+ All Categories
Home > Documents > 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes...

37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes...

Date post: 19-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
186
3"7 c t 7/8/ SURVEY OF THE SOLID STATE CONFORMATION OF CALIX[4]ARENES THESIS Presented to the Graduate Council of the University of North Texas in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE By Stephen J. Obrey Denton, Texas August, 1997
Transcript
Page 1: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

3"7ct 7/8/

SURVEY OF THE SOLID STATE CONFORMATION

OF CALIX[4]ARENES

THESIS

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Stephen J. Obrey

Denton, Texas

August, 1997

Page 2: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

Obrey, Stephen J., Survey of the Solid State

Conformations of Calixf41arenes. Master of Science

(Chemistry), August 1997, 173 pp., 39 tables, 33 figures,

references, 86 titles

The characteristics of seventy-six calix[4]arene crystal

structures derived from the Cambridge Crystallographic

Database are presented. This survey is a discussion of the

inter and intramolecular effects on the solid state cavity

shape and molecular recognition ability of the compounds. In

addition to this survey, four new calix[4]arene crystal

structures are presented. The conformational characteristics

of these four calixarenes are determined by a complicated

array of inter and intramolecular interactions in the crystal

packing.

Page 3: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

3"7ct 7/8/

SURVEY OF THE SOLID STATE CONFORMATION

OF CALIX[4]ARENES

THESIS

Presented to the Graduate Council of the

University of North Texas in Partial

Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

By

Stephen J. Obrey

Denton, Texas

August, 1997

Page 4: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

ACKNOWLEDGEMENTS

The author wishes to express his sincere gratitude to

Professor Simon G. Bott for his guidance, friendship, faith,

and most of all his tolerance.

' My collegues, Phillip Gravelle, Kathlene Talafuse,

William Wolfgong, Janna Smith were my bridge over troubled

waters and I will be forever in their debt

I would like to thank Dusan Hesek from Professor Paul

Beer's research group at Oxford University for providing the

materials used in the X-ray analysis.

A special note of thanks to my "amigos" at the ISB

library for the pleasant manner in which they dealt with such

a troubled individual.

In addition, I wish to thank the Department of

Chemistry, University of North Texas, and the Robert A. Welch

Foundation for financial support.

Page 5: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

TABLE OF CONTENT

Page

ACKNOWLEDGEMENTS ii

LIST OF TABLES

LIST OF FIGURES viii

ABBREVIATIONS

Chapter

1. INTRODUCTION TO CALIX [ 4 ] ARENES 1

2 . EXPERIMENTAL 8

2.1. Crystallographic Data for Calix[4]arenes 8

2.2. X-ray Crystallography 10

3. SOLID STATE CONFORMATION OF CALIX[4]ARENES

WITH INTRAMOLEULAR HYDROGEN BONDING 15

3.1. Introduction 15

3.2. Tetrahydroxycalix [ 4 ] arenes 16

3.3. Tr ihydroxycalix [ 4 ] arenes 31

3.4. 1, 2-dihydroxycalix [4] arenes 32

3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39

3.6. Monohydroxycalix [ 4 ] arenes 46

4. SOLID STATE CONFORMATION OF CALIX[4]ARENES

WITHOUT INTRAMOLEULAR HYDROGEN BONDING 52

4.1. Introduction 52

4.2. Tetraalkylated Calix[4]arenes in the "Cone" Conformation 53

4.3. Tetralkylated Calix[4]arenes with Small Lower Rim Substitutents 60

4.4. Tetraalkylated Calix[4]arenes in the "Partial Cone" Conformation 66

Page 6: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

4.5. Tetralkylated Calix[4]arenes in the "1, 2-Alternate" Conformation 72

4.6. Tetraalkylated Calix[4]arenes in

the " 1, 3-Alternate" Conformation 74

4.7 Conclusions 79

5. CRYSTAL STRUCTURES OF NEW CALIX[4]ARENES 81

5.1. Introduction 81

5.2. Structure 1 82

5.3. Structure II... 91

5.4. Structure III.. 98

5.5 Structure IV 103

5.6. Conclusion Ill

APPENDIX A 114

APPENDIX B 123

APPENDIX C 135

APPENDIX D 147

APPENDIX E

REFERENCES 162

Page 7: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

LIST OF TABLES

Table Page

1 General representation of tetrahydroxy calix [ 4 ] arenes 17

2 Mean Molecular plane angles of structures la - g 18

3 The cavity guests found in structures la - g 19

4 Molecular plane angles of structures lh and li 20

5 Molecular plane angles of structures lj and lk 22

6 Molecular plane angles of structures i q - t 2 4

7 Molecular plane angles of structures 11 - n 26

8 Molecular plane angles of structures lo andlp 28

9 Molecular plane angles of structure lu 30

10 General representation of 1,2-dihydroxy calix [4] arenes 33

11 Molecular plane angles of structures 2a and 2b 35

12 Molecular plane angles of structures 2c and 2d 3 7

13 General representation of 1,3-dihydroxy calix [ 4 ] arenes 40

14 Molecular plane angles of structures 3a - £

15 Molecular plane angles of structure 3h 42

16 General representation of monohydroxy calix [4 ] arenes 47

Page 8: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

17 Molecular plane angles of structures

4b and 4c 46

18 Molecular plane angles of structure 4a 50

19 General representation of tetralkylated calix[4]arenes in the "cone" conformation 54

20 Desriptive plane angles for symmetric and assymetric "cone" conformations 55

21 Molecular plane angles for structures 5q and 5r 56

22 Mean conformation of calixarens with small para substituents 58

23 Molecular plane angles for structure 5s 59

24 General representation of tetrasubstituted calix[4]arenes with small lower rim substituents 61

25 Mean conformation of "partial cone" structures 62

26 General representation of tetralkylated calix[4]arenes in the "partial cone" conformation 67

27 Molecular plane angles for structure 7a and 7d 66

28 Molecular plane angles for structures 7b and 7c 69

29 General representation of tetralkylated calix[4]arenes in the "1,3-alternate" conformation 75

30 Molecular plane angles for structure 9b 76

31 Molecular plane angles for structures 9a, 9c, 9d and 9e 78

32 X-Ray Crystallographic collection and processing data for structure 1 83

33 Molecular plane angles for structure X and mean plane angles for similar 1, 3-dihydroxy calix[4] arenes 87

34 X-Ray Crystallographic collection and

Page 9: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

processing data for structure II 92

35 Molecular plane angles for structure II and mean plane angles for similar 1, 3-dihydroxy calix[4] arenes 93

36 X-Ray Crystallographic collection and processing data for structure III 100

37 Molecular plane angles for structure III and mean plane angles for similar 1, 3-dihydroxy calix [4] arenes 102

38 X-Ray Crystallographic collection and processing data for structure IV 105

39 Molecular plane angles of structure IV 106

Page 10: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

LIST OF FIGURES

Figure p a g e

1 General Representation of Calix[4] arenes 1

2 Four Conformations of calix[4]arenes 3

3 Crystal strucutre of p-t-butyl calix[4]arene: toluene clathrate. 5

4 Crystal structures of the cage complex of lh and 11 21

5 Diagram of the trimer and molecular geometry of structures lj and lk 23

6 Diagrams showing the inter-calixarene inclusion complexes in lq - It 25

7 Crystal packing diagrams showing it - n interactions in structures 11 - In 27

8 Diagrams of the molecular geometry of structures lo and IP 29

9 Molecular geometries for structures 2 a and 2b

10 Diagrams of the intermolecular inclusion observed in 2a

11 Molecular geometries for structures

2c and 2d

12 Molecular geometries for structure 3h 43

13 Crystal packing, molecular geometry and plane angles for structure 3i 45

14 Molecular geometries for structures 4b and 4c 48

15 Molecular geometries for structures 5r and 5q 5 7

16 Crystal packing and molecular geometry for 6g 64

Page 11: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

17 Molecular geometries for structures 7a and 7d 68

18 Molecular geometries for structures 7b and 7c 70

19 General representation, table of plane angles, and molecular geometry of 8a 73

20 Molecular geometries for 9a, 9c, 9d, and 9e 77

21 General representation of compounds I, II, III, and IV 81

22 ORTEP diagram of structure I with thermal ellipsoids drawn at 50% probability level. H atoms are omitted for clarity, (side view) 85

23 ORTEP diagram of structure I with thermal ellipsoids drawn at 50% probability level. H atoms are omitted for clarity, (topview) 86

24 Diagram of the crystal packing for structure I 89

25 A diagram of the unit cell of s true ture I 90

26 ORTEP diagram of structure II with thermal ellipsoids drawn at 50% probability level. H atoms are omitted for clarity 94

27 ORTEP diagram of structure I with thermal ellipsoids drawn at 50% probability level. H atoms are omitted for clarity. Hydrogen bondng interaction between 01b and the THF molecule 96

28 A diagram of the unit cell for structure II 97

29 ORTEP diagram of structure III with thermal ellipsoids drawn at 50% probability level. H atoms are omitted for clarity, (side view) 101

30 A diagram of the unit cell for structure III,...104

Page 12: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

31 ORTEP diagram of structure IV with thermal ellipsoids drawn at 50% probability level H atoms are omitted for clarity 107

32 A diagram of the unit cell for structure IV. ...109

33 A diagram of the unit cell for structure IV. ...110

Page 13: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

ABBREVIATIONS

THF tetrahydrofuran

Page 14: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

CHAPTER 1

INTRODUCTION TO CALIX[4]ARENES

Calixarenes are a class of cyclic bowl-shaped organic

macrocycles that have become of interest over the last 25

years.1 The general structural representation of a calixarene

is shown below

Figure 1. General representation of calix[4]arenes

The general term "calix[n]arene"2 is used to describe the

calixarenes where "n" describes the ring size which is most

commonly 4, 6, or 8,3 although other oligomers have been

reported.4

Page 15: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

Much like crown ethers,5 and cyclodextrins,6 calixarenes

posses large cavities that make them potential hosts for

molecular recognition chemistry. Unlike cyclodextrin and

crown ethers, calixarenes are readily functionalized on the

upper and the lower rim of the macrocyles and the presence of

methylene linkages allow rotational flexibility which makes a

variety of conformations possible. Due to these

functionalization and conformational properties, calixarenes

may be "chemically tailored" for application as potential

host-guest sites,7 catalyst supports,8 and transport agents

for the extraction of metals from aqueous media.9

Calixarenes may be readily functionalized at both

the phenolic oxygen (R), commonly known as the lower rim, and

at the para position (R1), known as the upper rim. Synthetic

chemists have developed methodology for selective lower rim

substitution of calix[4]arene for mono-alkylation,10 di-

alkylation11 and trialkylation.12 There is also methodology

for asymmetric upper rim substitution with a variety of

substrates.13

One of the requirements to use these compounds for

molecular recognition is to produce and maintain a stable

cavity shape and size to accommodate a guest.14 The rotational

flexibility about the methylene bridges allow calix[4]arenes

to adopt and maintain four different geometries based on the

relative orientation of the rings.15 These conformations are

Page 16: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

commonly known as the "cone", "partial cone", "1,2-alternate"

and the "1,3-alternate" conformations.16 The "cone"

conformation involves all four aromatic rings being oriented

in the same direction. The "partial cone" has three rings

pointing up with the fourth ring down. Both the "1,2-

alternate" and the "1,3-alternate" have two rings up and two

down in different isomers.

Cona h r t t a l COM L,J-UUrn»U 1,3-AIUrnaU

Figure 2. The four conformations of calix[4]arenes

The "1,2-alternate" has the two adjacent rings pointed down

and the other two pointed up. The "1,3-alternate" has the two

opposing rings up and the other two down. Synthetically, the

conformation of a functionalized calixarene is most commonly

controlled utilizing a template effect related to the nature

of the cation used during alkylation.17 These conformations

should only be treated as idealized orientations of the rings

and actually give no indication as to the cavity shape, size,

or the relative angles the aromatic rings. The specific

Page 17: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

characteristics of the aromatic rings are dependent on the

functionalization of the upper and lower rim, the

conformation in which the calixarene was synthesized, and a

series of complicated inter and intramolecular interactions

One of the most common ways in which to produce a stable

conformation is the introduction of sterically bulky

substitutents attached to the lower rim phenolic oxygens. It

is well documented that only substituents smaller than propyl

may have the rotational freedom to allow the interconversion

between one conformation to another.18 Ethyl substituents

show the ability to undergo this conformational mobility at

elevated temperatures, but do not readily interconvert at

room temperature.19 In application to single crystal X-ray

crystallography, it is important to note that, since most

crystals used are grown at or below room temperature, we may

only treat groups that are smaller than ethyl as

conformationally mobile for analysis of the solid state

structures.

In 1979, Adreetti et al. published the crystal structure

of the inclusion complex between para t-butyl calix[4]arene

and toluene shown in Figure 3.20 This crystal structure shows

the calixarene in the "cone" conformation with C4V symmetry.

This conformation is maintained by the cyclical network of

hydrogen bonds on the lower rim of the calixarene, which

holds the aromatic rings so that they form a cavity or a

bowl. This cavity contains one toluene molecule as a guest

Page 18: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

which is oriented so that the methyl group is pointed into

the cavity. Although the positions of the hydrogen atoms on

the guest toluene were not located, it is believed that the

methyl hydrogens are interacting with the 7t-cloud of the

aromatic rings.

Figure 3. Crystal strucutre of p-t-butyl calix[4]arene:

toluene clathrate

The para-t-butyl groups also show CH3-7C interactions with the

aromatic ring of the toluene. These CH3-71 interactions are

among the most common observed for the host guest complexes

of calixarenes with neutral guest molecules.

Since this publication, there have been many studies on

the inclusion behavior of calixarenes.21 Due to the fluxional

behavior of calixarenes in solution there is little evidence

for solution state inclusion complexes,22 therefore solid

state analysis by using single crystal X-ray diffraction is

the most common way to analyze these interactions. Recently,

it has been shown that the inclusion behavior of these solid

Page 19: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

state complexes may also be analyzed by 13C Cp-MAS NMR

experiments but only in combination with X-ray

crystallographic data.23 I n t h e s o l i d s t a t e # calixarenes have

Shown the ability to form inclusion complexes with other

neutral organic molecules such as xylene, anisole,

acetonitrile, acetone, chloroform, methylene chloride as well

as other neutral organic molecules. In addition to this

host-guest behavior, calixarenes are also capable of

retaining guest species in channels and layers within the

crystal lattice. These channel guest species make

calixarenes particularly difficult to analyze by X-ray

diffraction since these crystals tend to lose the solvent and

decompose readily.

A previous analysis of calix[4]arene crystal structures

was undertaken by Lipkowitz in 199324 in an attempt to

determine their architectural foundation for use with

computational modeling programs. In this paper a total of 29

crystal structures of calixarenes in the "cone" conformation

were analyzed, none of these contained metals or bridging

linkages between the phenolic units. These were partitioned

into three categories: native structures, near-native

structures, and derivatized structures. Native strucutres are

unsubstituted on the lower rim with either H, Me or t-buytl

substitutents in the para position. Near-native structures

also have H, Me, or t-butyl in the para position but the 4-OH

groups are replaced by a simple functionality like ethers or

Page 20: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

esters. Derivatized calixarenes are also substituted on the

lower rim and include all para substituents other than H, Me,

or t-butyl. Although this paper reports in detail the

important bond lengths, bond angles, and dihedral angles, it

fails to describe the effect of these substituents on the

cavity formed by the four aromatic rings.

In the first part of this thesis, I will describe the

inter and intramolecular effects which alter the cavity

shape, size, and inclusion properties of various types of

calixarenes. The second part of this thesis contains a

disscussion of four new calix[4]arene crystal structures

which add to the limited body of knowledge concerning the

solid state complexes.

Page 21: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

CHAPTER 2

EXPERIMENTAL

2.1. Crystallographic Data for Calix[4]arenes

All data used in the survey of crystal structures of

Calix[4]arenes were obtained using the 1996 Cambridge

Crystallographic Database.25 Of the two hundred thirty eight

hits, ninety eight were applicable to the work, (the rest

being either higher homologs, contained metal atoms or

bridging linkages) Of these 98 remaining structures, twenty-

four had no coordinates, incomplete coordinates, or were

disordered. These were thus removed. This left a working set

of 76 calix[4]arenes.

These structures were partitioned into ten categories.

Five m which the conformation is determined by the presence

of intramolecular hydrogen bonding between the phenolic

units. These five categories are the tetrahydroxy

calix[4]arenes, trihydroxy calix[4]arenes, 1,3-dihydroxy

calix[4]arenes, 1,2-dihydroxy calix[4]arenes, and monohydroxy

calix[4]arenes. The other five were separated by

conformation and size of the lower rim substituents. The

first category was defined as tetrasubstituted calix[4]arenes

with lower rim substitutents which allow conformational

Page 22: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

freedom. The other four categories were calixarenes which

are frozen in the "cone", "partial cone", 1,2-alternate", and

the "1,3-alternate" conformations.

For each of the 76 crystal structures, twelve pieces of

data was collected using the 3D-structural option in the CCD.

Six of these were distances between lower rim oxygens. The

four distances between adjacent oxygen atoms may be used to

indicate the location of intramolecular hydrogen bonding

interactions. The two transannular oxygen-oxygen distances

give an indication as to the shape of the lower rim of the

cavity. The other six pieces of data were plane angles. The

first four were the angles that each aromatic plane made with

the mean plane of the methylene carbons which reflect the

canting angle of the aromatic rings with the mean plane of

the methylene carbons. These plane angles were normalized

for each structure so that if the angle is less than 90

degrees, the top of the ring is pointed away from the cavity

and if the angle is greater than 90 degree the top of the

ring is pointed into the cavity. The other angles were

between the two opposite aromatic planes. These plane angles

may be used to describe the shape of the calixarene cavity

which may allude to the presence of host-guest interactions.

All plane angles, oxygen-oxygen distances and the database

codes accumulated in this search are listed in Appendix A.

Each of these twelve data points were reported from the CCD

with three significant figures past the decimal point. Since

Page 23: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

10

these values are not truely reflective of the accuracy X-ray

diffraction, the angles will be truncated at one digit past

the decimal place and the distances will be truncated after 2

decimal places, it is important to realize that these values

are not from the crystal structure data but in fact generated

by the CCD, by treating the atom as a single point rather

than a sphere or an ellipsiod. All means reported were

statistically analyzed at the t0.005 probablity level to

assure the statistical relavance of the data set. it is

important to note that due to the small sample size used in

the calculation of the means, these values may not be

representative of the population. All crystallographic

figures were generated using PLUTO.26

2.2. X-ray Crystallography

X-ray crystallography may provide the most useful

information regarding the structure of a complex furnishing

information about bond lengths and angles as well as

connectivity. Unfortunately, there are several drawbacks to

its application. The most obvious problem is that one needs

a single crystal that is at least 0.1 mm in every dimension.

Some systems do not crystallise, and even if crystals can be

obtained, they may not be of sufficient size or quality.

Even if one manages to obtain a crystal, there is no

guarantee that it represents the bulk of any precipitate,

much less the predominant species in solution.

Page 24: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

11

In cases where thermally stable crystals were obtained,

they were mounted in thin glass capillaries with silicone

grease by one of two methods. Where solvent-dependent

crystals were obtained, the lattice depletion was overcome by

addition of mother liquor or fresh solvent to the capillary

tube. The ends were plugged with modelling clay and then

sealed with an oxygen-methane torch as soon as possible.

Crystals that were not solvent dependent were mounted on the

bench top with the use of a microscope. In the cases where

thermally unstable crystals were obtained, they were mounted

on a glass fiber using Paratone-n. The crystal was held in

place by passing a cold (-60 °C) stream of nitrogen across

the crystal.

A suitable crystal was selected and mounted on the

goniometer head of an Enraf-Nonius CAD-4 automated

diffractometer which comprised of a four-circle kappa axis

goniometer with graphite crystal monochromated Mo radiation

(A,=0.71073 A ) . The crystal-to-detector distance was 173 mm,

and the take-off angle was 5.6 degrees. The diffractometer

was controlled by a Digital Corporation VMStation 3100/76.

The crystal was first centered visually under the

diffractometer microscope and then the program SEARCH27 was

run to find up to 25 reflections and measure their angular

settings. These were then used by the INDEX27 routine to

calculate the primitive unit cell, where appropriate this

was transformed, either to a higher symmetry or to fulfil

Page 25: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

12

international conventions.28 Strong axial reflections were

accurately centered and then used to refine the cell

parameters.

Where the cell was reasonable and did not bear close

resemblance to that of structures previously determined, data

was collected. This was performed using either a co-20 or co

scan ( m cases where a cell axis was greater that ca. 20 A )

technique with a variable scan width as given in Eq. 2-1 (A

was between 0.65 and 0.8 degrees).

Scan Width = A + 0.35 tan (0) (2-1)

Backgrounds were measured by extending the calculated

width on either end of the scan by 25%. A fixed vertical

detector aperture (4 mm) and a variable horizontal aperture

(3 + tan 0) were used. Every reflection was subjected to a

prescan at a rate of 8 degrees per min. Reflections with

I/ct(I) <2 for this prescan were rejected as weak, and those

for which i/<r(i) > io were accepted immediately. Reflections

not falling into these two categories were rescanned at

speeds ranging from 0.67 to 8 degrees per min for up to 120 s

in an attempt to increase I/a(I) to 10. Three reflections

were measured every 3600 s of exposure time to monitor

crystal decay. Crystal alignment was checked using the same

reflections every 250 data points, and if the scattering

vectors deviated by greater than 0.10 degrees from their

Page 26: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

13

calculated values at any stage, the unit cell and orientation

matrix were recalculated.

The intensity (I) and standard deviation [a(I)] were

calculated using Eqs. 2-2 and 2-3, respectively, where C is

the total number of integrated counts, B is the sum of the

left and right backgrounds, A is an attenuator factor (either

1 or 14.3), and S is the scan rate.

I = AS(C - 2B) (2-2)

a(I)=AS(C + 4B)l/2 (2-3)

All computations were carried out on a DEC VAXStation

3100/76. Calculations, except where noted, were performed

using MolEN crystallographic software package.29 The

structures were solved using direct methods (MULTAN,30 siR,31

or SHELXS-8632) and difference Fourier maps. After

refinement of the entire model with isotropic thermal

parameters, a Fourier absorption correction (DIFABS)33 w a s

applied. The extent of conversion of certain atoms to have

anisotropic thermal parameters was dependent upon the quality

and number of data. Hydrogen atoms were either located or

generated and allowed to ride on the appropriate attached

atom [U(H) = 1.3 Ueq(Attached atom)]. The function minimized

during refinement was Zw(|F0| - |FC|)2 where the weight, w =

[ ( O F o ) 2 - 0 . 0 4 F o2 ] 1 / 2 .

Page 27: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

14

The results of the final refinement are reported as

three parameters: (1) R = (X(|F01 - fFc|)/ Z<|F0|), (2) R w =

[wZ(|F0| - |FC|)2/wX(|Fq|)2]l/2 a n d (3) goodness-of-fit (GOF)

= [Zw(|fq| - 1Fc|)2]/(number of reflections - number of

least-squares parameters).

Crystallographic diagrams were drawn with the aid of

ORTEP-Il34_ Scattering factors and corrections for the real

and imaginary components of anomalous dispersion were taken

from reference 28.

Page 28: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

CHAPTER 3

SOLID STATE CONFORMATION OF CALIX[4]ARENES

WITH INTRAMOLEULAR HYDROGEN BONDING

3.1. Introduction

Hydrogen bonding is commonly believed to be the single

strongest interaction in the solid state35 and therefore has a

major effect on the conformation of calix[4]arenes.

Calixarenes that undergo intramolecular hydrogen bonding

interactions are subdivided into five categories dependent on

the presence and location of alkyl substitutents on the

phenolic oxygens. Introduction of alkyl substituents on the

lower rim of the calixarene changes the nature of the

intramolecular hydrogen bonding by the alteration of an

alcohol into an ether. This introduction of an ether carbon

from 0-alkylation also requires the calixarene to adjust its

conformation to accommodate the increased steric bulk. Due to

selective asymmetric alkylation of calix[4]arenes there are

five types of calix[4]arenes that may contain intramolecular

hydrogen bonding: tetrahydroxycalix[4]arenes, trihydroxy-

calix[4]arenes, 1,2-dihydroxycalix[4]arenes, 1,3-dihydroxy-

calix[4]arenes, and monohydroxycalix[4]arenes. Although the

Page 29: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

16

intramolecular hydrogen bonding affects the gross geometry of

the calixarene cavity, the fine structure is affected by a

series of complicated interactions in the crystal packing.

This part of the survey describes the characteristics of

these five structurally different calixarenes and some of the

inter and intra molecular effects directing the observed

conformation.

3.2. Tetrahydroxycalix[4]arenes

The search of the CCD resulted in twenty-one crystal

structures that fall into the tetrahydroxy calix[4]arene

category. The chemical representation of these twenty-one

calixarenes is shown in Table 1. All of these calixarenes

crystallise in the "cone" conformation due to the presence of

a strong hydrogen bonding network formed by the four phenolic

alcohols on the lower rim of the calixarene. The mean

adjacent oxygen oxygen distance was 2.65 A for all twenty-one

crystal structures which is indicative of a strong hydrogen

bond. The cavity shape of tetrahydroxycalix[4]arenes appears

to be directed by the intermolecular and intramolecular

interactions in the crystal packing.

Intermolecular interactions observed in these calixarene

crystal structures are due to inclusion of a neutral organic

guest m the cavity, inclusion of a para substitutent of an

adjacent calixarene, or from n - stacking from para

substituents with aromatic rings. All of these

Page 30: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

17

Table 1. General representation of tetrahydroxycalix[4]arenes

I1

r / \ ™

y-OH

M ' = \ ? H

I II R3

I

A (_/R2 J

M •

HO—> V -

M

M=H Compound R1=R^=P7=PA Referenrp

la lb lc Id la If Iff lh 11 lj lk 11 lxn In lo IP

Compound

t-butyl hydroxyethylpiperazine 1,1,3,3-tetramethylbutyl

isopropyl H H

isopropyl t-butyl isopropyl

H H

phenyl phenylazo

4-nitrophenylazo 1,1,3,3-tetramethylbutyl

ethyl

_E2_ _SiL

20 36 37 38 39 40 41 42 38 39 40 41 42 43 37 44

Reference 45 46 38 47

la lr Is It

H octyl isopropyl t-butyl

H methyl isopropyl nitro

H octyl

isopropyl t-butyl

bromopropyl methyl isopropyl methyl

Compound lu

R1=R2=R3=R4 H

M methyl

Reference 48

Page 31: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

18

intermolecular interactions may be observed in the crystal

packing diagrams. The intramolecular interactions observed

in tetrahydroxy calixarenes involve the self-inclusion of the

psra substituents or introduction of meta substituents that

interact with adjacent aromatic rings of the calixarene.

There are eleven, la - k, crystal structures of

tetrahydroxy calix[4]arenes where the shape of the calixarene

cavity is affected by inclusion of a neutral organic

molecule. There are three different crystallisation patterns

observed which are dependent on the number of calixarenes per

guest molecule.

