDP port number to its default value (0x5566) by using the eou port 21862 switch configuration command.

• CSCsb81283

MAC address notification traps do not work when port security is enabled on the interface.

The workaround is to disable port security on the interface.

• CSCsb93563

When a Cisco IP phone is connected to the switch, the port VLAN ID (PVID) and the voice VLAN ID (VVID) both learn its MAC address. However, after dynamic MAC addresses are deleted, only VVID relearns the IP phone MAC address. MAC addresses are deleted manually or automatically for a topology change or when port security or an IEEE 802.1x feature is enabled or disabled.

There is no workaround.

• CSCsc05371

When you filter a MAC address by entering mac-address-table static vlan drop global configuration command, IEEE 802.1X still authenticates that address

There is no workaround.

• CSCsc30733

This error message appears during authentication when a method list is used and one of the methods in the method list is removed:

AAA-3-BADMETHODERROR:Cannot process authentication method 218959117

There is no workaround. However, this is only an informational message and does not affect switch functionality.

• CSCsc93768

The switch fails when the VPN Routing and Forwarding (VRF) configuration is removed under these conditions:

– VRF is removed by using the no ip vrf global configuration command.

– Interfaces are configured in two or more VRFs.

– One VRF has static address resolution protocols (ARPs) configured.

30Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 31: 3550 info

Open Caveats

– The VRF with static ARPs is removed first.

The failure occurs when the second VRF is removed.

The workaround is to remove the static ARP entries configured on a VRF prior to deleting it.

• CSCsc96474

The switch might display tracebacks similar to these examples when a large number of IEEE 802.1x supplicants try to repeatedly log in and log out.

Examples:

Jan 3 17:54:32 L3A3 307: Jan 3 18:04:13.459: %SM-4-BADEVENT: Event 'eapReq' is invalid for the current state 'auth_bend_idle': dot1x_auth_bend Fa9

Jan 3 17:54:32 L3A3 308: -Traceback= B37A84 18DAB0 2FF6C0 2FF260 8F2B64 8E912C Jan 3 19:06:13 L3A3 309: Jan 3 19:15:54.720: %SM-4-BADEVENT: Event 'eapReq_no_reAuthMax' is invalid for the current ate 'auth_restart': dot1x_auth Fa4

Jan 3 19:06:13 L3A3 310: -Traceback= B37A84 18DAB0 3046F4 302C80 303228 8F2B64 8E912C Jan 3 20:41:44 L3A3 315: .Jan 3 20:51:26.249: %SM-4-BADEVENT: Event 'eapSuccess' is invalid for the current state 'auth_restart': dot1x_auth Fa9

Jan 3 20:41:44 L3A3 316: -Traceback= B37A84 18DAB0 304648 302C80 303228 8F2B64 8E912C

There is no workaround.

• CSCsd03580

When IEEE 802.1x is globally disabled on the switch by using the no dot1x system-auth-control global configuration command, some interface level configuration commands, including the dot1x timeout and dot1x mac-auth-bypass commands, become unavailable.

The workaround is to enable the dot1x system-auth-control global configuration command before attempting to configure interface level IEEE 802.1x parameters.

• CSCsd08314

When you remove a voice VLAN from a secure port, this message appears:

PORT_SECURITY-6-VLAN_REMOVED: VLAN xxx is no longer allowed on port ppp. Its port security configuration has been removed.

There is no workaround.This is only a notification; no action is required.

• CSCsd46343

A Power over Ethernet (PoE) port stops providing power under these conditions:

– A 10 Mbps PoE device is connected to the port.

– That device is removed.

– A 10/100-capable PoE device is connected to the same port.

These are the workarounds. You only need to do one of these:

– Enter the shut and no shut interface configuration commands on the port.

– Connect a PC to the port. Remove the PC from the port, and then connect the 10/100 Mbps PoE device to the port.

– Change the speed on port to 10 Mbps.

• CSCsd49367

When a switch is running DHCP option 82 and is connected to several other switches by Gigastack GBICS, a PC connecting to that switch might fail to obtain an IP address. This connection attempt can fail several times. Eventually, the PC might connect to the switch.

This is an intermittent problem. There is no workaround.

31Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 32: 3550 info

Resolved Caveats

• CSCsd97177

When the primary FlexLinks interface fails, any dynamic MAC address learned from that port is not cleared.

