+ All Categories
Home > Documents > 4-Activated Sludge Models_F12

4-Activated Sludge Models_F12

Date post: 06-Jul-2018
Category:
Upload: muhammad-akmal-hakim
View: 230 times
Download: 2 times
Share this document with a friend

of 24

Transcript
  • 8/18/2019 4-Activated Sludge Models_F12

    1/24

    4-Activated Sludge Models_F12

    1

    Substrate Utilization Rate, rsu 

    1 1 m su

    u g    s s

    S dS dX kSX  r X 

    dt Y dt Y K S K S  

     

        (9)

    Since k = μm/Y,

    u   s

    dS kSX  

    dt K S  

      (10)

    Also, in a reactor

    u

    dS So S  

    dt     

      (11)

    Specific Substrate Utilization Rate, U

    u

    dS 

    dt U 

     X 

      or

    u

    dS UX 

    dt 

      (3)

    ( ) ( )u

    dS 

    So S So So S Q So So S  dt U 

     X X So X V X So  

     

    QSo So S F  U E 

    VX So M  

      (12)

    where E = (So - S)/ So = substrate removal efficiency

    θ = V/Q = hydraulic retention time = aeration time, hr

    F/M = Food to microorganisms ratio

    Combining (10) and (11) gives

    u   s

    dS So S kSX  

    dt K S   

      (13)

    Dividing Eq. (13) by X yields

  • 8/18/2019 4-Activated Sludge Models_F12

    2/24

    4-Activated Sludge Models_F12

    2

    u

     s

    dS 

    So S kS  dt U 

     X X K S  

      (14)

     s

    kS U   K S    (15) 

    From (7)

    mnet d d  

     s s

    S    Y k S k k 

     K S K S 

        

     

    net d  YU k      

    Completely Mixed Activated Sludge Process

    Assumptions for the formulation of the mass balance equations

    - The following conditions are assumed in the formulation of the mass balance equations:

    (1) Steady state- Flow, biomass concentrations, and substrate concentrations are in a steady state.

    dQ/dt = 0, dX/dt = 0, dS/dt = 0(2) Soluble BOD

    - All substrates are soluble (filtered BOD or COD)

    (3) Completely mixed system- The aeration tank is completely mixed.

    - The substrate concentration in the aeration tank equals the substrate concentration in the

    effluent after treatment.(4) Biological activity occurs only in the aeration tank.

    (5) No microorganisms are present in the influent wastewater, Xo = 0.

    (6) The mean cell residence time (MCRT) is calculated based on the biomass in the aeration tank(7) Excess activated sludge is wasted from the aeration tank rather than from the sludge

    recirculation line.

    Mass balance on X around the secondary treatment

    - Mass balance for biomass (X) around the entire secondary treatment system

  • 8/18/2019 4-Activated Sludge Models_F12

    3/24

    4-Activated Sludge Models_F12

    3

    (Xo=0) Aeration Tank Secondary

      Sedimentation

    Q, Xo X(Q+Qr) Tank S, Xe

    V, X, S Q-Qw

    Qr, Xr 

    Qw, Xr 

     

    Accumulation = Inputs - Outputs ± Rxns

    ( ) 'dX 

    V QX Q Q X Q X r V  o w e w r g  dt 

      (1)

    accidentally intentionally bacterial

    wasted wasted growth 

    where

    'net 

    net 

     g 

    dX YkS  r X k X   g d dt K S  

     s

     

      (2)

    r g’ = net growth rate, mg/L. d

    Y = yield coefficient, mg X / mg SK s  = half-saturation constant, mg/L

    k d  = endogenous decay rate constant, d-1

     k = maximum substrate utilization rate, d

    -1 

    k = µm /Y

    µm  = maximum specific growth rate

    µm  = Y k

  • 8/18/2019 4-Activated Sludge Models_F12

    4/24

    4-Activated Sludge Models_F12

    4

    Since it is assumed that there are no bacteria in inflow (i.e. Xo = 0),

    ' ( )dX 

    V r V Q Q X Q X   g w e w r dt 

          (3)