There are seven examples, la - g, of tetrahydroxy

crystallising with one neutral organic guest in the cavity of

a single calixarene. with the exception of this host-guest

interaction, these compounds show no unusual interactions in

the crystal packing so the geometry of the cavity should be

solely determined by the guest present. Table 2 presents a

diagram of the mean geometry and plane angles for these

seven structures.

Table 2. Mean molecular plane angles of structures la - g

Plane Degrees A 55.1 B 55.0 C 55.8 D 55.8

A - C 68.7 B - D 68.4

Page 32: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

19

These seven crystal structures are very close to c4v

symmetry. Each of the four aromatic rings make angles close

to 55 degrees with the methylene carbons. The interplanar

angles between two opposite planes are close to 69 degrees.

The nature of the para substituent does not seem to affect

the cavity shape and size, but does have an affect on the

interaction with the guest molecule. In these seven

structures there are five different guest molecules observed:

toluene, xylene, acetone, acetonitrile, and l-(2-

hydroxyethyl)piperazine. Table 3 shows the guests that are

included in each of these seven structures.

Table 3. The cavity guests found in structures la - g

Structure Guest toluene

Ik 1-(2-hydroxyethyl)piperazine toluene

^ xylene acetonitrile acetone

Iff toluene

Each of these guests orients itself in the cavity to allow CH

71 xnteractions with the aromatic rings of the calixarene.

The two aromatic guests, toluene and xylene, each show the

presence of CH - it interactions with the para substituent.

In all cases, this guest is disordered so that each of the

Page 33: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

20

four aromatic rings interacts with the guest in a symmetric

manner.

There are two examples, lh and li, of cage complexes

where two calixarenes play host to a single neutral organic

guest molecule. The two calixarenes are oriented so that the

upper rim of each calixarene is facing one another with the

guest molecule being trapped in the middle. Figure 4 shows

these two calixarenes with the guest in the middle. Table 4

shows the relevant angles for the aromatic rings in these two

structures.

Table 4. Molecular plane angles of structure lh and li

Plane lh ii £• 54-2 55.8 ® 54-2 55.8 £ 55-2 55.8

a ~ 55*2 55.8 B £ 71*7 68-4

B D 71-7 68.4

Although both the calixarenes are intimately joined,

there appears to be no structural deviations of the

individual calixarene molecules as a result of this close

interaction. The observed conformation is very similar to

the previously mentioned structures of one calixarene with a

single guest molecule. All four of the aromatic rings are

inclined close to 55 degrees and the interplanar angle

between two alternating aromatic rings is close to 70 degrees

Page 34: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

21

Structure of Hi

<->

Structure of li

Figure 4. Crystal structures of the cage complex of Uh. anij II

Page 35: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

22

m both cases. The guest included in the cage is disordered

in both structures, the anisole in lh is disordered over 8

positions and the xylene in li is disordered over 2

positions. The disorder of the guest molecule allows it to

interact with the cavity in a symmetric manner.

There are two examples, lj and lk, of cage complexes

where three calixarenes play host to a single organic guest

molecule. Figure 5 shows the trimer and a representation of

a single molecule. Table 5 shows the plane angles of the two

calixarene molecules.

Table 5. Molecular plane angles of structure lj and lk

Slmm li lk £ 6 5• 7 64.5 ® 42-1 42.7

n 5o"7 6 4 •7

A - P I 4 2 •7

R n 5 0- 8 B ~ D 95.8 94.6

The crystal packing diagram shows that these calixarenes

crystallise as a trimer with the single guest molecule in the

center of the complex. Each calixarene has one aromatic ring

that interacts with the cavity of the adjacent calixarene.

Due to the asymmetric nature of this interaction there is a

structural deviation observed in the cavity. Two of the

aromatic rings fold up toward the center of the cavity making

an mterplanar angle of about 50 degrees. The other two

Page 36: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

23

Diagram of the trimer for Structures lj anH

Representation of the molecular geometry from structures lj and lk

Figure 5. Diagram of the trimer and molecular geometry of structures lj and lk

Page 37: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

24

rings fold, down away from the center of the cavity making an

interplanar angle of about 95 degrees. The structural

deviation observed in this compound may be explained by the

asymmetric way in which one of the calixarene rings interacts

with the adjacent calixarene cavity.

There are four compounds, lq - t, which show

intermolecular interactions of the para substituent of one

calixarene interacting in the cavity of another calixarene.

These interactions may be observed in the crystal packing as

seen in Figure 6. Table 6 shows the canting angles of the

aromatic rings for the individual molecules in the structures

Table 6. Molecular plane angles of structures lq - t

Plane is lr is it A 61.4 55.4 55.0 56.1 B 52.3 56.3 50.4 48.8 c 57.8 58.5 53.8 53.6 D 57.8 53.9 53.3 55.5

A ~ C 60.9 66.1 71.2 70.4 B " D 74.9 69.8 76.3 75.7

The conformation of the calixarene cavity in the four

structures is very similar to the previously mentioned

calixarenes with C4v symmetry. The shape of the calixarene

cavity is slightly deformed with two of the alternate

aromatic rings folding slightly further out. Each of the

four structures has different substituents interacting in the

cavity and therefore the geometry is effected differently.

Page 38: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

25

iq lr

Is It

Figure 6. Diagrams showing the inter-calixarene inclusion complexes in lq - It

Page 39: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

26

The minor deformation may be attributed to the asymmetric

manner in which the guest resides in the cavity.

There are three crystal structures, 11 - n, of compounds

with para substituents that contain aromatic rings. Figure 7

shows the crystal packing diagrams for these three compounds

and their structural representation. Table 7 lists the plane

angles f oir these thiree ca-lixoxenes.

Table 7. Molecular plane angles of structure 11 - n

1 1 In B aI'I 51-4 66-° 2 J?*® 57-° 34.5 D ll't 49-° 66.0

* „ 55•5 64-6 34 5 » " S 70-4 58.4 48 1

D 75-7 79.5 in.'o

The crystal packing diagrams for these three compounds, in

Figure 7, shows the presence of % - stacking between the para

aromatic substitutents. The manner in which this occurs is

similar to inter-calixarene inclusion where the para

substituent on an adjacent calixarene interacts with the

cavity of the calixarene. In addition to the presence of the

n- stacking interaction each of these calixarenes acts as a

host to a neutral guest molecule. Due to the complicated

nature of these intermolecular interactions, direct

correlation of these effects to the calixarene geometry would

be unfounded.

Page 40: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

27

Crystal packing diagram for In

Crystal packing for 11 Crystal packing for 1m

Figure 7. Crystal packing diagrams showing K-K interactions in structures 11 - in

Page 41: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

28

There are two crystal structures, lo and lp that show no

xntermolecular interactions in the crystal packing but rather

have intramolecular interactions with two para substituents

interacting within the cavity. As can be seen in Figure 8,

two of the para substituents fold into the cavity effectively

blocking the cavity from inclusion of a guest molecule.

The other two para substituents fold out of the cavity

and show no effect on the cavity conformation. The crystal

packing of these two compounds shows a minimal amount of

intermoiecular interactions therefore the cavity shape may be

attributed to only intramolecular interactions. Table 8

lists the angle of the aromatic planes with the methylene

carbons and the interplanar angles between the two alternate

aromatic rings.

Table 8. Molecular plane angles of structure lo and lp

Plane 1J2

B 5 8- 4 56.0

r 5 2- 1 53.0

D 58-7 59.8

a r 5 6- 4 55.7

B ~ n 62*8 64.2 B ° 71.5 71.1

Compared to the mean values for calixarenes with a

single organic guest within the cavity there is a slight but

noticeable deviation in rings A and C that corresponds to the

aromatic rings with para substituents folding into the

Page 42: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

29

Molecular geometry of lo

Molecular geometry of lp

Figure 8. Diagrams of the molecular geometry of structures lo and lp

Page 43: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

30

cavity. Planes B and D appear to maintain a similar angle to

other tetrahydroxy compounds.

Introduction of a substituent in the meta position

effectively changes the shape of the calixarene cavity.

There is one example, lu, of tetrahydroxy calixarene with

meta substituents. Table 9 shows a representation of lu and

its associated plane angles.

Table 9. Molecular plane angles of structure lu

Plane A B C D

A - C B - D

Analysis of the cavity shape of lu demonstrates that

introduction of meta-methyl groups has significantly

distorted the conformation of the cone due to steric

repulsion between the meta methyl substituent and the

adjacent aromatic ring. This compound does not show the

presence of a guest within the cavity since the pinching of

two of the aromatic rings make inclusion sterically

prohibitive.

The presence of the four hydrogen bonding sites on the

lower rim of the calixarene directs the "cone" to be the

preferred conformation in the solid state. Conformationally

21.6 69.2 25.6

132.8

Page 44: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

31

all of these structures have similar cavity geometries with

the only major distortion due to intramolecular interaction

from meta substituents and intermolecular it - stacking. With

the exception of the two crystal structures where the upper

rim para substituents fold in and block the cavity and

calixarenes with meta substituents, all the tetrahydroxy

calix[4]arenes show the presence of a guest within the cavity

being held by CH - it interactions with the aromatic rings.

3.3. Trihydroxycalix[4]arenes

Monosubstituted calixarenes have three hydroxyl groups

and one ether oxygen on the lower rim. The replacement of

one of the phenolic hydrogens with an alkyl substituent

significantly reduces the strength of the overall hydrogen

bonding network but these interactions still maintains a

sizeable effect on the conformation. Although there are no

crystal structures of monoalkylated calixarenes, there have

been several synthesised in the literature.28 % NMR analysis

of these compounds shows that the "cone" conformation is

observed almost exclusively. Further analysis into the -solid

state characteristics of this family of calixarenes should be

investigated to understand the affect of the breaking one of

the hydrogen bonds and the manner in which the calixarene

adjusts its conformation upon the introduction of a single

ether linkage. Additionally these compounds should also show

Page 45: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

32

host-guest properties similar to the tetrahydroxy

calix[4]arenes.

3.4. 1,2-dihydroxycalix[4]arenes

Four of the crystal structures from the CCD search are

1,2-dihydroxy calix[4]arenes. Table 10 shows the generic

representation of these four calixarenes. The presence of

the two hydroxy1 substituents on the lower rim directs the

conformation of the calixarene. These two hydroxyl

substituents make two hydrogen bonds, one of which is always

bonded to the other hydroxyl group which in turn interacts

with the adjacent phenolic ether oxygen. This orientation

assures that three of the aromatic rings will be syn and the

fourth ring may be either syn or anti dependent on the manner

in which the calixarene was synthesised. If both the

substituted rings are syn the expected conformation is a

cone", but if they are anti the "partial cone" results.

Compounds 2a and 2b were synthesised so that the two

lower rim substituents are syn. Since the size of these

substituents do not allow them to rotate they have a fixed

orientation and both crystallise in the "cone" conformation.

Figure 9 shows the representation of the solid state

structure for these three compounds. Table 11 shows the

relevant plane angles for these compounds.

The structure 2a has two inequivalent calixarenes in the

assymetric unit. Structure 2a (A) has two hydrogen bonds,

Page 46: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

CO CD G 0) U

33

rd Oi O H O ^ in in H

X - H rH f0 u &

0 S-l %

£ •HI TJ 1

CN

M-4 0

a o •H •U

4J a <u CQ <1) M ft a>

x

r * - / V g

\ = / ()r V.XJ~

O X

X o

X , o - ;

Q) A a) -u a Q) -H

TJ rH -H rH >1 U H >1 rC >t >1 O ^ OlrCj N a> .u a

ih <y <y rH >t ,Q >tXJ X 4J 4J a) 0) g

I X

>1 >1 s 4J 4J 4J 2 9 3 JQ XI XX I I i 4J 4J 4J

<d u Q) a a> o

4 A U > 0 cm n n oi

O H

H

4 &»

Page 47: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

34

Molecular Geometry of 2b

Molecular geometry of the two inequivalent molecules in structure 2a

Figure 9. Molecular geometries for structures 2a and 2b

Page 48: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

35

one between the adjacent phenolic oxygen and a second with

the ethyl ether oxygen on the lower rim substituent of the

adjacent aromatic ring.

Table 11. Molecular plane angles of structure 2a and 2b

Plane 2a (A) 2a (B) 2b

£ 87-5 75.6 60.5 B 35.1 46.0 61.9 C 78.8 60.3 68.9 D 40.8 51.5

A " C 13.7 54 1 B - D 75.8 97.5

53.0 50.6 65.0

The presence of this unusual hydrogen bonding interaction

Pr®vents inclusion of a guest within the cavity of this

calixarene. Strucuture 2a (B) has the expected hydrogen

bonding network with the hydrogen bonds only between the

phenolic oxygens.

The symmetrical arrangement of the four aromatic rings

in 2b and 2a (B) provides a cavity for inclusion

interactions. 2b has an ethanol molecule acting as a guest

m the cavity and 2a (B) shows an intermolecular interaction

with an adjacent calixarene. The inter calixarene inclusion

may be seen in the crystal packing in Figure 10.

Compounds 2c and 2d were synthesised so that the two

substituted aromatic rings have an anti arrangement with

lower rxm substituents large enough to prevent conformational

interconversion. Due to the anti arrangement of the two

Page 49: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

36

Figure 10. in 2a

Diagram of the intermolecular inclusion observed

Page 50: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

37

substituted aromatic rings both of these compounds

crystallise in "partial cone" conformation. Figure 11 shows

the solid state conformation of these two compounds. Table

12 shows the plane angles associated with these two

compounds.

Table 12. Molecular plane angles of structure 2c and 2d

Plane 2c 2d A -67.0 -68.9 B 73.5 73.3 C 48.8 39.2 D 58.0 66.4

A - C 18.7 28.9 B - D 48.4 40.3

These two structures have similar conformational

characteristics. The aromatic rings that point down make an

angle of about 68 degrees with the methylene carbons.

Although slightly different, the other three aromatic rings

that point up all have similar canting angles. Both of these

compounds show self inclusion in the cavity between the three

'•up" aromatic rings. The lower rim substituent on the single

alternate aromatic ring interacts in the cavity. For 2c the

ethyl substituent points into the cavity but does not show

any strong interactions. Compound 2d shows a similar

interaction with the dinitrobenzoyl substituent. This

aromatic ring fits further into the cavity than the ethyl on

Page 51: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

38

Molecular Geometry of 2c

Molecular geometry of 2d

Figure 11. Molecular geometries for structures 2c and 2d

Page 52: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

39

2c and appears to be held by CH - K interactions with the t-

butyl substituents.

Of the four crystal structures that are 1,2-dihydroxy,

two crystallise in the "cone" and two crystallise in the

"partial cone" conformation, directed by the up-down

arrangement of the two substituted aromatic rings. The two

calixarenes in the "cone" conformation both show

intermolecular host guest interactions; the first showing

inclusion of a guest ethanol molecule and the second with

inter-calixarene inclusion. Both these guests are held by CH

- 7t interactions with the aromatic rings of the calixarene.

The two calixarenes in the "partial cone" conformation have

intramolecular host guest interactions. In both cases the

lower rim substituent on the single alternate aromatic ring

arranges itself so that it may interact with the cavity. In

one case the ethyl substituent simply blocks the cavity. The

other inclusion complex has the dinitrobenzoyl substituent

held within the ring by CH - % interactions with the t-butyl

substituents.

3.5. 1,3-dihydroxycalix[4]arenes

The CCD search found nine crystal structures of

calix[4]arenes that are 1,3-disubstituted on the lower rim.

The general representation of these calixarenes is shown in

Table 13. All of these 1,3-disubstituted calixarenes are in

Page 53: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

40

w a) a 0) u

r—i

L-J X

•H rH td o &

0 u

1 •H *0 i

co

M-l O

G O

•H •P (d 4J a a> w a) M a a>

03 U <D a a) o

CO H

a) rH

I

cc

• v X

W w x 8 ~ V

VJW * - / V g )"

i IT

OS

0 1 o u

(N cn n o ^ in t> i/i in in h in in in in

a) n

<D *0

o g . . . . a> § T! a 5 5

~ > i a w <u I »T5

VD

e jq

i? 4J

a

CNI

>f 4J 3

>i >i 4J 4J 3 P

S S >1 4J 4J 4J

3 3

4J 4J I

4J 4J 4J

of ,Q o*d o «w ^ -h ro ci f ) ro to ro m m

Page 54: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

41

the "cone" conformation which is directed by the presence of

two hydrogen bonds. The first of these two hydrogen bonds is

between the phenolic oxygen and one of the two adjacent ether

linkages and the second hydrogen bond occurs between the

other phenolic oxygen and the other ether linkage. Since in

most cases the hydrogen involved in this bond can not be

found on the density map, the only indication of its

existence is a short average oxygen-oxygen distance of 2.81

A . The average distance between the two oxygens that are not

hydrogen bonded is 2.99 A for all nine crystal structures.

For these nine compounds the observed cavity geometry

does not appear to be affected by the nature of the

substituent on the upper and lower rim but by intermolecular

interactions.

Seven of the nine crystal structures, 3a - f, do not

show the presence of a guest within the cavity or any other

unusual intermolecular interaction in the crystal packing.

Each of these calixarenes crystallises in a "flattened cone"

conformation where two alternate aromatic rings are almost

parallel and the second two make a mutual obtuse angle. A

diagram of the mean conformation and a list of plane angles

for these seven structures is shown in Table 14.

In all cases the two rings which are almost parallel, A and

C, are substituted on the lower rim. These lower rim

substituents are directed away from the center of the cavity

Page 55: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

42

in a manner that reduces steric interactions. The other two

apings B and D are unsubstituted and are flattened.

Table 14. Mean molecular plane angles of structure 3a - £

Plane Degrees A 78.2 B 40.3 C 77.5 D 39.0

A - C 24.3 B - D 102.3

This "flattened cone" conformation does not provide a

sufficient cavity to observe host guest interactions.

There are two examples of a neutral guest molecule

interacting in the cavity of a 1,3-dihydroxy calixarene. In

the crystal structure of 3h there are two inequivalent

structures in each unit cell. Figure 12 shows a diagram of

both of these structures and thier plane angles are listed in

Table 15.

Table 15. Molecular plane angles of structure 3h

Plane 3h (A) 3h (B) A 62.6 58.1 B 56.5 56.7 C 62.7 60.0 D 52.4 58.3

A - C 54.7 61.9 B - D 57.6 71.1

Structurally, 3h has a more open conformation than the

other 1,3-dihydroxy relatives. The shape of the cavity is

Page 56: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

43

Molecular Geometries of 3h

Figure 12. Molecular geometries for structure 3h

Page 57: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

44

more symmetrical and more closely resembles the cavity shape

of tetrahydroxy calixarenes. It is however less

symmetrically shaped due to the presence of two alkyl

substituents on the lower rim that change the hydrogen

bonding network and introduce steric repulsion between the

two substituents.

The other 1,3-dihydroxy calixarene that has an inclusion

complex is 3i. In addition to the inclusion of a guest, there

is an intermolecular interaction in the crystal packing. The

diagram of the crystal packing, conformation of the

individual molecule and a list of plane angles is shown in

Figure 13. The crystal packing shows that there are two

picric acid molecules stacked on the outside of the molecule.

This is the only example of a molecule interacting with the

exterior of the calixarene cavity. Similar to 3h, 3i appears

to open its cavity to accomidate the guest molecule.

The observed conformation of 1,3-dihydroxy calix[4]

arenes is directed by the presence of two alternating

hydrogen bonds and steric repulsion due to the introduction

of an alkyl substituent on two of the positions. All nine of

these calixarenes are found in a "flattened cone"

conformation. Although seven of these nine crystal

structures do not have a guest within the cavity, the fact

that two do have host-guest properties indicates that these

calixarenes are capable of host-guest interactions given the m

proper conditions.

Page 58: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

45

Crystal packing of 3i

% fc..? fe ' '

C - C

Molecular geometry and plane angles of 3i

Plane A B C D

A - C B - D

Degrees 66.8 52.1 66.8 52.1 46.4 75.8

Figure 13 Crystal packing, molecular geometry and plane angles for structure 3i

Page 59: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

46

3.6. Monohydroxycalix[4]arenes

There are three crystal structures of calixarenes that

are trisubstituted on the lower rim. Table 16 shows the

general representation of these three compounds.

The conformation of these compounds is directed by the

manner in which the calixarene is synthesised. If all three

substituted aromatic rings are syn the solid state

conformation is found as a "cone". if one of the three

substituted rings is anti the -partial cone" conformation is

found in the solid state. Two compounds, 4b and 4c are in

the "cone" conformation and 4a is in the "partial cone-

conformation. A diagram of the solid state structure of 4b

and 4c are shown in Figure 14. Table 17 shows the plane

angles of the aromatic rings in this conformation.

Table 17. Molecular plane angles of structure 4b and 4c

B «.6 C 81-1 d «•? 4B-7

A - o 87.4 B - D 4 1 90'7

4-x 11.5

Both of these compounds crystallise in a "pinched cone-

conformation where two of the alternating rings are almost

parallel and the other two rings are almost normal. The

three lower rim alkyl substituents arrange themselves so that

Page 60: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

47

w (2) g Q) u (d

u X

•H rH «d &

o

! 0 a

1 4-4 O

a o

•H •U rd 4J a a) CO <D u &

o> & *d u 0) a a) o

u

<D M-J 0) os

CC

rr^_ •-()-O X-{ \-a y

U I

GC

O OJ (N rH rH LO

S H H o >1 >, N NXJ a a 4J <u a> <u

XI JQ B

T>

5 >i >i •U 4J 4J 3 3 3

6 XI jQ 1 i 1

4J 4J -P

<d A vo H

I

Page 61: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

48

Molecular Geometry of 4b

Molecular Geometry of 4c

Figure 14. Molecular geometries for structures 4b and 4c

Page 62: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

49

they point away from the cavity of the calixarene in order

to reduce steric interactions. The crystal packing of these

two compounds shows no unusual intermolecular interactions

and much like their other "pinched cone" relatives there are

no host guest interactions. Both 4b and 4c have a single

hydrogen bond occurring between the phenolic oxygen and one

of the adjacent ether oxygens.

Structure 4c has a more symmetrical cavity shape than

4b. The "parallel" rings in 4c both fold away from the

cavity making an interplanar angle of 11.5 degrees. The other

two aromatic rings, phenol and methyl ether, make an

interplanar angle of 90.7 degrees. In compound 4b the

"parallel" rings are asymmetric with one ring bent in toward

the cavity at 98.5 degrees and the second ring bent away from

the cavity at 85.2 degrees with respect to the methylene

carbons. The interplanar angle between these two rings is

-4.1 degrees that indicates that the para positions fold over

to cover the cavity. The other two aromatic rings, phenol

and methyl pyridine ether, fold out making an interplanar

angle of 103.1 degrees. Although there are no solid

indications as to the preference for symmetric and asymmetric

conformations, it is probably related to the nature of the

lower rim substituents.

There is one structure, 4a, of a calixarene,

trlsubstitued on the lower rim that is in a "partial cone"

Page 63: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

50

conformation. Table 18 shows a diagram of the solid state

structure as well as the plane angles of the aromatic rings.

Table 18. Molecular plane angles of structure 4a

PXane 4a A -70.3 B 70.3 C 39.3 D 77.7

A - C 70.4 B - D 32.0

The phenolic unit and its two adj^enc aromatic rings, which

are substituted with dinitrobenzoyl groups, are pointed down.

The fourth aromatic ring is oriented with the lower rim

substituent pointing up. The presence of a hydrogen bond

between the phenolic unit and the adjacent ether oxygen,

indicated by the short oxygen-oxygen distance of 2.87 A ,

prevents rotation about the methylene bridge to form a "1,3-

alternate" conformation. The crystal packing shows no

unusual intermolecular interactions.

The three "up" rings make angles with the methylene

carbons of 70.3, 39.3 and 77.7 degrees. This orientation of

these rings forms a cavity that allows a intramolecular host-

guest interaction with the lower rim substituent of the

'.'down" aromatic ring. This ring lies at an angle of -70.3

degrees. The dinitrobenzoyl substituent lies in the cavity

Page 64: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

51

if the calixarene held by CH - „ interactions with the para-

fc-butyl substituents.

The conformation of the monohydroxy calix[4]arenes is

determined by the up-down arrangement of the substituted

aromatic rings. Two of the calixarenes have the substituted

aromatic rings all arranged syn and are found in a "pinched

cone" conformation. The third calixarene has one substituted

aromatic ring anti which produces a "partial cone"

conformation. Neither of the two calixarenes in the "pinched

cone" conformation have host guest interactions which is not

unusual due to the close interactions between the two upright

aromatic rings. The calixarene in the "partial cone"

conformation shows intramolecular host-guest interactions

with the lower rim substituent on the single anti aromatic

ring. The dmitrobenzoyl substituent is held in the cavity

by CH - TC interactions with the upper rim t-butyl

substituents.

Page 65: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

CHAPTER 4

SOLID STATE CONFORMATION OF CALIX[4]ARENES

WITHOUT INTRAMOLECULAR HYDROGEN BONDING

4.1. Introduction

There are 39 crystal structures of calixarenes which do

not show the presence of intramolecular hydrogen bonding

interactions. These crystal structures may be partitioned

into five different categories that are dependent on the size

of the lower rim substituents, and the conformation in which

the calixarene is synthesised. When the lower rim

substituents are smaller than ethyl, calixarenes are

conformationally mobile and may be found in any of the four

conformations ("cone", "partial cone", "1,2-alternate", "1,3-

alternate"). When the lower rim substituents are ethyl or

larger, the conformation of the calixarene may be thought of

as "frozen" with no conformational mobility. These crystal

structures are categorized into the four conformations

dependent on the manner in which the calixarene was

synthesised. Although the gross geometry is defined by the

conformation, the "fine" geometry is directed by a series of

complicated inter and intramolecular interactions.

Page 66: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

53

4.2. Tetraalkylated Calix[4]arenes in the

"Cone" Conformation

The CCD search resulted in twenty-one crystal structures

of calix[4]arenes which are tetrasubstituted and frozen in

the -cone" conformation. Table 19 shows the general

representation of these compounds. The crystal packing of

these calixarenes show no unusual intermodular

interactions, therefore the conformation of these compounds

is directed by intermolecular effects from both the upper and

lower rim substituents.

Seventeen, 5a - q, of the twenty-one compounds have a

t-butyl substituent in the para position and do not form

host-guest complexes. All of these crystal structures may

be thought of as -pinched cone" conformations with two of the

aromatic rings being "normal" and the other two rings

essentially "parallel". There are two subdivisions that are

observed in these compounds due to the orientation of the two

"parallel" r i n g s. T e n, 5a - h, of the seventeen crystal

structures may be described as symmetric, where the two

parallel rings both fold slightly away from the center of the

cavity. There are seven structures, 5i - g, that are

asymmetric where one ring folds slightly into the cavity

(angle > 90 degrees) and the other folds slightly away from

the cavity. The mean angles for these structures are shown

in Table 20 with a descriptive diagram for the sy^etric and

asymmetric crystallization patterns.

