+ All Categories
Home > Documents > 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Date post: 27-Jan-2017
Category:
Upload: ngoanh
View: 234 times
Download: 1 times
Share this document with a friend
28
Hine, A.C., Feary, D.A., and Malone, M.J. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 182 4. EOCENE–OLIGOCENE PLANKTONIC FORAMINIFERAL BIOSTRATIGRAPHY OF SITES 1126, 1130, 1132, AND 1134, ODP LEG 182, GREAT AUSTRALIAN BIGHT 1 Qianyu Li, 2 Brian McGowran, 2 and Noel P. James 3 ABSTRACT Planktonic foraminiferal results indicate that Paleogene sediments recovered at Sites 1126, 1130, 1132, and 1134 in the Great Australian Bight are of middle Eocene–late Oligocene age, in intervals equivalent to (sub)tropical Zones P12–P22. The southern temperate assemblage hosted several subtropical species in the middle–late Eocene and late Oligocene as immigrants probably transported by a warm-water system similar to the present-day Leeuwin Current. The four major hiatuses recognized or inferred fall (1) between Zones P12–13 and P15 in the middle Eocene, (2) within Zone P15, (3) between Zones P16 and P18 across the Eocene/Oligocene boundary, and (4) between Zones P19 and P20 and Subzone P21b in the mid-Oligocene. These unconformities represent region-wide events across the southern Australian margin, corresponding to global sequence boundaries Part-1 (39.1 Ma), Pr1 + Pr2 (37.1–36.0 Ma), Pr4/Ru1 (33.7 Ma), and Ru4/Ch1 (28.5 Ma), respec- tively. Unconformities at Site 1130 had a longer duration as lower Oli- gocene ooze with Zone P18–P19 species overlying a middle Eocene sandy limestone of Zone P12 age and the whole Oligocene were con- densed to only half as thick as the coeval sediments from up- and downslope, indicating stronger erosion at this upper slope locality dur- ing the late Eocene. The biostratigraphic results confirm previous stud- ies of the neritic record, reporting that carbonate deposition began in 1 Li, Q., McGowran, B., and James, N.P., 2003. Eocene–Oligocene planktonic forminiferal biostratigraphy of Sites 1126, 1130, 1132, and 1134, ODP Leg 182, Great Australian Bight. In Hine, A.C., Feary, D.A., and Malone, M.J. (Eds.), Proc. ODP, Sci. Results, 182, 1–28 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/ publications/182_SR/VOLUME/ CHAPTERS/006.PDF>. [Cited YYYY- MM-DD] 22 Department of Geology and Geophysics, The University of Adelaide, Adelaide SA 5005, Australia. Correspondence author: [email protected] 33 Department of Geological Sciences, Queen’s University, Kingston ON K7L 3N6, Canada. Initial receipt: 2 April 2001 Acceptance: 30 September 2002 Web publication: 3 February 2003 Ms 182SR-006
Transcript
Page 1: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Hine, A.C., Feary, D.A., and Malone, M.J. (Eds.)Proceedings of the Ocean Drilling Program, Scientific Results Volume 182

4. EOCENE–OLIGOCENE PLANKTONIC FORAMINIFERAL BIOSTRATIGRAPHY OF SITES 1126, 1130, 1132, AND 1134, ODP LEG 182, GREAT AUSTRALIAN BIGHT1

Qianyu Li,2 Brian McGowran,2 and Noel P. James3

ABSTRACT

Planktonic foraminiferal results indicate that Paleogene sedimentsrecovered at Sites 1126, 1130, 1132, and 1134 in the Great AustralianBight are of middle Eocene–late Oligocene age, in intervals equivalentto (sub)tropical Zones P12–P22. The southern temperate assemblagehosted several subtropical species in the middle–late Eocene and lateOligocene as immigrants probably transported by a warm-water systemsimilar to the present-day Leeuwin Current. The four major hiatusesrecognized or inferred fall (1) between Zones P12–13 and P15 in themiddle Eocene, (2) within Zone P15, (3) between Zones P16 and P18across the Eocene/Oligocene boundary, and (4) between Zones P19 andP20 and Subzone P21b in the mid-Oligocene. These unconformitiesrepresent region-wide events across the southern Australian margin,corresponding to global sequence boundaries Part-1 (39.1 Ma), Pr1 +Pr2 (37.1–36.0 Ma), Pr4/Ru1 (33.7 Ma), and Ru4/Ch1 (28.5 Ma), respec-tively. Unconformities at Site 1130 had a longer duration as lower Oli-gocene ooze with Zone P18–P19 species overlying a middle Eocenesandy limestone of Zone P12 age and the whole Oligocene were con-densed to only half as thick as the coeval sediments from up- anddownslope, indicating stronger erosion at this upper slope locality dur-ing the late Eocene. The biostratigraphic results confirm previous stud-ies of the neritic record, reporting that carbonate deposition began in

1Li, Q., McGowran, B., and James, N.P., 2003. Eocene–Oligocene planktonic forminiferal biostratigraphy of Sites 1126, 1130, 1132, and 1134, ODP Leg 182, Great Australian Bight. In Hine, A.C., Feary, D.A., and Malone, M.J. (Eds.), Proc. ODP, Sci. Results, 182, 1–28 [Online]. Available from World Wide Web: <http://www-odp.tamu.edu/publications/182_SR/VOLUME/CHAPTERS/006.PDF>. [Cited YYYY-MM-DD]22Department of Geology and Geophysics, The University of Adelaide, Adelaide SA 5005, Australia. Correspondence author: [email protected] of Geological Sciences, Queen’s University, Kingston ON K7L 3N6, Canada.

Initial receipt: 2 April 2001Acceptance: 30 September 2002Web publication: 3 February 2003Ms 182SR-006

Page 2: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 2

the middle Eocene probably as a response to global warming and mar-ginal subsidence because of the accelerated seafloor spreading betweenAustralia and Antarctica at ~43 Ma.

INTRODUCTION

During Ocean Drilling Program (ODP) Leg 182, Paleogene sedimentswere recovered at Sites 1126, 1128, 1130, 1132, and 1134 in waterdepths between 218 m (Site 1132) and 3875 m (Site 1128) from thewestern Great Australian Bight (Fig. F1). The siliciclastic sequence ofpre–late Eocene age, at which most holes terminated, is poorly fossilif-erous and could be fluvial to deltaic in origin. The overlying middleEocene limestones grade upward to wackestones and calcareous oozesof younger ages (Feary, Hine, Malone, et al., 2000). Core recovery is low,<30% on average, as a result of cherts. Fossil assemblages of planktonicforaminifers and nannoplankton are moderately preserved, providingevidence for age determination and correlation.