These are the workarounds. You only need to do one of these:

– Wait for the dynamic entry to age out in the CAM table

– Force the end device to initiate traffic so that its MAC address is be dynamically learned on the secondary (now active) FlexLinks interface.

• CSCse14774

If a switch is connected to a third-party router through an EtherChannel and the EtherChannel is running in Link Aggregation Control Protocol (LACP) mode, the interfaces in the EtherChannel might go down after you enter the switchport trunk native vlan vlan-id interface configuration command to change the native VLAN from VLAN 1 (the default) to a different VLAN ID.

These are the workarounds. You only need to do one of these:

– Do not change the native VLAN ID from the default setting of VLAN 1.

– If you need to change the native VLAN ID to a VLAN other than VLAN 1, do not run the EtherChannel in LACP mode, and change the mode to On by using the channel-group channel-group-number mode on interface configuration command.

• CSCse21219

If a Putty client is used to change the configuration to a device with SSH, the switch might stop responding to incoming traffic, such as SSH, Telnet, or ping packets. The switch responds to traffic after the TCP session is reset, which can take 7 minutes.

Use one of these workarounds:

– Use Putty Version 0.58.

– Enter a SSH, telnet, or ping command on the console.

• CSCse22188

If fallback bridging is enabled on a IEEE 802.1Q trunk port that is an EtherChannel member, the EtherChannel is disabled after the trunk port receives an DTP frame.

The workaround is to disable DTP by using these interface configuration commands:

– switchport trunk encapsulation dot1q

– switchport mode trunk

– switchport nonegotiate

Resolved CaveatsThese are the caveats that have been resolved in these releases:

• Caveats Resolved in Cisco IOS Release 12.2(25)SEE4, page 33

• Caveats Resolved in Cisco IOS Release 12.2(25)SEE3, page 33

• Caveats Resolved in Cisco IOS Release 12.2(25)SEE2, page 36

• Caveats Resolved in Cisco IOS Release 12.2(25)SEE1, page 37

32Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 33: 3550 info

Resolved Caveats

Caveats Resolved in Cisco IOS Release 12.2(25)SEE4These caveats were resolved in Cisco IOS Release 12.2(25)SEE4:

• CSCsj39211

The switch no longer incorrectly overwrites the class of service (CoS) packets of internally generated Multicast Listener Discovery (MLD) queries and other control packets.

• CSCsh89429

The switch no longer reloads when the write core privileged EXEC command is entered when testing a core dump configuration and FTP is selected as the file transfer protocol.

• CSCsd00028

When OSPF SNMP is enabled on the switch, this message no longer appears on the console:

%ALIGN-3-SPURIOUS: Spurious memory access made at xxx reading yyy

• CSCsd95616

Two crafted Protocol Independent Multicast (PIM) packet vulnerabilities exist in Cisco IOS software that may lead to a denial of service (DoS) condition. Cisco has released free software updates that address these vulnerabilities. Workarounds that mitigate these vulnerabilities are available.

This advisory is posted at http://www.cisco.com/warp/public/707/cisco-sa-20080924-multicast.shtml.

Caveats Resolved in Cisco IOS Release 12.2(25)SEE3These caveats were resolved in Cisco IOS Release 12.2(25)SEE3:

• CSCsb12598

Cisco IOS device may crash while processing malformed Secure Sockets Layer (SSL) packets. In order to trigger these vulnerabilities, a malicious client must send malformed packets during the SSL protocol exchange with the vulnerable device.

Successful repeated exploitation of any of these vulnerabilities may lead to a sustained Denial-of-Service (DoS); however, vulnerabilities are not known to compromise either the confidentiality or integrity of the data or the device. These vulnerabilities are not believed to allow an attacker will not be able to decrypt any previously encrypted information.

Cisco IOS is affected by the following vulnerabilities:

– Processing ClientHello messages, documented as Cisco bug ID CSCsb12598

– Processing ChangeCipherSpec messages, documented as Cisco bug ID CSCsb40304

– Processing Finished messages, documented as Cisco bug ID CSCsd92405

Cisco has made free software available to address these vulnerabilities for affected customers. There are workarounds available to mitigate the effects of these vulnerabilities.

This advisory is posted at http://www.cisco.com/warp/public/707/cisco-sa-20070522-SSL.shtml.

33Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 34: 3550 info

Resolved Caveats

Note Another related advisory has been posted with this advisory. This additional advisory also describes a vulnerability related to cryptography that affects Cisco IOS. This related advisory is available at the following link: http://www.cisco.com/warp/public/707/cisco-sa-20070522-crypto.shtml.

A combined software table for Cisco IOS is available to aid customers in choosing a software releases that fixes all security vulnerabilities published as of May 22, 2007. This software table is available at the following link: http://www.cisco.com/warp/public/707/cisco-sa-20070522-cry-bundle.shtml.

• CSCsb40304

Cisco IOS device may crash while processing malformed Secure Sockets Layer (SSL) packets. In order to trigger these vulnerabilities, a malicious client must send malformed packets during the SSL protocol exchange with the vulnerable device.

Successful repeated exploitation of any of these vulnerabilities may lead to a sustained Denial-of-Service (DoS); however, vulnerabilities are not known to compromise either the confidentiality or integrity of the data or the device. These vulnerabilities are not believed to allow an attacker will not be able to decrypt any previously encrypted information.

Cisco IOS is affected by the following vulnerabilities:

– Processing ClientHello messages, documented as Cisco bug ID CSCsb12598

– Processing ChangeCipherSpec messages, documented as Cisco bug ID CSCsb40304

– Processing Finished messages, documented as Cisco bug ID CSCsd92405

Cisco has made free software available to address these vulnerabilities for affected customers. There are workarounds available to mitigate the effects of these vulnerabilities.

This advisory is posted at http://www.cisco.com/warp/public/707/cisco-sa-20070522-SSL.shtml.

Note Another related advisory has been posted with this advisory. This additional advisory also describes a vulnerability related to cryptography that affects Cisco IOS. This related advisory is available at the following link: http://www.cisco.com/warp/public/707/cisco-sa-20070522-crypto.shtml.

A combined software table for Cisco IOS is available to aid customers in choosing a software releases that fixes all security vulnerabilities published as of May 22, 2007. This software table is available at the following link: http://www.cisco.com/warp/public/707/cisco-sa-20070522-cry-bundle.shtml.

• CSCsd85587

A vulnerability has been discovered in a third party cryptographic library which is used by a number of Cisco products. This vulnerability may be triggered when a malformed Abstract Syntax Notation One (ASN.1) object is parsed. Due to the nature of the vulnerability it may be possible, in some cases, to trigger this vulnerability without a valid certificate or valid application-layer credentials (such as a valid username or password).

Successful repeated exploitation of any of these vulnerabilities may lead to a sustained Denial-of-Service (DoS); however, vulnerabilities are not known to compromise either the confidentiality or integrity of the data or the device. These vulnerabilities are not believed to allow an attacker will not be able to decrypt any previously encrypted information.

34Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 35: 3550 info

Resolved Caveats

The vulnerable cryptographic library is used in the following Cisco products:

– Cisco IOS, documented as Cisco bug ID CSCsd85587

– Cisco IOS XR, documented as Cisco bug ID CSCsg41084

– Cisco PIX and ASA Security Appliances, documented as Cisco bug ID CSCse91999

– Cisco Unified CallManager, documented as Cisco bug ID CSCsg44348

– Cisco Firewall Service Module (FWSM)

This vulnerability is also being tracked by CERT/CC as VU#754281.

Cisco has made free software available to address this vulnerability for affected customers. There are no workarounds available to mitigate the effects of the vulnerability.

This advisory is posted at http://www.cisco.com/warp/public/707/cisco-sa-20070522-crypto.shtml.

Note Another related advisory is posted together with this Advisory. It also describes vulnerabilities related to cryptography that affect Cisco IOS. A combined software table for Cisco IOS only is available at http://www.cisco.com/warp/public/707/cisco-sa-20070522-cry-bundle.shtml and can be used to choose a software release which fixes all security vulnerabilities published as of May 22, 2007. The related advisory is published at http://www.cisco.com/warp/public/707/cisco-sa-20070522-SSL.shtml.

• CSCsd92405

Cisco IOS device may crash while processing malformed Secure Sockets Layer (SSL) packets. In order to trigger these vulnerabilities, a malicious client must send malformed packets during the SSL protocol exchange with the vulnerable device.

