+ All Categories
Home > Documents > 4 11 2 6 - tbi.univie.ac.at fileGeneric Chemical Reaction Network Properties Gil Benk o Institute...

4 11 2 6 - tbi.univie.ac.at fileGeneric Chemical Reaction Network Properties Gil Benk o Institute...

Date post: 26-Aug-2018
Category:
Upload: doanquynh
View: 212 times
Download: 0 times
Share this document with a friend
32
1
Transcript

1

1

2

3

4

5

6

7

8

9

10

11

12

1314

15

16 17

18

1920

21

22

23

24

25

2627

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

7374

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156 157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270271

272

273

274

275

276

277

278

279

280281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470 471

472

473

474

475

476

477

478479

480

481

482

483

484

485

2

Generic Chemical Reaction Network Properties

Gil Benko

Institute for Theoretical Chemistry and Structural Biology

[email protected]

Bled, 2003

3

Why ?

Combinatorial Atmospheric Combustion Metabolicchemistry processes networks

Chemical reaction networks

4

What ?

What are the generic properties of a CRN :

Are average minimum path lengths short ?(small-world property)

What is the scaling behavior of the graph?

How robust are these properties?

5

Organization of the Toy Model

ODE Stochasticsimulation simulation

↘ ↙CRN

Tankl

reactor↗ ↖

EHMO Graphcalculation rewriting

6

Electronic Energy Calculation

Schrodinger equationHΨ = EΨ

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

w

Born-Oppenheimer

LCAO and Extended Huckel

VSEPR and Tight Binding

Generalized Eigenvalue Problem

. . .HAOi−AOj

. . .

C =

. . .SAOi−AOj

. . .

CE

7

Atom Orbitals

sp3 hybridized sp2 hybridized + one p

sp hybridized + two p8

Implemented Overlaps

big σ-overlap lesser overlap

between sp2 orbitals between sp2 orbitals

9

Orbital graph

2sp2

2sp222sp

2sp2

2sp2

2sp2

2sp2

2sp2

2sp2

2sp2 2sp2

2sp2

2sp2

2sp222sp

p

p

p

p

p

C

C

O

N

C

1s

1s

1s

H

H

H H

H

1s 1s

10

Overlap matrix S of propenamide

C1(H2)(H3) = C4(H5)C6(= O7)N8(H9)H10

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

�� � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � �� � � �� � � �� � �� � � � � � �

� � �� � � � � �� � � � � � � � � � � � � � � � � � � � �

� �� � � � � � � � � � � � � � � � � � � � � � � � �

� � � � �� � � �� � � � � � � � � � � � � � � � � � � � �

� � � �� � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � �� � � � �� � � � � � � � � � � � � � � � � �

� �� � � � �� � � � � � � � � � � �� � � � � � � � � � � � � � � � �

� � � � � �� � � � � �� � � �� � � � � � � � � � � � � � � � �

� � � � � � � �� � � � � � � � � � � � � � � � � � �

� � � � � �� � � � � � � � � � �� � � � �� � � � � � � � � � � � � �

� � � � � � �� � � �� � � � � � � � � � �� � � �� � � � � � � � � � � � �

� � � � � � � � � �� � � � � �� � � �� � � � � � � � �� � � �� � � � � �

� � � � � � � � � � � �� � �� � � � �� � � � � � � � � � � � �

� � � � � � � � � �� � � � � � �� � � � � � �� � � � �� � � � � � � � � �

� � � � � � � � � � �� � � �� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �� � � �

� � � � � � � � � � � � � � � � � � � � � �� � � �� � �

� � � � � � � � � � � � � � � � � � � � � � �� � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

11

Wave function analysis

By definition, any molecular property can be calculated from the

wave function:

• Energy

• Charge distribution

• Reactivities

12

1520 1530 1540 1550Experimental TAE (kcal/mol)

1550

1560

1570

1580

1590

1600

1610

Cal

cula

ted

TA

E (

kcal

/mol

)

Calculated vs Experimental TAE of C6H10 isomers(Total Atomization Energy)

13

Structure representation I : SMILES;)

CH4 CH3 CH3

C CC

or C(H)(H)(H)H or C(H)(H)(H)C(H)(H)(H)

CC(C)C orC(H)(H)(H)C(H)(C(H)(H)(H))C(H)(H)(H)

OH

OC(C = C1) = CC = C1 orHOC(C(H) = C1H) = C(H)C(H) = C1H

14

Structure representation II : GML

# Isobutane

graph [

node [ id 1 label "C" ]

node [ id 2 label "C" ]

node [ id 3 label "C" ]

node [ id 4 label "C" ]

edge [ source 1 target 2 label "-" ]

edge [ source 1 target 3 label "-" ]

edge [ source 1 target 4 label "-" ]

]

15

What is Graph Rewrite ?