Early work on the Cenozoic biostratigraphy of the Great AustralianBight Basin and other basins along the southern Australian margin fo-cused mostly on macrofossils. Glaessner (1951, 1953) pioneered the de-cisive shift to microfossils by describing three foraminiferal zones.Crespin (1956) and Ludbrook (1958a, 1958b, 1961) analyzed biofacies,including foraminifers, in samples from outcropping and drill hole sec-tions in the onshore Eucla Basin north of the Great Australian Bight.McGowran and Lindsay (1969) reported planktonic foraminiferal as-semblages of middle Eocene age, and McGowran et al. (1971) first at-tempted the correlation of local assemblages to tropical zonations.Based on sidewall cores, McGowran (1991) identified key events in theupper Eocene–lowermost Oligocene section from Jerboa-1 within thedrilling area of Leg 182. These and subsequent studies distinguish a suc-cession of planktonic foraminifer events for subdivision and correlationof the local neritic strata on which the temporal patterns of the strati-graphic record of southern Australia can be evaluated (McGowran,1989; McGowran et al., 1992, 1997a).

We have examined all Paleogene core catchers from Sites 1126, 1130,1132, and 1134 plus some additional samples from relevant core inter-vals. Our purpose is to document planktonic foraminiferal distributionin the middle Eocene–late Oligocene, to compare the assemblage com-position between different settings, to identify hiatuses and their signif-icance in the development of Cenozoic cool-water carbonate platform,and to extract biofacies information on environmental changes beforeand after the full opening of the Tasman Gateway, an event triggeringcircum-Antarctic deepwater circulation and global cooling in the latestEocene–early Oligocene (Kennett, 1977; Kennett and Stott, 1990).

METHODS

A total of 141 samples from Sites 1126, 1130, 1132, and 1134 wereused in this study. Core catcher samples were washed, dried, and exam-ined on board and reexamined after the cruise. Thin sections of theEocene limestone were made by N.P. James, collaborating a study onthe first major transgression in the region. Material from the deepwaterSite 1128 was not used because it has been distorted by dissolution.

127°E 129°128°

34°

33°S

Eyre Terrace

Jerboa-1

1131

1127

1126

1128

1129

11301132

11331134

3000

2000

200

100

500

3500

4000

4500

2500

1500

1000

West wind drift

E. A

ustra

lian

Cur

rent

Tasman

Current

1

2

3

5

4

6 7

Cenozoic basinssouthern Australia

0 50 km

ODP Leg 182

A

B

Great Australian Bight

1-Bremer

2-Eucla

3-St. Vincent

4-Murray

5-Otway

6-Bass

7-Gippsland

Subtropical Convergence

W. AustralianC

urrentLeeuw

in

C u rrent

F1. Map showing southern Austra-lia, location of Cenozoic basins, Leg 182 sites, and Jerboa-1, p. 17.

Page 3: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 3

Species identification was made by reference mainly to Blow (1979)and Bolli et al. (1985). Key species for biostratigraphy are discussed andillustrated. The timescale and zonal scheme of Berggren et al. (1995)were correlated with relevant datum levels of species found widely insouthern Australia (Fig. F2). We used the calibrated first occurrence (FO)and last occurrence (LO) datums of many species given in Berggren etal. (1995) and updated by the Shipboard Scientific Parties of Leg 181(Carter, McCave, Richter, Carter, et al., 1999; table T3 in Shipboard Sci-entific Party, 2000a) and Leg 182 (Feary, Hine, Malone, et al., 2000; ta-ble T3 in Shipboard Scientific Party, 2000b).

PLANKTONIC FORAMINIFERAL DATUMS AND ZONES

Figure F2 summarizes the integrated Paleogene geochronostratigra-phy, emphasizing standard planktonic foraminiferal zones and datumlevels from the (sub)tropics. The P-zonation of Berggren et al. (1995)has been correlated with the southern mid-latitude zones identified byJenkins (1966, 1971, 1993) and important datum levels found in south-ern Australia (McGowran, 1986, 1991; McGowran et al., 1997a). To-gether with those used in defining the P-zones, many calculateddatums provide the basic framework for the regional biostratigraphy.Local biozonations are not applied in this study for the same reason asstated in McGowran (1986; p. 250) that “it is easier to shuffle the inven-tory of biostratigraphic events than to redefine zones and subzoneseach time there is a new discovery, a correction, or a modest step for-ward in our understanding” (of the distribution of species). Apart fromthese datum levels, major components of the planktonic foraminiferalassemblages also provide evidence for changes in age and environment.Species associations help determine if datums are in situ or displaced.Biostratigraphic results from previous studies of neritic sediments aresummarized below.

Eocene

The Paleocene–early Eocene marine record in southern Australia issparse, and the Kings Park section near Perth and the coastal PebblePoint section to the southwest of Melbourne are the only two outcropswith good planktonic and benthic foraminifers of that age (McGowran,1964, 1965). In contrast, middle–late Eocene carbonates rich in plank-tonic foraminifers are more widespread along the coast of southernAustralia (Quilty, 1969, 1981; McGowran, 1979, 1990, 1991, 1992). Theplanktonic foraminiferal assemblages have these characteristics.

1. Prominent in the Eocene assemblage are Globigerinatheka index,Acarinina primitiva, Acarinina bullbrooki, Acarinina collactea, Tur-borotalia spp., Subbotina linaperta, and Chiloguembelina cubensis.

2. Most (sub)tropical species, especially those zonal markers listedin Fig. F2, are absent. Morozovella is rare and present mostly inZone P10 or older intervals. Hantkenina is sporadic in Zones P15–lower P16.

3. The middle Eocene sediments can be subdivided on the follow-ing evidence. Planorotalites australiformis last appears withinZone P11. Assemblages with A. bullbrooki, Acarinina densa, and G.