Successful repeated exploitation of any of these vulnerabilities may lead to a sustained Denial-of-Service (DoS); however, vulnerabilities are not known to compromise either the confidentiality or integrity of the data or the device. These vulnerabilities are not believed to allow an attacker will not be able to decrypt any previously encrypted information.

Cisco IOS is affected by the following vulnerabilities:

– Processing ClientHello messages, documented as Cisco bug ID CSCsb12598

– Processing ChangeCipherSpec messages, documented as Cisco bug ID CSCsb40304

– Processing Finished messages, documented as Cisco bug ID CSCsd92405

Cisco has made free software available to address these vulnerabilities for affected customers. There are workarounds available to mitigate the effects of these vulnerabilities.

This advisory is posted at http://www.cisco.com/warp/public/707/cisco-sa-20070522-SSL.shtml.

Note Another related advisory has been posted with this advisory. This additional advisory also describes a vulnerability related to cryptography that affects Cisco IOS. This related advisory is available at the following link: http://www.cisco.com/warp/public/707/cisco-sa-20070522-crypto.shtml.

A combined software table for Cisco IOS is available to aid customers in choosing a software releases that fixes all security vulnerabilities published as of May 22, 2007. This software table is available at the following link: http://www.cisco.com/warp/public/707/cisco-sa-20070522-cry-bundle.shtml.

35Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 36: 3550 info

Resolved Caveats

• CSCsd72983

The switch no longer reloads when the CISCO-SYSLOG-MIB is queried by the Simple Network Management Protocol (SNMP) agent.

• CSCsf04754

Multiple Cisco products contain either of two authentication vulnerabilities in the Simple Network Management Protocol version 3 (SNMPv3) feature. These vulnerabilities can be exploited when processing a malformed SNMPv3 message. These vulnerabilities could allow the disclosure of network information or may enable an attacker to perform configuration changes to vulnerable devices. The SNMP server is an optional service that is disabled by default. Only SNMPv3 is impacted by these vulnerabilities. Workarounds are available for mitigating the impact of the vulnerabilities described in this document.

The United States Computer Emergency Response Team (US-CERT) has assigned Vulnerability Note VU#878044 to these vulnerabilities.

Common Vulnerabilities and Exposures (CVE) identifier CVE-2008-0960 has been assigned to these vulnerabilities.

This advisory will be posted at http://www.cisco.com/warp/public/707/cisco-sa-20080610-snmpv3.shtml

• CSCsg70355

Entering the clock summer-time zone global configuration command no longer causes the switch to generate timestamp syslog messages that are incorrect by one hour.

This occurred in previous releases because the command by default followed the United States standards for daylight savings time. Cisco IOS Release 12.0(5)WC17 and later are now in accordance with The Energy Policy Act of 2005. This moves the beginning of daylight savings time from the first Sunday of April to the second Sunday of March and moves the end date from the last Sunday of October to the first Sunday of November.

Caveats Resolved in Cisco IOS Release 12.2(25)SEE2These caveats were resolved in Cisco IOS Release 12.2(25)SEE2:

• CSCsc16148

Beginning with Cisco IOS Release 12.2(25)SEE2, the S,G timer polling interval can be configured from 181 to 57600 seconds by using this new global configuration command:

ip pim sparse sg-expiry-timer value sg-list access list number

The extended access-list matches the traffic to the multicast group. In previous releases, the polling interval was set at 60 seconds.

• CSCsc87901

When IP source guard and QoS are configured on more than one switch port, memory leaks no longer occur on a switch when DHCP snooping is repeatedly enabled and disabled.

• CSCsd51530

When you telnet to a switch and enter the autocommand-options nohangup interface configuration command on VTY lines 0 through 4, you can now successfully log out and telnet back into the switch.

In previous releases, when you logged out of the switch and then tried to open a new Telnet session, the switch would automatically log you out.

36Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 37: 3550 info

Resolved Caveats

• CSCse17494

When a switch is running Cisco Network Assistant and using TACACS+ for HTTPS (secure HTTP) authentication, the switch no longer fails if TACACS+ is not reachable.

• CSCse28254

A switch now correctly increments the IP drop encapsulation-failed counter when ARP requests are received from a neighboring router and those ARP requests are for MAC addresses of nonexistent hosts (IP address) in its broadcast domain.

• CSCse39616

When port security is enabled, MAC addresses are now correctly relearned if a dynamic instance is present on the remote port.