     Net rate of Net rate Net rate of biomass

    change in of growth out of the system

     biomass of biomass

    Dividing Eq. (3) by V

    ( )'

    Q Q X Q X  dX  w e w r  r  g dt V 

     

    At steady state, dX/dt = 0,

    ( )'

    Q Q X Q X  w e w r  r 

     g    V 

     

    Since

    '

    net 

    net 

     g 

    dX r X  g    dt 

     

     

    ' ( )  net 

    r    Q Q X Q X   g    w e w r  

     X V X  

     

    By the definition of MCRT, θc 

    ( )

    V X c

    Q Q X Q X  w e w r  

       

     

    Thus,

    cnet 

      

     

  • 8/18/2019 4-Activated Sludge Models_F12

    5/24

    4-Activated Sludge Models_F12

    5

    Since

    net 

    Y k S k 

    d  K S  s

       

      andkS 

    U  Ks S 

     

    1= =

    cnet d  

    Y kS k YU k  

    d  K S  s

      

     

    1=

    cnet d  YU k  

        (5)

    or

    1

    c

    Y kS k 

    d  K S  s 

      (6)

    Solving for S yields

    (1 ) (1 )

    ( ) 1 ( ) 1m

     K k K k  s d c s d cS 

    Yk k k  c d c d  

     

     

     

    where

    Y = yield coefficient, mg X / mg S

    K s  = half-saturation constant, mg/L

    k d  = endogenous decay rate constant, d-1 k = maximum substrate utilization rate, d

    -1 

    k = µm /Y or µm= Yk

  • 8/18/2019 4-Activated Sludge Models_F12

    6/24

    4-Activated Sludge Models_F12

    6

    Mass balance on S around the aeration tank

    - A mass balance for substrate entering and leaving the aeration tank

    (Xo=0) Aeration Tank Secondary

      Sedimentation

    Q, So S, (Q+Qr) Tank S

    V, S Q-Qw

    Qr, S

    Qr, S Qw, S

     

     Net rate of Rate of Rate of Rate of

    change in substrate substrate entering substrate leaving substrate utilization

    in aeration tank aeration tank aeration tank in aeration

    tank 

     

    Accum = Inputs - Outputs ± Rxns

    ( )o r r su

    dS V QS Q S Q Q S r V  

    dt    (1)

    where

     su

    u   s

    dS kSX  r 

    dt K S  

      (2)

    r su = substrate utilization rate, mg/L-d

    Since R = Qr/Q, Qr = RQ

    ( )

    1

    o su

    o su

    dS V QS RQS Q RQ S r V  

    dt 

    QS RQS Q R S r V  

      (3)

    o su suQS RQS QS RQS r V Q So S r V    

    Divided by V

     su

    Q So S  dS r 

    dt V 

     

  • 8/18/2019 4-Activated Sludge Models_F12

    7/24

    4-Activated Sludge Models_F12

    7

    At steady state, dS/dt = 0,

     su

    u

    Q So S     So S dS  r 

    V dt  

         

     

    Divide both sides by X

     su u

    dS 

    Q So S  r    So S dt U 

     X X X V X  

     

     

    Since

    1

    = cnet d  YU k      

    or

    1

    c  d YU k 

       

    1c

      d 

    YQ So S  k 

     XV  

      (4)

    Solve for X

    1c

    d YQ So S k XV  

     XV  

     

    c

      d 

     XV YQ So S k XV  

       

    c

      d 

     XV k XV YQ So S  

       

    1c   d  XV k YQ So S 

        (5)

    1 1 1

    c c cd d d 

    YQ So S Y So S Y So S   X 

    V V k k k  

     

     

  • 8/18/2019 4-Activated Sludge Models_F12

    8/24

    4-Activated Sludge Models_F12

    8

    Multiply by Өc

    ( )

    (1 )

    c o

    d c

    Y S S  X 

     

     

     

    Substituting θ  = V/Q, solve for V

    or using (5), solve for V

    1

    c  d 

    YQ So S  V 

     X k  

     

    Multiply by θc 

    V    c Y Q S o   S  X k d c

     

      

    ( )( )1

     

    Example: Q = 10,000 m3/d, So = 120 mg/L, S = 7 mg/L,

    X (MLVSS) = 2,000 mg/L, θc = 6 days, Y = 0.6 mg VSS/mg BOD, k d = 0.06 d-1

     

    What is the aeration tank volume?