30

24

26

28

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

b

b

NP19/20

NP25

NN1

NP24

NP23

NP22NP21

NP18

NP17

NP16

NP15

NP14

NP13

NP12

NP11NP10

NP9

NP8NP6

NP5

NP4

NP3NP2NP1

c

a

a

Pα & PO

M1aN4 a

P. eugubina (64.9-65.0)S. triloculinoides (64.5)

Gq. dehiscens (23.2)Pg. kugeri s.s. (23.8)Gs. primordius acme (24.3)

Pg. opima (27.1)

Ch. cubensis (28.5)G. angulisuturalis (29.4) T. ampliapertura (30.3)

Pseudohastigerina (32.0)

T. cerroazulensis (33.8)C. inflata (34.0)

T. cunialensis (35.2)

Po. semiinvoluta (38.4)

Gb. beckmanni (40.1-40.5)

Gb. kugleri (45.8)

M. aragonensis (43.6)

M. aragonensis (52.3)

H. nuttalli (49.0)

P. palmerae (50.4)M. formosa (50.8)

M. lensiformis (54.0)M. velascoensis (54.7)M. subbotinae (55.9)P. pseudomenardii (55.9)A. soldadoensis (56.5)A. subsphaerica (57.1)

A. subsphaerica (59.2)P. pseudomenardii (59.2)Ig. albeari (60.0) M. angulata (61.0)Pr. uncinata (61.2)

Pr. inconstans (63.0)P. sompressa (63.0)

{

{

{

M. formosa (54.0){

Ch. cubensis

M. velascoensis

P. pseudomenardii

SP15

SP14

SP13

SP12

SP11

SP10

SP9

SP8

SP7

SP6

SP5

SP4

SP3

SP1SP2

Gq. dehiscens (23.2)

Gt. brazieri

Ch. cubensis (28.5)

S. angiporoides (30.0)

Gt. brevis

A. aculeata

Gk. index (42.9)

M. crater

P. pseudomenardii (59.2)

Gt. brevis

A. primitiva (39.0)

M. crater

M. velascoensis (55.9)

{

{

{

Pα & PO

M1aN4a

Geochonostratigraphy Nanno-plankton

Planktonic foraminifers Southern mid-latitude Southern Australia

65.0

60.9

57.9

54.8

49.0

41.3

37.0

33.7

28.5

23.8

Pg. opima (30.6)

Age

(M

a)

Acarinina aculeataChiloguembelina cubensis

Chattian

Rupelian

Priabonian

Bartonian

Lutetian

Ypresian

Thanetian

Selandian

Danian

Olig

ocen

eE

ocen

eP

aleo

cene

early

late

early

late

mid

dle

early

late

C6CC7

C8

C9

C10

C11

C12

C13

C15C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C7A

P. wilcoxensis

T. euapertura

S. angiporoides

Gt. brevis

S. linaperta

T. inconspicua

Gk. index

A. primitiva

M. crater

S. triloculinoides

G. pauciloculata

Gt. brazieri

G. daubjergensis

P. wilcoxensis (54.5)

G. daubjergensis

G. pauciloculata

Globoquadrina dehiscens (23.2)

Paragloborotalia pseudokugleri (25.9) Guembelitria triseriata

Chiloguembelina cubensis (28.5)Cassigerinella winniana

Subbotina angiporoides (30.0)

Guembelitria triseriata

Cassigerinella chipolensis

Globigerinatheka index (34.3)

Acarinina primitiva (39.0)Acarinina collactea

Hantkenina primitiva

Acarinina aculeata

Turborotalia frontosa (39.3)

Turborotalia pomeroliGlobigerinatheka index (42.9)

Planorotalites australiformis

Morozovella caucasicaPseudohastigerina micraAcarinina primitivaMorozovella caucasicaChiloguembelina wilcoxensis

Morozovella aequa (53.6)

Morozovella acuta (54.7)Pseudohastigerina "pseudoiota"

Planorotalites pseudomenardii (59.2)

Paragloborotalia kugleri s.s.(23.8) Globigerinoides primordius acme (24.3)

Pg. opima, Gt. labiacrassata (27.1)

Globoturborotalita brevis

Planorotalites australiformis (55.5)

Acarinina collactea

Acarinina bullbrooki (40.5)

P21

P22

a

b

P20

P19

P18

P16

P15

P14

P12

P11

P10

P9

P7

P6a

b

P4

P5

P3

P1b

a

c

b

a

c

ba

P21

P22

a

b

P20

P19

P18

P16

P15

P14

P12

P11

P10

P9

P7

P6a

b

P4

P5

P3

P1b

a

c

b

a

c

ba

Top of range

Bottom of range

F2. Planktonic foraminifers, p. 18.

index indicate Zone P12. A. primitiva last appears within Zone

Page 4: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 4

P14 equivalents, whereas the LOs of A. collactea and A. aculeataare in the middle Eocene part of Zone P15. The microperforatePraetenuitella insolita and related species are present in ZonesP15–P16.

4. The late Eocene assemblage characterizes Zones upper P15–lowerP16, mainly including G. index, S. linaperta, S. angiporoides, Tur-borotalia increbescens, Turborotalia pseudoampliapertura, Catapsy-drax spp., and Globorotaloides spp. Zone P16 can be recognizedonly if Turborotalia cunialensis is present.

5. Pseudohastingerina spp. from the region appear to have their LOin the late Eocene, similar to their record elsewhere from south-ern mid to high latitudes (Jenkins and Srinivasan, 1986; Stottand Kennett, 1990; Nocchi et al., 1991).

Oligocene

The Oligocene planktonic foraminifers comprise chiefly cool-temperate species, and only during the late Oligocene did some sub-tropical forms occur. Globorotaloides and Tenuitella are most abundant,accompanied, respectively, by frequent Chiloguembelina in the early Oli-gocene and Globigerina in the late Oligocene.

1. Typical Subbotina brevis is present across the Eocene/Oligoceneboundary. Zone P18 is difficult to recognize without Pseudohasti-gerina micra, but S. brevis can be used as a proxy because its LOdatum falls close to the upper part of Zone P18 equivalents ac-cording to Jenkins (1985, 1993). Guembelitria triseriata is firstpresent in the Zone P18 interval.

2. Subbotina angiporoides is common in the lower Oligocene up tothe vicinity of the Zone P19/P20 boundary. It is accompanied inZone P19 and replaced above Zone P19 by Subbotina labia-crassata, a species ranging into the upper Oligocene, close to theZone P21/P22 boundary (Stott and Kennett, 1990; Huber, 1991;Berggren, 1992).

3. Typical Paragloborotalia opima is sporadic and restricted mainlyto two intervals, Zone P19–P20 and Subzone P21b.

4. The southern Australian record of C. cubensis is consistent withBerggren et al. (1995), so its LO can be used to mark the SubzoneP21a/P21b boundary and the upper/lower Oligocene boundary.Leckie et al. (1993), however, reported rare C. cubensis presentthroughout the upper Oligocene in tropical–subtropical sections(see comments in Berggren et al., 1995).

