+ All Categories
Home > Documents > 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas...

3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas...

Date post: 25-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
17
3D numerical simulation of the electric arc motion between bus-bar electrodes M. Lisnyak 1 *, M. Chnani 2 , A. Gautier 2 , J-M. Bauchire 1 1 GREMI, UMR 7344, CNRS/Université d’Orléans, 14 Rue d'Issoudun, Orléans, 45067, France 2 Zodiac Aerospace, 7 Rue des Longs Quartiers, Montreuil, 93108, France *[email protected]
Transcript
Page 1: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

3D numerical simulation of the electric arc motion between bus-bar electrodes

M. Lisnyak1*, M. Chnani2, A. Gautier2, J-M. Bauchire1

1 GREMI, UMR 7344, CNRS/Université d’Orléans, 14 Rue d'Issoudun, Orléans, 45067, France 2 Zodiac Aerospace, 7 Rue des Longs Quartiers, Montreuil, 93108, France

*[email protected]

Page 2: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Thermal plasmas

2

Thermal plasmas characteristics:

𝑇𝑒~104𝐾

Local Thermodynamic Equilibrium (LTE)

[1] M. I. Boulos, P. Fauchais, and E. Pfender, Thermal Plasmas Fundamentals and Applications. Boston, MA: Springer US : Imprint: Springer, 1994.

𝑛𝑒~1021 − 1026𝑚−3 and

Plasmas classification [1]: Thermal plasma applications:

Thermal plasma in nature:

Page 3: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

3

Objective

Bus-bars electrodes construction, dimensions: L~100 – 200 mm and h ~ 10 mm

Supplied with AC or DC currents in range 100 – 1000 A

Working conditions: 0.1 – 1 atm S

𝐵

𝑣

𝐼

𝐼

L

In case of fault the electric arc takes place and propagates along the electrodes.

Goal: to investigate arc propagation using numerical simulation

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 4: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

4

Mathematical description

𝜕𝜌

𝜕𝑡+ 𝛻 ∙ 𝜌𝒖 = 0,

The system of MHD equations in the LTE approximation is solved for arc bulk plasma:

𝜕𝜌𝒖

𝜕𝑡+ 𝛻 ∙ 𝜌𝒖⨂𝒖 = −𝛻𝑝 + 𝛻 ∙ 𝜂 𝛻𝒖 + 𝛻𝒖 𝑻 −

2

3𝛻 𝜂𝛻 ∙ 𝒖 + 𝒋 × 𝑩,

𝜌𝑐𝑝𝜕𝑇

𝜕𝑡+ 𝒖 ∙ 𝛻𝑇 + 𝛻 ∙ 𝒒 = −𝒋 ∙ 𝛻𝜑 − 𝑄𝑟𝑎𝑑 , 𝒒 = −𝜆𝛻𝑇 −

5

2

𝑘𝑇

𝑒𝒋,

𝛻 ∙ 𝒋 = 0, 𝒋 = −𝜎𝛻𝜑,

Arc column description and electrodes:

𝛻 ×1

𝜇0𝑩 = 𝒋, 𝑩 = 𝛻 × 𝑨.

𝜌𝑠𝑐𝑝𝛻𝜕𝑇𝑠

𝜕𝑡∙ (𝜆𝑠𝛻𝑇𝑠) + 𝜎𝑠 𝛻𝜑

2 = 0,

In the electrodes:

𝛻 ∙ (𝜎𝒔𝛻𝜑) = 0.

The system is solved with respect to variables: 𝒖, 𝑝, 𝑇, 𝜑, 𝑨 in the arc plasma

and 𝜑 , 𝑇𝑠 , 𝑨 in the electrodes.

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

𝛻 ×1

𝜇0𝑩 = 𝒋, 𝑩 = 𝛻 × 𝑨.

Page 5: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Arc model in COMSOL

Electric currents

Magnetic fields

He

at

tra

nsf

er

in

flu

ids

Laminar flow

𝒋

𝒋 ,𝛁𝝋

𝒋

𝑣

𝑩

Temperature

Electric conductivity 𝜎(𝑇)

Thermal conductivity 𝜆(T)

Specific heat 𝐶𝑝(T)

Viscosity 𝜂(𝑇)

Density 𝜌(𝑇)

5

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 6: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Calculation conditions

I 20

3

Ar [1 atm]

Power:

Direct current

I = 200 A Conditions:

Atmospheric pressure

Gas: argon

Electrodes:

Plane electrodes

made of copper

Initial conditions:

Stationary arc with,

fixed spots positions.