    (Solution)

    V   Y Q S S  

     X k 

    d   mgVSS 

    mgBOD

    m

    mg 

     L BOD

    mg Ld 

    c o

    d c

     

     

     

     

     

     

     

     

       

        

       

       

       

     

     

    ( )

    ( )

    .. ,

    /.

    .

    1

    6 00 6 10 000

    120 7

    2000 10 06

    6 0

    V = 1495 m3 

  • 8/18/2019 4-Activated Sludge Models_F12

    9/24

    4-Activated Sludge Models_F12

    9

    Determination of k and Ks

     s

    kS U 

     K S 

     

    Inverse of U gives

    1  s s K S K    S 

    U kS kS kS  

     

    1 1 1 s K 

    U k S k  

     

    Determination of Y and k d,

    Since

    1

    c  d YU k 

       

     Note

    dX dX dX

    r g’= (----)g net

      = (----)g − (-----)d  = µ X –  k d X = (µ –  k d) X = µ net X = µ’ X (1)

    dt dt dt

    since

     g u

    dX dS  Y 

    dt dt  

      (3)

    ' g d u

    dS r Y k X  

    dt 

     

    1/Өc

    Slope = Y

    U = (F/M) E

    Intercept =  – kd

    0

    1/U

    Slope = Ks/k

    Intercept =1/k

    1/S

  • 8/18/2019 4-Activated Sludge Models_F12

    10/24

    4-Activated Sludge Models_F12

    10

    Divide by X

    ' 1 g    unet 

    dS 

    r    dt Y 

     X X c 

     

     

    Since

    u

    dS 

    dt U 

     X 

     

    1

    c  d YU k 

       

    '1 g 

    net 

     g net 

    dX 

    dt r 

     X X c 

     

     

    Observed Growth (Cell) Yield, Yobs 

    Since g u

    dX dS  Y 

    dt dt  

    ,

     g 

    u

    dX 

    dt Y 

    dS 

    dt 

     

    Yobs is defined as

     g 

    net 

    obs

    u

    dX 

    dt Y 

    dS 

    dt 

      (1)

    where

     g 

    net 

    u

    dX dS  Y k X 

    dt dt  

     

    or

    ( )

    net 

    net d d  

     g    s

    dX Y k S   X k X YU k X 

    dt K S   

        (2)

  • 8/18/2019 4-Activated Sludge Models_F12

    11/24

    4-Activated Sludge Models_F12

    11

    and

    u

    dS UX 

    dt 

      (3)

    Substituting (2) and (3) into (1) yields

     g 

    net 

    d    d obs

    u

    dX 

    dt    YU k X     YU k Y 

    dS    UX U 

    dt 

       

      (4)

    Since1

    c

      d YU k 

     

    ,

    1

    c  d k 

     

      (5)

    Substituting (5) into (4) yields

    c

    1

    c1

    c

    1 1 1

    c c

    d d 

    d obs

    d d d 

    Y k Y  Y k k 

    YU k Y  Y 

    U k k k 

     

     

     

     

       

     

    Thus,

    c1obs

    Y Y 

    k  

     

     Note:

    ,net obs net obs X 

    Y Y U  X 

      

       

    Thus,1 1

    net obs

    cY U 

      

  • 8/18/2019 4-Activated Sludge Models_F12

    12/24

    4-Activated Sludge Models_F12

    12

    Excess Biological (Volatile) Solids, Px

    The VSS concentration (ML-3

    T-1

    ) is given by  x obs o P Y S S   

    Since 1obs c   d 

    Y  k   ,

    ( )

    1o

     xd c

    Y S S 

     P  k   

     

    Based on VSS mass flux (MT-1

    ): ( ) x obs o P Y S S Q  

    Example : Determine the excess sludge (in mg/L VSS) for the given conditions.Q = 10,000 m

    3/d, So = 120 mg/L, S = 7 mg/L

    k d = 0.06/d, θc = 10 days, Y = 0.6 mg VSS/mg BOD

    (Solution)

    Y   Y 

    mgVSS 

    mg BOD

    d d 

    mgVSS 

    mgBODobs

    c   d 

     

       

     

       

    1

    0 6

    1 100 06

    0375

     

    .