5. Four- and five-chambered Globigerina (Globigerina ouachitaensis,Globigerina officinalis, G. praebulloides, and G. ciperoensis) arecommon in the upper Oligocene. On the influx of G. angulisutur-alis, Lindsay (1985) proposed a G. angulisuturalis Zone for sedi-ments equivalent to Zone upper P21b–lower P22.

6. As well as P. opima and G. angulisuturalis, other warm-water spe-cies also invaded southern Australia during the late Oligocene–earliest Miocene. They include Globoquadrina tripartita, Globo-quadrina dehiscens s.l., Dentoglobigerina globulosa, Globigerinoidesprimordius, and Paragloborotalia kugleri.

7. Sporadic Turborotalia euapertura range throughout the Oli-gocene, and its LO has been used for defining the Oligocene/Miocene boundary in high latitudes (Berggren, 1992). In thesouthern Australian–New Zealand region, T. euapertura often

Page 5: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 5

ranges into the lowermost Miocene (Jenkins, 1985, 1993; Li andMcGowran, 2000).

BIOSTRATIGRAPHY OF LEG 182 HOLES

Holes 1126B and 1126D

Planktonic foraminifers indicate that the Oligocene section at Site1126 extends from 205.85 to 329.89 meters below seafloor (mbsf) be-tween Samples 182-1126B-26X-CC, 15–18 cm, and 20R-CC, 20–22 cm,and the Eocene from 338.87 to 396.63 mbsf between Samples 21R-CC,18–19 cm, and 27R-CC, 0–2 cm (Fig. F3).

Typical late Oligocene assemblages are present between 205.85 and254.82 mbsf in Holes 1126B and 1126D. Sample 182-1126B-26X-CC,15–18 cm (205.85 mbsf), contains well-preserved specimens of, amongothers, G. primodius, Globoquadrina praedehiscens, and G. tripartita. Theyare accompanied downcore to 254.82 mbsf (Sample 182-1126B-32X-CC, 26–28 cm) by Globigerina ciperoensis (rare), G. angulisuturalis (rare),S. labiacrassata, and T. euapertura, a typical Zone P21–P22 association. P.opima, a species confined to Zones P20–P21, is also present in this sam-ple. Therefore, the Zone P21/P22 boundary falls in Core 182-1126B-31Xat ~250 mbsf where there was no core recovery.

Between 254.82 and 329.89 mbsf, poor recovery hampers a properdating of this interval, which is believed to encompass the upper/lowerOligocene boundary and Zones P19–P21 sediment. However, a fairlywell preserved assemblage in Sample 182-1126D-16R-CC, 38–39 cm(290.98 mbsf), contains abundant C. cubensis and tenuitellids (includ-ing Tenuitella munda and Tenuitellinata juvenilis), frequent Globorota-loides suteri, Catapsydrax unicavus, and Paragloborotalia nana, as well asrare T. euapertura and S. ex gr. angiporoides. It indicates an early Oli-gocene age, probably within Zones P19–P20, in the absence of typicallyolder or younger species.

Typical S. angiporoides dominates the coarser fraction of Sample 182-1126D-20R-CC, 20–22 cm (329.89 mbsf), whereas C. cubensis, Tenuitellagemma, and T. munda are abundant in the fine fraction. As the last twotaxa are often present together in the lowermost Oligocene (Li et al.,1992), we assign this assemblage to Zone P18, even though the zonalmarker P. micra is absent. It has become apparent that P. micra did notrange through the Eocene/Oligocene boundary in either southern Aus-tralia (Lindsay, 1985; McGowran, 1991; Li et al., 2000) or sub-Antarctica(Jenkins and Srinivasan, 1986; Stott and Kennett, 1990; Nocchi et al.,1991).

An unconformity is inferred to be present at the Oligocene/Eoceneboundary, as the underlying sediments in Sample 182-1126D-21R-CC,18–19 cm (338.87 mbsf), contain Globigerinatheka luterbacheri, G. index,P. insolita, S. linaperta, and other middle–late Eocene species. Earlierstudies indicated that G. luterbacheri as an immigrant from the subtrop-ics is mainly confined to a short interval between Zones P15 and lowerP16 in high southern latitudes (Nocchi et al., 1991) and so is P. insolitaas a southern provincial dweller at a similar time period (Li et al., 1992).Zone P15 extends farther down to Sample 182-1126D-25R-CC, 15–17cm (380.38 mbsf), in the presence of Turborotalia cerroazulensis s.l., Acar-inina aculeata, and A. collactea but without A. primitiva. The upper/mid-dle Eocene boundary is tentatively placed in Core 182-1126D-23Rwithin Zone P15 (as per Berggren et al., 1995), approximating the LO of

Aca

rinin

a bu

llbro

oki

Par

aglo

boro

talia

sem

iver

a

Glo

boro

talo

des

sute

ri

Sub

botin

a an

gipo

roid

es

Chi

logu

embe

lina

cube

nsis

Pse

udoh

astig

erin

a m

icra

Ten

uite

lla s

pp.

Sub

botin

a lin

aper

ta

Glo

bige

rinat

heka

inde

x

Tur

boro

talia

incr

ebes

cens

Tur

boro

talia

pse

udoa

mpl

iape

rtur

a

Tur

boro

talia

eua

pert

ura

Glo

botu

rbor

otal

ita la

biac

rass

ata

Glo

bige

rinoi

des

prim

ordi

us

Glo

boqu

adrin

a tr

ipar

tita

Par

aglo

boro

talia

kug

leri

s.l.

6R

7R

8R

9R

28R

29R

30R

31R

32R

33R

10R

11R

12R

13R

14R

15R

16R

17R

18R

19R

20R

21R

22R

23R

24R

25R

26R

27R

Pra

eten

uite

lla in

solit

a

P22

P19-P20

P18

P16/

P15

P12

early

Olig

ocen

ela

teO

ligoc

ene

late

Eoc

ene

mid

dle

Eoc

ene

Glo

bige

rina

bullo

ides

s.l.

25X

26X

27X

28X

29X

30X31X32X

Aca

rinin

a ac

ulea

ta

Aca

rinin

a co

llact

ea

Aca

rinin

a pr

imiti

va

Han

tken

ina

prim

itiva

Par

aglo

boro

talia

opi

ma

Glo

bige

rinat

heka

lute

rbac

heri

Cat

apsy

drax

uni

cavu

s

Glo

bige

rina

angu

lisut

ural

is

Glo

bige

rina

cipe

roen

sis

Glo

boqu

adrin

a pr

aede

hisc

ens

Tur

boro

talia

cer

roaz

ulen

sis

Glo

boqu

adrin

a de

hisc

ens

Par

aglo

boro

talia

nan

a

Aca

rinin

a de

nsa

Glo

bige

rinita

spp

.