Caveats Resolved in Cisco IOS Release 12.2(25)SEE1These caveats were resolved in Cisco IOS Release 12.2(25)SEE1:

• CSCek26492

Symptoms: A router may crash if it receives a packet with a specific crafted IP option as detailed in Cisco Security Advisory: Crafted IP Option Vulnerability:

http://www.cisco.com/warp/public/707/cisco-sa-20070124-crafted-ip-option.shtml

Conditions: This DDTS resolves a symptom of CSCec71950. Cisco IOS with this specific DDTS are not at risk of crash if CSCec71950 has been resolved in the software.

Workaround: Cisco IOS versions with the fix for CSCec71950 are not at risk for this issue and no workaround is required. If CSCec71950 is not resolved, see the following Cisco Security Advisory: Crafted IP Option Vulnerability for workaround information:

http://www.cisco.com/warp/public/707/cisco-sa-20070124-crafted-ip-option.shtml

• CSCek37177

The Cisco IOS Transmission Control Protocol (TCP) listener in certain versions of Cisco IOS software is vulnerable to a remotely-exploitable memory leak that may lead to a denial of service condition.

This vulnerability only applies to traffic destined to the Cisco IOS device. Traffic transiting the Cisco IOS device will not trigger this vulnerability.

Cisco has made free software available to address this vulnerability for affected customers.

This issue is documented as Cisco bug ID CSCek37177.

There are workarounds available to mitigate the effects of the vulnerability.

This advisory is posted at http://www.cisco.com/warp/public/707/cisco-sa-20070124-crafted-tcp.shtml

• CSCei40022

The traceback error that previously appeared with the %QATM-4-TCAM_LOW: TCAM resource running low message no longer appears.

• CSCsb79318

If the re-authentication timer and re-authentication action is downloaded from the RADIUS server using the Session-Timeout and Termination-Action RADIUS attributes, the switch no longer performs the termination action when the port is not configured with the dot1x timeout reauth server interface configuration command.

37Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 38: 3550 info

Resolved Caveats

• CSCsb82422

The switch now forwards an IEEE 802.1x request that has null credentials.

• CSCsc13467

The switch no longer fails or displays illegal memory access messages during the SNMP Timer process, while copying a configuration to the running configuration file using the CiscoConfigCopyMIB.

• CSCsc81978

When the switch displays a STORM_CONTROL-3-SHUTDOWN message and a port status changes to disabled, the cpscEvent (cpscStatus) Trap now correctly shows that the CPortStormControlStatusType is 5, which means shutdown.

38Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 39: 3550 info

Resolved Caveats

• CSCsc84627

A MAC entry no longer changes from static to dynamic on a switch configured with private VLANs.

• CSCsc84880

When the radius-server source-ports 1645-1646 global configuration command is removed, the switch no longer sends the RADIUS server requests with incorrect source ports.

• CSCsd16908

If the dot1x port-control auto/force-unauthorized interface configuration command has been entered while IEEE 802.1x is globally disabled, it is no longer necessary to enter the no dot1x port-control interface configuration command to return to the default setting of force-authorized.

• CSCsd19470

This error log message no longer randomly appears:

%TCAMMGR-3-HANDLE_ERROR: cam handle [hex] is invalid

• CSCsd24183

A switch no longer fails when a user logs in, the debug radius privileged EXEC command is enabled, and the RADIUS server is sending an unsupported attribute value.

• CSCsd30129

After you delete a global- or interface-level NAC Layer 2 IP configuration by using the no ip admission name global- or interface-configuration command, the switch no longer fails and displays a message similar to this:

Unexpected exception to CPUvector 700, PC = 3CEDAC0 -Traceback= 3CEDAC0 45106C C82010 C3D4F4 C3D618 C40B94 FE7EA0 2BBA34 2B28B8 AE8BEC B035CC 8F3F84 8EA54C

• CCSCsd34759

Symptoms: The VTP feature in certain versions of Cisco IOS software may be vulnerable to a crafted packet sent from the local network segment which may lead to denial of service condition.

Conditions: The packets must be received on a trunk enabled port.