Page 67: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

54

a o

•H 4J

M O

*W CJ O

i o

<u §

u

Q) & 4J

a -H

CQ 0) a 0) M <0

X •H rVS A3 cn-0 \

-§ *0 a> 4J

M 4J <u 4J

'm-I o

c o

-H 4J <d 4J a a) « <u M a a>

(0 M a) £ <u o

Ol H

J g / '

o / —

C i J

i CM

CC

S S S S S S G S S S S S S S S S S P f ; '

o KrCj Ol 4J

* o <D ^ J H a S 4J >105 a) u ju o

3 o a h ' h s - h a? a?

•CJ 3 <D o r H -4J U-l 4J M S g j j

s-rti c v S t 1 w 0 S i5 cq

® CUr-H JJrHrHXrCrH 3 «1 !rt !rt ?i 1^ l J J > U >

I 4-J <|) »H -H 4J (D LO OJ £* *0 Q)

Pi H T3

. H -H-H <y 5 ,C & ]M M 4J H O Ol p4 S S W >i m w m ftp, <D s 3 0 0 0 O rC rC rHr-H f-H ^

>»rr! ftft £*>» N S

W rH

>t >l4J4J 4J 2 M a a a><u a> e 4J <u a> g g

Q* ft rt -rt •a >o

, 3 M M fi <6 M ffl . . mm-i <u qj -H -h <y 4J > , o o 'd'ti

i ? i i i t i ' S ^ 4 J w ^ o o -H-H M r H 4 J ^ 0 3 0 3 0 | { 0 0 3 ( U 4 J r | C J L | l 4 f l l ® ® g - i ® . ! £ • § • §

o) o> s,_J ^ 2 & . h *s *s ftft w ^ S S K s l ^ i ' S f t # 3 ft ft a> a S S s.5 £ S1 ft&<& o 01 UJ H H o ® 10 S ,"ti'C!'CjT^ OJ »C| 4J r—I O O >i>irH U

>i <u T1

<D i-i J-> O >1 9 10

jQ - t >1*H 4J <y iw,5 jg V, S 0) 0) gT f 0) g -H a, 0 , 5 5 a

w ^ rH r-J a) d) 4J

(U 0)

Ol Ol H -H TJ TJ

5 f i S S , S S 5 ! g S S ' _ i J f S ^ 5 5 5 , S ,l S 5 i f ?

Page 68: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

55

Symmetric

Plane A B C D

A - C B - D

Degrees

85.9

45.9

85.3

45.3

7 .7

88.5

Asymmetric

Plane

A

B

C

D

A - C

B - D

94.2

46.6

82.9

41.9

4.3

90.7

Table 20. Descriptive plane angles for symmetric and assymetric "cone" conformations

Page 69: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

56

For both symmetric and asymmetric structures the lower

rim substituents arrange themselves to reduce steric

interactions, and these appear to have no effect on the

geometry of the cavity. The lower rim substituents attached

to the "parallel" rings point out away from the cavity, and

the group attached to the "normal" ri a g s p o i n t d o w n ^ ^

cavity. There is no obvious preference for symmetric versus

the assymetric conformations.

There are three calixarenes that have para substitutents

that are sterically smaller than t-butyl, 5r, 5t and 5u. A

comparison of the crystal structures of 5r and 5q shows that,

without a sterically large para substituent, the two

"parallel" rings fold in over the cavity. 5, has p-t-butyl

and 5r has a p-hydrogen and both calixarenes have the same

lower rim substituents: methyl pyridines. The crystal

structures of these two compounds are shown in Figure 15.

The plane angles are listed in Table 21.

Table 21. Molecular plane angles for structures 5q and 5r

5r Degrees

5q Plane. Dearppg

A 9 0 . 0 1 n i i

2 5 1- 8 26*S £ 81-3 99*7

5 2 . 6 4 0 ' J A - C o 7

4 0 - 3

B - D 7 c " - 1 6 . 0 7 5 - 6 1 1 3 . 2

Page 70: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

57

Molecular Geometry of 5r

Molecular Geometry of 5q

Fioure 15. Molecular geometries for structures 5r and 5q

Page 71: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

58

In the p-t-butyl calixarene, 5<i, the two "parallel"

rings are arranged in an asymmetric fashion with one ring at

greater than 90 degrees and the other ring bent away from the

center of the cavity. The interplanar angle (8.7 degrees) of

these two rings indicates that the rings fold away from the

center of the cavity, without this sterically large t-butyl

substituent, in 5r, both arc^tic rings fold into the cavity

(interplanar angle of -16.0 degrees) so that the two phenolic

oxygens are bent out.

The conformational characteristics of 5r are also

observed in the two other crystal structures of calixarenes

with para substituents smaller than t-butyl. The mean

geometry of these three compounds 5r, 5t, and 5u is shown in

Table 22.

Table 22. Mean conformation of calixarenes with small para

substituents

Plane Dearppg A 100.4 B 30.9 c 99.7 D 37.8

A ~ c - 2 0 . 2 B ~ D 111.2

in all four cases the two "parallel" rings fold into the

cavity as observed in 5r. The presence of meta substituents

in Su shows no effect on the preferred conformation. None of

Page 72: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

59

these three crystal structures show the presence of a guest

within the cavity.

There is one example of a tetrasubstitued calix[4]arene

that shows host-guest behavior. Table 23 shows the molecular

geometry and plane angles for structure 5s with its 1:1

acetonitrile clathrate.

Table 23. Molecular plane angles for structure 5s

Deareps A 65.4 B 65.4

65.4 D 65.4

A ~ C 49.2 B ~ D 49.2

Unlike other tetrasubstituted calixaren'es this compound

Shows C4v symmetry. The aromatic rings are all canted at 65.4

degrees with an interplanar angle of 49.2 degrees. These

canting angles shciw that the calixarene cavity adopts a more

open shape than the other tetrasubstitued calixarenes, and

most closely resembles the shape of the tetrahydroxy

compounds that have an average canting angle of 55.1 degrees

and an interplanar angle of 69.5 degrees. The interplanar

angle for this tetrasubstituted calixarene is about 20

degrees smaller which can be rationalised by the increase in

stenc repulsion from the presence of lower rim ether

linkages.

Page 73: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

60

Twenty of the twenty-one crystal structures that are

tetrasubstituted crystallise in a "pinched cone-

conformation. The calixarenes that have para t-butyl

substituents on the upper rim either crystallise with both

"Pinched" rings bent out or one bent in and the other bent

out. Sterically small para substituents allow the "pinched"

rings fold into the cavity. There is only one crystal

structure, 5s, that has host guest interactions. Due to the

small cavity formed in this complex, one may presume that

only sterically small guests, such as acetonitrile, may be

held within the cavity of these calixarenes.

4.3. Tetraalkylated Calix[4]arenes with Small

Lower Rim Substituents

Unlike the other tetrasubstituted calixarenes that are

synthesised in a single conformation, these calixarenes

posses lower rim substituents which are small enough to

rotate though the cavity. This rotation allows the

caiixarene to adopt of any of the four standard conformations

("cone", -partial cone-, -1,2-alternate-, and "1,3-

altemate") . There are eight crystal structures that are

tetrasubstituted and allow this freedom of rotation. The

general representation of these compounds is shown in Table

24. Of these eight crystal structures, seven, 6a - g,

crystallise in a "partial cone- and one, Sh, in the "cone"

conformation.

Page 74: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

61

u

%

o

(d e . w

•c 4-> •H

CQ 0) G Q)

U

rd

"k •H rH «d U

<D 4J 3 4J •H 4J

CQ

CQ <d 4J <D 4J

' M-l O

C O

•H 4J <TJ C 0) CQ 0) U

a. <D u

Id CQ U 4J <p c

0) .p

4J •H

• CQ

CI XI 0 ra

H

• 9 ^ S* W

§ 0

£C

X

£- /_) -§ 2

" A r kXJ

*_ / \ _ ° \ /•"

i

CM cc

0) Q)

K

o\ <o vo t-f r* h oo *H r* ^ r- ^ r**

ffi U

m <N K » K as

Tf S >1 o ro rp r-i CM n X rH a S O O O U U nJOO

X

CN. cd

j t JT JP JT> ^ ^ n n K K K K f f i K K f f i o o o o u o u o

r-i p-1 r-j >1 >1 x 4J 4J O g 3 « ^ rQ & ® OQ

I 4J

u CQ

fi 0) J3 » ft

•H

rH r-H >1 >1 t! c

xi J

Tl C O

o o

>• >. « 4J 4J 0 3 3 08 *"• rC 3

rH Hf s >»

<u 4J >t >. ti c

• 5 ^ ' n a ^ j j J! i i a

4J 4J CQ X 4J

< fl o >o • IH &,q I 0 \ 0 I 0 \ 0 I 0 1 0 10 u>

Page 75: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

62

These seven calixarenes that crystallise in the "partial

cone" conformation all have similar geometries. A diagram of

the mean geometry of these compounds and their mean plane

angles are shown in Table 25.

Table 25. Mean conformation for "partial cone" structures

? l a n e Degrees A -90.4 B 90.6 £ 3 ° .6

„ D 92.2 « ~ C 8 - 5

B " D 59.8

As seen in Table 25, one aromatic ring is pointed down

at -90.4 degrees. The two aromatic rings next to the ring

pointing down make angles of 90.6 and 92.2 degrees with an

interplanar angle of 8.5 degrees that means that these two

planes bend in over the cavity. The fourth aromatic ring

that is alternate to the one facing down lies at a mean angle

of about 30.6 degrees. The crystal packing of these

compounds shows no unusual intermolecular interaction.

The "partial cone" conformation provides a shelf for a

guest to interact with the cavity of the calixarene but

inclusion of a guest molecule is only observed in structure

6d. m 6d there is a chloroform guest residing in the cavity

of the calixarene that is being held by CH - % interactions.

The lack of guest molecules in the other six structures is

Page 76: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

63

due to steric affects from the two alternate aromatic rings

Pinching over the cavity and the lower rim substituent of the

aromatic ring pointing down effectively blocking the cavity.

The steric size of the para substituents appears to have

no effect on the observed conformation of these structures.

Structures 6a and 6b both have t-butyl groups in the para

position and compound 6d has a sterically smaller bromine in

the para position but there is no significant difference in

the conformation of these two compounds.

The crystal structure of p-phenylcalix[4]arene

tetramethyl ether, 6h, crystallises in a -pinched cone-

conformation. it has been reported that this compound exists

in the "partial cone" conformation in solution during room

temperature NMR analysis which indicates that there was a

change in conformation during crystallization. Figure 16

shows the conformation of a single molecule, plane angles and

the crystal packing diagram for 6h.

This crystal structure shows that two of the aromatic

rings are bent in over the cavity at an angle of 95.8 degrees

for both rings with an interplanar angle of -11.5. The ipso

carbons on the para phenyl substituents are 4.2 A apart which

dicative of n - n interactions. The nature of this k -

K interaction precludes this compound from acting as a host

and no guests are observed in the cavity. The other two

aromatic rings make an angle of 40.1 degrees with the mean

plane of the methylene carbons. Tbis cavity is similar to

Page 77: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

64

Crystal Packing of 6g

to

Q

Molecular geometry of 6g

Plane A B C D

A - C B - D

Decrrpps 95.8 40.1 95.8 40.1 -11.5

8 0 . 3

Figure 16. Crystal packing and molecular geometry for 6g

Page 78: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

65

that observed with tetrasubstituted c a l i x a r e n e s with s n a i l

para substituted. Although phenyl would not be classified

as a small substituent, the presence of the n - n

interactions emulate the effect. Analysis of the crystal

packing of this coirpound (Figure 16) shows the presence of

intermolecular % - * interactions between the p-phenyl rings.

These jt - 7t interactions may account for the preference of

this compound crystallising in the "cone- conformation over

the more commonly observed "partial cone" conformation.

The observed preference for calixarenes with small l o w e r

rim substituents to crystallise in a "partial cone" indicates

that this conformation is the most energetically favorable,

which has been substantiated by molecular orbital

calculations. 52 similar to other calixarenes in the "partial

cone" conformation, these calixarenes provide a cavity for

the inclusion of a guest. In all but one structure the guest

interaction is precluded by the presence of the lower rim

substituent on the anti ring blocking the cavity, in the

single structure, 6d, with a guest, the chloroform is held in

the cavity by CH - n interactions.

Page 79: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

66

4.4. Tetraalkylated Calix[4]arenes in the

Partial Cone" Conformation

Four of the compounds, 7a - a, f r o m the CCD search are

frozen in the "partial cone" conformation. The general

representation of these compounds is shown in Table 26. Each

of these structures are conformational^ frozen due to large

lower rim substituents. The crystal packing diagrams of these

four structures shows no unusual intermolecular interactions.

These four structures indicate that the only significant

deviation in the geometry of the calixarene is due to

inclusion complexes within the cavity.

The crystal structures of 7a and 7d show no inclusion

properties. 7a has acetyl substituents on the lower rim and

t butyl groups on the upper rim. The crystal structure of 7d

has methyl pyridine substituents on the lower rim and

hydrogen on the upper rim. Figure 17 shows the structure of

7a and 7d in the solid state. The plane angles for these two

structures are shown in Table 27.

Table 27 . Molecular plane angles for structure 7a and 7d

£ 1f a e Degrees pjrp.

B ~3?"6 -86.3 c 86-8 90.7

D 39-3 44.0

A - c ll'l 88.1

ii o

Page 80: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

a> G o o

67

rd •H 4J

(d ft ^ CN o H

00 00

0) ,13 4-1

a • rH

W a> G a; u (d

UJ X

•H rH (d a

a> 4J <d

td

4J a) j j

«-w o

G o

*H 4J (d 4J G a) w 0) u ft a>

-J v

I

? >< *" X / \

\ = / " ° > ° - \ ) - '

\ ? /

rx I

GC

a) aj a) a c c

*H -H -H *0 *0 H3

,£? -H -H -H

O £ J? ^ O ft ft ft £1 -H rH o A XI £} O 4J 4J JJ

a) aj a) ? ? ?

o o o

<U £

•H

m -H X u O >1

8 a OJ iH W >1

8 5 &

Q) £? £ EG -H U CN -H tC M u >, £

O rH

8 » 6 I

O

>1 >f >f XJ JJ 4J

xi xi ja * i i i

i ) JJ 4J

(d M <D a CP

o a o

•H • 4J

io (d CI g

<D O H M-J

•8 § E* o

a o § A U »d

t*.

Page 81: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

68

Molecular geometry of 7a

Molecular geometry of 7d

Figure 17. Molecular geometries for structures 7a and 7d

Page 82: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

69

Comparison of these two structures with the mean

conformation of the seven "partial cone" structures with

small lower rim substituents shows that there is only a

slight deviation between the two preferred conformations.

The lower rim substituents all arrange themselves so that

they point away from the cavity of the calixarene and

minimize steric interaction.

The crystal structures of 7b and 7c both show inclusion

properties in the cavity. Figure 18 shows the structure of

7b and 7c in the solid state. The plane angles for these two

structures are shown in Table 28.

Table 28. Molecular plane angles for structure 7b and 7c

Plane Degress -

R ~59*5

° 72.0 S 61.9

A ? C 6 1- 5

B n 4 6' 6 B D 2.7

Degrees -75.3 67.2 53.2 77.2 22.4 35.8

Structure 7c is selectively substituted so that there is

an ethyl ester substituent on rings A and C, and methyl

pyridine groups on rings B and D. These lower rim

substituents arrange themselves as to reduce steric

interactions and do not appear to have an effect on the

conformation of the calixarene. There is an acetcnitrile

Page 83: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

70

Molecular geometry of 7b

Molecular geometry of 7c

Figure 18. Molecular geometries for structures 7b and 7c

Page 84: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

71

guest held within the cavity oriented so that the methyl

group interacts with the aromatic rings of the calixarene.

The presence of this guest in the cavity makes the aromatic

rings fold out. This folding out was also observed with the

tetrasubstituted 5B that adopts a -cone- conformation with an

acetonitrile guest.

The structure of 7b has methyl pyridine substituents on

the lower rim and t-butyl groups on the upper rim. This

compound shows self inclusion of the methyl pyridine attached

to ring A that should account for the apparent deformation of

the calixarene geometry. This inclusion complex is held

together via CH - x interactions between the methyl pyridine

group and the methyls of the t-butyl substituents. Comparison

of this structure with 7d, its de-butylated analog, shows

that the presence of t-butyl substituents is necessary for

this self inclusion interaction

The observed cavity of these four calixarenes appears to

be dependent on the presence of a guest within the cavity.

The calixarenes without guest molecules have a closed

conformation with two of the opposite aromatic rings almost

parallel. Upon introduction of a guest molecule in the

cavity, these two aromatic rings fold out further to

accommodate its presence. The comparison of 7b and 7d

implies that the p-t-butyl substituents are necessary for the

formation of a host guest complex with an aromatic guest.

Page 85: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

72

4.5. Tetralkylated Calix[4]arenes in the

"1.2-Alternate" Conformation

One of the crystal structures from the CCD search was

tetralkylated and in the -1,2-alternate- conformation.

Compound 8a was synthesised in the "1,2-alternate»

conformation and is held immobile by ethyl substituents which

are sufficiently large as to prevent freedom of rotation. 19

Figure 19 shows a diagram of the crystal structure, plane

angles and a general representation of the molecule of 8a.

The two adjacent aromatic rings are syn making an angle with

the methylene bridges of 83.8 and 47.8 degrees. The other

two adjacent aromatic rings are also syn. These two point

down making a -83.8 and -47.8 degree angle with the methylene

bridges. Analysis of the crystal packing of this compound

shows no intermolecular interaction. There is a cavity

present but no guest is observed due to the ethyl

substitutents which point into the cavity creating a self-

inclusion interaction.

There is a second crystal structure of a

tetrasubstituted calixarene in the "1,2-alternate"

conformation that is not included in the CCD. This

structure, 8b, has four butanoate substituents on the lower

rim and is unfunctionalized on the upper rim. 82 Although

complete data is not available for this structure, the

information that is available indicates that these two

structures share similar conformational properties. The two

Page 86: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

73

General Representation and table of plane angles for

structure 8a

~ r Plane CSffrees.

A 83 .8 B 47.8 C -83.8 D -47.8

A - C 48.4 B - D 51.3

Molecular geometry of 8a

and raolecularegeomet^PofS8atatl°n' t a b l e °f P l a n e angles'

Page 87: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

74

adjacent aromatic rings make angles with the methylene

carbons of 48.5 and 81.0 degrees. The other two aromatic

rings are pointed down related by a plane of symmetry making

angles of -48.5 and 81.0 degrees. In this complex, the lower

rim substituents also block the cavity preventing the

formation of an inclusion complex.

Both structures are monoclinic four asymmetric units in

the unit cell. The unit cell for 8a is larger than 8b due to

the presence of para-t-butyl substituents. Both 8a and 8b

show the presence of a cavity that may show host-guest

properties. Further investigation into the crystallisation

patterns the "1,2-alternate" conformation seems warranted.

4.6. Tetraalkylated Calix[4]arenes in the

"1,3-Alternate" Conformation

There are five crystal structures from the CCD that are

tetrasubstituted and adopt the "1,3-alternate" conformation.

The general representations of these compounds with the

various substitutents are shown in Table 29. In the crystal

packing none of these five structures show any unusual

intermolecular interactions. The cavity shape of calixarenes

in the "1,3-alternate" conformation appears to be dependent

on the steric size of the upper and lower rim substituents.

Compound 9b has sterically small upper and lower rim

substituents. A diagram of the calixarene conformation and

descriptive plane angles is shown below in Table 30. Compound

Page 88: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

75

i m

a> xi 4J

G •H

CO

a) a)

flS

•H rH (U O

*0 a) 4J (d

rH

i , H

fd

4J a>

4J

HH o

a o -H 4J <d 4J a <D 03

• a) M g a o (D -H m .u

<d f—{ £ rd M O <U MH G G <D O 0 U

<d n ^ o in in co oo H co

<D CJ •H *0

M <D

rH JJ >1 W O <U N C rH s >? & &

4J (D

« Ot >i

rH rH rH >1 CO X! 4J

I

CM CC

< " V

£'( y°

<u §

M 0) •U 03 (U

<u rH 4J >1 W o a? N a rH a> >1

rC X! X3

O > r -U <P

•U <P

x / \ _

>. ° " \ /r o — '

i XXX

>1 4J

I ffl 4J

CM cc

EC

>i >i 4J 4J

2 2 x

& wQ l I 4J JJ

• Q) Ol 4J c* fd

a

<D 4J

<D H

"3 E* fd

<0 .Q u *d a> (A Ot (A O) (A

Page 89: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

76

9b is unsubstituted on the upper rim and the lower rim is

tetrasubstituted by an ethyl-ethyl ether substituent.

Table 30. Molecular plane angles for structure 9b

Plane 9b A 103.7 B -104.4 C 104.3 D -102.1

A - C -28.0 B - D -26.5

The lower rim substituents are arranged so that the methylene

carbon points away from the cavity but the substituent itself

shows an interaction within the cavity. Due to the sterically

small nature of these upper and lower rim substituents, the

four aromatic rings of the calixarene fold in over the cavity

effectively covering it.

Structurally the cavity shapes of 9a, 9c, 9d and 9e are

similar. Diagrams of the structures of these four compounds

are shown in Figure 20. Table 31 lists the descriptive plane

angles for these four structures. All four of these

structures posses substituents on the upper and lower rim

that may be considered sterically large. In each case the

lower rim substituents drape down and fill the void under the

cavity. These substituents do not have any unusual

intramolecular interactions but their steric size appears to

be sufficiently large to alter the shape of the cavity so

Page 90: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

77

9a 9c

9d 9e

Figure 20. Molecular geometries of 9a, 9c, 9d, 9e

Page 91: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

78

that the folding in of the aromatic rings as seen in 9b is

not observed. It is unclear whether the upper rim

Table 31. Molecular plane angles for structure 9a, 9c 9d and 9e ' '

Plane 9a Is M A 78.7 83.0 86.9 B -81.5 -87.3 79.6 C 72.6 83.0 78.6 D -77.0 -87.3 -73.9

A - C 28.0 14.0 26.6 B - D 21.5 5.3 15.1

9e 86.9

-85.7 83 .0

-86.9 9.0 8.3

substituents directly affect the observed conformation but

only in their absence may the aromatic rings fold in over the

cavity.

None of the calixarenes that crystallise in the "1,3-

alternate" conformation show the ability to have host-guest

interactions. The arrangement of the aromatic rings so that

the two opposing rings are parallel precludes a guest

formation. Unlike related "pinched cone" calixarenes which

may distort to accommodate a guest, the calixarenes in the

"1,3-alternate"conformation do not show this flexibility.

The cavity shape of these calixarenes appears to be dependent

on a combination of the steric size of the upper and lower

rim substituents but no conclusions of this sort may be made

given the limited data set.

Page 92: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

79

4.7. Conclusions

Of the 76 crystal structures of calix[4]arenes analysed

in this survey, fifty-six were "cone", fourteen in the

"partial cone", one in the "1,2-alternate", and five in the

1,3-alternate" conformation. Although the preference for

these four different conformations is determined by their

synthetic design, the molecular recognition properties appear

to be a function of their conformation. Only compounds that

are found in the "cone" and "partial cone" conformation have

shown inclusion properties. The "1,2-alternate" conformation

shows the presence of a cavity but no host-guest complexes

have been found to date. The "1,3-alternate" conformation

3oes not appear to be capable of host-guest interaction since

there does not appear to be a cavity present in this

conformation.

Calixarenes in the "cone" conformation most readily

accept guests within its cavity. Of the fifty-six

calixarenes in the "cone" conformation, twenty-three

calixarenes show host guest interaction with small organic

guest molecules, or inter-calixarene inclusion complexes.

Although the nature of the upper and lower rim affects the

preferred geometry in the solid state, the shape of

calixarene cavity appears to be dependent on whether or not

the calixarene has a host-guest interaction. In all cases

where there is a guest present the aromatic rings are folded

Page 93: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

80

further out to accommodate for its presence. In the absence

?f a 9uest the aromatic rings appear to be more closed.

The same host guest relationship is apparent for

calixarenes in the partial cone conformation. Although

calixarenes in the "partial cone" conformation are apt to

self-inclusion of the lower rim substituent from the single

anti aromatic ring, inclusion of small organic molecules is

also observed. In cases where there is a guest present in

the cavity, the three aromatic rings fold out to accommodate

its presence. Alternately, without a guest present the three

aromatic rings are more closed.

All guests present in these seventy-six crystal

structures are held in place by CH-Tt interactions between the

guests and the aromatic rings of the calixarene. In the

cases where the guest has n orbitals and the host has alkyl

substituents on the upper rim, interaction between the

calixarene alkyls substitutents and the n orbitals of the

guest are also observed.

There are indications that all calixarenes in the "cone"

and "partial cone" conformations are capable of host guest

interaction. The fact that in all cases where there is a

guest present, the cavity opens up to accommodate the guest

indicates that other host-guest complexes may be observed

given proper crystallisation conditions.

Page 94: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

CHAPTER 5

CRYSTAL STRUCTURES OF NEW CALIX[4]ARENES

5.1. Introduction

The solid state structures of four new calixarene

compounds have been determined. The generic diagrams of

these four compounds are shown in Figure 21.

Figure 21. General representation of structures I, II,

III, IV.

NHCOCH.

OTos

Structure I OH OTos

Structure II

OTos

Obz OTos

Structure III Structure IV

Page 95: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

82

There are two 1,3-dihydroxycalixarenes that adopt the "cone"

conformation(X and II), one tetrasubstituted "cone" (III),

and one calixarene in the "1,3-alternate" conformation (IV).

four of these compounds were synthesised by Dusan Hesek

in Paul Beer's research group at Oxford University.

Specifically these compounds are intermediates in the

synthesis of calix[4]arene derivatives for use in anion

extraction from aqueous media.

5.2. Structure I

Crystals of. compound I were obtained from a saturated

solution in chloroform. The solution was in a sealed

container that was placed in a water bath with a temperature

of 65 C. Over a period of two months the bath temperature

was lowered to room temperature and clear colorless crystals

with block morphology were obtained. Due to the solvent

dependent nature of these crystals they were analysed at -60

°C mounted on a glass fiber and held in position with

Paratone-N. Data collection was carried out as described in

the experimental section.

After collection of the diffraction data, the structure

was solved with the use of SHELXS-86. Information regarding

the collection and processing for structure I is shown in

Table 32. The crystals were found to be monoclinic and in the

space group P2i/c. There are four calixarenes in the unit

Page 96: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

83

Table 32 - X-Ray Crystallographic Collection and Processing

Data for Structure I

, pirf.iire I

Crystal System

Space Group

Cell Constants

a, A

b, A

c, A

b

V, A3

mol formula

fw

formular units per cell (Z)

r, g cm-3

total data collected

independent data I>3 s(I)

R

Rw

GOF

weights

Monoclinic

P2i/c

29.373 (2)

9.647 (1)

18.328 (2)

106.428 (8)

4981.4 (7)

C48H44CI6N2O10S2

1085.74

4

1.448

6340

3000

0.0491

0.0498

0.94

[0.04 F2 + (s F)2]"1

Page 97: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

84

cell with two molecules of chloroform per calixarene. No

disorder was found within the lattice. All atoms with the

exception of the carbons of the calixarene framework were

refined with anisotropic thermal parameters. The hydrogens

attached to the phenolic oxygens were found from an electron

density difference map and all other hydrogen atoms were

calculated in most probable positions. This refinement

resulted in a final R value of 0.0491.