Cas

sige

rinel

la w

inni

ana

Cat

apsy

drax

dis

sim

ilis

Gue

mbe

litria

tris

eria

ta

Par

aglo

boro

talia

pse

udom

ayer

i

Pra

eten

uite

lla p

raeg

emm

a

Ten

uite

llina

ta s

pp.

Dep

th (

mbs

f)

200

220

240

260

280

300

320

340

360

380

400

420

440

460

?

?

Hole1126A

Zone Age

Hole1126D

P

P

PP

Pcf.

C

PR

AC

Barren

cf.

R C

R P P

C

P cf.R RC C

C

CP

PPPC

CRP

RR

CCC

PP

CCC

R

P

P

CRCRCC

PR

P

R

cf.

PACCCP

C A

R A

C A C

C

R

C

C

P

R

R

C

C

R

C

C

A

cf.

R R

RRCPCPCARCR

R

PP C

P

PP

C

RP

C

PP

R

PP P

R

P

PPP

C

C

CRCCRCR

P

P

P

P

R

R

R

R

RR

P

R

PP

R cf.

C

P

C

CR

C

P

R

P

P

PR

P

PP

R

R

R

RP

R

cf.

No sample

No sample

No sample

No sample

No sample

No sample

No sample

?

C

P

CR

R

C

PP

PP

C

P

C

RR

F3. Distribution of planktonic for-aminifers, Holes 1126A and 1126D, p. 19.

Page 6: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 6

these small Acarinina species as suggested for the Australian–NewZealand region (Jenkins, 1996; McGowran et al., 1997a).

Zone P14 is probably missing from Hole 1126D, as an assemblagetypical of Zones P12–13 characterized by A. primitiva, A. bullbrooki, andA. cf. densa was found in the lowermost two samples with planktonicforaminifers (Samples 182-1126D-26R-CC, 23–25 cm, and 27R-CC, 0–2cm [390.38–396.63 mbsf]). An interval of Zone P12 or older in the mid-dle Eocene is indicated by an association of these species with manylong-ranging Eocene forms such as C. cubensis, G. index, P. micra, and S.linaperta. The underlying sand sequence contains no foraminifers;therefore, its age cannot be determined. An Eocene age is inferred on itsferruginous feature similar to those from onshore localities and by itsposition in the seismic Sequence 7 (Feary, Hine, Malone, et al., 2000).

Holes 1130A and 1130C

The stratigraphic succession at Site 1130 is truncated by large uncon-formities in the Miocene, Oligocene, and Eocene. An upper Mioceneooze unconformably overlies the Oligocene chalk/chert section, itselfdivided by unconformities and overlying the middle Eocene sandylimestone (Fig. F4). The ooze is present between 323.34 and 328.57mbsf in Samples 182-1130C-3R-CC, 16–19 cm, and 35X-5, 87–92 cm (Liet al., this volume).

Immediately downcore at 328.89 mbsf (Sample 182-1130A-35X-CC,27–30 cm) is a dark gray porcellanite containing poorly preservedplanktonic foraminifers. The assemblage is dominated by small-sizedspecies, including Globigerina praebulloides, G. officinalis, G. ciperoensis,Globorotaloides spp., and Tenuitella spp. Others are minor or rare, mainlyT. euapertura, T. venezuelana, P. nana, Globoquadrina cf. globulosa, andGlobigerinita spp. The assemblage indicates Zone P22 because P. opima, aZone P21 species, is absent from this sample but is present in samplesfrom below. The three core catcher samples between 337.73 and 351.37mbsf (Samples 182-1130C-5R-CC, 3–4 cm; 6R-CC, 10 cm; and 182-1130A-38X-CC, 27–30 cm) all contain P. opima, plus other Oligocenespecies listed above, representing Subzone P21b.

The presence of lower Oligocene sediment is indicated by an assem-blage with C. cubensis and S. cf. angiporoides in Sample 182-1130C-7R-CC, 6–8 cm (356.96 mbsf). Typical P. opima was not found in this sam-ple, but specimens of P. nana–P. opima bioseries show transitional fea-tures between these two species, as illustrated by Bolli et al. (1985) assubspecies of Globorotalia opima. According to these authors, transi-tional forms between the small four-chambered P. nana and larger five-chambered P. opima are commonly present before and during the estab-lishment of P. opima as a species in upper Zones P19–P21. Conse-quently, the assemblage from 356.96 mbsf is considered to representZone upper P19–P20 but not older because typical S. angiporoides (ZonesP19 and older) is absent.

Thin sections from the underlying sandy limestone in Cores 182-1130C-8R through 10R show rare and poorly preserved neritic benthicspecies. Among the scattered planktonic specimens are A. primitiva, G.index, and S. linaperta (especially in Sample 182-1130C-8R-1, 99 cm), in-dicating Zone P12 or older in the middle Eocene.

Aca

rinin

a bu

llbro

oki

Aca

rinin

a ac

ulea

ta

Aca

rinin

a co

llact

ea

P R R

Orb

ulin

a su

tura

lis +

O. u

nive

rsa

Glo

boro

talia

ple

siot

umid

a

late

Olig

ocen

em

iddl

eE

ocen

e

R

R

P

C

P R R

C

CP P

P

Neo

glob

oqua

drin

a pa

chyd

erm

aG

lobo

rota

lia s

citu

la

P

late

Mio

cene

Pla

noro

talit

es s

pp.

Glo

boro

talo

des

sute

ri

Sub

botin

a an

gipo

roid

es

Chi

logu

embe

lina

cube

nsis

Pse

udoh

astig

erin

a m

icra

Ten

uite

lla s

pp.

S

ubbo

tina

linap

erta

Glo

bige

rinat

heka

inde

x

Tur

boro

talia

incr

ebes

cens

Tur

boro

talia

ven

ezue

lana

Tur

boro

talia

eua

pert

ura

Glo

botu

rbor

otal

ita la

biac

rass

ata

Glo

bige

rinoi

des

prim

ordi

us

Glo

boqu

adrin

a tr

ipar

tita

+ G

. sel

lii

Par

aglo

boro

talia

kug

leri

s.l.

Pra

eten

uite

lla in

solit

a

Glo

bige

rina

bullo

ides

s.l.