Further Information: On the 13th September 2006, Phenoelit Group posted an advisory containing three vulnerabilities:

– VTP Version field DoS

– Integer Wrap in VTP revision

– Buffer Overflow in VTP VLAN name

These vulnerabilities are addressed by Cisco IDs:

– CSCsd52629/CSCsd34759—VTP version field DoS

– CSCse40078/CSCse47765—Integer Wrap in VTP revision

– CSCsd34855/CSCei54611—Buffer Overflow in VTP VLAN name

Cisco’s statement and further information are available on the Cisco public website at http://www.cisco.com/warp/public/707/cisco-sr-20060913-vtp.shtml

• CSCsd64596

A Catalyst 3550 switch no longer fails when FlexLinks are enabled and the mac-address move update privileged EXEC command is configured.

39Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 40: 3550 info

Documentation Updates

• CSCsd79916

An authenticated IEEE 802.1X port now passes traffic to an attached PC if the switch port is configured with a voice VLAN, the attached PC is configured to perform both machine and user authentication, and the machine and user authentication on the PC the result in different VLANs being assigned to the port.

• CSCsd81205

When a supplicant authenticates, the switch no longer fails if a value for attribute 11 is configured on the RADIUS server.

Documentation UpdatesThis section provides updates to the product documentation:

• “Updates for the Software Configuration Guide” section on page 40

• “Updates for the Command Reference” section on page 41

• “Updates for the Regulatory Compliance and Safety Information for the Catalyst 3550 Multilayer Switch” section on page 42

• “The “Connectors and Cables” appendix incorrectly refers to a crossover cable as a rollover cable. This is the correct information:” section on page 44

Updates for the Software Configuration GuideThese are the documentation updates for the software configuration guide:

• Updates for Cisco IOS Release 12.2(25)SEE1, page 40

• Updates for Cisco IOS Release 12.2(25)SEE, page 40

Updates for Cisco IOS Release 12.2(25)SEE1

These are the updates for Cisco IOS Release 12.2(25)SEE1:

In the “Unsupported Commands” appendix, the set ip next-hop verify-availability route-map configuration command, the ip accounting precedence {input | output} interface configuration command, and the boot buffersize global configuration command are not supported.

Updates for Cisco IOS Release 12.2(25)SEE

These are the updates for Cisco IOS Release 12.2(25)SEE.

In the “Configuring Network Security with ACLs” chapter, the note in Step 3 of the “Configuring VLAN Maps” section is inaccurate. The correct text is:

If the VLAN map is configured with a match clause for a type of packet (IP or MAC) and the map action is drop, all packets that match the type are dropped. If the VLAN map has no match clause, and the configured action is drop, then all IP and Layer 2 packets are dropped.

40Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 41: 3550 info

logging event

Updates for the Command ReferenceThese are the documentation updates for the command reference:

• Updates for Cisco IOS Release 12.2(25)SEE2, page 41

• Updates for Cisco IOS Release 12.2(25)SEE1, page 42

Updates for Cisco IOS Release 12.2(25)SEE2

This is the update for Cisco IOS Release 12.2(25)SEE2:

The logging event interface configuration command (previously omitted) was added to the command reference.

logging eventUse the logging event interface configuration command to enable notification of interface link status changes. Use the no form of this command to disable notification.

logging event {bundle-status | link-status | spanning-tree | status | trunk status}

no logging event {bundle-status | link-status | spanning-tree | status | trunk status}

Syntax Description

Defaults Event logging is disabled.

Command Modes Interface configuration

Command History

bundle-status Enable notification of BUNDLE and UNBUNDLE messages.

link-status Enable notification of interface data link status changes.

spanning-tree Enable notification of spanning-tree events.

status Enable notification of spanning-tree state change messages.

trunk-status Enable notification of trunk-status messages.

Release Modification

12.2(20)SE This command was introduced.

41Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 42: 3550 info

logging event

Updates for Cisco IOS Release 12.2(25)SEE1

These are the updates for Cisco IOS Release 12.2(25)SEE1:

The usage guidelines for the radius-server dead-criteria global configuration command are incorrect. These are the correct usage guidelines.

We recommend that you configure the seconds and number parameters as follows:

• Use the radius-server timeout seconds global configuration command to specify the time in seconds during which the switch waits for a RADIUS server to respond before the IEEE 802.1x authentication times out. The switch dynamically determines the default seconds value that is from 10 to 60 seconds.

• Use the radius-server retransmit retries global configuration command to specify the number of times the switch tries to reach the radius servers before considering the servers to be unavailable. The switch dynamically determines the default tries value that is from 10 to 100.