The structure of the individual molecule is shown in

Figures 22 and 23. Information regarding the bond lengths,

bond angles, and torsion angles associated with structure I

may be found in Appendix B. Comparison of these bond lengths

and angles with other 1,3-dihydroxycalix[4]arene show no

unusual deviations. This calixarene is another example of a

1,3-dihydroxycalix[4]arene which crystallises in a "flattened

cone" conformation where two of the aromatic rings are almost

parallel and the other two form an obtuse angle. The

preference for the "cone" conformation is directed by the

presence of two hydrogen bonds between the two phenolic

oxygens. The hydrogens on the two phenolic oxygens were

located from the difference map. The hydrogen bonds occur

between Olb - Olc and Old - Ola which is reflected by their

short oxygen-oxygen distances of 2.88 and 2.94 A

respectively. The distances between the two non-hydrogen

bonded oxygens is 3.21 for Ola - Olb and 3.13 for Olc - Old.

Although these differences in oxygen-oxygen distances are not

Page 98: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

85

04 Id

C41b

08al

Figure 22 ORTEP diagram of structure I with thermal

ellipsoids drawn at 50% probability level. H atoms are

omitted for clarity, (side view)

Page 99: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

86

C42d

041d|

ClOa

C41b

C12c

ClOc

Cl2a

CISa C42b

figure 23 ORTEP diagram of structure I with thermal

ellipsoids drawn at 50 % probability level. H atoms are

omitted for clarity, (top view)

Page 100: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

87

very large, they do indicate that two of the distances are

due to stronger interactions. These oxygen-oxygen distances

correspond well with other l,3-dihydroxycalix[4]arenes.

The cavity shape of I is defined by the angles between

each of the four aromatic rings and the mean plane of the

methylene carbons as well as the interplanar angle between

the two opposite aromatic rings. The relevant angles of the

aromatic rings of structure I and the mean values for other

1,3-dihydroxycalix[4]arenes are shown in Table 33.

Table 33. Molecular plane angles of structure I and mean plane angles for similar 1,3-dihydroxycalix[4]arenes

Plane Structure I mean a 80.3 (2) 78.2 b 42.1 (2) 40.3 c 81.2 (2) 77.5 d 40.1 (2) 39.0

a - c 19.4 (3) 24.3 b - d 97.8 (2) 102.3

The plane angles of the calixarene cavity are very-

similar to the mean plane angles of other 1,3-dihyrdroxy

calix[4]arenes. The two "parallel" aromatic rings make an

interplanar angle of 19.41(3) (24.3 mean value) degrees and

the two "flattened" rings make an interplanar angle of

97.84(2) degrees (102.3 mean value). The two tosylate

substituents on the lower rim point away from the cavity. As

seen in Figure 23 (the top view of the calixarene molecule),

Page 101: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

88

the tosylates appear to twist around in a counter clockwise

direction.

The crystal packing of I is directed by series of

intermolecular hydrogen bonds and 7U-stacking between adjacent

calixarene molecules. Figure 24 shows a projection of the

crystal packing looking down the C axis. The calixarenes are

oriented so that they are in an "up-down" arrangement with

the aromatic ring b stacking on top of aromatic ring d of an

adjacent calixarene( x,y,z) -> {x,3/2-y,z-1/2). The atoms in

these two rings show close interactions ranging between 3.34

to 3.57 A . A strong hydrogen bonding interaction occurs

between N4b and 041d related by the transformation of (x,y,z)

-> (x,5/2-y,z+1/2).

The "up-down" relationship of these calixarenes in the

crystal packing creates long threads of molecular calixarenes

which extend the length of the crystal. Figure 25 shows a

diagram of the unit cell projected down the b axis. There

are four calixarenes and eight molecules of chloroform in the

cell. This packing diagram shows a series of layers. The

top layer has two chloroform molecules followed by two

calixarenes in the next layer, then another layer of

chloroform. This layering effect of calixarene: solvent:

calixarene is very common to the crystal packing of

calixarenes in general. These unique clathrate interactions

were first observed by Atwood in a series of papers regarding

the the crystal structures of a series of calix[4]arene

Page 102: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

89

Figure 24 A diagram of the crystal packing of structure I

Page 103: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

90

y > - o

Figure 25 A diagram of the unit cell of structure I

Page 104: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

91

sulfonate salts where the calixarenes form layers which are

separated by a sheet of water molecules.^6 This layering

affect may also be seen looking down the a-axis.

5.3. Structure II

Crystals of compound II were grown from a saturated

solution in THF by slow evaporation of the mother liquor at

10 °C. Clear colorless crystals were obtained. These

crystals were solvent dependent, quickly decomposing when

left in the open air. The crystals were mounted in a

capillary tube with the addition of a small amount of mother

liquor prior to sealing the capillary. Data were collected

as described in the experimental section.

After collection of the diffraction data, the structure

was solved using SHELXS-86. The crystals were found to be

monoclinic in the P2±/n space group. Information regarding

the collection and processing of the data for structure II is

given in Table 34. There are four calixarene molecules in the

unit cell with 2 molecules of THF per calixarene. The

solvent molecules in the lattice were disordered and their

absolute positions were difficult to identify. Hydrogen

atoms were generated and also found on the difference map.

The hetero atoms and methyl groups were turned anisotropic

prior to the final refinement which resulted in an R value of

0.0698.

Page 105: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

92

Table 34 - X-Ray Crystallographic

Data for Structure IX

Collection and Processing

St-Turture XX

Crystal System

Space Group

Cell Constants

a, A I I

b, A

c, A

b

V, A3

mol formula

fw

formular units per cell (Z)

r, g cm-3

total data collected

Independent data I>3 s(I)

R

Rw GOF

wieghts

Monoclinic

P2i/n

11.7184 (8)

15.023 (1)

27.687 (3)

99.333(7)

4809.6 (7)

C50H56N2O14S2

967.09

4

1.335

6159

2994

0.0698

0.0701

1.39

[0.04 F2 + (s F)2]"1

Page 106: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

93

The structure of the individual calixarene molecule

resembles other 1,3-dihydroxycalix[4]arenes. Tables of bond

lengths, bond angles, and torsion angles are shown in

Appendix C. These distances and angles correlate well with

other 1,3-dihydroxycalix[4]arenes. Figure 26 shows the

geometry of a single calixarene molecule in this structure.

Table 35 shows the relevant plane angles of structure II and

the mean values for other 1,3-dihydroxycalix[4]arenes.

Molecular plane angles of structure II and mean p ne angles for similar 1,3-dihydroxycalix[4]arenes

Plane Structure TT _ — mean 81.2 (2) 7 8 - 2

o ll'l (3) 40.3 d (2) 77-5 d 32.2 (4) 39 o

£ ~ 2 20•1 (6) 243 b " d "6-0 (3) 102[3

The plane angles of the two parallel rings are slightly

deviated from the mean conformation of other 1,3-dihydroxy-

calix[4]arenes. The two "flattened" rings are bent out

further making an angle of 116.0(3) degree angle compared to

the mean value of 102.3 degrees usually observed for these

calixarenes. The other two "upright" rings are reasonably

similar to the mean.

This deviation in the plane angles of the two

"flattened" rings is due to an intermolecular hydrogen

bonding interaction of the phenolic oxygens with one of the

Page 107: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

94

04al

08al

ClOa

08a2

CIS a

Figure 26 ORTEP diagram of structure IX with thermal

ellipsoids drawn at 50 % probability level. H atoms are

omitted for clarity.

Page 108: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

95

THF molecules. The normal arrangement of the hydrogen

bonding network which involves two hydrogen bonds between the

phenolic oxygens and the oxygens of the ether linkages is not

present in this structure. In structure II there is one

intramolecular hydrogen bond which occurs across the bottom

of the cavity between Old to 01b (2.91 A). The second

phenolic oxygen, 01b, has an intermolecular hydrogen bond to

oxygen of a THF molecule which resides under the cavity of

the calixarene with an oxygen-oxygen distance of 2.77 A as

shown in Figure 27. This is the only example of a 1,3-

dihydroxycalix[4]arene which prefers an intermolecular over

an intramolecular hydrogen bond. Due to the presence of this

intramolecular hydrogen bond across the cavity, the two

phenolic rings may fold further into the ring, as demostrated

by the increased dihedral angle between planes b and d.

The two lower rim tosylate substituents arrange

themselves under the cavity as to minimize steric

interactions. The presence of the THF under the cavity

appears to have no significant affect on the arrangement of

these substituents. One of the tosylates is directed so that

it points down and the other tosylate sticks out away from

the cavity.

The crystal packing in the unit cell is shown in Figure

28. The unit cell contains four calixarene molecules and

eight molecules of THF. Although the packing arrangement of

the individual calixarene molecules is different from that

Page 109: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

96

04 al

04cl

08al

ClOa

08a2

C15a

Figure 27 ORTEP diagram of structure IX with thermal

ellipsoids drawn at 50 % probability level. H atoms are

omitted for clarity. Hydrogen bonding interaction between

the 01b and the THF molecule.

Page 110: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

97

3*T \

2

Figure 28 A diagram of the unit cell for structure II

Page 111: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

98

observed m structure X, the same layering effect is

Observed. The layers of clathrate guest molecules and

calixarenes alternate along the c and a axis. Similar to

Structure X, the calixarenes are lined in long threads which

extend the full length of the crystal. Although one of the

solvent molecules is held in position by a strong hydrogen

bond, the second THF is held in place by weak Van der Walls

forces in a cavity formed between the calixarenes. This

second molecule of THF which is weakly held in position is

presumably responsible for the solvent dependent nature of

these crystals.

The nitro substituent on the para position is twisted

slightly out of plane with the aromatic ring by four degrees.

This twisting is due to a strong intercalixarene interaction

between 04al and C7b (3.27 A ) . These two calixarenes are

related by the transformation (x,y,z) to (3/2-x, y-1/2, 1/2-

z). The oxygen of the nitro substituent appears to have an

interaction with one or both of the methylene hydrogens.

5.4. Structure III

The compound in structure III is tetrasubstituted and

adopts the "cone" conformation. The lower rim substituents

are large enough to prevent conformational mobility.

Crystals of structure III were grown from a saturated

solution of THF at 10 °C over a period of two months. Clear

colorless crystals in the shape of long blocks were obtained.

Page 112: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

99

These crystals were found to be solvent dependent and were

mounted with mother liquor in the capillary prior to sealing.

Data collection proceeded as outlined in the experimental

section.

The crystals were found to be orthorhombic and in the

space group C222i. Specific information on the collection

and processing of this structure is shown in Table 36. The

structure was solved using SHELXS-86 where four calixarenes

and twelve THF molecules were found in the unit cell. The

solvent molecules in the lattice showed a significant amount

of disorder which was treated by fixing the bond lengths and

angles for these molecules prior to final refinement. All non

hydrogen atoms were treated with isotropic thermal parameters

and the positions of the hydrogen atoms were calculated in

most probable positions prior to the last refinement which

resulted in an R value of 0.065.

The molecular structure of III, Figure 29, is in a

"pinched cone" conformation in which two aromatic rings with

lower rim benzyl substituents lie flattened and the two rings

with lower rxm tosylate substituents are pinched in over the

cavity of the calixarene. The molecule lies on a two fold

miror plane. Specific information regarding bond lengths and

angles for structure may be found in Appendix D. The

conformational characteristics of this structure match well

with other tetrasubstitueted calixarene in the "cone"

conformation without sterically bulky para substituents.

Page 113: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

100

Table 36 - X-Ray Crystallographic Collection and Processing

Data for Structure III

Structure TTT

Crystal System

Space Group

Cell Constants

a, A

b, A

c, A

V, A3

mol formula

fw

formular units per cell (Z)

r, g cm-3

total data collected

Independent data I>3 s(I)

R

Rw *

GOF

weights

Orthrombic

C222i

19.044 (2)

21.522 (2)

15.362 (1)

6296 (1)

C68H70N2O15S2

1219.45

4

1.286

2143

1074

0.0565

0.0742

1.07

[0.04 F2 + (s F)2]-l

Page 114: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

101

04a

Clla

ClOb

Cllb

Figure 29 ORTEP diagram of structure III with thermal

ellipsoids drawn at 50 % probability level. H atoms are

omitted for clarity.

Page 115: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

102

Table 37 shows the planes of the aromatic rings for Structure

XXI and also the mean value of similar structures.

Table 37. Molecular plane angles of structure tit =nri Plane angles for similar calix[4]arenes d ^

Mear^ Structure ITT Plane

B 1 3 7 - 6 (3) C ?2'q 102.36(8) D qq-? 37.59(8)

A - C !??*? 102.1(3) B - D on"? 1 0 4- 8 (2)

~20-1 -24.5 (4)

The two flattened rings are canted at angles of about 37

degrees with an interplanar angle of 104.8(2) degrees. The

two parallel aromatic rings fold over the center of the

cavity with an interplanar angle of -24.5(4) degrees. These

angles are very similar to the mean values for calixarenes of

this type. The methylene carbon attached to the phenolic

oxygens point away from the cavity and their substituents

arrange themselves under the cavity to reduce steric

interactions.

The arrangement of the lower rim substituents shows no

unusual characteristics. The two benzyl groups are attached

to the rings which are folded out at an obtuse angle and the

two tosylate substituents are attached to the rings which are

pinched over the cavity. The two benzyl substituents occupy

the area under the cavity with one bent to the right and the

other bent to the left. If one were to look at a top view of

Page 116: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

103

this structure, the tosylates would both be pointed out from

the underside of the cavity and would appear to twist in a

clockwise direction similar to their arrangement in structure

I.

The crystal packing diagram of the unit cell, Figure 30,

shows four calixarene molecules and twelve THF molecules.

The calixarene molecules in the crystal lattice may be

thought of as occupying octahedral positions and there are

two THF molecules in the tetrahedral holes in the lattice.

There are several close contacts between each calixarene with

other calixarene and the solvent molecules but none appear to

have a significant effect on the observed geometry of the

calixarene molecule.

5.5. Structure IV

Compound IV was synthesised in the "1,3-alternate"

conformation where both of the lower rim substituents are

large enough to prevent rotation about the methylene bridges.

Crystals of IV were grown by slow evaporation of a saturated

THF solution at room temperature. The clear colorless

crystals with a block morphology were mounted in a capillary

and held in place using silicon grease. The data collection

proceeded as outlined in the experimental section.

The structure was solved using SHELXS-86. Specific

information regarding the collection and processing of the

data for structure IV is shown in Table 38. The crystals

Page 117: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

104

f t ^ i , ^ w y v ^ w

Figure 30 A diagram of the unit cell for Structure III

Page 118: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

105

Table 38 - X-Ray Crystallographic Collection and Processing

Data for Structure VI

Strunt-m-P ty

Crystal System

Space Group

Cell Constants

a, A

b, A

c, A

b

V, A3

mol formula

fw

formular units per cell (Z)

r, g cm-3

total data collected

Independent data I>3 s(I)

R

Rw

GOF

wieghts

Monoclinic

C2/c

22.835 (3)

15.885 (1)

15.582 (2)

117.067 (9)

5033.1 (9)

C56H46N2O12S2

1003.13

4

1.324

3225

1601

0.0567

0.0548

1.34

[0.04 F2 + (s F)2]—1

Page 119: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

106

were found to be monoclinic and in the space group C2/c.

Four calixarenes occupied the unit cell and no disorder was

found m the lattice. Hydrogen atoms were found on the

difference map as well as being assigned positions. All

sulfurs, oxygens, nitrogens, and methyls were turned

anisotropic which resulted in a final R value of 0.0567.

The molecular structure of IV, shown in Figure 31, is in

the "1,3-alternate" conformation in which two alternate

aromatic rings are pointed up and the other two rings are

pointed down. The calixarene lies on a crystallographic two

fold rotational axis. Table 39 shows the angles of the

planes with the methylene carbons and the interplanar angle

between the two alternate planes.

Table 39. Molecular plane angles of structure XV

Planes Degrees

£ 87.6 (2) f, -87.2 (2) J, 87.76 (7)

A - A- "87-29 (5)

~ 4.6 (4) B " B' 5.5 (5)

Each of the four aromatic rings make an angle of about

87 degrees with the methylene carbon plane. The resulting

angle between alternate aromatic rings is about 5 degrees.

The shape of this cavity is very similar to other "1,3-

alternate" crystal structures which have large lower rim

Page 120: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

107

ClOa 0

C14b ClOb

08 a

Figure 31 ORTEP diagram of structure XV with thermal

ellipsoids drawn at 50 % probability level. H atoms are

omitted for clarity.

Page 121: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

108

substituents. The methylene carbons of the lower rim

substituents point away from the cavity and the substituents

themselves drape down filling the void under the cavity. The

cavity geometry in this structure most closely resembles

structure 9a. 9a has three sterically large substituents on

the lower rim. The addition of the fourth sterically large

substituent on the lower rim in IV may account for the

decreased interplanar angle between planes A and C. The

close interaction between these aromatic planes does not

provide a cavity for host-guest interactions. Due to the

strained nature of the "1,3-alternate" conformation, it is

unlikely that these rings may fold open to accommodate a

guest as observed in calixarenes in the "cone" and "partial

cone" conformations.

The crystal packing which is shown in Figure 32 shows

that these calixarenes arrange themselves in layers. The

layer shown at the top of the diagram has two calixarenes

oriented so that the benzyl substituents on both calixarenes

are interacting in the center and the tosylate substituents

are on the exterior. The second layer down has the alternate

arrangements with the tosylates in the center and the benzyl

groups point out. These layers alternate along the C axis of

the unit cell forming a series of long threads in the

crystal. The projection down the A axis, as seen in Figure

33, shows an top view of these "molecular threads". The

close packing arrangement of these threads provides very few

Page 122: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

109

Figure 32 A diagram of the unit cell for structure IV

Page 123: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

110

Ficpxre 33 A diagram of the unit cell for- structure XV

Page 124: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

Ill

voids in the lattice that would usually be occupied by

lattice solvent.

5.6. Conclusions

Of the four new crystal structures of calix[4]arenes,

two are examples of calixarenes where the preferred

conformation is determined by intramolecular hydrogen

bonding. The conformation of the other two calixarene

structures is determined by the manner in which they are

synthesised.

Structure X is a typical example of a 1,3-dihydroxy-

calix[4]arenes. This calixarene is found in the "cone"

conformation which is directed by two intramolecular hydrogen

bonds between the two phenolic oxygens and the adjacent ether

linkages. Structurally this compound has no unusual

characteristics; the cavity shape and size is very similar

to the mean conformation of calixarenes of this type. One of

the unique characteristics of this structure is the presence

of intermolecular 7t-stacking and hydrogen bonding

interactions observed in the crystal packing. The presence

of these intermolecular interactions appears to have no

effect on the preferred conformation of the individual

molecule. The calixarenes arrange themselves in long threads

which extend the length of the crystal. Each of these

threads is separated by clathrate solvent molecules.

Page 125: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

112

Structure II is an atypical example of a 1,3-dihydroxy-

calix[4]arene. The calixarene is in the "cone" conformation

which is directed by the presence of a single intramolecular

hydrogen bond which occurs transannularly between the two

phenolic oxygens. There is also a second hydrogen bond

occurring between the second phenolic oxygen and a single THF

molecule. This is the only example of a 1,3-

dihydroxycalix[4]arene which prefers an intermolecular

hydrogen bond over an intramolecular hydrogen bond. The

presence of this single tranannular intramolecular hydrogen

bond allows the two phenolic oxygens to fold further into the

cavity making the two aromatic rings more flattened. The

calixarene molecules are arranged in threads separated by

solvent molecules similar to structure I.

Structure III is a typical example of a tetralkylated

calix[4]arene in the "cone" conformation with small para

substituents. This calixarene is tetrasubstituted with

sterically large lower rim substituents which prevent

conformational interconversion. The cavity shape and size is

typical for these calixarenes; two of the aromatic rings are

pinched, folding over the cavity and the other two aromatic

rings are folded out with an interplanar angle of about 90

degrees. The calixarenes are found in octahedral positions

in the crystal packing with two solvent molecules found in

the tetrahedral holes.

Page 126: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

113

Structure IV is a typical example of a calix[4]arene in

the "1,3-alternate" conformation. The lower rim substituents

are sterically large which prevents conformational

interconversion. Both of the two alternate aromatic rings

have an interplanar angle of about five degrees which is

common for calixarenes in the "1,3-alternate" conformation.

The calixarenes arrange themselves in a head to tail fashion

forming long threads. The close packing arrangement of these

compounds prevents the presence of clathrate solvent in the

lattice.

None of these four calixarene crystal structures show

the presence of host guest interactions. After examining

structural characteristics of calix[4]arenes, the absence of

intracavity host guest interactions is not particularly

surprising. There are no examples of host guest interactions

with compounds similar to structures III and IV. There are

two examples of 1,3-dihydroxycalix[4]arenes, similar to

structure I and II, which have inclusion complexes but there

are no examples of THF inclusion complexes in any of these

structures. Further research will be necessary to determine

the chemical characteristics necessary for host guest

interactions.

Page 127: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

APPENDIX A

CDS SEARCH RESULTS

Page 128: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

115

<D H

EH ^ h O O H O O O g J r O C O C T k ^ r H ^ C M O r H ^ O C ^ I ^ C 0 l > [ > r O C N C 0 < < O C r > ! > ^ < £ > ^ O N ID Lfl VD VO [*^ • . . . . . W I> U3 Ch O CM CM w ( N o i £ N C N i r n r o L n L n L n v o u ) V D

•n H

*< 00 LO CX) LO a <T\ H H O O H ( i r l ^ D ( T i H ( T i H O C \ I S 0 0 V D U 5 0 0 C ^ C N 3 ^ r H V D r H V £ ) C N t S 3 V O k D U > V X > 0 ^ W * • • • • • l o cm m cm o P ^ C N C N C M C N ^ m V D ^ U D ^ L O C O

CQ <i)

O O

fl fd

cd 4J fd P

i—i fd u 3 -U u 3 u 4J O)

c/3 p

a

u

rQ H

CN CM ^ (N CM o o o o o o o o o o r s i o ^ c ^ c N L n u r ) L D i n i n i D V D V D n r ^ r ^ r o r o r o V O V D V X ) V D l > r ^ • . . . . .

i n LO LO LO <J\ <T\ C M C N C M C M r o r o L O L T j L O L O V D k o

W o o o o r o oo b ^ m ^ m c ^ h n o r o

Qti KD KO KO KO {> • • • • .

* * • * • • l o l o l o l o o> ch O C N C N C N C N r O r O L O L O L O L O V O V O

D CN CN LO i n ^ ^ < J O O V O V J D U D r H r H r O r O ( ? * < y \ t ^ [ > t J o o r ^ c M r - r o r o o o c o v o v o ^ ^ S ^ LD Ok LD W * * ' • * • H H Ch m CO 00 w C N C M C N C M C O r O L O L O L O L O U D V O

•H H

A r-i

&* H

X CM CM CM CM LO LO p O O O O l D l D C h ( J \ ( T i O ^ H H

M ^ o ^ o u > v x ? r ^ i > <d LO LO LO LO 00 00 >lCN C M C N C N r O r O L O L O L O L O \ £ > V D

CM CM CM CM O LO LO LO LO LO VO KD KD KD 1> • • • • •

CM CM CM CM m

^ ^ kji ^ r o 3 : LO LO LO LO LO a< vo vo vo ko o D U CM CM CM CM r o

CM CT\

! > ^ • LO

r o -- O

r o i > LO rH l > • . ^

r o l o

CN CM CM O 1> (T) CT| Ch rH rH rH H H V£> VjO

• • • * •

^ ^ "vJ1 H H LO LO LO O O

O O O rH rH E> l > r - VD KD H H H ^ U5

^ ^ ^ H H LO LO LO ! > | >

< ! V£> KD KD KD 00 00 O l o l o l o l o o o o o u d v o m d v d ^ o v o ^ V ^ k O V O ^ V O V O C M C M C M C M ^ ^ U U D V O V £ ) V O l > t > » . . . • . < j * * • • • ' ^ ^ ^ ^ H H [ s C M C M C M C M r O r O L O L O L O L O l > [ >

<d rH

a) u 3 4J O 3 u 4J w

P CM CM CM CN LO LO g O O O O | > O l > O I > O L O l D S 0 r ^ 0 E > ! > [ > a ^ c T \ a ^ < T i 0 0 f ^ V D V O V D V O l > r ^ • K • • * * • • U3 <X> <X> VO VO VQ P Q C N C N C M C M r O r O L O L O L O L O V D V O

<D TJ O

O

0) w fd rQ fd •u fd

P

O Tf o o U Tf o o I I i U

P

fd rQ a t s d , 0 i o o o o o o < m o p i < m

MH H

a) M 3 4J O 2 M 4J U)

Q 00 00 00 00 o o D r l U ) O U ) O O C O O O l D l O ^ ^ j H L O L T i L O n r o n n v o ^ o o o O VO VO *£> O | > *

V£> CTi <J\ P C M C M C M C M r O r O L O L O L O L O U D U >

Q) TS O u

cu w fd

£ i fd

4J fd p

a t s o o

O TJ O O

I I l l l I o p

fd XI U TS O O O O

fd & O O < pq a p < pq

Page 129: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

116

o r f

H o o o o ro co

VO \sO V£> kO t> * • • • • <<J l o i n m m ct\ cri O o J C N C N C N r o r o L n i r i L n L n v o v o

4J H

pti O <Ti 00 |> ^ ^ H H V D r H r H m L n i > V O r O L n c r i r ^ C M o o r o c N ^ o o o o ^ o o o L n v o r o P Q ^ O k O V O V O I > l > H * * • • • i n U) oo ro m o > C N J C N C N ( N r o m L n L D ^ L n i > I >

4J a o o

« H

O ^ O ^ H f O W u D o o v o o o L n ^ ^ i n ^ o o o o ^ b c r > c T \ o ^ c h a ^ c r j L n c h L n • o o CQ L i i i n Lfi i n o o • • • • . < * • • * • • ^ l o ^ rH cr> oo P i c N i c M o q c N i m ^ m v o r o r - i v o ^

W H

Ptf cn oo h o vo ( ^ ^ m ^ ^ H H r o o v o r o o i n j H C O L O O r O O O r O ^ O O C M O r O H ^ L D ^ V D V O V D [ > . . . . . . *d • O m ro LO UD rH ^ C N C N C N O Q o n P O L D L O L n L n O O

w <D

TJ o u

*3 G fd

fd JJ <d Q

a H

U VO LD ^ LO VD i ^ H ^ ^ L D V D V D H r ^ ^ O l ^ H E H o Q ^ c r i c o i - n c ^ ^ c r i o ^ i n ^ 2 VO VO U) 00 If) o p m ^ C?i 00 > H C N C N C N r Q r O ^ L D L n ^ V D I > L n

n H

X! (N V£) VD CN ^ CM W o H ^ h n o H h o c o o o ^ i E j C ^ M D U D L D ^ C h r O ^ O ^ m O r H 3 : U3 U> VD i > h v o o o m m c n v o C/^CNCNCNCNrOrOLnLDLnLOUDVX)

fd u 3 4J u 3 Jh 4J c/3

03 Q u

S [> CN rH 1> (N CM H r H L D c r > c N i t H L n m c r i i > m c r i o o P r o r o ^ i > i n r H r g ! > a \ r H r ^ E ^ i J V£> vx> VJ3 V£> LO CT\ D C\ CO KQ KD CO in C / ) C N 0 3 C N O Q r O r O ^ L D ^ V O O O L n