    .

     P   mgVSS 

    mgBOD

    mgBOD

     LmgVSS L x  

      

     

     

     

        

        

    0375 120 742 4

    . ( ). /  

     P in kg d   mgVSS 

     L

    m

     L

    m

    kg 

    mg 

    kg VSS d 

     x ( / ). ,

    /

       

       

     

     

     

     

     

     

     

     

     

     

     

     

    42 4 10 000 1000

    10

    420

    3

    3 6  

     Note

    ( )

    (1 )c o c c

    obs o x

    d c

    Y S S  X Y S S P 

     

     

     

    where

     P Y S S 

    Y   Y 

     x obs o

    obsc   d 

    ( )

    1    

     

  • 8/18/2019 4-Activated Sludge Models_F12

    13/24

    4-Activated Sludge Models_F12

    13

    / /

    c

     x x

     X XV 

     P P Q

    biomass in Aeration Tank biomass in Aeration Tank 

    biomass synthesized time biomass wasted time

       

     

    XV XVθc = ---------------------------- = --------

    Qw X + (Q - Qw) Xe Px Q

    Px Q = Qw X + (Q - Qw) Xe

    Effect of Temperature

    Temperature affects on:1) metabolic activities of the microbial population (growth rate)2) gas transfer rate

    3) settling characteristics of the biological solids.

    The effect of temperature on the reaction rate of a biological process is expressed by

    20

    20

    T C r r      

     

    where r T = reaction rate at TºC

    r 20ºC = reaction rate at 20ºC

    θ = temperature-activity coefficientT = temperature, ºC

    Table 8.5 (3rd

     ME 373) presents some typical values of θ for commonly used biological processes. 

  • 8/18/2019 4-Activated Sludge Models_F12

    14/24

    4-Activated Sludge Models_F12

    14

    Example F/M Ratio (possible take home exam problem)

    Knowing the following equations: 1

    c  d YU k 

        and

     F U E 

     M 

     

     

    derive the F-to-M ratio equation:   F Q So

     M V X   

    (Solution)

    Since1

    c  d YU k 

        and

     F U E 

     M 

     

     

    1

    c  d 

     F Y E k 

     M  

     

    Solving for F/M yields

    1

    c  d k  F 

     M YE 

     

     

    Since F 

    U E  M 

     

    ,

     F U 

     M E   

    where

    u

    dS 

    So S dt U 

     X X  

      and

    So S  E 

    So

     

     F U So S So So

     M E X So S X   

     

    Since Ө = V/Q, 

     F Q So

     M V X   

  • 8/18/2019 4-Activated Sludge Models_F12

    15/24

    4-Activated Sludge Models_F12

    15

    Recirculation Ratio, R  

    Determining the recirculation ratio, R, from the mass balance on VSS around the aeration tank.

    (Xo=0) Aeration Tank Secondary

      SedimentationQ, Xo X(Q+Qr) Tank

    V, X, S

    Qr, Xr 

     

    Mass balance on X around the aeration tank without bacterial growth assuming(Q+Qr ) Xe and Qw Xr  

  • 8/18/2019 4-Activated Sludge Models_F12

    16/24

    4-Activated Sludge Models_F12

    16

    Example : Determine the recirculation ratio, R, for the given conditions below:

    Operating parameters: HRT = θ = 5.3 hr, X = 2,500 mg/L, Xr = 10,000 mg/L, S=10 mg/L

    Kinetics constants: Y = 0.6 mgVSS/mg BOD, k d = 0.06 d-1

    , Ks = 60 mg/L, k = 5.0 /d.