Aca

rinin

a pr

imiti

va

Han

tken

ina

prim

itiva

Par

aglo

boro

talia

opi

ma

Glo

bige

rinat

heka

lute

rbac

heri

Cat

apsy

drax

uni

cavu

s

P

Glo

bige

rina

angu

lisut

ural

isG

lobi

gerin

a ci

pero

ensi

s

Glo

boqu

adrin

a de

hisc

ens

Tur

boro

talia

cer

roaz

ulen

sis

Glo

boqu

adrin

a gl

obul

osa

Par

aglo

boro

talia

nan

a

Glo

bige

rinita

spp

.

Cas

sige

rinel

la w

inni

ana

Cat

apsy

drax

dis

sim

ilis

Gue

mbe

litria

tris

eria

ta

Par

aglo

boro

talia

sem

iver

a

Pra

eten

uite

lla p

raeg

emm

a

Ten

uite

llina

ta s

pp.

Tru

ncor

otal

oide

s sp

p.T

urbo

rota

lia a

mpl

iape

rtur

a

2R

3R

4R

5R

6R

7R

8R

9R

10R

T.D.395.2 mbsf

34X

35X

36X

37X

38X

39X

40X

41XT.D.

380.4 mbsf

?

cf.

?

P

RRC

R

R

CR

CR

cf.

C

C

Rcf.

R

C

RR

C

C

CC P

cf.R

cf.

R

P

R

P

PR

?

cf.

C

C

C

R

R

P

RR

cf.

P

P

R

R

Glo

bige

rina

quin

quel

oba

Glo

bige

rinel

la o

besa

P

PCR P cf.

N17

P22

P21b

P20/P19

P12

early

Olig

o.

320

340

360

380

400

Hole1130A

Hole1130C

cf.

Dep

th (

mbs

f)

Zone Age

F4. Distribution of planktonic for-aminifers, Holes 1130A and 1130C, p. 20.

Page 7: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 7

Hole 1132C

Hole 1132C was drilled at a water depth of 218.5 m with very lowcore recovery (6.1%). Planktonic foraminifers are rare and poorly pre-served in core catcher samples from this shallow-water hole. Truncatedby three unconformities, the Eocene–Oligocene sequence is present be-tween 450.94 and 555.93 mbsf in Samples 182-1132C-24R-CC, 14–17cm, through 35R-CC, 83–85 cm (Fig. F5). The upper Oligocene ZonesP21b–P22 equivalent is indicated by an assemblage dominated by C.unicavus, Globigerina praebulloides, G. ciperoensis, Globorotaloides suteri,and Tenuitella spp., with rare S. labiacrassata, P. nana, and T. euaperturafound in Samples 182-1132C-24R-CC, 14–17 cm, through 27R-CC, 17–20 cm (478.17 mbsf). The absence of key species such as P. opima madeseparation of these zones impossible.

Farther downhole, Sample 182-1132C-28R-CC, 20–21 cm (487.9mbsf), contains frequent S. angiporoides and G. tripartita but without C.cubensis. Such an association appears to be mainly associated with ZoneP19 of the lower Oligocene (cf. Leckie et al., 1993) (Fig. F6). Togetherwith those long-ranging species listed above, both S. angiporoides and C.cubensis were found in Samples 182-1132C-29R-CC, 24–26 cm (497.64mbsf), and 30R-CC, 17–19 cm (507.27 mbsf), indicating Zones P18–P19.All this suggests that the mid-Oligocene Zones P20–P21a are missingand the existence of a hiatus of at least 1 m.y. between 28.5 and 30.3Ma on the timescale of Berggren et al. (1995). The absence of suchwarm-water species as T. ampliapertura and G. angulisuturalis that char-acterize Zones P18–P19 cannot be a result of a cooler water regime be-cause they are present farther east in the Gambier Basin where warm-water influence was much weaker (Li et al., 2000).

No specimens could be freely disaggregated from the sandy lime-stone in the lower part of Hole 1132C. In most thin sections of Samples182-1132C-31R-1, 11 cm, through 35R-1, 80 cm, there are typicalEocene species G. index, A. collactea, and A. primitiva, as well as manysmall globigerinid forms, indicating Zones P14–lower P15 or older inthe middle Eocene. Many specimens referable to Planorotalites cf., P.australiformis, and Truncorotaloides cf. T. topilensis were found from thebase of the limestone in Samples 182-1132C-34R-2, 27 cm, to 35R-1, 80cm, implying Zone lower P12 and older. These results point to the pos-sibility that the entire upper Eocene (Zones upper P15–P17) is missingfrom Hole 1132C, and the upper middle Eocene is incomplete, as theZone P12 assemblage similar to those in other holes has not been posi-tively identified (Fig. F5).

Hole 1134A

The Eocene–Oligocene planktonic foraminiferal succession in Hole1134A is similar to that recorded in Holes 1126B and 1126D (see “Holes1126B and 1126D,” p. 5) in both species composition and their strati-graphic distribution (Fig. F6). The Oligocene assemblage was foundfrom 238.64 to 304.51 mbsf in Samples 182-1134A-27X-CC, 34–37 cm,through 34X-CC, 31–34 cm. Sample 182-1163C-27X-CC, 34–37 cm,consists of Globigerina ciperoensis, G. angulisuturalis, G. praedehiscens, andother long-ranging species but not P. opima, suggesting Zone P22. Thepresence of P. opima in Sample 182-1134A-29X-CC, 18–21 cm (253.08mbsf), above the LO of C. cubensis, denotes Subzone P21b. The relation-ship between the upper and lower Oligocene sediments appears to beunconformable, as Sample 182-1134A-30X-CC, 22–25 cm, at 262.72

PP

PR

C

RP

late

Olig

ocen

em

iddl

eE

ocen

ee. Mio

.

Aca

rinin

a bu

llbro

oki

Pla

noro

talit

es s

pp.

R

Glo

boro

talo

des

sute

ri

Sub

botin

a an

gipo

roid

es

Chi

logu

embe

lina

cube

nsis

Pse

udoh

astig

erin

a m

icra

Ten

uite

lla s

pp.

Sub

botin

a lin

aper

ta

Glo

bige

rinat

heka

inde

x

Tur

boro

talia

incr

ebes

cens

Tur

boro

talia

pse

udoa

mpl

iape

rtur

a

Tur

boro

talia

eua

pert

ura

Glo

botu

rbor

otal

ita la

biac

rass

ata

Glo

bige

rinoi

des

prim

ordi

us

Glo

boqu

adrin

a tr

ipar

tita

+ G

. sel

lii

Par

aglo

boro

talia

kug

leri

s.l.

Pra

eten

uite

lla in

solit

a

Glo

bige

rina

bullo

ides

s.l.