V H

CN 00 CM CN CTi O D o ^ c n i > m L r ) V £ ) L o v x > [ > i > i > ^ E - i ^ ^ c M c o ^ v D r o c N r ^ o o o c h c r ; ^ ) ^ V D U > o o v o O cni r> o ^ p4CNCMCNCN3rOmV£)LOLDLDV£) |>

H

a>

3 -p o 3 u 4J en

> ^ ro Ch ro CO g r H I > l > r H V D C N O C S | O O C M O L n S ^ ^ ^ ^ r H r H L n r ^ v o c ^ c o L n u ^ vo vo o ^ * • • * * • <! • • • • • • ^ cm ^ oq o ^ P C N J C N C N C M ^ r O V D ^ V D ^ i n c T i

<u T3 o a

<u W rjQ fd o

rQ cd 4J fd Q

U t J o o

O T5 o o

I I I I I I a

fd J2 o o

O T5 o o & -S - 1

0 0 * C f ] Q 0 Q i < p q

a;

3 4J u 3 M 4J CO

< 00 O CO 00 <Ts CN D ^ C N O O n m h ^ O n C M H h P - l M D O O k D V £ ) O r H O O r - O r H r H

V£> [> !> 00 O ro Ch LO UD rH ^ ^ C M C M C M C N r o r O L O L r > L n L n ! > ^

Q) *0 o o

a)

2 £ fd o rQ (d i 4J fd fd XI

O 15 o o

O T5 o o

I I 1 I I u

a «o Q O O O O

fd & o o C f f l O P f < p Q

Page 130: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

117

•d Cfl

in ^ o i> vo ro rfJrOOOOCT>CMCOrHCMrHOOr-CF* E j ^ r o L n ^ r o o r o • ^ o cn co S h h h o o ^ o • Ch • . . . O • • • • • • r o r o vo oo o c o i ^ C M C M r o r o ^ ^ r - i U) VD ^ CM

0) CO

VO CO O 00 ^ Ch l > i > ^ r O L n V O C h V O C n P O L n C M h ^ H o ^ m ^ o u ) c o o ^ • l > Ch I> CTi VO rH * • • • • fO • • • • • ' ^ o c r i v o i n o

C M C M C M C M ^ r o i > ^ v o r o r o r H

4J a o o

o

vo W in CTk VO rO <Xi i D o i n o h r ^ r o c N ^ c N O ^ c o c g c M r o L n o ^ H o o o i i i • ^ o t-3 vo oo r* ro o rH • • •r** • * p oo oo ro vo oo oo b C M C N r O r O ^ ^ L O ^ [ > I ^ rH

«0 CO

i< ro i> vo cm D l > C N J O r H C N ^ r H O C r > C h ^ l > C O O ^ V O r H V O i n V O C T i ' ^ r O O O V O * JE| O O 00 CM rH rH • « • • 00 CO O * * • • * • H H H ^ • O w r o r o c N j r o i n r o m ^ o o r o v o H

w CD V3 o o

TJ £ (d

(d 4J <d p

fd M 3 4J o 3

4-> CO

'CO Q o

A <N

id c*

>H ^ CN r o IT) H <Ti H O m V O O r O L O O r H ^ C O V O C M X d H C O C T i O r O C T l L n O O O O i O tt (Ti h O CO ^ <! H o r o c o t n o > H C M C M C M r O r O ^ V O V O L n v O V O L n

VO CO rO CO l > LO H oo ro ro vd cn cm vo cr> <h <£> i >

ro CN CM ro ^ ro

I ^ VD in CM ro ^ P O O H i n O h CM G\ rH CM CM ro

ro cm ro ro in ro

VO 00 ro CM VO O

in vo

rH 00 vo o

o

o m oo ro

O VO ^ 00 O O O <J\ CM i n rH * * * *

vo m m cri

m ^ ro cm ro I> CM rH

oo r- r- oo

oo o ro l o

u en

A ro

S i> ^ o o vo O r o c ^ o c ^ o v o c r k o o o o v o in J V O O C O C O H ^ O U ) ^ l i 1 ^ h b v o c r i v o o o ^ r o H vo o O 00 VO ro C O C M C M C M C M ^ r O V O ^ V O ^ ^ C O

00 CM 00 O CM O rH Ln cn O 00 CM (Tl Ch 00 00 i> CM • * * • * #

CM CM CM CM ^ ro

s! H 00 00 CM ro m Sh VO rH m !> 00 rH > 00 cn 00 C% !> CM

M CM CM CM CM ^ ro

CM vo in rH oo <y\

^ ro O

in ro oo a\ CM O

00 f> 0 ro

o vo o in h vo h O 00 H CM « • * •

CO I> O 00 t > ro cm en

rH CM r - m o\ oo ro cm VO CT\ rH CT*

in ro vo oo O ^ CM Ch

H

— o\ EH ro oo o ^ r- vo H V O O ^ T H V O O r O L n O O O ^ V O O O U V O O ^ C M O i r O V O L n H i n C M * «"D I> 1> vo l> CM O cm W h h a n n m o o C 0 C M C M C M C M"^r0 ! > C M V 0 C M r 0 r H

(d m

in co vo o\ in vo <y\ H r H C O ^ r O ^ C ^ ^ C ^ C M C M r O H > < C M O o m ^ ^ h r o o 3 ^ r o • p O O r H O O O O • • • • o t>

CM *vf CTv 00 • o W c M r o r o r o i n r o o o r o c o r o o O H

a> u 3 4J o 3 u 4J CO

Q) T3 o u

Q) CQ rQ $ °

rQ rd i 4J fd <d rQ O T3 p o o o o

O T* o o

O Tf o o

i I I I I

fd rQ o o

u

< CQ O P c ffl

a)

}H

4J u

4J CO

Q) T3 o o

a) CO , fd

rd 4J (d Q

O 13 o o

U 13 o o

[ I J I I 1

£1 U T J o o o

<d o o < PQ U Q

0

1 c

p

PQ

Page 131: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

118

A

& rH O O ^ H r O O l D l D l T i h ^ O O h O O O c N i L n i > c h o r o i > c n L O o ^ o C/} n oo H n n ^ • • * • o g • ^ ! > rH 00 • S r o c N r o r o m n m r ^ o o ^ ^

LD Ch o

CO o rH

• 0 i n

LD H LD H LO 00 LO 00 CM O CM O

oo ro oo oo oo o o v o o o o o o o c o o o ^ ^ i i n r o L n r o L D i n r o LO rH CT\

M i i M n i n focoooooooooLn^co^oocooo

4J C O U

td

VO D oo CM CM CM rH vo O O ^ ^ i n i D V D H V O r O C M V O H C / 3 C O O C ^ ^ V O [ > O O C M - h r o o S CTI 00 O CN] H (?I « • CN • . * O * • • • • • O O CO F*- O CM ^ C O C M O O ^ ^ ^ L > L > I R- F> CO

u i n

CO t > LO CTl H J > O ^ C M V O O O ^ L n c O V O C O t > rH [ > O O 00 O • l > rH CM 00 rH CM rH CM CO CO • * • *

ro ^ ro C O C O C O C O C O L D r H O O ^ C O C T i

W <D

* 3 o 0

1 fd

fd 4J fd P

fd

•P u 3 in 4J 03

CO p

a

•H fO

fO

PQ VO VO VO VO i > 00 H O V O O V O C M C O O V O O V O O O V O t n O O ^ O C T \ C O { > r H I > t H l > l > ' 1 ^ PQ 00 00 Ch VO H • CM VO CM VO LO VO t S 3 C M C M C M C N O O ^ i n V O L n v O | > < t f

VO VO rH O C O O \ V O O V O H o vo i > o o

• • • I f f

CO CM CM CM ^ "sf1

5 VO CM 00 CM > 00 O LO 00 VO ^ 0 (T\ l > CTl VO rH 00 $D • • * • • • £4 CM CM CM CM ^ CO

t > rH CM ^ O O

^ O VO VO

^ <J\ 00 o \ LO ^

CM VO vo i n

o i n M n co o ^ vo

CO rH VO 00

00 00 O rH i n i n m vo

vo ^ vo o \ o CM <?\ vo <sf« | > o « • • *

CM CM <SN H vo i n i n i >

A i n

<d i n

fa O 00 CO 00 ^ ^ ^ i n r H i n r H O O V O O O c O O O C M C M ^ ffiincomco^mcomcocMCMfo W CM O CM O LO tH <J\

• * • • • • {> m O LO LO • C O C O C O C O C O i n ^ O O ^ O O O O O O

O rH l > Ch VO . - , C M C M ^ C M I > I > C O O C h V O C N l C h O o m H C T i C O O O H O H V O c n ^ O CO CT\ CO cn CO CM CO O * • * • * • ^ m ^ vo co • P c o c M c o c M c o m ^ o o ^ o o c o c o

en

° 2 i n CT N H CM co p q v o H v o o o H C M c r i r ^ c M c T k O c o J o ^ L n c r ^ c n o o ^ o c M L n r o • J o c n o o o c n n * • • • .CM O "SP cr> CM oo co o ^ C O C M C O C M ^ C O O O C O O O C O H H

O

>-» CO CM CO ^ M n O V O ! > V O O l > C M V O C M ^ V O O ^ r H > < c M o m o v o L n v o ^ v o o v o L n p O O C P i O c O C T k W t o O CO H O rH ^ C O C O C M C O C O ^ ^ O O ^ O O C ^ r H

a) u $ JJ o 3 u -U 03

Q) O a

a> w , fd

fd 4J fd a

O T5 o o

U Tf o o I I I I

(d X I U TJ o o o o o o

o

cu M

4J a 3

4J CQ

a; nd o a

a) w ,Q fd o A fd 4J fd P

U T3 O O

U TJ O O

I I I I I I

fd rQ o T5 o o o o ^ 50 o o

u

Page 132: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

119

•RF M

H 00 LO RH P ^ R - ^ O O R H V O L N ^ L D V D C H X O O C T I O O C T I L N I ^ ^ L ^ ^ ^ O ^

CTV \—I CH T—I CM T—I « • » « # . O CM ^ CM ^ LO O C M C M O O C M O O O O M ^ O O ^ O O C H R H

(3 IN

EC VO *NP RH RH W O O O O O G O ^ M I > R H O ^ O C N P O ^ N V O N I N H O H ( N U ) I R )

E> P • • • • • • CO O CH CM • > R O R O O 3 R O R O I N ^ C T I ^ R ^ ( T I C N

4J A O U

£ IN

O 00 00 CH H V O O O O O O C N R H L D O ^ O C H O E H R O L N I N C N H ^ I D O C R I O M ^ S RO O RO H H <J\ <1 O O R ^ O M O • C L I O O O O O O O O O O L N ^ O O L N C O C O O

6 IN

CU 00 CM R- (T\ <J\ W R H ^ R H ^ C N C N L R O O O U D R H ' S J L O ^ C Q H H ^ L N ^ H O U ) I N H ^ O ^ H CM RO O RO RO * • • • • OO W CM CM CH U2 00 . C O M R O R O N N M R O O ^ ^ O O A ^ H

0) a> T5 o A

TS A FD

<D .U <D P

D) IN

P ^ LO ^ LO O H L > L I I R ^ L N I > H R O V £ > F O V D R H R ^ S R H ! > H L > R - H H L R ) H L O R O O O M H CM H (M RO ^ • • * • O • W • L> *SF R* ^ • O T R I R O R O R O R O L N R O O O ^ O O ^ L N O ^ IN

2 ^ R O I N M C ^ W O C T > C M * * O O O ^ O O U 3 U D O O C M C M C O H H O H O O M O C M H C N ^ ^ ^ RH CM H CM 00 00 • • • • • CH F$ • • • * « . I> CM ^ £) • P R O O O O O O O O O L D ^ O ^ ^ C O C O R H

FD U 3 4J V 3

4J U1

'CO P

A

IN

& IN R- VO OO RH O C M O O O ^ U 3 F O ^ ) ^ C M H O O H X J O O ^ C X ) L > C M C M C M V £ ) O O O C ^ ^ N CH CM (T> CM ID RH < ^ LD H VO 00 • S C M O O C M O O O O L O ^ O O ^ O O O O C X ) IN

S O O ^ 00 O W O O L O R H L O O O U D O O L N O O O ^ R O ^ O O O ^ O O C O R - O O O L N ^ ^ I N !S] RH CM RH RH CM <NP • • • • CM •

* • • * • • H ^ O 00 « [> FOOOOOOOOOLNOOOO^O^^CMOO

<D IN

<D JH 3 4J U

2 4-> 0}

> CM ^ CM ^ 1> O L N U D L P V D C H L N O O O O C H R O PL|VDOO^DOOU>C^.<TI^A>'SJ'RHCRI U CH 00 CH 00 ID RH RH G 00 <<0 00 U2 CM • ^ C M O O C M O O O O L O ^ C O ^ O O O O R ^

0 TF o a CD W ,JQ FD O

JQ FD I 4J FD FD RQ O *3 FD rQ P O O O O O O

A U O O

O TF O O

I I I I I U

< M U P < M

IN

a) M 3 4J U 3 M 4J CA

O OO CH OO O L N R ^ L O R - R ^ O O R ^ R - V ^ T H ^ R H V D C M H U ^ R ^ ^ O ^ O L O L D ^ H 00 00 CH OO CM OQ JI

, VD OO OO M • T S J C M O O C N O O O O L N ^ O O ^ O O C T K L R )

A) *3 O a CD W R Q O T I (D U T 3 FD O O O O O O

A FD 4-> FD P

I I I I I I

FD ,Q o o

O P

U T3 (D JQ I O O O O C F F L O P C F F L

Page 133: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

120

to i n

0 I O L O O O O < ; m h ^ n h o o H o ^ ^ o c N

jn rn ^ o j r o o r o vo O CN O H H i n • ( - D m r O r O r O ^ L D L D C h L n C O O C O

O VD

CN P4 00 U) H O 00 W c N i c o r - r - r o r o c r k ^ u D r - c ^ m ffl^inrHLT>l>00C0 • Ch UD ^ r -b VD LD O oq ^ ^ • Ch * • rH • H CN CO 00 CO • o f " D ^ ^ r O r O L T > ^ C T k I 00 CN 00 VO

4J C o o

CO 0

TS o U

TJ a fd

<d 4-> (d p

M i n

0» i n

CM <r* a \ a \ a \ CN CN

D 00 00 00 00 CT\ CF\ rH rH rH H VO VO

E-H rH vH rH H ^ ^ • • * * * « D * i n l o l d ir> a> P o o o o o o o o ^ ^ v o v o v o v o ^ ^

O O C N ^ C N O O O 00 CN 00 CN CM 00 OO LD O ^ 00 t >

00 00 00 00 00 t o

jyj * , * . « » « * » » • » W l D H M D O O H ffi oo i n ^ o oo t>

?H CN O CN o \ CN CN *

00 OO OO 00 00 VO

00 VO 00 VO 00 00 •

O <Ti ^ o i n o <T\ KJ1 CN •

CN o o "si1 rH

o VO 00 00 00 00 *

• t o i n cn CN CN O 00 as o rH •

I> O CN rH

00 O CPfc rH rH CN

vo m VO rH

a> m CN 00

O VO VO CM

A \o

id t o

a i n Ch VO <J\ 00 OO 00 O 00 H 00 ^ ^ O CO ^ ^ C N H f O h •

• # • • • « [*s ^ ^ oo oo i n ^ oo

CN J> <T\ VO ^ ^ CN i n r - o \

* CN VO VO O 00 • • (T\ • 00 O rH . • CN

I 00 ^ ^ ^

r -^ (T\ VO CN

V D ^ < s P C O O O O [ > < T \ r H ^ r H l D I v o v o i d o o ^ o c n • oo oo vo vo

LO ^ O O CN Ln • 1> • • (T\ • • • • • * • 00 00 ^ LT) * CN

^ ^ o o o o L n ^ o o i oo oo vo i n

fd

3 .u o 3 M 4J CO

P a

a i n

CO 00 00 CN ^ ^ H G > C T l O O O O O L n C O V O V O < t f C N K ^ - ^ O O C N i n ^ r H t H T H ^ C r i ^ S 00 H 00 00 * • • • o • W • * • * • - M n o h • c^ N o o c N o o o o L n o o a ^ o o c o ^ o o c T i

3 m

O o l o i> i n gC n ^ C T i ^ C N r H O O O O O O O O O O o o ^ c o ^ c N C N j ^ L n ^ m •

C M i n o i n o o o o • • • * vo D vo oo vo oo o c ^ o o o o o o o o o o i n o o c T i o o c r i H

o r * rH

H CN i n 00 CTt o O oo o rH 00 CN O 00 G\ O ^ !> 00 U i n h 00 CN O CN CN O 00 VO O a \ £ ! 00 CN CN 00 m cn

0 H • * • • • • i n m oo oo vo •

i n tS3 CN 00 00 00 00 IT) 00 1> ^ CTi CTi 00

<D nd 0 a

a> IH 0 2 W ,jQ U TJ fd o T l 4J fd o o O O O O U rQ p 3 cd i i I i i i O

p

M 4J i i O

1 4J fd fd ,jQ U T5 fd S i i cn P O O o o 0 0 A

B

C

D

A CQ

•P i n

<D U 3 4J O 3 }H 4J C/3

rH rH '(N D o i n o m o oo p o v o o v o o o v o c r i o o ( j \ o o o o o o ^ L D L D i D i n C J M n * o • o • • > ^ 0 0 ^ 0 0 0 0 0 0 0 * O • rH rH W O ^ O ^ CN rH K 00 OO 00 00 i n 00 rH 00 H 00 I rH

a) no C) u

a> w cd

•9 4J fd P

u no O O

u TJ o o

] I a

rQ U * 0

o o o fd £ i o o

p

I

«c m a p c cq

Page 134: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

121

A 10

as vo l> s CM ro 00 o rH N 00 l> CN <sf< 00 S vo VO VO ro !> r * O vo rH rH CN 00 D !> LO ro rH LO ro rH 00 LO as vo ro N as LO CM rH 00 ro as rH ro O • CM 0 VO VO CN rH CM \—l 00 • * r - ro ro r=3 as LO VO OO i n ro * • • • 00

a) > ro TH 00 ro o 00 * o O • • •

5 • • • « * • vo LO o i > CM • a) H • • • • • • ro 00 i > 00 rH & CN ro LO ro 00 as 00 rH 00 > ro CN ro 00 1 1 LO

4J a o o

I71 vo

CO O cn o o o o

ct\ r- as r- oo r-vo as vo <n ro o

o r - CN \> CN & i n rH rH i n rH CM O CN O i n i n W 00 rH CN CN rH ro rH 00 00 i n r o rH l > rH O CN3 •

P vo as rH vo ro vo as irH r o as • • • » • rH P vo ro ro i n CN • • • • * rH

o l o O i n o rH u O • • • • • • VO o r o 00 CN •

as as 00 1 r* b r» r o ro i n LO CO as 00 rH

w 0) U 0 a

U a td

td 4J <d P

M-l VO

tn 00 2> CN 00 tn rH o VO ro in vo 00 00 E5 tn LO ro CN CN CN rH LO rH VO w CN vo in ro in vo m CN o CN 00 00 0 CN as vo l> as « as CN r* o VO C0 00 o ro ro o ro rH CN CN * ro o 00 rH ro l> VO i> ro * • • * • o rH CN 00 o • • • LO • •

w • • • • • • as in vo r- O 0 o * * # • • • O ro l> o in CN >* ro ro in i as CN as vo rH ro ro LO VO LO l> 1 ro CN

fd M 3 JJ u 3 u •U w

w P o

<D VO

•0 u>

00 i> vo o as as

00 CN 00 LO as in CN as o ^ i> O O E> l> o in CN * as o in CN LO VO O rH r- LO rH • • • • in

• • • • • • as LO ro vo •

ro ro in i 00 cn as vo rH

CN vo rH O r- cn VO ro LO 00 CN 00

ro CN vo rH o o ro rH rH VO in in o 00 O O as m • • . • •

ro CN 00 00 00 00 oo ro vo LO • • • • • • as CN as as rH VO

ro ro in rH - i ro •«

- <* -» H. r- ro VO CN 00 rH rH LO o ro rH 00 00 in in l> rH 00 CN 00 in rH • vo 00 * LO o ro ro l> in as ro • • « 00 •

• • • * • • as as CN VO o VO ro ro in i as cn rH t—1

A t*

<d r*

OS o O ^ C O O ro HCMOOLOLDrOLnrOLDUDCnCNJrH !U cn cn ro rH a\ vo • en oo «sF in vo > H t > T H O ^ L O C M O ^ * * • VO • O LO rH H H • VO b ro ro ro ro ^ I U) vo ^

CN Q O VO in ro o LO < as as vo CN rH LO vo LO in LO ro P ro rH l > VO CN CN CN • CN o >* LO CN O LO • 00 • • • •

H • « » • • • CN r* vo as rH as PQ 4

3

ro LO 00 i 00 ro rH ro

Q) U 3 4J O 3

4J 03

a) TS o a

CD w (d

•8 4J <d P

O 15 O O

i i I

flJ rQ U 13 o o o o

u *3 0 o

1 I

o o

a

i < m u Q < m

Q) u 3 4J U 3 U 4J W

CD 15 O U

CD CO & <d o

•8 4J cd D

U 13 O O

t i

O TJ O O

l l I

u 15 o o o

<d r Q o o

0

1 I

< m u Q < m

Page 135: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

122

U) G a

<D Ch

EH <3* CN CM VO ^ C N ^ C N r H V O O O O ^ ' s p ^ V O r H C h > i > v o c o i > o o c r v O O O O • o ^ & LD ^ Ch CN • * • LT) CM rO o VO VO rO 00 * • d 4 ^ ^ i ^ ^ ^ L O O O O O C O I o \ 00

4J a o u

>d on

LD O CO W r o v o o c N r o r o r ^ o o L n v o c o v o X ^ m r n m r o u ) ^ • i n • o i n P Q L n m L n L n o o • r o * en • • 5 vo r > oo i > m vo C n ^ ^ ^ ^ L O L O O O I O I rH CM

CO CD

15 o

u

a <d

(d •U <d P

o ov

Csl CN J O O O O VO W ^ C N ^ C N C T k l > C N O C N O r - < r i E H c n o o a t o o c h L n r o • r o * ^ cn S ^ ^ ^ cn cr\ • r o • r o r o • O • • • • * • i > oo r^* oo • r o

I 00 I LD rH

td M 3 4J o 3 }H 4J 03

A o*

O VO LD CN CN rH vo r - CN o ro ro vo o o o d r o r o •

# • • • • • LD LD LD m ID VO VO t >

VO r o ^ r o oo m r o r o vo 00 • LO Ch

• VO • • l > l > VO l > O I CM CN

flj m

rH 00 Ch Of o vo ro cn a \ H r o c N i > i > o o r o L r > ^ o c o cm PQ O CN o O l > CM * i > • ID LD O U n C N H H O O ^ H • l > • • • < 00 00 CM rH 00

I E> I O CN CN

0) U 3 4J u 3 M •P C/3

CD TS O

a

<D w rQ

• 8 4J (d Q

_ o T3 as o o o o

i l l )

(d rQ o T5 o o o o

U TJ o o

fd Xi o o < m o Q

0

1

Q

PQ

Page 136: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

APPENDIX B

BOND LENGTHS, BOND ANGLES, AND TORSION ANGLES FOR

STRUCTURE I

Page 137: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

124

Atom 1 Atom 2 Distance A (e.s.d.)

Atom 1 Atom 2 Distance A (e.s.d.)

S8a Ola 1.614(5) Clc C2c 1.39(1) S8a 08al 1.427(6) Clc C6c 1.39(1) S8a 08a2 1.416(7) Cld C2d 1.39(1) S8a C9a 1.735(8) Cld C6d 1.40(1) S8c Olc 1.621(6) C2a C3a 1.39(1) S8c 08c 1 1.425(6) C2a C7a 1.52(1) S8c 08c2 1.402(6) C2b C3b 1.39(1) S8c C9c 1.751(8) C2b C7b 1.51(1) Ola Clb 1.410(9) C2c C3c 1.36(1) Olb Clb 1.386(9) C2c Clc 1.51(1) 01c Clc 1.412(9) C2d C3d 1.39(1) Olc Clc 1.37(1) C2d C7d 1.51(1) 04al N4a 1.22(1) C3a C4a 1.38(1) 04a2 N4a 1.21(1) C3b C4b 1.39(1) 04c 1 N4c 1.21(1) C3c C4c 1.37(1) 04c2 N4c 1.23(1) C3d C4d 1.37(1) N4a C4a 1.47(1) C4a C5a 1.37(1) N4C C4c 1.47(1) C4b C5b 1.37(1) Cla C2a 1.40(1) C4c C5c 1.37(1) Cla C6a 1.39(1) C4d C5d 1.37(1) Clb C2b 1.38(1) C5a C6a 1.39(1) ,Clb Cb6 1.39(1) C5b C6b 1.39(1) C5c C6c 1.38(1) C12a C15a 1.54(2) C5d C6d 1.38(1) C12c C13c 1.38(1) C6a C7a 1.51(1) C12c C15c 1.52(1) C6b C7b 1.53(1) C13c C14c 1.38(1) C6c Clc 1.52(1) C13a C14a 1.38(2) C6d C7d 1.50(1) 01s C2s 1.46(2) C9a ClOa 1.37(1) 01s C5s 1.61(3)

Page 138: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

125

Bond Distances for Structure I (cont)

Atom 1 Atom 2 Distance A (e.s.d.)

Atom 1 Atom 2 Distance A (e.s.d.)