    (Solutions)

    '

    net 

    m g net d d 

     g    s s

    dX S Y k S  r X k X k X  

    dt K S K S  

      

       

    '

    0.6 5.0 10

    0.06 2500

    60 10

    2500 9210.36857

     g d 

     s

    mgVSS mgBOD mgBOD

    mgBOD mgVSS d LY k S mgVSS  r k X 

    mgBOD mgBOD K S d L

     L L

    mgVSS mgVSS  

     L L d 

               

     

    ' 921 5.3 203.4 /24 /

     g 

    mgVSS hr  r mg L

     L d hr d  

     

     

    ' 2500 203 /0.31

    10,000 2500 /

     g r 

     X r    mg LQ R

    Q X X mg L

       

     

    or without consideration of the bacterial growth

    2500 /0.33

    10,000 2500 /r 

    mg LQ X  R

    Q X X mg L

  • 8/18/2019 4-Activated Sludge Models_F12

    17/24

    4-Activated Sludge Models_F12

    17

    Example 8-1 Activated-sludge process analysis. (3rd

     ME, p. 389)

    An organic waste having a soluble BOD5 of 250 mg/L is to be treated with a completely-mixactivated-sludge process. The effluent BOD5 is to be equal to or less than 20 mg/L.

    Design the reactor assuming that the temperature is 20°C, the flowrate is 5.0 Mgal/d, and that the

    following conditions are applicable.

    1. Influent volatile suspended solids to reactor are negligible.

    Xo = 0

    2. Return sludge concentration, Xr = 10,000 mg/L as suspended solids (SS) or 8,000 mg/L as

    volatile suspended solids (VSS).

    Xr (as SS) = 10,000 mg/L , Xr (as VSS) = 8,000 mg/L

     Note: VSS/SS = 0.8; i.e., 0.8 (10,000 mg/L) = 8000 mg/L VSS

    3. Mixed-liquor volatile suspended solids (MLVSS or X) = 3,500 mg/L

    MLVSS / MLSS = 0.8

    4. Mean cell-residence time θc = 10 days.

    5. Hydraulic regime of reactor is complete mix.

    6. Kinetic coefficients:

    Y = 0.65 mg cell / mg BOD5 utilized, k d = 0.06 d-1

     

    7. It is estimated that the effluent will contain about 20 mg/L of biological solids, of which

    80 % is volatile and 65 % is biodegradable.

    Xe = 20 mg/LXe,VSS = 0.8 (20 mg/L) = 16 mg/L

    Xe, biodeg = 0.65 (20 mg/L) = 13 mg/L

    Assume that the biodegradable biological solids can be converted from ultimate BODdemand to a BOD5 demand using the factor 0.68 [e.g., the deoxygenation coefficient, K

    (base 10) = 0.1 d-1

    .

    8. Waste contains adequate nitrogen, phosphorus, and other trace nutrients for biological

    growth.

  • 8/18/2019 4-Activated Sludge Models_F12

    18/24

    4-Activated Sludge Models_F12

    18

    Given:

    Q = 5 MGD ST = 20 mg/L

    So=250 mg/L S = ?

    Xo = 0 X = MLVSS = 3500 mg/L

    V=? Xe = 20 mg/L SS

    S=? 80% volatile

    65% biodegradable

    Qw

    Xr 

    Xr = 8,000 mg/L VSS (or 10,000 mg/L SS)

     

    θc = 10 dY = 0.65 mg cell/mg BOD5 

    k d = 0.06 d-1 

    Preliminary calculation

    (1 10 ) Kt t o y L   

     BOD

     BOD

     y

     Lo L

    d d 5 5 01 51 10 0 68 ( . / )( ) .  

    wherey5 = BOD5 

    Lo = BODL 

    Thus, BOD5 = 0.68 BODL 

     Note: k (base e) = 2.303 (0.1 d-1

    )

    = 0.2303 d-1

     (base e)

    Xe = 20 mg/L SS= 0.8 (20 mg/L) = 16 mg/L VSS= 0.65 (20 mg/L) = 13 mg/L X biodeg 

    Lo

    BOD5

    yt

    5 20

    Time (d)

    BOD5 = Lo (1-10-kt

    )

  • 8/18/2019 4-Activated Sludge Models_F12

    19/24

    4-Activated Sludge Models_F12

    19

    (Solution)