A grammar which operates on graphs instead of strings.

A grammar is a finite set of rules describing a formal language.

A formal language is a set of strings over some fixed alphabet.

Graph Rewriting Step

Step 1: find isomorphic subgraph (match left graph).

Step 2: remove subgraph (don’t touch context; keep dangling ends!!).

Step 3: insert new subgraph (right graph).

Step 4: rewire new subgraph (with respect to the dangling ends).

16

Graph rewriting steps

left graph context right graph

host graph product graph

find left graph and context reconnect

remove left graph insert right graph

17

Network Generation

Start perform all unimolecular and bimolecular reactions on the

molecules in L0 and put the products in a new set L′1, eli-

minating all duplicates. This is summarized by the notation

L′1 = L0 ⊗ L0. Calculate L1 = L′

1 \ L0.

Recursion (1) L′k+1 =

(

⋃k−1j=0 Lj

)

⊗ Lk ∪ (Lk ⊗ Lk)

(2) and Lk+1 = L′k+1 \

Lk.

18

Network Representation

Hypergraph and bipartite graph

for O3 + NO2 −→ O2 + NO3

3O

NO2

O2

NO3

3O

NO2

O2

NO3

one-mode projection −→ Substrate graph

3O

NO2

O2

NO3

19

Application I : Repetitive Diels-Alder

1.44

O

O

O

O

OO

O

O

O

O

OO

O

O

O

O

OO

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

OO

O

OO

O

OO

O

OO

O

O

O

O

OO

O

O

O

O

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

3.721.33

3.37

5.71

2.13

1.17

1.45

1.17

4.46

4.47

2.66

2.66

1.44

1.17

1.17

1.17

4.46

4.47

4.46

4.47

4.464.47

2.66

2.66

2.66

2.66

2.66

2.66

1.44

1.44

1.44

1.44

1.44

1.44

20

Application II : Formose reaction

O

O

O

O

O

O

O

O

O

O

O

O

O O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

OO

O

OO

OO

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

OO

OO

O

O

O

OO

OO

O

O

O

O

O

OO

O

O

O

OO

OO

O

O

O

OO

OO

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

0.04

0.36

0.03

0.03

0.26

0.26

0.36

4.17

0.36

4.18

0.26

0.26

2.51

0.26

2.51

2.51

21

Graph properties

• < k >= 2 edgesnodes is the average node degree.

• < L > is the average length of the shortest path between to

nodes.

• Ci = 2 edges between i-neighboursi-neighbours(i-neighbours−1)

is the clustering coefficient.

22

Computational results

For comparing: results for random Erdos-Renyi graphs

< Lrand > ≈lnn

ln< k >

< Crand > =< k >

(n − 1)

nodes < k > < L > < Lrand > < C > < Crand >

Diels-Alder 40 4.65 2.15 2.40 0.72 0.11Formose 48 3.25 3.55 3.28 0.15 0.068E. coli 282 7.35 2.9 3.04 0.32 0.026

23

Degree distribution

Repetitive Diels-Alder Formose reaction

1 10 100Degree

1

10

100

Ran

k

1 10Degree

1

10

100

Ran

k� : datapoints

solid : power-law regressiondashed : Poisson distribution

24

Threshold of 112

25

Threshold of 108

26

Threshold of 107

27

Threshold of 91.2

28

Threshold of 55.4

29

A larger CRN . . .

0 50 100 150 200 250Number of nodes

0

1

2

3

4

5

6

Ave

rage

deg

ree

0 50 100 150 200 2500

20

40

60

80

100

120

log(

rate

thre

shol

d)

< k > and reaction rate threshold vs. CRN size n

30

. . . with constant minimum path length < L > . . .

0 50 100 150 200 250Number of nodes

1

2

3

4

Ave

rage

min

imum

pat

h le

ngth

0 50 100 150 200 250

CRN size dependency of < L > and < Lrand >

31

. . . and clustering coefficient < C >

0 50 100 150 200 250Number of nodes

0

0.2

0.4

0.6

0.8

1

Ave

rage

clu

ster

ing

coef

fici

ent

CRN size dependency of < C > and < Crand >

−→ robust small-world property

32


Recommended