C9a C14a 1.37(1) C2s C3s 1.50(3)

C9c ClOc 1.36(1) C3s C4s 1.46(5)

C9c C14c 1.39(1) C4s C5s 1.29(4)

ClOa Clla 1.44(2) 06s C7s 1.42(2)

ClOc Cllc 1.38(1) 06s ClOs 1.40(2)

Clla C12a 1.37(2) C7s C8s 1.48(3)

Cllc C12c 1.38(1) C8s C9s 1.50(3)

cm C13a 1.29(2) C9s ClOs 1.44(3)

C3a H3a 0.95 C13c H13c 0.95

C3b H3b 0.95 C13a H13a 0.95

C3c H3c 0.95 C14a H14a 0.95

C3d H3d 0.95 C14c H14c 0.95

C4b H4b 0.95 C15a H15al 0.95

C4d H4d 0.95 C15a H15a2 0.95

C5a H5a 0.95 C15a H15a3 0.95

C5b H5b 0.95 C15c H15cl 0.95

C5c H5c 0.95 C15c H15c2 0.95

C5d H5d 0.95 C15c H15c3 0.95

C7a H7al 0.95 C2s H2sl 0.95

C7a H7a2 0.95 C2s H2s2 0.95

C7b H7bl 0.95 C3s H3sl 0.95

C7b H7b2 0.95 C3s H3s2 0.95

C7c H7cl 0.95 C4s H4sl 0.95

C7c H7c2 0.95 C4s H4s2 0.95

C7d H7dl 0.95 C5s H5sl 0.95

C7d H7d2 0.95 C5s H5s2 0.95

ClOa HlOa 0.95 C7s H7sl 0.95

ClOc HlOc 0.95 C7s H7s2 0.95

Clla Hlla 0.95 C8s H8sl 0.95

Page 139: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

126

Bond Distances for Structure I (cont) Atom 1 Atom 2 Distance A

(e.s.d.) Atom 1 Atom 2 Distance A

Cllc Hllc 0.95 C8s H8s2 0.95 C9s H9sl 0.95 ClOs HlOsl 0.95 C9s H9s2 0.95 ClOs H10s2 0.95

Bond Angles for Structure I Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

Ola S8a 08a 107.2(3) C2a Cla C6a 123.4(7) Ola S8a 08a 109.0(3) 01b Clb C2b 117.9(6) Ola S8a C9a 98.8(3) 01b Clb C6b 119.9(7) 08a S8a 08a 118.3(4) C2b Clb C6b 122.1(7) 08a S8a C9a 111.4(4) Olc Clc C2c 117.1(7) 08a S8a C9a 110.2(4) Olc Clc C6c 118.8(7) Olc S8c 08c 108.1(3) C2c Clc C6c 124.1(7)

Olc S8c 08c 101.9(3) Old Cld C2d 119.2(7)

Olc S8c C9c 106.7(4) Old Cld C6d 119.7(7) 08c S8c 08c 120.9(4) C2d Cld C6d 121.1(7) 08c S8c C9c 107.8(4) Cla C2a C3a 117.2(7) 08c S8c C9c 110.4(4) Cla C2a C7d 123.4(7) S8a Ola Cla 115.0(4) C3a C2a C7d 119.4(7) S8c Olc Clc 119.7(5) Clb C2b C3b 117.9(7) 04a N4a 04a 124.0(8) Clb C2b C7a 121.5(7) 04a N4a C4a 118.5(8) C3b C2b Cla 120.5(7) 04a N4a C4a 117.5(7) Clc C2c C3c 117.5(7) 04c N4c 04c 123.3(7) Clc C2c C7b 122.2(6) 04c N4c C4c 119.0(7) C3c C2c C7b 120.1(7) 04c N4c C4c 117.7(7) Cld C2d C3d 118.8(7) Ola Cla C2a 117.7(5) Cld C2d C7c 119.1(7) Ola Cla C6a 118.9(7) C3d C2d C7c 121.8(7)

Page 140: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

127

Bond Angles for Structure I (cont.)

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

C2a C3a C4a 119.5(8) Clc C6c C5c 116.2(7)

C2b C3b C4b 120.8(8) Clc C6c Clc 123.0(6)

C2c C3c C4c 119.4(7) C5c C6c Clc 120.7(7)

C2d C3d C4d 120.4(8) Cld C6d C5d 118.0(7)

N4a C4a C3a 118.8(8) Cld C6d C7d 119.6(7)

N4a C4a C5a 118.8(7) C5d C6d C7d 122.3(7)

C3a C4a C5a 122.4(8) C2b C7a C6a 113.1(6)

C3b C4b C5b 120.5(8) C2c C7b C6b 112.4(7)

N4c C4c C3c 119.2(7) C2d C7c C6c 113.7(7)

N4c C4c C5c 118.7(7) C2a C7d C6d 111.3(6)

C3c C4c C5c 122.1(7) S8a C9a ClOa 119.0(7)

C3d C4d C5d 120.0(9) S8a C9a CI 4a 119.4(7)

C4a C5a C6a 120.0(8) ClOa C9a C14a 121.5(9)

C4b C5b C6b 120.4(7) S8c C9c ClOc 119.6(7)

C4c C5c C6c 120.2(8) S8c C9c C14c 118.7(6)

C4d C5d C6d 121.7(8) ClOc C9c C14c 121.4(8)

Cla C6a C5a 117.1(7) C9a ClOa Clla 116(1)

Cla C6a C7a 122.6(7) C9c ClOc Cllc 119.5(8)

C5a C6a C7a 120.2(7) ClOa Clla C12a 120(1)

Clb C6b C5b 118.2(7) ClOc Cllc CI 2c 120.6(8)

Clb C6b C7b 121.3(7) CI la C12a C13a 120(1)

C5b C6b C7b 120.5(7) Clla C12a C15a 116(1)

C13a C12a C15a 124(1) Ols C2s C3s 98(1

Cllc C12c C13c 118.8(9) C2s C3s C4s 93(2

Cllc C12c C15c 120.5(8) C3s C4s C5s 104(3

C14c C12c C15c 120.6(9) Ols C5s C4s 91(2

C12c C13c C14c 121.8(9) C7s C6s ClOs 105(1

Page 141: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

128

Bond Angles for Structure I (cont.)

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle C2a C13a C14a 123(1) 06s C7s C8s 111(1 C9a C14a C13a 118.7(9) C7s C8s C9s 98(2

C9c C14c C13c 117.6(8) C8s C9s ClOs 109(2

C2s Ols C5s 107(1) 06s ClOs C9s 109(2

C2a C3a H3a 120 C6a C7a H7al 109

C4a C3a H3a 120 C6a C7a H7a2 109

C2b C3b H3b 120 H7al C7a H7a2 110

C4b C3b H3b 120 C2c C7b H7bl 109

C2c C3c H3c 120 C2c C7b H7b2 109

C4c C3c H3c 120 C6b C7b H7bl 109

C2d C3d H3d 120 C6b C7b H7b2 109

C4d C3d H3d 120 H7bl C7b H7b2 110

C3b C4b H4b 120 C2d C7c H7cl 108

C5b C4b H4b 120 C2d C7c H7c2 108

C3d C4d H4d 120 C6c C7c H7cl 108

C5d C4d H4d 120 C6c C7c H7c2 110

C4a C5a H5a 120 H7cl C7c H7c2 109

C6a C5a H5a 120 C2a C7d H7dl 109

C4b C5b H5b 120 C2a C7d H7d2 109

C6b C5b H5b 120 C6d C7d H7dl 109

C4c C5c H5c 120 C6d C7d H7d2 109

C6c C5c H5c 120 H7dl C7d H7d2 110

C4d C5d H5d 119 C9a ClOa HlOa 122

C6d C5d H5d 119 Clla ClOa HlOa 122

C2b C7a H7al 109 C9c ClOc HlOc 120

C2b C7a H7a2 109 Cllc ClOc HlOc 120

ClOa CI la Hlla 120 H15cl C15c H15c3 109

C12a Clla Hlla 120 H15c2 C15c H15c3 109

ClOc Cllc Hllc 120 Ols C2s H2sl 112

Page 142: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

129

Bond Angles for Structure I (cont.)

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

C12c Cllc Hllc 120 Ols C2s H2s2 112

C12c CI 3c H13c 119 C3s C2s H2sl 112

C14c C13c H13c 119 C3s C2s H2s2 112

C12a C13a H13a 119 H2s C2s H2s2 109

C14a C13a H13a 119 C2s C3s H3sl 113

C9a C14a H14a 121 C2s C3s H3s2 113

C13a C14a H14a 121 C4s C3s H3sl 113

C9c C14c H14c 121 C4s C3s H3s2 113

C13c C14c H14c 121 H3s C3s H3s2 109

C12a C15a H15al 109 C3s C4s H4sl 111

C12a C15a H15a2 109 C3s C4s H4s2 111

C12a C15a H15a3 109 C5s C4s H4sl 111

H15al C15a H15a2 109 C5s C4s H4s2 111

H15al C15a H15a3 109 H4s C4s H4s2 109

H15a2 C15a H15a3 109 Ols C5s H5sl 114

C12c CI 5c H15cl 109 Ols C5s H5s2 114

C12c C15c H15c2 109 C4s C5s H5sl 114

C12c C15c H15c3 110 C4s C5s H5s2 114

H15cl C15c H15c2 109 H5s C5s H5s2 109

06s C7s H7sl 109 C8s C9s H9sl 110

06s C7s H7s2 109 C8s C9s H9s2 110

C8s C7s H7sl 109 ClOs C9s H9sl 110

C8s C7s H7s2 109 ClOs C9s H9s2 110

H7sl C7s H7s2 109 H9sl C9s H9s2 109

C7s C8s H8sl 112 06s ClOs HlOsl 110

C7s C8s H8s2 112 06s ClOs H10s2 110

C9s C8s H8sl 112 C9s ClOs HlOsl 110

Page 143: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

130

Torsion Angles for Structure I Atoml Atom 2 Atom 3 Atom 4 Angle

08al S8a Ola Cla 61.31(0.56)

08a2 S8a Ola Cla -67.92(0.55)

C9a S8a Ola Cla 177.08(0.51)

Ola S8a C9a ClOa -68.89(0.79)

Ola S8a C9a C14a 113.92(0.73)

08al S8a C9a ClOa 43.60(0.86)

08al S8a C9a C14a -133.59(0.72) 08a2 S8a C9a ClOa 177.05(0.74)

08a2 S8a C9a C14a -0.14(0.85)

08c 1 S8a Olc Clc -45.71(0.60)

08c2 S8c Olc Clc -174.17(0.53)

C9c S8c Olc Clc 70.03(0.59)

Olc S8c C9c ClOc -100.89(0.72) 01c S8c C9c C14c 84.80(0.75)

08cl S8c C9c ClOc 15.05(0.81)

08cl S8c C9c C14c -159.26(0.69)

08c2 S8c C9c ClOc 149.10(0.69)

08c2 S8c C9c C14c -25.21(0.85)

S8a Ola Cla C2a -90.95(0.71)

S8a Ola Cla C6a 92.09(0.72)

S8c Olc Clc C2c -101.94(0.72)

S8c Olc Clc C6c 80.69(0.79)

04a 1 N4a C4a C3a 176.39(0.77)

04al N4a C4a C5a -3.68(1.17)

04a2 N4a C4a C3a -5.15(1.17)

04a2 N4a C4a C5a 174.78(0.81) 04cl N4c C4c C3c 2.94(1.20) 04cl N4c C4c C5c -176.70(0.81) 04c2 N4c C4c C3c -176.56(0.81)

Page 144: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

131

Atoml Atom 2 Atom 3 Atom 4 Angle 04c2 N4c C4c C5c 3.81(1.18) Ola Cla C2a C3a 176.46(0.66) Ola Cla C2a C7d -7.44(1.09) C6a Cla C2a C3a -6.73(1.16) C6a Cla C2a C7d 169.37(0.75) Ola Cla C6a C5a -175.25(0.68) Ola Cla C6a C7a 6.98(1.12) C2a Cla C6a C5a 7.98(1.18) C2a Cla C6a C7a -169.79(0.74) Olb Clb C2b C3b 177.52(0.67) 01b Clb C2b C7a 1.02(1.08) C6b Clb C2b C3b -1.23(1.14) C6b Clb C2b C7a -177.73(0.71) Olb Clb C6b C5b -178.09(0.68) Olb Clb C6b C7b 1.59(1.09) C2b Clb C6b C5b 0.63(1.13) C2b Clb C6b C7b -179.69(0.70) Olc Clc C2c C3c 175.83(0.69) Olc Clc C2c C7b -8.58(1.10) C6c Clc C2c C3c -6.96(1.21) C6c Clc C2c C7b 168.64(0.76) Olc Clc C6c C5c -177.10(0.69) Olc Clc C6c C7c 6.24(1.15) C2c Clc C6c C5c 5.73(1.20) C2c Clc > C6c C7c -170.93(0.76) Old Cld C2d C3d 176.21(0.71) Old Cld C2d Clc 2.02(1.10) C6d Cld C2d C3d -2.13(1.18) C6d Cld C2d Clc -176.32(0.72)

Page 145: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

132

Atoml Atom 2 Atom 3 Atom 4 Angle Old Cld C6d C7d 2.31(1.12) C2d Cld C6d C5d 1.86(1.170 C2d • Cld C6d C7d -179.36(0.73) Cla C2a C3a C4a 0.82(1.14) C7d C2a C3a C4a -175.45(0.74) Cla C2a C7d C6d -112.63(0.83) C3a C2a C7d C6d 63.40(0.96) Clb C2b C3b C4b 1.04(1.16) Cla C2b C3b C4b 177.57(0.74) Clb C2b Cla C6a -68.93(0.97) C3b C2b C7a C6a 114.66(0.83) Clc C2c C3c C4c 1.58(1.17) C7b C2c C3c C4c -174.11(0.75) Clc C2c C7b C6b -107.90(0.85) C3c C2c C7b C6b 67.58(0.94)

' Cld C2d C3d C4d 1.32(1.24) Clc C2d C3d C4d 175.35(0.79) Cld C2d C7c C6c -72.58(0.92) C3d C2d Clc C6c 113.42(0.85) C2a C3a C4a N4a -176.49(0.72) C2a C3a C4a C5a 3.58 (1.26) C2b C3b C4b C5b -0.26(1.26) C2c C3c C4c N4c -174.92(0.74) C2c C3c C4c C5c 4.70(1.28) C2d C3d C4d C5d -0.27(1.36) N4a C4a C5a C6a 177.78(0.74) C3a C4a C5a C6a -2.29(1.29) C3b C4b C5b C6b -0.37(1.24) N4c C4c C5c C6c 173.67(0.74)

Page 146: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

133

Torsion Angles for Structure I (cont.)

Atoml Atom 2 Atom 3 Atom 4 Angle

C3c C4c C5c C6c -5.95(1.29)

'C3d C4d C5d C6d 0.00(1.38)

C4a C5a C6a Cla -3.33 (1.19)

C4a C5a C6a C7a 174.50(0.77)

C4b C5b C6b Clb 0.19(1.17)

C4b C5b C6b C7b -179.49(0.73)

C4c C5c C6c Clc 0.79(1.18)

C4c C5c C6c Clc 177.53(0.76)

C4d C5d C6d Cld -0.77(1.26)

C4d C5d C6d C7d -179.52(0.82)

Cla C6a C7a C2b 108.77(0.86)

C5a C6a C7a C2b -68.94 (1.00)

Clb C6b C7b C2c 70.14(0.92)

C5b C6b VC7b C2c -110.18(0.81)

Clc C6c Clc C2d 109.73(0.86)

C5c C6c Clc C2d -66.78 (0.98)

Cld C6d C7d C2a 70.24(0.94)

C5d C6d Cld C2a -111.03(0.86)

S8a C9a ClOa Clla -177.64 (0.81)

C14a C9a ClOa Clla -0.51(1.46)

S8a C9a C14a C13a 178.96(0.77)

C3c C4c C5c C6c -5.95(1.29)

C3d C4d C5d C6d 0.00(1.38)

C4a C5a C6a Cla -3.33 (1.19)

C4a C5a C6a C7a 174.50(0.77)

C4b C5b C6b Clb 0.19(1.17)

C4b C5b C6b C7b -179.49(0.73)

C4c C5c C6c Clc 0.79(1.18)

C4c C5c C6c Clc 177.53(0.76)

Page 147: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

134

Torsion Angles for Structure I (cont.) Atoml Atom 2 Atom 3 Atom 4 Angle

C4d C5d C6d Cld -0.77(1.26) ,C4d C5d C6d C7d -179.52(0.82) Cla C6a C7a C2b 108.77(0.86) C5a C6a C7a C2b -68.94 (1.00) Clb C6b C7b C2c 70.14(0.92) C5b C6b VC7b C2c -110.18(0.81) Clc C6c C7c C2d 109.73(0.86) C5c C6c Clc C2d -66.78 (0.98) Cld C6d Cld C2a 70.24(0.94) C5d C6d C7d C2a -111.03(0.86) S8a C9a ClOa Clla -177.64 (0.81) C14a C9a ClOa Clla -0.51(1.46) S8a C9a C14a C13a 178.96(0.77) ClOa C9a C14a C13a 1.85(1.44) S8c C9c ClOc Cllc -170.07 (0.69) C14c C9c ClOc Cllc 4.08(1.32) S8c C9c C14c C13c 171.69(0.74) ClOc C9c C14c C13c -2.50(1.37) C9a ClOa Clla C12a -1.88(1.68) C9c ClOc Cllc C12c -2.36(1.36) ClOa Clla C12a C13a 2.95(1.84) ClOa Clla C12a C15a 179.48(1.16) ClOc Cllc C12c C13c -0.85(1.42) ClOc Cllc C12c C15c 176.45(0.90) Clla C12a C13a C14a -1.60(1.82) C15a C12a C13a C14a -177.84(1.17) Cllc C12c C13c C14c 2.45(1.51) C15c C12c C13c C14c -174.85 (0.97) C12c C13c C14c C9c -0.81(1.49) C12a C13a C14a C9a -0.81(1.65)

Page 148: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

APPENDIX C

BOND LENGTHS, BOND ANGLES, AND TORSION ANGLES FOR

STRUCTURE II

Page 149: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

136

Bond Distances for Structure H

Atom 1 Atom 2 Distance A (e.s.d.)

Atom 1 Atom 2 Distance A (e.s.d.)

S8a Ola 1.595(5) Clc C2c 1.385(9)

S8a 08al 1.427(6) Clc C6c 1.398(9)

S8a 08a2 1.427(5) Cld C2d 1.368(8)

S8a C9a 1.751(6) Cld C6d 1.41(1)

S8c 01c 1.593(5) C2a C3a 1.39(1)

S8c 08c 1 1.431(6) C2a C7d 1.511(9)

S8c 08c2 1.420(5) C2b C3b 1.394(9)

S8c C9c 1.742(6) C2b C7a 1.49(1)

Ola Cla 1.432(8) C2c C3c 1.40(1)

Olb Clb 1.383(8) C2c C7b 1.525(9)

01c Clc 1.422(8) C2d C3d 1.401(9)

Old Cld 1.390(9) C2d C7c 1.53(1)

041b C41b 1.216(7) C3a C4a 1.379(9)

041d C41d 1.226(7) C3b C4b 1.39(1)

N4b C4b 1.429(9) C3c C4c 1.38(1)

N4b C41b 1.352(9) C3d C4d 1.39(1)

N4d C4d 1.439(9) C4a C5a 1.38(1)

N4d C41d 1.344(9) C4b C5b 1.381(8)

Cla C2a 1.395(9) C4c C5c 1.37(1) Cla C6a 1.388(9) C4d C5d 1.360(8)

Clb C2b 1.390(8) C5a C6a 1.39(1)

Clb C6b 1.41(1) C5a C6b 1.378(9)

C5a C6c 1.38(1) C12a C13a 1.38(1)

C5d C6d 1.393(9) C12a C15a 1.50(1) C6a C7a 1.52(1) C12c C13c 1.38(1) C6b C7b 1.505(8) C12c C15c 1.52(1) C6c Clc 1.52 (1) C13a C14a 1.384(9) C6d C7d 1.489(8) C13c C14c 1.36(1)

Page 150: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

137

Bond Distances for Structure II (cont.) Atom 1 Atom 2 Distance A

(e.s.d.) Atom 1 Atom 2 Distance A

(e.s.d.) C9a ClOa 1.360(9) C41b C42 1.50(1) C9a C14a 1.39(1) C41d C42 1.50(1) C9c ClOc 1.37(1) Cls Cll 1.774(8) C9c C14c 1.39(1) Cls C12 1.750(9) ClOa Clla 1.375(9) Cls C13 1.718(8) ClOc Cllc 1.38(1) C2s C14 1.734(9) CI la C12a 1.39(1) C2s C15 1.76(1) Cllc C12c 1.39(1) C2s C16 1.743(8) Olb Hlb 0.95 ClOa HlOa 0.95 Old Hid 1.06 ClOc HlOc 0.95 N4b H4b 0.99 Clla Hlla 0.95 N4d H4d 1.16 Cllc Hllc 0.95 C3a H3a 0.95 C13a H13a 0.95 C3b H3b 0.95 C13c HI 3c 0.95 C3c H3c 0.95 C14a H14a 0.95 C3d H3d 0.95 C14c H14c 0.95 C4a H4a 0.95 C15a H15al 0.85 C4c H4c 0.95 C15a H15a2 0.95 C5a H5a 0.95 C15a H15a3 0.95 C5b H5b 0.95 C15c H15cl 0.92 C5c H5c 0.95 C15c H15c2 0.95 C5d H5d 0.95 C15c H15c3 0.95 C7a H7al 0.95 C42b H42bl 0.84 ,C7a H7a2 0.95 C42b H42b2 0.95 C7b H7bl 0.95 C42b H42b3 0.95 C7b H7b2 0.95 C42d H42d2 1.00 C7c H7cl 0.95 C42d H42d3 0.95 C7c H7c2 0.95 C42d H42d3 0.95

Page 151: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

Bond Distances for Structure II (cont.)

Atom 1 Atom 2 Distance A (e.s.d.)

Atom 1 Atom 2 Distance A (e.s.d.)

C7d H7dl 0.95 Cls His 0.95

C7d H7d2 0.95 C2s H2s 0.95

138

Bond Angles for Structure II

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

Ola S8a 08al 108.8(3) Olc Clc C2c 118.2(6)

Ola S8a 08a2 102.5(3) Olc Clc C6c 118.4(6)

Ola S8a C9a 103.8(3) C2c Clc C6c 123.2(6)

08al S8a 08a2 120.8(3) Old Cld C2d 121.1(6)

08al S8a C9a 109.0(3) Old Cld C6d 117.4(5)

08a2 S8a C9a 110.5(3) C2d Cld C6d 121.5(6)

Olc S8c 08c 1 109.2(3) Cla C2a C3a 115.8(6)

Olc S8c 08c2 103.4(3) Cla C2a C7d 123.5(6)

Olc S8c G9c 103.9(3) C3a C2a C7d 120.1(6)

08cl S8c 08c2 119.5(3) Clb C2b C3b 117.6(6)

08cl S8c C9c 108.6(3) Clb C2b C7a 120.6(6)

08c2 S8c C9c 111.0(3) C3b C2b C7a 121.8(5)

S8a Ola Cla 118.9(4) Clc C2c C3c 116.8(6)

S8c Olc Clc 118.7(4) Clc C2c C7b 123.5(6)

C4b N4b C41b 125.8(6) C3c C2c C7b 119.5(6)

C4d N4d C41d 124.8(5) Cld C2d C3d 119.2(6)

Ola Cla C2a 117.9(5) Cld C2d C7c 120.6(6)

Ola Cla C6a 117.5(6) C3d C2d C7c 120.2(5)

C2a Cla C6a 124.5(6) C2a C3a C4a 121.8(6)

Olb Clb C2b 121.6(6) C2b C3b C4b 121.3(6)

Page 152: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

139 Bond Angles for Structure II (cont.)

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle

Olb Clb C6b 116.6(5) C2c C3c C4c 120.9(7)

C2b Clb C6b 121.6(6) C2d C3d C4d 119.7(6)

C3a C4a C5a 119.8(6) Cld C6d C7d 120.5(6)

N4b C4b C3b 117.9(5) C5d C6d C7d 121.6(6)

N4b C4b C5b 122.0(6) C2b C7a C6a 112.8(5)

C3b C4b C5b 119.9(6) C2c C7b C6b 110.5(6)

C3c C4c C5c 120.6(7) C2d C7c C6c 111.7(5)

N4d C4d C3d 116.8(5) C2a C7d C6d 110.4(6)

N4d C4d C5d 122.6(6) S8a C9a ClOa 120.1(6)

C3d C4d C5d 120.5(6) S8a C9a C14a 118.6(5)

C4a C5a C6a 121.4(6) ClOa C9a C14a 121.0(6)

C4b C5b C6b 120.5(6) S8c C9c ClOc 119.0(6)

C4c C5c C6c 120.8(7) S8c C9c C14c 119.8(5)

C4d C5d C6d 121.3(7) ClOc C9c C14c 120.7(6)

Cla C6a C5a 116.4(6) C9a ClOa Clla 120.6(7)

Cla C6a C7a 123.0(6) C9c ClOc Cllc 119.3(7)

C5a C6a C7a 120.4(6) ClOa Clla C12a 120.1(7)

Clb C6b C5b 118.9(6) ClOc Cllc C12c 120.8(7)

Clb C6b C7b 119.2(6) Clla C12a C13a 118.4(6)

C5b C6b C7b 121.7(6) CI la C12a C15a 120.4(7)

Clc C6c C5c 117.3(6) C13a C12a C15a 121.2(7)

Clc C6c C7c 123.1(6) Cllc C12c C13c 118.6(7)

C5c C6c C7c 119.5(6) Cllc C12c C15c 119.7(7)

Cld C6d C5d 117.8(5) C13c C12c C15c 121.8(8)

C12a C13a C14a 121.9(7) 041d C41d C42d 121.9(7)

C12c C13c C14c 121.5(8) N4d C41d C42d 113.9(5)

C9a C14a C13a 117.9(6) Cll Cls a 2 109.6(5)

Page 153: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

140

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle C9c C14c C13c 119.1(6) Cll Cls C13 110.1(5) C(c C14c C13c 119.1(6) Cll Cls C13 110.1(5) 041b C41b N4b 123.5(6) C12 Cls C13 111.5(4) 041b C41b C42b 122.6(7) C14 C2s C15 110.5(4) N4b C41b C42b 113.9(6) C14 C2s C16 110.5(5) 041d C41d N4d 124.1(6) C15 C2s C16 110.2(5) Clb Olb Hlb 121 C4c C5c H5c 120 Cld Old Hid 108 C6c C5c H5c 120 C4b N4b H4b 127 C4d C5d H5d 119 C41b N4b H4b 107 C6d C5d H5d 119 C4d N4d H4d 124 C2b C7a H7al 109 C41d N4d H4d 111 C2b C7a H7a2 109 C2a C3a H3a 119 C6a C7a H7al 109 C4a C3a H3a 119 C6a C7a H7a2 109 C2b C3b H3b 119 H7al C7a H7a2 110 C4b C3b H3b 119 C2c C7b H7bl 109 C2c C3c H3c 120 C2c C7b H7b2 109 C4c C3c H3c 120 C6b c7b H7bl 109 C2d C3d H3d 120 C6b C7b H7b2 109 C4d C3d H3d 120 H7bl C7b H7b2 110 C3a C4a H4a 120 C2d C7c H7cl 109 C5a C4a H4a 120 C2d C7c H7c2 109 C3s C4c H4c 120 C6c C7c H7cl 109 C5c C4c H4c 120 C6c C7c H7c2 109 C4a C5a H5a 119 H7cl C7c H7c2 110 C6a C5a H5a 119 C2a C7d H7dl 109 C4b C5b H5b 120 C2a C7d H7dl 109 C6b C5b H5b 120 C6d C7d H7dl 109 C6d C7d H7d2 109 H15al C15a H15a3 108