    1. Estimate the soluble BOD5 in the effluent.

    55 5Influent soluble BODEffluent BOD = BOD of effluent biological solidsescaping treatment

     

    Biodegradable

     biologicalsolids (VSS)

    C5H7 NO2  + 5O2    5CO2  + 2H2O + NH3  + energy

    cell oxygen

    g O2  (5 mol) (32 g/mol)------------- = -------------------------- = 1.42 mg O2 / mg X  biodeg 

    g X  biodeg  (1 mol) (113 g/mol)

    X  biodeg = 0.65 X

    BOD5 = 0.68 (BODL)

    1.1

    BOD5 from Xe

    = (20 mg Xe/L)(0.65) (1.42 mg O2 / mg Xe  biodeg  ) (0.68) = 12.55 mg/L BOD5 

    I

    (20 mg Xe/L)(0.65) = X  biodeg 

    I

    (Xe  biodeg)(1.42 O2 / Xe  biodeg) = BODL 

    I

    (BODL)(0.68) = BOD5 

    2 55

    deg

    5

    20 1.42 0.68(0.65)

    12.55

    bio L

    mgXe mgO BOD BOD from Xe

     L mg Xe BOD

    mg BOD

     L

         

     

  • 8/18/2019 4-Activated Sludge Models_F12

    20/24

    4-Activated Sludge Models_F12

    20

    Allowed BOD5 in effluent = 20 mg/L BOD5 = (S) + (12.55 mg/L BOD5 )

    1.2

    Soluble BOD5 in effluent = S = 20 - 12.6 = 7.4 mg/L soluble BOD5 

    1.3 The biological treatment efficiency based on soluble BOD5 would be

    Es  = (So - S) / So = (250 mg/L - 7.4 mg/L) / 250 mg/L

    = 0.97

    = 97 %

    1.4 The overall plant efficiency would be

    Eoverall = (250 - 20) / 250 = 0.92 = 92 %

    2. Compute the reactor volume. The volume of the reactor can be determined using Eq. 8-42

     by substituting V/Q for θ and rearranging the equation as follows:

    V   Y Q S S  

     X k 

    c o

    d c

     

     

     

    ( )

    ( )1 

    mg 

    mgBOD utilized 

     Mgal 

    d d mg L

    mg Ld 

     Mgal 

    cell 

     

     

     

     

      

         

       

       

    0 65 510 250 7 4

    3500 10 06

    10

    145

    .. /

    ( / ).

    ( )

    .  

    Hydraulic retention time, θ 

    V 1.4 Mgal

    θ = --- = --------------- = 0.28 d = 6.72 hrs

    Q 5 Mgal / d

    3. Compute the sludge-production rate on a mass basis.

    3.1 The observed yield is:

    Y    Y 

    mg cell mg BOD

    d d 

    mg Cell 

    mg BODobs

    d c

     

    1

    0 65

    10 06

    10

    04065

    ( . ) / ( ).

    ( )

    .  

    3.2 The biomass production rate is:

    Px = Yobs (So - S)

  • 8/18/2019 4-Activated Sludge Models_F12

    21/24

    4-Activated Sludge Models_F12

    21

     P   mg cell L

    mg BOD Lmg BOD L

      mg cell 

     L x  

    0406250 7 4

    98 5

    55

    . /

    /( . ) /

    .. 

    Px = Yobs (So - S) Q

     P   mg cell 

     L

     Mgal 

    lb cell 

    lbVSS 

    d  x  

         

       

       

       

    985 58 34

    4107 4107.( . )  

    4. If sludge wasting from a recirculation line

     cw r w e

    VX 

    Q X Q Q X  

    ( ) 

    Rearranging for Qw yields

    Q  VX Q Xe

     X Xew

    c

    c r 

     

     

      ( ) 

    Q  MG mgVSS L d MGD mgVSS L

    d mgVSS L MGDw  

     

     

    ( . )( / ) ( )( )( / )

    ( )( ) /.

