+ All Categories
Home > Documents > 3c DIFFERENTIAL EQUATIONS.doc

3c DIFFERENTIAL EQUATIONS.doc

Date post: 07-Aug-2018
Category:
Upload: saffire
View: 213 times
Download: 0 times
Share this document with a friend

of 8

Transcript
  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    1/17

    CAPE MATHEMATICSUNIT 2 MODULE 3: COUNTING, MATRICES AND DIFFERENTIAL

    EQUATIONS

    (C) Differenti! E"#ti$n% n& M$&e!!in'

    Students should be able to:

    1. solve first order linear differential equations y - ky = f(x) using an integrating factor, given

    that k is a real constant or a function of x, and f is a function;

    2. solve first order differential equations given boundary conditions;

    . solve second order ordinary differential equations !ith constant coefficients of the for"

     y 

    # ay 

    # by = f(x), !here a, b, c∈

      and f(x) is$

    (i) a %olyno"ial,

    (ii) an ex%onential function,

    (iii) a trigono"etric function;

      and the co"%le"entary function "ay consist of 

    (a) 2 real and distinct roots

    (b) 2 equal roots

    (c) 2co"%lex roots

    &. solve second order ordinary differential equations given boundary conditions;

    '. use substitution to reduce a second order ordinary differential equation to a suitable for".

    Intr$ti$nAn equation that involves an unknown function and one or more of its derivatives iscalled a differential equation.

    EXAMPLES:

    1.   x  x  f  x  f    =+′ ))  

    !. "!! !!

    !

    +−=+−   x  x  ydx 

    dy

    dx 

     yd   where y # f   x).

    $he stud% of differential equations has two &rinci&al 'oals:

    1. to discover the differential equation that descri(es a 'iven situation!. to find the a&&ro&riate solution of that equation.

    Solvin' a differential equation involves findin' the unknown function* f * for which thedifferential equation is true on some interval of real num(ers.

    Man% natural &henomena involve chan'e. $he derivative of a function ma% (e re'ardedas the rate at which a quantit% is chan'in' with res&ect to the inde&endent varia(le.

    +ifferential equations are often used to descri(e the chan'in' universe.

    EXAMPLES:1. ,f k is a constant* then ever% function* f  * that satisfies the equation

     f ′    (t) = k f(t) 

    has the form f(t) = C e kt 

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

    1

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    2/17

    for an a&&ro&riate constant C .

    Such a function re&resents e4&onential 'rowth if k  5 2 ande4&onential deca% if k  6 2.

    !.  e!tons *a! of +ooling$ The time rate of change of the temperature,T(t), of a body is proportional to the difference between T and thetemperature, A, of the surrounding medium* ma% (e modelled (% thedifferential equation:

    )   ,  -k dt 

    d, −=

    where k  is a &ositive constant.

    3. $he motion* v* of a fallin' o(7ect ma% modelled (%t 

    dt 

    dv8.9−= .

    . $he chan'e in the si;e of a &o&ulation*  * ma% (e modelled (%

    + k. dt 

    d. =+ *

    where k  and C  are constants.

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    3/17

    'iven initial or boundary) conditions* which s&ecif% the value of the solution or certainof its derivatives at s&ecific num(ers in the domain* are satisfied.

    Solutions of differential equations can (e e4&ress in the form y = f(x), an explicit solution

    or  k(x,y) # 2* an implicit solution!

    Te Or&er $f Differenti! E"#ti$n$he order  of the differential equation is the order  of its hi'hest derivative.

    EXAMPLE:

    +ifferential equations with  y′      ordx 

    dyas the hi'hest derivative are called first order 

    differential equations

    +ifferential equations with  y′′     or!

    !

    dx  yd   as the hi'hest derivative are called

    second order  differential equations

    Fir%t Or&er Differenti! E"#ti$n%

    A. Equations that ma% (e e4&ressed in the form ))   x  g dx 

    dy y f     = .

    $his t%&e of differential equation is solved (% se&aratin' the varia(les and inte'ratin' (oth sides of the equation with res&ect to x* the inde&endent varia(le.

    See nit 1 notes.)