Page 154: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

141

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle H7dl C7d H7d2 110 H15a2 C15a H15a3 110 C9a ClOa HlOa 120 CI 2c CI 5c H15cl 119 Clla ClOa HlOa 120 C12c C15c H15c2 107 C9c ClOc HlOc 120 C12c C15c H15c3 107 Cllc ClOc HlOc 120 H15cl C15c H15c2 107 ClOa Clla Hlla 120 H15cl C15c H15c3 107 C12a Clla HI la 120 H15c2 C15c H15c3 110 ClOc Cllc Hllc 120 C41b C42b H42bl 110 C12c Cllc Hllc 120 C41b C42b H42b2 109 C12a C13a H13a 119 C41b C42b H42b3 109 C14a C13a H13a 119 H42bl C42b H42b2 109 C12c C13c H13c 119 H42b2 C42b H421b3 110 C9a C14a H14a 121 C41d C42d H42dl 122 C13a C14a H14a 121 C41d C42d H42d2 106 C9c C14c H14c 121 C41d C42d H42d3 106 C13c C14c H14c 121 H42dl C42d H42d2 106 C12a C15a H15al 117 H42dl C42d H42d3 106 C12a C15a H15a2 108 H42d2 C42d H42d3 110 C12a C15a H15a3 108 Cll Cls His 110 H15al C15a H15a2 108 C12 Cls His 1081 C13 Cls His 108 C15 C2s H2s 109 C14 C2s H2s 108 C16 C2s H2s 109

Page 155: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

142

Torsion Angles for Structure II Atom 1 Atom 2 Atom 3 Atom 4 Angle 08al S8a Ola Cla -36.93(0.46) 08a2 S8a Ola Cla -165.86(0.42) C9a S8a Ola Cla 79.01(0.46) Ola S8a C9a ClOa -88.71 (0.62) Ola S8a C9a C14a 86.33(0.60) 08al S8a C9a ClOa 27.09(0.69) 08a 1 S8a C9a C14a -157.86(0.55) 08a2 S8a C9a ClOa 162.03(0.59) 08a2 S8a C9a C14a -22.92(0.69) 08c 1 S8c Olc Clc -37.38(0.47) 08c2 S8c Olc Clc -165.63(0.41) C9c S8c Olc Clc 78.37(0.46) Olc S8c C9c C10C -88.77(0.62) •01c S8c C9c C14c 83.66(0.61) 08c 1 S8c C9c ClOc 27.43(0.69) 08cl S8c C9c C14c -160.15(0.57) 08c2 S8c C9c ClOc 160.69(0.58) 08c2 S8c C9c C14c -26.89(0.70) S8a Ola Cla C2a 82.66(0.63) S8a Ola Cla C6a -99.67(0.60) S8c Olc Clc Clc 84.82(0.64) S8c Olc Clc C6c -100.47(0.61) C41b N4b C4b C3b -138.52(0.67) C41b N4b C4b C5b 46.37(0.94) C4b N4b C41b 041b 8.30(1.03) C4b N4b C41b C42b -173.31(0.58) C41d N4d C4d C3d 149.55(0.68) C41d N4d C4d C5d -32.64(1.03)

Page 156: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

143

|Atom 1 Atom 2 Atom 3 Atom 4 Angle C 4 d N4d C42d 041d -5.77(1.11)

llC4d N4d C41d C42d 174.40(0.65)

ll01a Cla C2a C3a -177.20(0.56)

ll01a Cla C2a C7d 11.24(0.95) |jC6a Cla C2a C3a 5.31(1.00) |C6a Cla C2a C7d -166.24(0.64)

ll01a Cla C6a C5a 177.64(0.56)

ll01a Cla C6a C7a -7.53(0.94) || C2a Cla C6a C5a -4.87(1.01) || C2a Cla C6a C7a 169.97(0.63)

ll01b Clb C2b C3b -178.39(0.57)

ll01b Clb C2b C7a 2.41(0.94) |C6b Clb C2b C3b -3.89(0.95) |C6b Clb C2b C7a 176.90(0.60)

P l b Clb C6b C5b 178.03(0.57)

ll01b Clb C6b C7b -6.23(0.88) C2b Clb C6b C5b 3.27(0.98)

jC2b Clb C6b C7b 179.01(0.60)

ll01c Clc C2c C3c -178.99(0.57)

ll01c Clc C2c C7b 7.04(0.97) C6c Clc C2c C3c 6.58(1.01)

| C6c Clc C2c C7b -167.39(0.64)

ll01c Clc C6c C5c 179.72(0.57)

ll01c Clc C6c C7c -3.63(0.96) ||C2c Clc C6c C5c -5.85(1.02) |C2c Clc C6c C7c 170.79(0.64)

P l d Cld C2d C3d 177.69(0.59) ||01d Cld C2d C7c -1.32(0.97)

Page 157: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

144

Atom 1 j Atom 2 Atom 3 I Atom 4 Angle J |jC6d 1 Cld C2d

1 C 3 d -1.45(1.00) J|c6d | Cld C2d 1 C7c 179.55(0.60) |

l l 0 1 d | Cld C6d 1 C5d -178.30(0.57) I Ifo id 1 Cld C6d j C7d 1.07(0.93) J ||C2d 1 Cld C6d 1 C5d 0.87(0.99) || ||C2d | Cld C6d 1 C7d -179.76(0.63)

l l C l a | C2a C3a j C4a -1.30(0.99) ||

l l C 7 d j C2a C3a j C4a 170.56(0.64 1

l l C l a 1 C2a C7d | C6d 106.06(0.73) | ||C3a j C2a C7d j C6d -65.15(0.81) ]

l l C l b 1 C2b C3b J C4b 2.09(0.96) ||

l l C 7 a 1 C2b C3b 1 C4b -178.71(0.61)

l l C l b j C2b C7a 1 C6a 78.82(0.78) | ||C3b | C2b C7a j C6a -100.36(0.71) J

l l C l c 1 C2c C3c j C4c -1.66(1.01) J

l l C 7 b 1 C2c C3c j C4c 172.56(0.65) |

l l C l c 1 C2c C7b | c 6 b 107.82(0.74) 1 |[C3c 1 C2c C7b j C6b -65.99(0.81) ||

l l C l d 1 C2d C3d 1 C4d 1.43(0.99) j

l l C 7 c 1 C2d C3d J C4d -179.56(0.61) j

l l C l d I C2d C7c | C6c 77.04(0.79) | J|C3d 1 C2d C7c | C6c -101.96(0.70) || ||C2a j C3a C4a j C5a -2.81(1.06) 1 | | c 2 b 1 C3b C4b 1 N4b -174.89(0.58) || ||C2b 1 C3b C4b 1 C5b 0.32(0.99) 1 |C2c j C3c C4c 1 C5c -3.78(1.10) 1 || C2d | C3d C4d j N4d 177.00(0.59) | |C2d 1 C3d C4d j C5d -0.86(1.01) ||

Page 158: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

145 Torsion Angles for Structure II (cont.)

Atom 1 Atom 2 Atom 3 Atom 4 Angle C3a C4a C5a C6a 3.31(1.06) N4b C4b C5b C6b 174.00(0.60) C3b C4b C5b C6b 174.00(0.60) C3c C4c C5c C6c 4.58(1.11) N4d C4d C5d C6d -177.45(0.61) C3d C4d C5d C6d 0.28(1.04) C4a C5a C6a Cla 0.37(0.99) C4a C5a C6a C7a -174.61(0.64) C4b C5b C6b Clb -0.73(0.98) C4b C5b C6b C7b -176.37(0.61) C4c C5c C6c Clc 0.09(1.01) C4c C5c C6c C7c -176.68(0.65) C4d C5d C6d Cld -0.27(1.00) C4d C5d C6d C7d -179.63(0.63) Cla C6a C7a C2b -112.23(0.72) C5a C6a C7a C2b 62.41(0.82) Clb C6b C7b C2c -72.20(0.78) C5b C6b C7b C2c 103.42 (0.72) Clc C6c Clc C2d -112.16(0.72) C5c C6c C7c C2d 64.42(0.80) Cld C6d C7d C2a -75.97(0.78) C5d C6d C7d C2a 103.38(0.71) S8a C9a ClOa Clla 175.05(0.60) C14a C9a ClOa Clla 0.12(1.13) S8a C9a C14a C13a -175.21(0.57) S8c C9c ClOc Cllc 0.49(1.12) C14c C9c ClOc Cllc 0.49(1.12) S8a C9c C14c C13c -171.85(0.59)

Page 159: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

146

Atom 1 Atom 2 Atom 3 Atom 4 Angle ClOc C9c C14c C13c 0.44(1.11) C9a ClOa Clla C12a -1.59(1.17) C9c ClOc Cllc C12c -2.31(1.20) ClOa Clla C12a C13a 3.10(1.15) ClOa Clla C12a C15a -178.07(0.75) ClOc Cllc C12c C13c 3.15(1.22) ClOc Cllc C12c C15c -177.23(0.78) Clla C12a C13a C14a -3.26(1.17) C15a C12a C13a C14a 177.92(0.75) Cllc C12c C13c C14c -2.22(1.22) C15c C12c C13c C14c 178.17(0.79) C12a C13a C14a C9a 1.82(1.13) C12c C13c C14c C9c 0.46(1.18)

Page 160: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

APPENDIX D

BOND LENGTHS, BOND ANGLES, AND TORSION ANGLES FOR

STRUCTURE III

Page 161: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

148

Atom 1 Atom 2 Distance A (e.s.d.)

Atom 1 Atom 2 Distance A (e.s.d.)

S Ola 1.631(7) C5a C6a 1.48(1) S 08a 1.391(9) C5b C6b 1.37(2) S 08b 1.392(8) C6a C7a 1.51(1) S C9a 1.78(1) C6b C7b' 1.50(1) Ola Cla 1.40(1) C8b C9b 1.53(2) | Olb Clb 1.39(1) C9a C14a 1.43(2) 1 04a N4 1.42(1) C9b ClOb 1.29(1) 1 04b N4 1.22(1) C9b C14b 1.35(2) 1 N4 C4a 1-19(1) ClOa Clla 1.32(2) 1 Cla C2a 1.51(1) ClOb Cllb 1.40(2) 1 Cla C6a 1.38(1) CI la C12a 1.46(2) 1 Clb C2b 1.38(1) CI lb C12b 1.36(2) 1 Clb C6b 1.37(1) C12a C13a 1.28(2) J C2a C3a 1.38(1) C12a C15a 1.36(2) 1 C2a C7b 1.30(1) C12b C13b 1.58(2) 1 C2b C3b 1.54(1) C13a C14a 1.40(2) 1 C2b C3b 1.37(1) C13a C14a 1.37(2) | C2b C7a 1.54(1) C13b C14b 1.36(2) 1 C3a C4a 1.37(1) Cls C2s 1.36(3) 1 C3b C4b 1.38(2) Cls C5s 1.42(4) 1 C4a C5a 1.33(1) C2s C3s 1.55(3) 1 C4b C5b 1.40(2) C3s C4s 1.42(3) 1 C4s C5s 1.44(4) C7s C8s 1.62(4) 1 C6s C7s 1.42(3) C8s C8s' 1-57(3) C3a H3a 0.95 C14a H14a 0.95 1 C3b H3b 0.95 C14b H14b 0.95 1 C4b H4b 0.95 C15a H15al 0.95 1 C5a H5a 0.95 C15a H15a2 0.95 1

Page 162: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

149

Atom 1 Atom 2 Distance A (e.s.d.)

Atom 1 Atom 2 Distance A (e.s.d.)

C5b H5b 0.95 C15a H15a3 0.95 C7a H7al 0.95 C2s H2sl 0.95 C7a H7a2 0.95 C2s H2s2 0.95 C7b H7bl 0.95 C3s H3sl 0.95 C7b H7b2 0.95 C3s H3s2 0.95 C8b H8bl 0.95 C4s H4sl 0.95 C8b H8b2 0.95 C4s H4s2 0.95 ClOb HlOa 0.95 C5s H5sl 0.95 ClOb HlOb 0.95 C5s H5s2 0.95 Cl la Hlla 0.95 C7s H7sl 0.95 CI lb HI lb 0.95 C7s H7s2 0.95 C12b H12b 0.95 C8s H8sl 0.95 C13a H13a 0.95 C8s H8s2 0.95 C13b H13b 0.95

Bond Angles for Structure III Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle Ola S 08a 101.9(5) C3b C2b C7a 119.7(8) Ola S 08b 109.6(4) C2a C3a C4a 120.1(9) Ola s C9a 103.2(4) C2b C3b C4b 122(1) 08a s 08b 122.7(5) N4 C4a C3a 118.69

(9) 08a s C9a 108.2(5) N4 C4a C5a 115.2(9) 08b s C8a 109.4(5) C3a C4a C5a 125.9(9) S 01A C9a 116.0(5) C3b C4b C5b 119(1) Clb 01B Clb 113.8(7) C4a C5a C6a 114.7(9) 04a N4 08b 123(1) C4b C5b C6b 119(1) 04a N4 C4a 117.6(9) Cla C6a C5a 116.79

(9) 04b N4 C4a 118(1) Cla C6a C7a 128.4(9)

Page 163: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

150

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle Ola CI C2a 119.2(8) C5a C6a C7a 114.9(8) Ola Cla C6a 116.9(8) Clb C6b C5b 119.6(9) C2a Cla C6a 122.8(9) C2b C7a C6a 109.8(8) Olb Cla C2b 120.4(8) C2a C7b C6b' 109.8(7) Olb Clb C6b 117.5(8) Clb C8b C9b 113.2(9) C2b Clb C6b 121.7(8) S C9a ClOa 116.2(8) Cla C2a C3a 119.1(9) S C9a C14a 121.8(8) Cla C2a C7b 119.8(8) ClOa C9a C14a 122(1) C3a C2a C7b 121.0(9) C8b C9b ClOb 116(1) Clb C2b C3b 117.7(9) C8b C9b C14b 123(1) Clb C2b C7a 122.1(8) ClOb C9b C14b 121(1) C9a ClOa CI la 117(1) C9a C14a C13a 122(1) C9b ClOb Cllb 119(1) C9b C14b C13b 119(1) ClOa CI la C12a 119(1) C2s Cls C5s 96(2) ClOb CI lb C12b 119(1) Cls C2s C3s 102(2) CI la C12a C13a 123(1) C2s C3s C4s 98(2) CI la C12a C15a 116(1) C3s C4s C5s 98(2) C13a C12a C15a 122(1) Cls C5s C4s 91(2) CI lb C12b C13b 120(1) C6s C7s C8s 84(2) C12a C13a C14a 118(1) C7s C8s C8s' 75(2) C12a C13b C14b 121(1) C9b C8b H8bl 109 C2a C3a H3a 120 C9b C8b H8b2 109 C4a C3a H3a 120 H8bl C8b H8b2 109 C2b C3b H3b 119 C9a ClOa HlOa 122 C4b C3b H3b 119 Clla ClOa HlOa 122 C3b C4b H4b 120 C9b ClOb HI Ob 120 C5b C4b H4b 120 Cllb ClOb HlOb 120 C4a C5a H5a 123 ClOa Clla Hlla 121 C6a C5a H5a 123 C12a Clla Hlla 121 C3s C4s H4s2 112 H8sl C8s H8s 109

Page 164: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

151

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle C4b C5b H5b 120 C5s C4s H4sl 112 C6b C5b H5b 120 ClOb CI lb Hllb 121 C2b C7a H7al 109 C12b Cllb HI lb 1 2 1 I I C2b C7a H7a2 109 CI lb C12b H12b 1 2 0 I I C6a C7a H7al 109 C13b C12b H12b 1 2 0 I I C6a C7a H7a2 109 C12a C13a H13a 1 2 1 I I H7al C7a H7a2 109 C14a C13a H13a 1 2 1 I I C2a C7b H7bl 109 C12b C13b H13b 1 2 0 I I C2a C7b H7b2 109 C14b C13b H13b 120 C6b' C7b H7bl 109 C9a C14a H14a 119 C6b' C7b H7b2 109 C13a C14a H14a 119 H7b C7b H7b2 109 C9b C14b H14b 120 Olb C8b H8bl 109 C13b C14b H14b 120 01b C8b H8b2 109 C12a C15a H15al 109 C12a C15a H15a2 109 C5s C4s H4s 112 C12a C15a H15a3 109 H4sl C4s H4s 109 H15al C15a H15a2 109 Cls C5s H5s 114 H15al C15a H15a3 109 Cls C5s H5s 114 H15a2 C15a H15a3 109 C4s C5s H5s 114 Cls C2s H2sl 111 C4s C5s H5s 114 Cls C2s H2s2 111 H5sl C5s H5s 109 C3s C2s H2sl 111 C6s C7s H7s 115 C3s C2s H2s2 111 C6s C7s H7s 115 H2sl C2s H2s2 109 C8s C7s H7s 115 C2s C3s H3sl 112 C8s C7s H7s 115 C2s C3s H3s2 112 H7sl C7s H7s 109 C4s C3s H3sl 112 C7s C8s H8s 117 C4s C3s H3s2 112 C7s C8s H8s 117 H3sl C3s H3s2 109 C8s' C8s H8s 117 | C3s C4s H4sl 112 C8s' C8s H8s 117 |

Page 165: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

152

I Atoml Atom 2 Atom 3 Atom 4 Angle 1 | 08a S Ola Cla -167/93(0.64) | 08b S Ola Cla -36.57(0.70) J C9a s Ola Cla 79.93(0.66) Ola s C9a ClOa -96.21(0.83)

[Ola s C9a C14a 76.60(0.96) I | 08a s C9a ClOa 156.33(0.84) [ 08b s C9a ClOa 20.46(0.96) 08b s C9a C14a -166.73(0.88) S Ola Cla C2a -106.44(0.80) S Ola Cla C6a 85.09(0.86) C8b 01b Clb C2b -72.25(1.06) J C8b 01b Clb C6b 114.79(0.94) Clb 01b C8b C9b -73.66(1.05) 04a N4 C4a C3a -175.05(0.96) 04a N4 C4a C5a -0.75(1.39) 04b N4 C4a C3a 14.38(1.45) 04b N4 C4a C5a -171.32(0.99) Ola Cla C2a C3a -175.46(0.82) Ola Cla C2a C7b 0.03(1.24) C6a Cla C2a C3a -7.71(1.42) C6a Cla C2a C7b 167.79(0.88) Ola Cla C6a C5a 176.86(0.76) 1 Ola Cla C6a C7a -2.25(1.42) C2a Cla C6a C5a 8.85(1.35)

1 C2a Cla C6a C7a -170.26(0.93) 1 I 01b Clb C2b C3b 177.23(0.82) || I 01b Clb C2b C7a -10.40(1.31) 1 C6b Clb C2b C3b -10.11(1.37) ( 26b Clb C2b C7b 162.26(0.88) 1

Page 166: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

153

Atoml Atom 2 Atom 3 Atom 4 Angle Olb Clb C6b C5b -177.79(0.87) 01b Clb C6b C7b' 2.47(1.25) C2b Clb C6b C5b 9.34(1.44) C2b Clb C6b C7b' -170.40(0.87) Cla C2a C3a C4a 0.37(1.44) C7b C2a C3a C4a -175.06(0.89) Cla C2a C7b C6b' -131.19(0.90) C3a C2a C7b C6b' 44.22(123) Clb C2b C3b C4b 7.01(1.50) C7a C2b C3b C4b -165.55(0.97) Clb C2b C7a C6a -59.40(1.15) C3b C2b C7a C6a 112.82(1.00) C2a C3a C4a N4 179.40(0.91) C2a C3a C4a C5a 5.77(1.61) C2b C3b C4b C5b -3.15(1.68) N4 C4a C5a C6a -178.01(0.83) C3a C4a C5a C6a -4.19(1.49) C3b C4b C5b C6b 2.10(1.68)

, C4a C5a C6a Cla -2.92(1.30) C4a C5a C6a C7a 176.31(0.87) C4b C5b C6b Clb -5.10(1.57) C4b C5b C6b C7b' 174.63(1.00) Cla C6a C7a C2b 121.76(1.04) C5a C6a C7a C2b -57.37(1.07) Clb C6b C7b' C2a' 74.86(1.09) C5b C6b C7b' C2a' -104.87(1.10) Olb C8b C9b ClOb -102.96(1.15) Olb C8b C9b C14b 82.77 (1.31) S C9a ClOa Clla 175.22(0.85)

Page 167: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

154

Atoml Atom 2 Atom 3 Atom 4 Angle C14a C9a ClOa Clla 2.39(1.63) S C9a C14a C13a -175.76(0.87) ClOa C9a C14a C13a -3.33(1.69) C8b C9b ClOb Cl lb -177.14(1.12) C14b C9b ClOb Cllb -2.77(1.80) C8b C9b C14b C13b -178.88(1.14) ClOb C9b C14b C13b 7.16(1.80) C9a ClOa Clla C12a -0.13(1.65) C9b ClOb Cllb C12b 1.77(2.06) ClOa Clla C12a C13a -1.21(1.78) ClOa Clla C12a C15a -174.01(1.06) ClOb Cl lb V12b VI 3b -5.11(2.22) CI la C12a C13a C14a 0.43(1.77) C15a C12a C13a C14a 172.80 (1.07) C12a C13a C14a C9a 1.91(1.72) C12b C13b C14b C9b -10.55(1.99)

Page 168: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

APPENDIX E

BOND LENGTHS, BOND ANGLES, AND TORSION ANGLES FOR

STRUCTURE XV

Page 169: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

156

Atom 1 Atom 2 Distance A Atom 1 Atom 2 Distance A S8a Ola 1.602(4) C4a C5a 1.37(1) S8a 08a 1.422(6) C4b C5b 1.377(8) S8a 08b 1.423(5) C5a C6a 1.386(9) S8a C8a 1.734(7) C5b C6b 1.379(9) Ola C9a 1.424(7) C6a C7a 1.51(1) Olb Clb 1.395(7) C6b C7b' 1.51(1) 01b C8b 1.431(9) C8a C9b 1.49(1) 04a N4 1.220(8) C9a ClOa 1.39(1) 04b N4 1.220(8) C9a C14a 1.365(8) N4 C4a 1.470(8) C9b ClOb 1.36(1) Cla C2a 1.384(9) C9b C14b 1.39(1) Cla C6a 1.397(9) ClOa Clla 1.41(1) Clb C2b 1.385(7) ClOb Cllb 1.42(1) Clb C6b 1.400(7) Clla C12a 1.36(1) C2a C3a 1.399(9) Cllb C12b 1.38(1) C2a C7b 1.51(1) C12a C13a 1.36(1) C2b C3b 1.390(9) C12a C15a 1.53(1) C2b C7a 1.517(8) C12b C13b 1.31(1) C3a C4a 1.37(1) C13a C14a 1.39(1) C3b C4b 1.374(8) C13b C14b 1.38(1) C3a H3a 0.95 ClOb HlOb 0.95 C3b H3b 0.95 Clla Hlla 0.95 C4b H4b 0.95 Cllb Hllb 0.95 C5a H5a 0.95 C12b H12b 0.95 C5b H5b 0.95 C13a H13a 0.95 C7a H7al 0.95 C13b H13b 0.95 C7a H7a2 0.95 C14a H14a 0.95 C7b H7bl 0.95 C14b H14b 0.95 C7b H7bl 0.95 C15a H15al 0.95 C8b H8bl 0.95 C15a H15a2 0.95

Page 170: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

157

Bond Distances for Structure IV (cont.) [Atom 1 Atom 2 Distance A Atom 1 Atom 2 Distance A C8b H8b2 0.95 C15a H15a3 0.95

IClOa HlOa 0.95

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle Ola S8a 08a 108.1 C3b C2b C7a 119.8 Ola S8a 08b 109.4 C2a C3a C4a 119.5 Ola S8a C9a 98.1 C2b C3b C4b 120.3 08a S8 08b 118.2 N4 C4a C3a 118.9 08a S8a C9a 110.6 N4 C4a C5a 117.7 08b S8a C9a 110.6 C3a C4a C5a 123.4 S8a Ola Cla 118.1 C3b C4b C5b 120.1 Clb Olb Clb 113.2 C4a C5a C6a 119.3 04a N4 08b 123.0 C4b C5b C6b 121.7 04a N4 C4a 118.2 Cla C6a C5a 116.4 04b N4 C4a 118.8 Cla C6a C7a 123.0 Ola Cla C2a 118.8 C5a C6a C7a 120.4 Ola Cla C6a 116.0 Clb C6b C5b 117.2 C2a Cla C6a 125.2 Clb C6b C7b' 121.5 01b Clb C2b 119.9 C5b C6b C7b' 121.3 Olb Clb C6b 117.9 C2b C7a C6a 112.4 C2b Clb C6b 122.0 Cla C7b C6b' 114.1 Cla C2a C3a 115.9 08b C8b C9b 110.2 Cla C2a C7b 123.2 S8a C9a ClOa 117.2 C3a C2a C7b 120.9 SlOa C9a C14a 121.3 Clb C2b C3b 118.4 C8b C9a C14a 121.4 Clb C2b C7a 121.8 C8b C9b ClOb 122.8 ClOb C9b C14b 118.9 C13a C12a C15a 120.5 C9a ClOa CI la 117.0 Cl lb C12b C13b 120.9 C9b ClOb CI lb 121.0 C12b C13b C14a 121.6

Page 171: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

158

JjAtom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 j Angle | ClOa Cl la C12a 122.5 C12b C13b C14b

1 2 2 , 5

ClOb CI lb C12b 117.9 C9a C14a C13a 119.2 CI la C12a C13a 118.2 C9b C14b C13b 118.8 C2a C3a H3a 120 C9b C8b H8bl 1 0 9

C 4 a C3a H3a 120 C9b C8b H8b2 1 1 0 9 II jjC2b C3b H3b 120 H8bl C8b H8b2

1 1 0

C4b C3b H3b 120 C9a ClOa HlOa 1 2 2

|[C3b C4b H4b 120 Clla ClOa HlOa 1 1 2 2 II C5b C4b H4b 120 C9b ClOb HlOb

1 2 0 llC4a C5a H5a 120 CI lb ClOb HlOb 1 1 2 0 1

C6a C5a H5a 120 ClOa Clla HI la 1 1 1 9 II ||C4b C5b H5b 119 C12a Clla HI la

1 1 9

C6b C5b H5b 119 ClOb CI lb Hl lb 1 1 2 1 II |c2b C7a H7al 109 C12b Cllb Hl lb 1 121 II llC2b C7a H7a2 109 CI lb C12b H12b 1 1 2 0 11

C6a C7a H7al 109 C13b C12b H12b 1 2 0

||C6a C7a H7a2 109 C12a C13a H13a 1 1 1 9 II H7al C7a H7a2 110 C14a C13a H13a 1 1 1 9 II C2a C7b H7bl 108 C12b C13b H13b - 1 1 9 1 ||C2a C7b H7bl 108 C14b C13b H13b 1 1 1 9 II H 7 b C7b H7bl 110 C9a C14a H14a 1 1 2 0 II H 7 b C7b C6b' 108 CI 3a C14a H14a 1 1 2 0 II H 7 b C7b C6b' 108 C9b C14b H14b

1 2 1 l l01b C8b H8bl 109 C13b C14b H14b 121 1 P l b C8b H8b2 109 C12a C15a H15al 1 1 0 9 II |ci2a C15a hl5a2 109 H15al C15a

H15a3 j

1 0 9 II C12a C15a H15a3 109 H15a2 C15a H15a3 ' 109

||H15al CI 5a H15a2 109

Page 172: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

159

for Structure IV Atoml Atom 2 Atom 3 Atom 4 Angle II

08a S8a Ola Cla E> II

-85.79(0.48) | |j08b S8a Ola Cla 44.17(0.51) C 9 a S8a Ola Cla 159.41(0.47)

| Ola S8a C9a ClOa -138.25(0.59)

P l a S8a C9a C14a 45.71(0.63) |08a S8a C9a ClOa 108.92(0.61) 108a S8a C9a C14a -67,12(0.63) j 08b S8a C9a ClOa -23.99(0.67) ||o8b S8a C9a C14a 159.97(0.57) |jS8a Ola Cla C2a 91.17(0.56) S8av

Ola Cla C6a -92.43(0.52) C8b Olb Clb C2b -90.90(0.67) C8b Olb Clb C6b 92.06(0.66) C l b Olb C8b C9b -178.66(0.45) 04a N4 C4a C3a 12.34(0.77) j 04a N4 C4a C5a -166.24(0.53) | || 04b N4 C4a C3a -165.61(0.53) Io4b N4 C4a C5a 15.82(0.77) Ola Cla C2a C3a -178.22(0.45)

P l a Cla C2a C7b 2.50(0.76) ||c6a Cla C2a C3a 5.75(0.80) || C6a Cla C2a C7b -173.53(0.51) lola Cla C6a C5a 176.99(0.45) Ola Cla C6a C7a -7.78(0.74)

|c2a Cla C6a C5a -6.87(0.81) C2a Cla C6a C7a 168.36(0.52) Olb Clb C2b C3b 178.80(0.58)

[Olb Clb C2b Cla -1.33(0.97) C6b Clb C2b C3b -4.29(1.00) C6b Clb C2b C7a 175.58(0.62) Olb _[_ Clb 11 C6b C5b [_ -177.72(0.57^) II

Page 173: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

160

Atoml Atom 2 Atom 3 Atom 4 Angle Olb Clb C6b C7b' 4.08(0.93) C2b Clb C6b C5b 5.31(0.98) C2 Clb C6b C7b' -172.89(0.62) Cla C2a C3a C4a -0.18(0.76) C7b C2a C3a C4a 179.12(0.50) Cla C2a C7b C6b' 60.51(0.73) C3a C23a C7b C6b' -118.74(0.59) Clb C2b C3b C4b 0.29(1.02) C7a C2b C3b C4b -179.58(0.65) Clb C2b C7a C6a -60.02(0.81) C3b C2b C7a C6a 119.85(0.66) C2a C3a C4a N4 177.48(0.48) C2a C3a C4a C5a -4.04(0.85) C2b C3b C4b C5b 2.49(1.10) N4 C4a C5a C6a -178.62(0.48) C3a C4a C5a C6a 2.88(0.86) C3b C4b C5b C6b -1.38(1.11) C4a C5a C6a Cla 2.35(0.77) C4a C5a C6a C7a -173.02(0.51) C4b C5b C6b Clb -2.42(1.02) C4b C5b C6b C7b' 175.78(0.66) Cla C6a C7a C2b -64.19(0.70) C5a C6a C7a C2b 110.85(0.62) Clb C6b C7b' C2a' 67.75(0.80) C5b C6b C7b' C2a' -110.37(0.69) C2a C7b C6b' Clb' 67.75(0.80) C2a C7b C6b' C5b' -110.37(0.69) Olb C8b C9b ClOb 7.19(0.80) Olb C8b C9b C14b -174.75(0.53) S8a C9a ClOa CI la -176.10(0.66) C14a C9a ClOa Clla -0.07(1.14)

Page 174: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

161

Torsion Angles for Structure IV (cont.)