Aca

rinin

a ac

ulea

ta

Aca

rinin

a co

llact

ea

Aca

rinin

a pr

imiti

va

Han

tken

ina

prim

itiva

Par

aglo

boro

talia

opi

ma

Glo

bige

rinat

heka

lute

rbac

heri

Cat

apsy

drax

uni

cavu

s

R P C CP

Glo

bige

rina

angu

lisut

ural

is

Glo

bige

rina

cipe

roen

sis

Glo

boqu

adrin

a pr

aede

hisc

ens

Tur

boro

talia

cer

roaz

ulen

sis

Glo

boqu

adrin

a de

hisc

ens

P

Par

aglo

boro

talia

nan

a

R

Aca

rinin

a de

nsa

Glo

bige

rinita

spp

.

Cas

sige

rinel

la w

inni

ana

Cat

apsy

drax

dis

sim

ilis

Gue

mbe

litria

tris

eria

ta

Par

aglo

boro

talia

pse

udom

ayer

i

Pra

eten

uite

lla p

raeg

emm

a

Ten

uite

llina

ta s

pp.

RRRPRR

P

CRCRC

C

CC

CC

C

RRR

?

PR

P

R

RPPRP

P

PRP

C

R

RRR

Tru

ncor

otal

oide

s sp

p.

PP

440

460

480

500

520

540

560

580

600

? ?

P

?

C

RR

P

C

P

Tur

boro

talia

am

plia

pert

ura

P

R

P

P

C R PC C

CCR

PC

R

R

R

CC

R

early

Olig

o.

P

RR P

cf.

cf.

P14

P12-older

P19/

P18

P22/

P21b

T.D. 603.2 mbsf

?cf.

?

R

Dep

th (

mbs

f)

Hole 1132C Zone Age

Rare

Barren

23R

24R

25R

26R

27R

28R

29R

30R

31R

32R

33R

34R

35R

36R

37R

38R

39R

F5. Distribution of planktonic for-aminifers, Hole 1132C, p. 21.

P

T.D. 397.1 mbsf

260

300

340

27X

28X

29X

30X

31X

32X

33X

34X

35X

36X

37X

38X

39X

40X

41X

42X

43X

P22

P16/

P15

P21b

Aca

rinin

a bu

llbro

oki

Par

aglo

boro

talia

sem

iver

a

P

Glo

boro

talo

des

sute

ri

Sub

botin

a an

gipo

roid

es

Chi

logu

embe

lina

cube

nsis

Pse

udoh

astig

erin

a m

icra

Ten

uite

lla s

pp.

Sub

botin

a lin

aper

ta

Glo

bige

rinat

heka

inde

x

Tur

boro

talia

incr

ebes

cens

Tur

boro

talia

pse

udoa

mpl

iape

rtur

a

Tur

boro

talia

eua

pert

ura

Glo

botu

rbor

otal

ita la

biac

rass

ata

Glo

boqu

adrin

a tr

ipar

tita

Par

aglo

boro

talia

kug

leri

s.l.

Pra

eten

uite

lla in

solit

a

Glo

bige

rina

bullo

ides

s.l.

Aca

rinin

a ac

ulea

ta

Aca

rinin

a co

llact

ea

Aca

rinin

a pr

imiti

va

Han

tken

ina

prim

itiva

Par

aglo

boro

talia

opi

ma

Glo

bige

rinat

heka

lute

rbac

heri

Cat

apsy

drax

uni

cavu

s

P

C

P

Glo

bige

rina

angu

lisut

ural

is

Glo

bige

rina

cipe

roen

sis

Glo

boqu

adrin

a pr

aede

hisc

ens

Tur

boro

talia

cer

roaz

ulen

sis

Glo

boqu

adrin

a de

hisc

ens

R

Par

aglo

boro

talia

nan

a

P

Aca

rinin

a de

nsa

26X

R

P

R

R

R

R

RR

P

PR

C

C

C

RC

C

CR

P

P

C

R

CR

P

P

P

R

R

R

R

R

C

C

C

R

CR

R

RR

P

P

P

P

P

P

C

CR

P

P

C

RP

P

PP

P

R

RR

P

P

R

R

C

C

C

C

CP

P

P

R

P

R

P

P

P

Rare

PP

R

RP

PR

R

P12

Cas

sige

rinel

la w

inni

ana

Cat

apsy

drax

dis

sim

ilis

P

P

P

P

R

P

P

P

RP

Glo

bige

rinita

spp

.

R

R P cf.

R

Gue

mbe

litria

tris

eria

ta

P

Par

aglo

boro

talia

pse

udom

ayer

i

Pra

eten

uite

lla p

raeg

emm

a

Ten

uite

llina

ta ju

veni

lis

R

R

P

P

P

P

P

R

P

P

P

P

P

R

R

R

R

P R P R R PRR cf.P P R

cf.

P240

280

320

360

380

R

PP

Tur

boro

talia

am

plia

pert

ura

P

P19/

P18

P

No sample

?

Hole1132A

Dep

th (

mbs

f)

Zone Age

late

Olig

o.m

iddl

eE

ocen

ee. Mio

.ea

rlyO

ligoc

ene

late

Eoc

ene

F6. Distribution of planktonic for-aminifers, Hole 1134A, p. 22.

Page 8: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 8

mbsf contains not only C. cubensis but also Turborotalia ampliapertura, aspecies present only in Zone P19 of the lower Oligocene and rangingdown to upper Eocene Zone P16. This also accords with the absence ofG. angulisuturalis and P. opima, two species characteristic of Zone P20and younger assemblages. Therefore, Zone P20 and Subzone P21a of theupper lower Oligocene are likely missing, assuming they are not con-densed into the nonrecovered Core 182-1134A-29X.

Zones P15–P16 planktonic foraminifers are present between 310.93and 361.91 mbsf in Samples 182-1134A-35X-CC, 0–2 cm, to 40X-CC,31–34 cm. Species including G. index, P. micra, C. cubensis, and S. lina-perta are accompanied, in the upper part, by T. increbescens, P. insolita,and in the lower part, by A. aculeata and A. collactea. The LO of A. collac-tea in Sample 182-1134A-39X-CC, 31–34 cm (351.64 mbsf), marks themiddle/upper Eocene boundary.

Foraminifers are rare in Sample 182-1134A-41X-CC, 20–22 cm (368.4mbsf), from the underlying sandy limestone, and they are dominatedby benthic forms. Zone P12 or older planktonic species such as A. prim-itiva and A. bullbrooki are present together with a few G. index and G.linaperta. The limestone is yellowish and poorly consolidated withabundant limonite and some kaolinite, suggesting probable weather-ing. The hiatus between the limestone and the overlying calcareousooze of Zone P15–P16 in Hole 1134A, as at Hole 1126D, could havelasted at least for 2 m.y. No samples were available from the bottom ofHole 1134A, but the siliciclastic section is believed to be similar to Hole1126D in containing no diagnostic foraminifers.