    E*eri%e 2+3++  Past E4amination =uestions)

    1. >ater lilies are s&readin' over the surface of a &ond at a rate which is &ro&ortional to the area alread% covered (% the water lilies. $he area coveredat time t  is A(t)* where A is a function* assumed to (e differentia(le. ?(tain*with e4&lanations* a differential equation for A(t), which models this situation.

    @ive reasons wh% the descri&tion of the s&read of the lilies (% means of adifferentia(le function is 7ustified.

      [Specimen Paper 1 – 6 marks]

    !. $he rate of increase of a &o&ulation P is &ro&ortional to P with the constant of &ro&ortionalit% (ein' 2.23. >rite down a differential equation model for P.

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

    3

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    4/17

    ,f the initial &o&ulation is P2* find P at time t.  [1999 Paper 1 – 3 marks]

    3. $he rate of decline of an insect &o&ulation due to the a&&lication of a certaint%&e of insecticide can (e modelled (% means of the differential equation

    t dt 

    dx 

    A1

    A22

    +−= *

    where x is the num(er of insects alive t hours after the a&&lication of theinsecticide.

    ,f there were 1222 insects initiall%* calculatea) the num(er of insects alive after ! hours [ marks]() how lon' the &o&ulation of insects will survive. [! marks]

      [!""" Paper 1 – 6

    marks]

    . $he rate at which an air freshener (lock eva&orates is directl% &ro&ortional toits volume. At time* t  weeks* the volume of the (lock is "  cm3.

    i) +enotin' the &ositive constant of &ro&ortionalit% (% k * write down adifferential equation relatin' "  and t . [! marks]

    ii) 0ence* show that kt  -e/    −= * where A is a constant. [marks]

    iii) @iven that A and k  are (oth &ositive* sketch a 'ra&h showin' the variation

     of "  with t . [! marks]iv) ,nitiall%* the air freshener (lock has volume cm3. ,t loses half itsvolume after weeks. -alculate the e4act values of k  and A. [# marks]

    v) $he air freshener (lock (ecomes ineffective when its volume reaches cm3. -alculate the time* to the nearest week* at which the (lock should (e re&laced. [3 marks]

      [!""1 Paper ! – 16 marks]

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    5/17

    E4act +ifferential Equations equations that ma% (e e4&ressed in the form)))))   x h y g  x  f  y g  x  f    =⋅′+′⋅

    Since the left hand side of this equation is the derivative of f  x) g  y)* i.e. )B)C   y g  x   f  dx 

    d *

    the solution of equations of this t%&e is

    ∫ ∫    =   dx  x hdx  y g  x   f  dx d 

    )B))C

    ∴   ∫ =   dx  x h y g  x   f   )))

    EXAMPLE

    Dind the 'eneral solution of the differential equation

     x e y

    dx 

    dy x    =+

     0olution

    ) xydx 

    d  y

    dx 

    dy x    =+

    ∴  x 

    e ydx 

    dy x    =+

    ⇒   dx edx  xydx 

    d    x ∫ ∫    =)

    ⇒   ce xy  x  += where c is the constant of inte'ration.

    $%ercise !&3&c&b

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    6/17

    >orksheet E4act +ifferential Equations

    ' Linear Dirst ?rder +ifferential Equations equations that ma% (e e4&ressed in the

    form ) x  f  kydx 

    dy=+ * where k  is a constant or a function of x.

    >e use an integrating factor  to solve this t%&e of differential equation.

    $he integrating factor is kx dx k dx  yof  t coefficienthe eee   =∫ =∫ )  

    or )))  x#dx x g dx yof  t coefficienthe eee   =∫ =∫   where

    ∫   =

    ))   x#dx x g 

    Cote the constant of inte'ration is ?$ used here.B

    Foth sides of the differential equation are multi&lied (% the inte'ratin' factor.

    e.'.   ) x  f  ekyedx 

    dye

      kx kx kx  =+

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    7/17

    $he L.0.S. of the equation is now equal to the derivative of the &roduct of the inte'ratin'factor and %.

    i.e. )   yedx 

    d  yke

    dx 

    dye   kx kx kx  =+

    $he equation is now an e4act differential equation and should (e solved as such.i.e. dx  x   f  e ye

      kx kx  )∫ =Dinall%* the 'eneral solution is o(tained (% dividin' the equation (% the inte'ratin' factor.

    i.e.   dx  x   f  ee y  kx kx  )∫ 

    −=

    EXAMPLE

    ,f  x  ydx 

    dy=+ 3 * find y.