Atoml Atom 2 Atom 3 Atom 4 Angle

S8a C9a C14a C13a 175.94(0.59) ClOa C9a C14a C13a 0.07(1.08)

C8b C9b ClOb Cllb 177.86(0.60)

V14b C9b ClOb Cl lb -0.19(0.95) C8b C9b C14b C13b -178.32(0.62)

ClOb C9b C14b C13b -0.19(0.98)

C9a ClOa Clla C12a -0.04(1.49)

C9b ClOb Cl lb C12b 0.41(1.02)

ClOa Clla C12a C13a 0.14(1.48)

ClOa Clla C12a C15a 178.49(0.97)

ClOb Cllb C12b C13b -0.25(1.10)

CI la C12a C13a C14a -0.14(1.37)

C15a C12a C13a C14a -178.50(0.90)

CI lb C12b C13b C14b -0.13(1.20)

C12a C13a C14a C9a 0.03(1.08)

C12b C13b C14b C9b 0.36(1.13)

Page 175: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

REFERENCES

1. (a) C. D. Gutsche, Calixarenes, The Royal Society of

Chemistry, Cambridge, UK, 1989; (b) Calixarenes, A

Versitile Class of Macrocyclic Compounds, ed. J. Vicens

and V. BShmer, Kluwer, Dordrecht, Netherlands, 1991; (c)

V. Bohmer, Angew. Chem,, Int. Ed.Engl., 1995, 34, 713

and references therin.

2. (a) Zinke, A.; Ziegler, E.; Ber.; 1941,B74, 1729. (b)

Zinke, A.; Ziegler, E.; Ber.; 1944,77, 264.

3. (a) Gutsche, C. D.; Iqbal, M. Org. Synth. 1989, 68,

234 - 237. (b) Gutsche, C. D.; Dhawan, B.; Leonis, M.;

Stewart, D. Org. Synth. 1989, 68, 238 - 242. (c)

Munch, J. H.; Gutsche, C. D. Org. Synth. 1989, 68, 243

- 245.

4. (a) Nakamoto, Y.; Ishida, S. Makromol. Chem., Rapid

Commun. 1982, 3, 705 - 707. (b) Arimura, T.; Kubota M.;

Matsuda, T.; Manabe, 0.; Shinkai, S. Bull. Chem. Soc.

Jpn. 1989, 62, 1674 - 1676.

5. D.J cram, Science, 219, 1177, 1983

6. (a) Kawabate, Y.; Matsumoto, M; Tanaka, M; Takahashi, H.;

Irinatsu,Y; Tamura, S; Tagaki, W; Nakahara, H.; Fukuda,

K. Chem. Lett. 1986, 1933 - 1934. (b) Tanaka, M;

Ishizuka, Y.; Matsumoto, M; Nakamura, T.; Yabe, A;

Page 176: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

163

Nakanishi, H.; Kawabata, Y.; Takahashi, H; Tamura, S.;

Tagaki, W.; Nakahara, H.; Fukuda, K. Chem. Lett. 1987,

60, 2747 - 2750.

7. (a) Alam, I.; Gutsche, C. D. J. Org. Chem. 1990, 55,

4487 - 4489. (b) Atwood, J. L.; Koutsantonis, G. A.;

Raston, C. L. Nature 1994, 368, 229 - 231. (c)

Williams, R. M.; Verhoeven, J. W. Reel. Trav. Chim.

Pays-Bas. 1992, 111, 531 - 532. (d) Williams, R. M. ;

Zwier, J. M.; Verhoeven, J. w.; Nachtegaal, G. H.;

Kentgens, A. P. M. J. Am. Chem. Soc. 1994, 116, 6965 -

6966. (e) Suzuki, T.; Nakashima, K.; Shinkai, S. Chem.

Lett. 1994, 699 - 702.

8. (a) Olmstead, M. M.; Sigel, G.; Hope, H.; Xu, X.; Power,

P. P. J. Am. Chem. Soc. 1985, 107, 8087 - 8091. (b)

No, K.; Hong, M. J. Chem. Soc., Chem. Commun. 1990, 572

- 573.

9. (a) Scheerder, J.; Engbersen, J. F. J.; Reinhoudt, D. N.

Rec. Trav. Chim. Pay-Bas 1996, 115, 307 - 320. (b)

Chrisstoffels, L. A. J.; Struijk, W.; de Jong, F.;

Reinhoudt, D. N. J. Chem. Soc., Perkin Trans. 2 1996,

1617 - 1622.10. a. See, K. A.; Fronczek, F. R.; Watson,

W. H.; Kashyap, R. P.; Gutsche, C. D. J. Org. Chem.

1991, 56, 7256 - 7268. (c) Nam, K. C.; Kim, J. M.;

Kook, S. K.; Lee, S. J. Bull. Kor. Chem. Soc. 1996, 17,

499 - 502.

Page 177: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

164

10 (a) See, K. A.; Fronczek, F. R.; Watson, W. H.; Kashyap,

R. P.; Gutsche, C. D. J. Org. Chem. 1991, 56, 7256 -

7268. (b) Nam, K. C.; Kim, J. M.; Kook, S. K. ; Lee, S.

J. Bull. Kor. Chem. Soc. 1996, 17, 499 - 502.

11. (a) Mogck, 0.; Bdhmer, V.; Ferguson, G.; Vogt, W. J.

Chem. Soc., Perkin Trans. 1 1996, 1711 - 1715. (b) Xu,

W.; Vittal, J. J.; Puddephatt, R. J. Can. J. Chem.

1996, 74, 766 - 744. (c) Park, Y. J.; Shin, J. M.; Nam,

K. C.; Kim, J. M.; Kook, S.-K. Bull. Kor. Chem. Soc.

1996, 17, 643 - 647.

12. Ferguson, G.; Gallagher, J. F.; Giunta, L.; Neri, P.;

Pappalardo, S.; Parisi, M. J. Org. Chem. 1994, 59, 42 -

53.

13. (a) No, K.; Kwon, K. M.; Kim, J. E. Bull. Kor. Chem.

Soc. 1996, 17, 525 - 528. (b) No, K.; Kim, J. E. Bull.

Kor. Chem. Soc. 1995, 16, 1122 - 1125.

14. Atwood, J. L.; Orr, G. W.; Robinson, K. D.; Hamada, F.

Supramol. Chem. 1993, 2, 309 - 317.

15. No, K. H.; Gutsche, C. D. J. Org. Chem. 1982, 47, 2713

- 2719.

16. Cornforth, J.W.; D'Arcy Hart, P.; Nicholls, G.A.; Rees,

J. W.; Stock, J.A.,* Br. J. Pharmacol1955, 120, 73.

17. (a) Iwamoto, K. ; Araki, K.; Shinkai, S. J. Org. Chem.

1991, 56, 4955 - 4962. (b) Lu, J.; Chen, Q.; Diamond,

D.; Wang, J. Analyst 1993, 118, 1131 - 1135. (c)

Iwamoto, K.; Araki, K.; Shinkai, S. J. Chem. Soc.,

Page 178: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

165

Perkin Trans. 1 1991, 1611 - 1613. (d) No, K.; Park, Y.

J.; Kim, K. H.; Shin, J. M. Bull. Kor. Chem. Soc. 1996,

17, 447 - 452. (e) Gibbs, C. G.; Sujeeth, P. K.; Rogers,

J. S.; Stanley, G. G.; Krawiec, M.; Watson, W. H.;

Gutsche, C. D. J. Org. Chem. 1995, 60, 8394 - 8402.

18. Araki, K.; Iwamoto, K.; Shinkai, S.; Matsuda, T. Chem.

Lett. 1989, 1747 - 1750.

19. Groenen, L. C.; van Loon, J-D.; Verboom, W.; Harkema,

S.; Casnati, A.; Ungaro, R.; Pochini, A.; Ugozzoli, F.;

Reinhoudt, D. N. J. Am. Chem. Soc. 1991, 113, 2385-2392.

20. Andreetti, G. D.; Ungaro, R.; Pochini, A. J. Chem. Soc.,

Chem. Commun. 1979, 1005 - 1007.

21. (a) Wolfgong, W. J.; Talafuse, L. K.; Smith, J. M.;

Adams, M. J.; Adegoba, F.; Valenzuela, M.; Rodriguez, E.;

Contreras, K.; Carter, D. M.; Bacchus, A.,* McGuffey, A.

R.; Bott, S. G. Supramol. Chem. 1996, 7, 67 - 78. (b)

Wipff, G.; Lauterbach, M. Supramol. Chem. 1995, 6, 187

- 207. (c) Yuldashev, A. M.; Ibragimov, B. T.; Talipov,

S. A.; Gapparov, H. L. J. Struct. Chem. 1996, 37, 470 -

473.

22. (a) Gutsche, C. D.; Bauer, L. J. J. Am. Chem. Soc.

1985, 107, 6059 - 6063. (b) Gutsche, C. D.; See, K. A.

J. Org. Chem. 1992, 57, 4527 - 4539. (c) Iwamoto, K.;

Ikeda, A.; Araki, K.; Harada, T.; Shinkai, S.

Tetrahedron 1993, 49, 9937 - 9946. (d) Bauer, L. J.;

Page 179: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

166

Gutsche, C. D. J. Am. Chem. Soc. 1985, 107, 6063 -

6069.

23. Brouwer, E. B.; Ripmeester, J. A.; Enright, G. D. J.

Incl. Phenom., Mol. Recognit.1996, 24, 1 - 17.

24. Lipkowitz, K. B.; Pearl, G. J. Org. Chem. 1993, 58,

6729 - 6736.

25. Cambridge Crystallographic Database, Cambridge

Crystallographic Data Centre, University Chemical

Laboratory, Lensfield Road, Cambridge, CB2 1EW, U.K.

26. Motherwell, S. PLUTO - A program for the display of

crystal structures; Cambridge Crystallographic Data

Centre, University Chemical Laboratory, Lensfield Road,

Cambridge, CB2 1EW, U.K.

27. Details of all CAD4 commands and the programs can be

found in the Enraf Nonius CAD-4 Operations Manual,

Enraf-Nonius: Delft, The Netherlands; 1988.

28. International Tables for X-ray Crystallography; Kynoch

Press: Birmingham, UK, 1974, 1986.

29. Enraf-Nonius. MolEN, An Interactive Structure Solution

Procedure. Enraf-Nonius: Delft, The Netherlands; 1990.

30. Main, P.; Fiske, S.J.; Hull, S.E.; Lessinger, L.;

Germain, G.; DeClerq, J.P.; Woolfson, M.M. Multan80, A

System of Computer Programs for the Automatic Solution of

Crystal Structures from X-ray Diffraction Data;

University of York: England; 1980.

Page 180: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

167

31. Burla, M.C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.;

Polidori, G. ; Spagna, R. ; Viterbo, D. J". Appl. Cryst.

1989, 22, 389.

32. Sheldrick, G.M. in Crystallographic Computing.

Sheldrick, G.M.; Kruger, C.; Goddard, R., Eds.; Oxford

University Press: Oxford; 1985; pp. 184 - 189.

33. Walker, N.; Stuart, D. Acta Crystallogr. 1983, A39,

159.

34. Johnson, C.K. ORTEPII Report ORNL-5138, 1796, Oak Ridge

National Laboratory, TN.

35. (a) Perlstien, J.; Steppe, K.; Vaday, S.; Ndip, E. M. N.;

J. Am. Chem. Soc. 1996, 118, 8433 - 8443. (b) Zoworotko,

M. Chem. Soc. Rev, 1994, 283 - 288. (c) Aakeroy,

Seddon, K,; Chem Soc Rev, 1993, 397 - 407

36. Atwood, J. L.; Orr, G. W. ; Bott, S. G.; Robinson, K. D.

Angew. Chem., Int. Ed. Engl. 1993, 32, 1093 - 1094.

37. Andreetti, G. D.; Pochini, A.; Ungaro, R. J. Chem. Soc.,

Perkin Trans. 2 1983, 1773 - 1779.

38. Perrin, M.; Gharnati, F.; Oehler, D.; Perrin, R.; Lecocq,

S. J. Incl. Phenom., Mol. Recognit. 1992, 14, 257 -

270.

39. Harrowfield, J. M.; Ogden, M. I.; Richmond, W. R.;

Skelton, B. W.; White, A. H. J. Chem. Soc., Perkin Trans.

2 1993, 2183 - 2190.

40. Ungaro, R.; Pochini, A.; Andreetti, G. D.; Sangermano, V.

J. Chem. Soc., Perkin Trans. 2 1984, 1979 - 1985.

Page 181: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

168

41. Ohtsuchi, M. ; Suzuki, K.; Armah, A. E.; Yamagata, Y. ;

Fujii, S.; Tomita, K.-I. Acta Crystallogr., Sect. C

1993 , C49, 639 - 641.

42. Ungaro, R.; Pochini, A.; Andreetti, G. D.; Domiano, P.

J. Chem. Soc., Perkin Trans. 2 1985, 197 - 201.

43. Ehlinger, N.; Perrin, M. J. Incl. Phenom., Mol.

Recognit. 1995, 22, 33 - 40.

44. Arduini, A.; Pochini, A.; Rizzi, A.; Sicuri, A. R.;

Ugozzoli, F.; Ungaro, R. Tetrahedron 1992, 48, 905 -

912.

45. Georgiev, E. M.; Mague, J. T.; Roundhill, D. M.

Supramol. Chem. 1993, 2, 53 - 60.

46. Gharnati, F.; Perrin, M.; Rantsordas, S.; Goldmann, H.;

Bohmer, V. J. Ciryst. Spectroscop. Res. 1991, 21, 69 -

74.

47. Rantsordas, S.; Perrin, M.; Gharnati, F.; Lecocq, S;

Vogt, W.; Fey, T.; Bohmer, V. J. Incl. Phenom., Mol.

Recognit. 1990,9, 145 - 152.

48. Dahan, E. ,- Biali, S. E. J. Org. Chem. 1989, 54, 6003 -

6004.

49. Groenen, L. C.; RuSl, B. H. M.; Casnati, A.; Timmerman,

P.; Verboom, W.; Harkema, S.; Pochini, A.; Ungaro, R.;

Reinhoudt, D. N. Tetrahedron Lett. 1991, 32, 2675 -

2678.

50. Ferguson, G.; Gallagher, J. F.; Pappalardo, S. J. Incl.

Phenom., Mol. Recognit. 1992, 14, 349 - 356.

Page 182: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

169

51. Ranters, J. A.; Schouten, A.; Steinwender, E.; van der

Maas, J. H.; Groenen, L. C.; Reinhoudt, D. N. J. Mol.

Struct. 1992, 269, 49 - 64.

52. Grootenhuis, P. D. J.; Kollman, P. A.; Groenen, L. C.;

Reinhoudt, D. N.; van Hummel, G. J.; Ugozzoli, F.;

Andreetti, G. D. J. Am. Chem. Soc. 1990, 112, 4165 -

4176.

53. van Loon, J-D.; Arduini, A.; Coppi, L.; Verboom, W.;

Pochini, A.; Ungaro, R.; Harkema, S.; Reinhoudt, D. N.

J. Org. Chem. 1990, 55, 5639 - 5646.

54. Beer, P. D.; Martin, J. P.; Drew, M. G. B. Tetrahedron

1992, 48, 9917 - 9928.

55. Collins, E. M.; McKervey, M. A.; Madigan, E.; Moran, M.

B.; Owens, M.; Ferguson, G.; Harris, S. J. J. Chem.

Soc., Perkin Trans. 1 1991, 3137 - 3142.

56. Bugge, K-E.; Verboom, W.; Reinhoudt, D. N.; Harkema, S.

Acta Crystallogr., Sect. C 1992, C48, 1848 - 1851.

57. Beer, P. D.; Drew, M. G. B.? Grieve, A.; Ogden, M. I.

J. Chem. Soc., Dalton Trans. 1995, 3455 - 3466.

58. Arduini, A.; Pochini, A.; Reverberi, S.; Ungaro, R.;

Andreetti, G. D.; Ugozzoli, F. Tetrahedron 1986, 42,

2089 - 2100.

59. Ferguson, G.; Kaitner, B.; McKervey, M. A.; Seward, E. M.

J. Chem. Soc., Chem. Commun. 1987, 584 - 585.

60. Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.;

Harris, S. J.; Kaitner, B.; Lough, A. J.; McKervey, M.

Page 183: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

170

A.; Marques, E.; Ruhl, B. L.; Schwing-Weill, M. J.;

Seward, E. M. J. Am. Chem. Soc. 1989, 111, 8681 - 8691.

61. Ferguson, G.; Gallagher, J. F.; McKervey, M. A. Acta

Crystallogr., Sect. C 1993, C49, 602 - 604.

62. Guelzim, A.; Khrifi, S.; Baert, F. Acta Crystallogr.,

Sect. C 1993, C49, 2121 - 2124.

63. Ferguson, G.; Li, Y.; McKervey, M. A.; Madigan, E. Acta

Cryst. 1994, C50, 1320 - 1323.

64. Barrett, G.; BShmer, V.; Ferguson, G.; Gallagher, J. F.;

Harris, S. J.; Leonard, R. G.; McKervey, M. A.; Owens,

M.; Tabatabai, M.; Vierengel, A.; Vogt, W. J. Chem. Soc.

Perkin Trans. 2 1992, 1595 - 1601.

65. Loeber, C.; Matt, D.; de Cian, A.; Fischer, J. J.

Organometal. Chem. 1994, 475, 297 - 305.

66. Loeber, C.; Wieser, C.; Matt, D.; de Cian, A.; Fischer,

Lo J,; Toupet, L. Bull. Soc. Chim. Fr. 1995, 132, 166 -

177

67. Calestani, G.; Ugozzoli, F.; Arduini, A.; Ghidini, E.;

Ungaro, R. J. Chem. Soc., Chem. Commun. 1987, 344 -

346.

68. McKervey, M. A.; Seward, E. M.; Ferguson, G.; Ruhl, B.;

Harris, S. J. J. Chem. Soc., Chem. Commun. 1985, 388 -

390.

69. Arnaud-Neu, F.; Barrett, G.; Cremin, S.; Deasy, M.;

Ferguson, G.; Harris, S. J.; Lough, A. J.; Guerra, L.;

Page 184: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

171

McKervey, M. A.; Schwing-Weill, M. J.; Schwinte, P. J.

Chem. Soc., Perkin Trans. 2 1992, 1119 - 1125.

70. Malone, J. F.; Marrs, D. J.; McKervey, M. A.; O'Hagan,

P.; Thompson, N.; Walker, A.; Arnaud-Neu, F.; Mauprivez,

0.; Schwing-Weill, M.-J.; Dozol, J.-F.; Rouquette, H.;

Simon, N. J. Chem. Soc., Chem. Commun. 1995, 2151 -

2153.

71. Dielman, C.; Loeber, C.; Matt, D.; de Cian, A.; Fischer,

J. J. Chem. Soc., Dalton Trans. 1995, 3097 - 3100.72.

Pappalardo, S.; Giunta, L.; Foti, M.; Ferguson, G.;

Gallagher, J. F.; Kaitner, B. J. Org. Chem. 1992, 57,

2611 - 2624.

73. McKervey, M. A.; Seward, E. M. ; Ferguson, G. ; Ruhl, B. L.

J. Org. Chem. 1986, 51, 3581 - 3584.

74. Kelderman, E.; Derhaeg, L.; Verboom, W.; Engbersen, J.

F. J.; Harkema, S.; Persoons, A.; Reinhoudt, D. N.

Supramol. Chem. 1993, 2, 183 - 190.

75. Verboom, W.; Bodewes, P. J.; van Essen, G.; Timmerman,

P.; van Hummel, G. J.; Harkema, S.; Reinhoudt, D. N.

Tetrahedron 1995, 51, 499 - 512.

76. Hamada, F.; Bott, S. G.; Orr, G. W.; Coleman, A. W.;

Zhang, H.; Atwood, J. L. J. Incl. Phenom., Mol.

Recognit. 1990, 9, 195 - 206.

77. Harrowfield, J. M.; Mocerino, M.; Skelton, B. W. ;

Whitaker, C. R.; White, A. H. Aust. J. Chem, 1994, 47,

1185 - 1192.

Page 185: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

172

78. Guelzim, A.; Khrifi, S.; Baert, F.; Loeber, C.; Asfari,

Z.; Matt, D.; Vicens, J. Acta Crystallogr., Sect. C

1993, C49, 72 - 75.

79. Rizzoli, C.; Andreetti, G. D.; Ungaro, R.; Pochini, A.

J. Mol. Struct. 1982, 82, 133 - 141.

80. Shinkai, S.; Fujimoto, K.; Otsuka, T.; Ammon, H. L. J.

Org. Chem. 1992, 57, 1516 - 1523.

81. Ferguson, G.; Gallagher, J. F.; Pappalardo, S. Acta

Crystallogr., Sect. C 1993, C49, 1537 - 1540.

82. No, K.; Park, Y. J.; Kim, K. H.; Shin, J. M. Bull. Kor.

Chem. Soc. 1996, 17, 447 - 452.

83. Casiraghi, G.; Cornia, M.; Ricci, G.; Balduzzi, G.;

Casnati, G.; Andreetti, G. D. Makromol. Chem. 1983,

184, 1363 - 1378.

84. Chang, S-K.; Cho, I. Chem. Lett. 1984, 477 - 478.

85. Chasar, D. W. J. Org. Chem. 1985, 50, 545 - 546.

86. (a) Atwood, J. L.; Orr, G. W.; Hamada, F.; Vincent, R.

L.; Bott, S. G.; Robinson, K. D. J. Incl. Phenom., Mol.

Recognit. 1992, 14, 37 - 46. (b) Atwood, J. L.; Orr, G.

W.; Means, N. C.; Hamada, F.; Zhang, H.; Bott, S. G.;

Robinson, K. D. Inorg. Chem. 1992, 31, 603 - 606. (c)

Bott, S. G.; Coleman, A. W.; Atwood, J. L. J. Am. Chem.

Soc. 1988, 110, 610 - 611. (d) Coleman, A. W.; Bott, S.

G.; Morley, S. D.; Means, C. M.; Robinson, K. D.; Zhang,

H.; Atwood, J. L. Angew. Chem., Int. Ed. Engl. 1988,

27, 1361 - 1362. (e) Atwood, J. L.; Coleman, A. W.;

Page 186: 37c - UNT Digital Library/67531/metadc278942/m2/1/high_re… · 3.4. 1, 2-dihydroxycalix [4] arenes 32 3.5. 1,3 -dihydroxycalix [ 4 ] arenes 39 3.6. Monohydroxycalix [ 4 ] arenes

173

Zhang, H.; Bott, S. G. J. Incl. Phenom., Mol. Recognit.

1989, 7, 203 - 211. (f) Atwood, J. L.; Orr, G. W.;

Hamada, F.; Vincent, R. L.; Bott, S. G.; Robinson, K. D.

J. Am. Chem. Soc. 1991, 113, 2760-2761. (g) Atwood, J.

L.; Orr, G. W.; Hamada, F.; Bott, S. G.; Robinson, K. D.

Supramol. Chem. 1992, 1, 15 - 17. (h) Hamada, F.;

Fukugaki, T.; Murai, K.; Orr, G. W. ,* Atwood, J. L. J.

Incl. Phenom., Mol. Recognit. 1991, 10, 57 - 61.


Recommended