• The seconds parameter is less than or equal to the number of retransmission attempts times the time in seconds before the IEEE 802.1x authentication times out.

• The tries parameter should be the same as the number of retransmission attempts.

The usage guidelines for the dot1x pae interface configuration command are incorrect. These are the correct guidelines:

• When you configure IEEE 802.1x authentication on a port, such as by entering the dot1x port-control interface configuration command, the switch automatically configures the port as an EEE 802.1x authenticator. After the no dot1x pae interface configuration command is entered, the Authenticator PAE operation is disabled.

Updates for the Regulatory Compliance and Safety Information for the Catalyst 3550 Multilayer Switch

This information was added to the Regulatory Compliance and Safety Information for the Catalyst 3550 Multilayer Switch:

Statement 361—VoIP and Emergency Calling Services do not Function if Power Fails

Warning Voice over IP (VoIP) service and the emergency calling service do not function if power fails or is disrupted. After power is restored, you might have to reset or reconfigure equipment to regain access to VoIP and the emergency calling service. In the USA, this emergency number is 911. You need to be aware of the emergency number in your country. Statement 361

Waarschuwing Voice over IP (VoIP)-service en de service voor noodoproepen werken niet indien er een stroomstoring is. Nadat de stroomtoevoer is hersteld, dient u wellicht de configuratie van uw apparatuur opnieuw in te stellen om opnieuw toegang te krijgen tot VoIP en de noodoproepen. In de VS is het nummer voor noodoproepen 911. U dient u zelf op de hoogte te stellen van het nummer voor noodoproepen in uw land.

42Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 43: 3550 info

logging event

Varoitus Voice over IP (VoIP) -palvelu ja hätäpuhelupalvelu eivät toimi, jos virta katkeaa tai sen syötössä esiintyy häiriöitä. Kun virransyöttö on taas normaali, sinun täytyy mahdollisesti asettaa tai määrittää laitteisto uudelleen, jotta voisit jälleen käyttää VoIP-palvelua ja hätäpuhelupalvelua. Yhdysvalloissa hätänumero on 911. Selvitä, mikä on omassa kotimaassasi käytössä oleva hätänumero.

Attention Le service Voice over IP (VoIP) et le service d’appels d’urgence ne fonctionnent pas en cas de panne de courant. Une fois que le courant est rétabli, vous devrez peut-être réinitialiser ou reconfigurer le système pour accéder de nouveau au service VoIP et à celui des appels d’urgence. Aux États-Unis, le numéro des services d’urgence est le 911. Vous devez connaître le numéro d’appel d'urgence en vigueur dans votre pays.

Warnung Bei einem Stromausfall oder eingeschränkter Stromversorgung funktionieren VoIP-Dienst und Notruf nicht. Sobald die Stromversorgung wieder hergestellt ist, müssen Sie möglicherweise die Geräte zurücksetzen oder neu konfigurieren, um den Zugang zu VoIP und Notruf wieder herzustellen. Die Notrufnummer in den USA lautet 911. Wählen Sie im Notfall die für Ihr Land vorgesehene Notrufnummer.

Avvertenza Il servizio Voice over IP (VoIP) e il servizio per le chiamate di emergenza non funzionano in caso di interruzione dell'alimentazione. Ristabilita l'alimentazione, potrebbe essere necessario reimpostare o riconfigurare l'attrezzatura per ottenere nuovamente l'accesso al servizio VoIP e al servizio per le chiamate di emergenza. Negli Stati Uniti, il numero di emergenza è 911. Si consiglia di individuare il numero di emergenza del proprio Paese.

Advarsel Tjenesten Voice over IP (VoIP) og nødanropstjenesten fungerer ikke ved strømbrudd. Etter at strømmen har kommet tilbake, må du kanskje nullstille eller konfigurere utstyret på nytt for å få tilgang til VoIP og nødanropstjenesten. I USA er dette nødnummeret 911. Du må vite hva nødnummeret er i ditt land.

Aviso O serviço Voice over IP (VoIP) e o serviço de chamadas de emergência não funcionam se houver um corte de energia. Depois do fornecimento de energia ser restabelecido, poderá ser necessário reiniciar ou reconfigurar o equipamento para voltar a utilizar os serviços VoIP ou chamadas de emergência. Nos EUA, o número de emergência é o 911. É importante que saiba qual o número de emergência no seu país.