     0olution

    $he inte'ratin' factor is  x dx  ee 33

    =∫  .

    Multi&l%in' (% the inte'ratin' factor* we 'et* x  x  x 

     xe yedx 

    dye

      3333   =+

    ,nte'ratin' (oth sides with res&ect to x* we 'et ce xe ye  x  x  x  +−=   333

    9

    1

    3

    1

    +ividin' (% the inte'ratin' factor* we 'et* x ce x  y   3

    9

    1

    3

    1   −+−= .

    EXAMPLE

    Solve the differential equation!1  x y

     xdx

    dy=+ * 'iven that y # 3 when x # !.

     0olution

    $he inte'ratin' factor is  xee   xdx

     x ==∫    ln1

    .

    Multi&l%in' (% the inte'ratin' factor* we 'et*3 x y

    dx

    dy x   =+

    i.e.3

    )   x xydx

    d =

    ,nte'ratin' (oth sides with res&ect to x* we 'et c x xy   +=   ::1

    >hen x # !* y # 3   !)!:

    1)3)!

      : =⇒+=∴   cc

    !:

    1   : +=∴   x xy

    +ividin' (% the inte'ratin' factor* we 'et* x

     x y  !

    :

    1   3 += .

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

    "

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    8/17

    ()*$: the coefficient ofdx

    dy must (e 1 in order when the inte'ratin' factor method is

    to (e used.

    $%ercise !&3&c&c

    i)

    >orksheet E4act +ifferential Equations ii) Past E4amination =uestions

    1. A curve - in the x $ y &lane &asses throu'h the &oint 1*2). At an% &oint  x,y) on -*

     x e y

    dx 

    dy   −=+ .

    +a, Dind the 'eneral solution of this differential equation.+b, 0ence find the equation of -* 'ivin' %our answer in the form  y = f(x).

    [($-.]

    !. $he cost Gc of manufacturin' x items ma% (e modelled (% the differentialequation

     x cdx 

    dc12!   =+ .

    F% usin' a suita(le inte'ratin' factor* solve the differential equation* 'iven thatthere is a cost of G122 when no items are &roduced.

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

    8

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    9/17

      [!""/ Paper 1 – 0 marks]

    Se$n& Or&er Differenti! E"#ti$n%

    A Equations that ma% (e e4&ressed in the form )!

    !

     x  f  dx 

     yd =

    $his t%&e of equation is solved (% inte'ratin'* with res&ect to x* twice.

    EXAMPLE

    @iven that  x dx 

     yd =

    !

    !

    * find y.

     0olution

    k cx  x  y

    dx c x dx dx 

    dy

    c x dx 

    dydx  x dx 

    dx 

     yd  x 

    dx 

     yd 

    ++=⇒

       

       +=⇒

    +=⇒=⇒=

    ∫ ∫ 

    ∫ ∫ 

    3

    !

    !

    !

    !

    !

    !

    A

    1

    !

    1

    !

    1

    where c and k  are ar(itrar% constants.

    ,t should (e noted that the 'eneral solution of a second order differential equation must contain two ar(itrar% constants since it is a second order equation) and

    satisfies the equation.

    A &articular solution is o(tained (% findin' the values of c and k   which satisf% to initialconditions.

    $%ercise !&1&c&a

    1. Dind the 'eneral solutions of the followin' differential equations

    i)   "<!

    !

    −=   x dx 

     yd ii)   x 

    dx 

     yd !sin

    !

    !

    = iii)   x edx 

     yd =

    !

    !

    !. Solve the differential equation *A3!   !!

    !

     x edx 

     yd    x  +=  'iven that when x # 2* y # !

    and !2=dx 

    dy.

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

    9

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    10/17

    3. Solve the differential equation 12!

    !

    =dx 

     yd * 'iven that when x # H1* y # 3 and when

     x # 1* y # 1

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    11/17

    ,f the au4iliar% equation has two real equal roots* sa% n1* the 'eneral solution of

    the second order differential equation 2!

    !