I

6 Initial conditions M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 7: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

7

Impact of the magnetic field

Te

mp

era

ture

(in

K)

dis

trib

uti

on

s

cathode

anode

0,5 ms 1 ms 1,5 ms

With external (from the electrodes) magnetic field(MF)

cathode

anode

0,5 ms 1 ms 1,5 ms

Without external (from the electrodes) magnetic field(MF)

Page 8: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

8

Arc displacement

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Arc temperature (in K) evolution with the time

Page 9: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

9

I = 1.5 kA peak, h = 20 mm, 60 000 fr/s

Experiment

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 10: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

11

[1] M.Lisnyak, M. Chnani, A. Gautier, J-M. Bauchire, ”Behavior of a short electric arc between plane electrodes:numerical and experimental study”, contributions to ICPIG congress, July 2017. [2] B. Swierczynski, J. J. Gonzalez, P. Teulet, P. Freton, and A. Gleizes, “Advances in low-voltage circuit breaker modelling,” 2004.

Arc displacement velocity

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

[1]

[2]

Page 11: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Numerical aspects

Stabilization

Discretization:

Solver :

Convergence criteria: Mesh:

Calculation time:

• Linear or quadratic basic functions.

Streamline diffusion Crosswind diffusion

• Segregated (φ,𝑨, 𝒖, 𝑝, 𝑇) Direct (MUMPS) and Iterative (GMERS).

12

• Laminar flow • Heat transfer in fluids

• Relative tolerance is 0.01.

• Number of DOF 106, refined near the electrodes with Δxmax = 0.6 mm.

• 7 days with 8 cores, Xeon 3.2 GHz, 32 Gb.

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 12: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Summary

13

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

• COMSOL Multiphysics® allows to perform 3D time-dependent model of the electric arc.

• The good numerical stability for highly nonlinear problems is achieved.

• The calculation time is reasonable, that makes the model interesting for engineering applications.

• The physical aspects of the model corresponds to the experimental observations.

Page 13: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

14

Thank you!

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

For more details I would like to invite you to the poster 84.

Page 14: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Thermodynamic properties

Transport coefficients:

Plasma properties

Argon 1 atm

15

[1] K. C. Hsu, K. Etemadi, and E. Pfender, “Study of the free‐burning high‐intensity argon arc,” J. Appl. Phys., 1983.

Page 15: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

Convergence control

Integration over external surface of the model: 𝜌𝑣 ∙ 𝑑𝑆 ≅ 0

𝜌𝑣 ∙ 𝑑𝑆 = 2𝜋𝜌 𝑣𝑧

𝑅

𝑜

𝑟𝑑𝑟 + 𝜌𝑅 𝑣𝑟

0

𝑑ℎ = 0

𝜌𝑣 ∙ 𝑑𝑆 = 𝜌 𝑣𝑥𝑛𝑥 + 𝑣𝑦𝑛𝑦 + 𝑣𝑧𝑛𝑧 𝑑𝑆 = 0

Where 𝑛𝑥, 𝑛𝑦 , 𝑛𝑧 are normal vectors (directed externally to the surface),

R – model radius, h – model height

𝑗 ∙ 𝑑𝑆𝑐𝑎𝑡ℎ𝑜𝑑𝑒

= 𝑗 ∙ 𝑑𝑆𝑎𝑛𝑜𝑑𝑒

Mass conservation

Current conservation

16

Results Derived values Surface integration

In COMSOL MF

• 2 D case

• 3 D case

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 16: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

17

Fluxes calculations

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017

Page 17: 3D numerical simulation of the electric arc motion between ... · Thermal plasmas 2 Thermal plasmas characteristics: ~104𝐾 Local Thermodynamic Equilibrium (LTE) [1] M. I. Boulos,

18

Arc – electrodes interaction

𝑞𝑎 = 5

2𝑘𝑇𝛿𝑝𝑙 + 𝐴𝑓

𝑗

𝑒

Plasma near the electrodes is not in equilibrium.

Goal: To include plasma-electrodes interaction without implementing non-equilibrium plasma description.

Plasma – cathode interaction: spot mode on the cathode with the fixed radius [1, 2]: 𝑅𝑐𝑠 = 1 𝑚𝑚. temperature in the cathode spot is uniformly distributed [1]: 𝑇𝑎𝑣 = 3200 𝐾.

Plasma – anode interaction: attachment is constricted (spot mode), 𝑅𝑎𝑠 = 0.8 𝑚𝑚. anode heating is calculated according to:

[1] W. L. Bade and J. M. Yos, Theoretical and Experimental Investigation of Arc Plasma-generation Technology, 1963. [2] M. S. Benilov and A. Marotta, “A model of the cathode region of atmospheric pressure arcs,” J. Phys. Appl. Phys., vol. 28,

no. 9, p. 1869, Sep. 1995.

The current continuity is imposed between plasma and electrodes.

M Lisnyak, COMSOL Conference, Rotterdam, 19/10/2017


Recommended