¡Advertencia! El servicio de voz sobre IP (VoIP) y el de llamadas de emergencia no funcionan si se interrumpe el suministro de energía. Tras recuperar el suministro es posible que deba que restablecer o volver a configurar el equipo para tener acceso a los servicios de VoIP y de llamadas de emergencia. En Estados Unidos el número de emergencia es el 911. Asegúrese de obtener el número de emergencia en su país.

Varning! Tjänsten Voice over IP (VoIP) och larmnummertjänsten fungerar inte vid strömavbrott. Efter att strömmen kommit tillbaka måste du kanske återställa eller konfigurera om utrustningen för att få tillgång till VoIP och larmnummertjänsten. I USA är det här larmnumret 911. Du bör ta reda på det larmnummer som gäller i ditt land.

43Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 44: 3550 info

logging event

Update to the Hardware Installation GuideThe “Connectors and Cables” appendix incorrectly refers to a crossover cable as a rollover cable. This is the correct information:

You can identify a crossover cable by comparing the two modular cable ends. Hold the cable ends side-by-side, with the tab at the back, right plug, as shown in Figure 1.

Figure 1 Identifying a Crossover Cable

On a crossover cable, the wire connected to the pin on the outside of the left plug should be the same color as the wire connected to the pin on the outside of the right plug.

1 Pin 1

2 Pin 9

8988

9

21

44Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 45: 3550 info

Related Documentation

Related DocumentationThese documents provide complete information about the switch and are available from this Cisco.com site:

http://www.cisco.com/univercd/cc/td/doc/product/lan/c3550/index.htm

You can order printed copies of documents with a DOC-xxxxxx= number from the Cisco.com sites and from the telephone numbers listed in the “Obtaining Documentation, Obtaining Support, and Security Guidelines” section on page 45.

• Catalyst 3550 Multilayer Switch Software Configuration Guide (not orderable but available on Cisco.com)

• Catalyst 3550 Multilayer Switch Command Reference (not orderable but available on Cisco.com)

• Catalyst 3750, 3560, 3550, 2970, and 2960 Switch System Message Guide (not orderable but available on Cisco.com)

• Catalyst 3550 Multilayer Switch Hardware Installation Guide (not orderable but available on Cisco.com)

• Catalyst 3550 Switch Getting Started Guide (order number DOC-7816575=)

• Regulatory Compliance and Safety Information for the Catalyst 3550 Switch (order number DOC-7816655=)

For information about other related products, see these documents:

• Getting Started with Cisco Network Assistant (not orderable but available on Cisco.com)

• Release Notes for Cisco Network Assistant (not orderable but available on Cisco.com)

• 1000BASE-T Gigabit Interface Converter Installation Note (not orderable but is available on Cisco.com)

• Catalyst GigaStack Gigabit Interface Converter Hardware Installation Guide (order number DOC-786460=)

• Network Admission Control Software Configuration Guide (not orderable but is available on Cisco.com)

Obtaining Documentation, Obtaining Support, and Security Guidelines

For information on obtaining documentation, obtaining support, providing documentation feedback, security guidelines, and also recommended aliases and general Cisco documents, see the monthly What’s New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

45Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04

Page 46: 3550 info

Obtaining Documentation, Obtaining Support, and Security Guidelines

This document is to be used in conjunction with the documents listed in the “Related Documentation” section.

CCVP, the Cisco Logo, and the Cisco Square Bridge logo are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learnis a service mark of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, Cisco,the Cisco Certified Internetwork Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity,Enterprise/Solver, EtherChannel, EtherFast, EtherSwitch, Fast Step, Follow Me Browsing, FormShare, GigaDrive, GigaStack, HomeLink, InternetQuotient, IOS, iPhone, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness Scorecard, iQuick Study, LightStream, Linksys, MeetingPlace, MGX,Networking Academy, Network Registrar, Packet, PIX, ProConnect, RateMUX, ScriptShare, SlideCast, SMARTnet, StackWise, The Fastest Wayto Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United States and certainother countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not implya partnership relationship between Cisco and any other company. (0612R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

© 2006-2008 Cisco Systems, Inc. All rights reserved.

46Release Notes for the Catalyst 3550 Multilayer Switch, Cisco IOS Release 12.2(25) SEE1 and Later

OL-9585-04


Recommended