    =++   cydx 

    dyb

    dx 

     yd a  is

     x ne 1x  - y 1)   += .

    where A and % are ar(itrar% constants.

    ,f the au4iliar% equation has two com&le4 roots* sa% n1 ± in!* the 'eneral solution

    of the second order differential equation 2!

    !

    =++   cydx 

    dyb

    dx 

     yd a  is

    )sincos !!1  x n 1 x n -e y

      x n+= *

    where A and % are ar(itrar% constants.

    EXAMPLESolve the followin' second order differential equations:

    23!)

    29A)

    23!)

    !

    !

    !

    !

    !

    !

    =++

    =+−

    =−+

     ydx 

    dy

    dx 

     yd iii 

     ydx 

    dy

    dx 

     yd ii 

     ydx 

    dy

    dx 

     yd i 

     0olutions

    i) $he au4iliar% equation is n! I !n  3 # 2.

    ⇒  n I 3)n  1) # 2   ⇒ n # H3 or 1 two real distinct roots)

      ∴   x  x   1e -e y ydx 

    dy

    dx 

     yd +=⇒=−+

      −3

    !

    !

    23!

      where A and % are ar(itrar% constants.

    ii) $he au4iliar% equation is n!  n I 9 # 2

    ⇒ n  3)! # 2   ⇒ n # 3 two real equal roots)

      ∴   x e 1x  - y ydx 

    dy

    dx 

     yd  3!

    !

    )29A   +=⇒=+−

      where A and % are ar(itrar% constants.

    iii) $he au4iliar% equation is !n! I n I 3 # 2.

    ⇒ A

    !3

    A

    1

    A

    !:11   i n   ±−=

    −±−=   two com&le4 roots)

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

    11

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    12/17

      ∴     

      

     +=⇒=++

      − x  1 x  -e y y

    dx 

    dy

    dx 

     yd    x 

    A

    !3sin

    A

    !3cos23!   A

    1

    !

    !

      where A and % are ar(itrar% constants.

    $%ercise !&1&c&d

    D/$0E/ P/E MA$0EMA$,-S EXE/-,SE F

     

    ' Equations that ma% (e e4&ressed in the form )!

    !

     x  f cydx 

    dyb

    dx 

     yd a   =++ *

    where a* b and c are constants.

    $o solve equations of this t%&e we first have to find the 'eneral solution of the equation

    2!

    !

    =++   cydx 

    dyb

    dx 

     yd a . $his is called the complementar2 function +'4,&

     >e now find a particular integral +P, which satisfies the equation

    )!

    !

     x  f cydx 

    dyb

    dx 

     yd a   =++ .

    A particular integral is an e4&ression which is similar in form to f(x)!

    EXAMPLE

    i) ,f f (x) is a &ol%nomial of de'ree n* then the P, is a &ol%nomial of de'reen!

    ii) ,f f(x) # a sin nx or f(x) = b cos nx or f(x) # a sin nx ± b cos nx* then the P,

    is c sin nx I d  cos nx  (oth tri' functions and I are AL>AJS used).iii) ,f f(x) is an e4&onential function* then the P, is a similar e4&onential

    function.

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

    1!

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    13/17

    $he 'eneral solution of the second order differential equation )!

    !

     x  f cydx 

    dyb

    dx 

     yd a   =++  is

    the sum of the com&lementar% function and its &articular inte'ral.

    i.e. ,f )!

    !

     x  f cydx 

    dy

    bdx 

     yd 

    a  =++

    * then y # -D I P, is the 'eneral solution.

    EXAMPLESolve the second order differential equations:

    i)

    !

    +=−+   x  ydx 

    dy

    dx 

     yd 

    ii)   x  ydx 

    dy

    dx 

     yd !sin33!

    !

    !

    =−+  

    iii)   xe ydx

    dy

    dx

     yd    "!

    !

    3:!   =−+

     0olutions

    i) ,n section * e4am&le i)* we found that

     x  x   1e -e y ydx 

    dy

    dx 

     yd +=⇒=−+

      −3

    !

    !

    23!

    ∴ -D #  x  x   1e -e   +−3

     f(x) # ! x

    !

     I < is a &ol%nomial of de'ree !.∴  the P, is a &ol%nomial of de'ree !.