    14 3500 10 5 16

    10 8000 160051  

    If sludge wasting from an aeration rank

     cw w e

    VX 

    Q X Q Q X  

    ( ) 

     

     

    c w c c w

    c w c

    Q X QXe Q Xe VX  

    Q X Xe VX QXe

    ( ) 

    Q  VX QXe

     X Xew

    c

    c

     

     

      ( ) 

    Qw   Mgal mgVSS L d MGal d mgVSS L

    d mgVSS L MGD  

      ( . )( / ) ( )( / )( / )

    ( )( ) /.14 3500 10 5 16

    10 3500 160118  

    or

     cw w e

    VX 

    Q X Q Q X  

    ( ) 

    Assuming Qw

  • 8/18/2019 4-Activated Sludge Models_F12

    22/24

    4-Activated Sludge Models_F12

    22

     cw e

    VX 

    Q X Q X  

    ( ) 

    Rearranging for Qw 

     

     

    c w c

    c w c

    Q X QXe VX  

    Q X VX QXe

     

    Q  VX Q Xe

     X w

    c

    c

       

      

    Q  Mgal mgVSS L d MGal d mgVSS L

    d mg VSS L MGDw  

     

    ( . )( / ) ( )( / )( / )

    ( )( / ).

    14 3500 10 5 16

    10 35000117  

    4. Compute the recirculation ratio (R) using a VSS mass balance around the reactor neglecting the

    suspended solids in the influent (Xo = 0).

    Xr Qr = X (Q + Qr)

    Xr Qr = XQ + XQrXr Qr –  X Qr = XQ

    Qr (Xr –  X) = XQ

    R = Qr/Q = X/(Xr – X) = (3500 mg VSS.L) / (8000 –  3500) mg VSS/L = 0.78

    If the bacterial growth is included,

    V  dX 

    dt QrXr X Q Qr r V   g  ( ) '  

    at steady state, dX/dt = 0

    Q

     Aeration tank

    X = 3500 mg VSS/L

    X(Q+Qr)

    Qr 

    Xr = 8,000 mg VSS/L

  • 8/18/2019 4-Activated Sludge Models_F12

    23/24

    4-Activated Sludge Models_F12

    23

    Qr Xr + r g’ V = X (Q + Qr) = XQ + Qr  

    Qr (Xr –  X) = XQ –  r g’ V 

    QQ

     X r V 

    Q X X 

     X rg  X X 

    mgVSS 

     L

    mgVSS 

     L d d 

    mgVSS L

     g 

    r r 

       

     

     

    '

    ' ..

    ( ) /. 

    3500 3500 28

    8000 35000 76  

    where r X X  d 

    mgVSS L mgVSS L d   g net c

    ' / / .   

    1 1

    103500 350  

    6.

       V 

    Q

     Mgal 

     Mgal d d hrs

    14

    60 28 6 72

    .

    /. .  

    7.7-1. Check the specific utilization rate,

    U   dS dt 

     X 

    Q So S  

    V X 

    So S 

     X 

    u  

      ( / ) ( )

      

    U    mgBOD Ld mgVSS L

    mgBOD utilized mgMLVSS d 

      ( . ) /( . )( / )

    ..

    250 7 40 28 3500

    0 255 5  

    7.2 Check the food-to-microorganism ratio

    5

    5

    250 /(0.28 )(3500 / )

    0.255

    .

     F Q So So

     M V X X 

    mgBOD Ld mgVSS L

    mgBOD

    mgMLVSS d 

     

     

  • 8/18/2019 4-Activated Sludge Models_F12

    24/24

    4-Activated Sludge Models_F12

    7.3 Check the volumetric BOD loading rate (VLR) in lb BOD5/1000 ft3·d

    5

    6 3

    5 5

    3 3

    250 58.34

    10 1(1.4 )

    7.48

    10425 / 56

    187166 1000 .

    mgBOD Mgal  

    SoQ   L d VLR

    V    gal ft   Mgal 

     Mgal gal 

    lbBOD d lbBOD applied  

     ft ft d 

     

     Note

    U   F 

     M  E 

      mgBOD

    mgMLVSS d 

    mgBOD

    mgVSS d 

       

         

      

     

     

     

        

        

    0255 250 7 4

    250

    0 255 5.

    .

    . .


Recommended