    ∴  let  y = ax! I bx & c

    ⇒   bax dx 

    dy+= ! and a

    dx 

     yd !

    !

    !

    =

    Su(stitutin' for y and its derivatives in the 'iven equation* we 'et that

    Equatin' the coefficients of like term* we 'et that

    3

    !!3   −=⇒=−   aa

    9

    8

    3

    :

    23:

    −=∴

    =⇒=−

    b

    a

    bba

    !"

    "3

    3

    −=∴

    −+=⇒=−+

    c

    baccba

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

    13

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    14/17

    ∴ P, #!"

    "3

    9

    8

    3

    !   ! −−−   x  x 

    and the 'eneral solution is

    !"

    "3

    9

    8

    3

    !   !3 −−−+=   −  x  x  1e -e y   x  x  .

    ii)  x  ydx 

    dy

    dx 

     yd !sin33!

    !

    !

    =−+

    Drom a(ove* -D #  x  x   1e -e   +−3

      Since f(x) # 3 sin ! x* let y #  x b x a   !cos!sin   +

    ⇒   x b x adx 

    dy!sin!!cos!   −= and   x b x a

    dx 

     yd !cos:!sin:

    !

    !

    −−=

    Su(stitutin' in the 'iven equation* we 'et that

     x b x a   !cos:!sin:   −−  I !   x b x a   !sin!!cos!   − ) 3   x b x a   !cos!sin   + ) ≡ 3 sin ! x

    Equatin' coefficients of like terms* we 'et thatH"a  b # 3 and a  "b  # 2.Solvin' these equations simultaneousl%* we 'et that

    A:

    :!"−=a and

    1A

    A1−=b

    ∴ P, #  x  x    !cos1A

    A1!sin

    A:

    :!"−−

    ∴ $he required 'eneral solution is

    = y   x  x   1e -e   +−3  x  x    !cos1A

    A1!sin

    A:

    :!"−−

    iii)   xe ydxdy

    dx yd    "!

    !

    3:!   =−+

     Drom a(ove* -D #  x  x   1e -e   +−3

    Since  xe x  f   "3)   =  * let  xCe y "=

     xCedx

    dy   ""=⇒   and  xCedx

     yd    "!

    !

    :9=

    ( (

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    15/17

    $%ercise !&1&c&1!c

    D/$0E/ P/E MA$0EMA$,-S EXE/-,SE -

    1. @iven that A, %, ' and c are constants* verif% that the 'eneral solution of:

    a) !sincos k 

    c 2x  1 2x  - y   ++=  satisfies the differential equation

    .!

    !

    !

    c y 2 

    dx 

     yd =+

    ()!k 

    c 1e -e y   2x  2x  −+=   −  satisfies the differential equation .!

    !

    !

    c y 2 dx 

     yd =−

    C$his t%&e of differential equation occurs in a num(er of scientific situations.B

    1

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    16/17

    a) !:

    1!

    !

    =+  ydx 

     yd  'iven that when 1*

    :==   y x 

     

    and when 1*!

    −==   y x  

    .

    () !!

    !

    =−  ydx 

     yd  'iven that when !*2   ==   y x   and A=

    dx 

    dy.

    c) ::

    1!

    !

    =+   ydx  yd 

     'iven that when 19*   ==   y x   and 1−=dx 

    dy

    .

    d) ::!

    !

    =−  ydx 

     yd  'iven that when !*2   ==

    dx 

    dy x   and

    !

    3!

    !

    =dx 

     yd .

    +E/S$A+,@ P/E MA$0EMA$,-S EXE/-,SE !2E =ES$,?S $? 9

    D/$0E/ P/E MA$0EMA$,-S EXE/-,SE -

    S)5*)( )4 744$8$(*-5 $-*)(S . S.S***)(

    i-!i$'r./

    Durther Pure Mathematics (% Frian and Mark @aulter 

    nderstandin' Pure Mathematics (% A.K. Sadler and +.>.S. $hornin'

    -APE P/E MA$0EMA$,-SModule !.1c) ,nte'ration ,, +ifferential EquationsMM !22" /evised !213

    1

  • 8/21/2019 3c DIFFERENTIAL EQUATIONS.doc

    17/17

    -alculus with Anal%tic @eometr%


Recommended