Correlation between Holes

Figure F7 summarizes the planktonic foraminiferal results for theEocene–Oligocene sections studied. The following generalizations canbe made.

1. Planktonic foraminiferal assemblages change from warm tem-perate with subtropical immigrants in the Eocene to cool tem-perate in the early Oligocene and warm temperate in the lateOligocene.

2. Biostratigraphy is better constrained in the middle–upperEocene and upper Oligocene than in the lower Oligocene wherefewer species datums were found. Stratigraphic packages are sim-ilar between sites, as are the ages of sediments.

3. The oldest planktonic foraminiferal assemblage, indicatinglower Zone P12 or older, is present at 545–555 mbsf in Hole1132C from a water depth of 218.5 m but not at sites from inter-mediate water depths. An early–middle Eocene depocenter is,therefore, inferred to have existed in what is now close to theshelf edge, although its altitudinal position could have been al-tered especially by the late Neogene basin inversion widely re-corded in south Australia.

4. Carbonate deposition became widespread (over all sites studied)in P12 equivalents (Bartonian Stage, later middle Eocene). A hi-atus of >1-m.y. duration may separate sediments of Zone P12from Zones P14/P15 equivalents, and another is inferred withinZone P15 close to the middle/late Eocene boundary.

5. The Eocene–Oligocene sections at these four sites are all trun-cated by unconformities also at the Eocene/Oligocene boundary

1130A/C(-488 m)

1132C(-218 m)

400

30R

31R

32R

33R

34R

35R

36R

37R

G. index, A. collactea

Planorotalites,Truncorotaloides

early

Olig

ocen

e

G. indexH. primitivaT. cunialensis

A. primitivaA. bullbrooki

A. collactea

1126D(-784 m)

21R

22R

23R

24R

25R

26R

27R

28R

340

360

380

400

420

Depth(mbsf)

35X

36X

37X

38X

39X

40X

3R

4R

5R

6R

7R

8R

9R

10R

320

340

380

G. indexA. primitiva

P. opima

G. plesiotumida

late

Mio

.la

teO

ligo.

mid

dle

Eoc

ene

late

Eoc

ene

P15

P13/

P12

P16/

P15

P12or

older

P12/

13

A. primitiva, A. bullbrooki

260

280

300

320

340

P. micraG. index

A. aculeataA. collacta

A. primitiva

G. triseriata

T. increbescens

?

H. primitiva

Jerboa-1(-771 m)

1134A(-701 m)

34X

35X

36X

37X

38X

39X

40X

41X

42X

43X

300

320

340

360

380

G. index

A. collactea

A. primitivaA. bullbrooki

A. aculeata

S. linaperta

early

Olig

o.

S. angiporoides

Depth(mbsf) Depth

(mbsf)

520

540

560

580

360

Depth(mbsf)

Depth(mbsf)

mid

dle

Eoc

ene

late

Eoc

ene

mid

dle

Eoc

ene

early

Olig

o.m

iddl

eE

ocen

e

Sand with thininterbedded clay

Ooze/wakestone

Limestone/packstone

Sandy limestone

Chert

First occurrence

Last occurrence

Core recovery

F7. Biostratigraphic correlation be-tween Leg 182 sites and Jerboa-1, p. 23.

Page 9: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 9

and lower/upper Oligocene boundary, each with an estimatedduration of at least 1 m.y.

6. The major unconformity separating the upper Miocene from up-per Oligocene at Site 1130 indicates a long period of erosion ornondeposition during the early–middle Miocene. The thicknessof Oligocene sediments at this site (~35 m) is also considerablyless than those from upslope (~70 m at Site 1132) or downslope(~72 m at Site 1134 and ~130 m at Site 1126). Consequently, Site1130 likely resides on a hinge zone that had been active since atleast Eocene–Oligocene time.

REGIONAL CORRELATION AND DEPOSITIONAL ENVIRONMENTS

The drilling of Leg 182 confirms the stratigraphic record from neriticsediments that carbonate deposition in southern Australia began in theEocene during a new phase of marginal subsidence stimulated by accel-erated Australia-Antarctica separation (McGowran et al., 1997a). Theunconformity-bounded “sequences” (allostratigraphic packages) ofEocene–Oligocene age can be correlated with regional transgressions us-ing foraminiferal biostratigraphy. We attempt such a correlation in Fig-ure F8.

Wilson Bluff Transgression

Although a comprehensive biostratigraphy of the Wilson Bluff Lime-stone from the Eucla Basin is still lacking, previous studies by Ludbrook(1961), McGowran and Lindsay (1969), Lowry (1970), and McGowran(1989) indicate that sands and marls at the base of the limestone con-tain Zone P12 planktonic foraminifers. Several species, A. densa, S. fron-tosa, and A. primitiva, are in common with the present material, andthey do not extend above this stratigraphic package.

Tortachilla Transgression

Within the chronological constraints of the available fossils, there isa clear-cut hiatus preceding the second package, characterized by A. ac-uleata and A. collactea in the absence of the older species in adequateplanktonic facies. Both biopackages are evident in Jerboa-1, but sam-pling was too coarse to address the hiatus itself.

Tuketja Transgression

The third Eocene allostratigraphic package is characterized by the as-sociation of G. index, H. primitiva, P. insolita, and P. micra. The Hantken-ina warm ingression is within the uppermost Zone P15, constrained bythe presence of the calcareous nannofossil Isthmolithus restuvus, defin-ing the base of NP19/NP20 at 36 Ma (Fig. F8). Two of the sections areconsistent with this; the Jerboa assemblage is certainly Tuketja but,again, the underying hiatus is probable, not proven. Neritic sections insouthern Australia seem to bury two sequence boundaries within thishiatus, for we have been unable to demonstrate a package defined byboundaries equivalent to global sequence boundaries Pr1 and Pr2, andthe same applies to the present analysis, as seen in Figure F8.

23.80

25.38

27.49

28.50

29.40

32.00

33.70

34.65

36.00

37.10

39.07

42.62

Ch4/Aq1

Ch 3

Ch 2

Ru4/Ch1

Ru 3

Ru 2

Pr4/Ru1

Pr3

Pr2

Pr1

Bart1

Lu4T

RT

R

R

1126D

25

30

35

40

45

Eoc

ene

late

mid

dle

early

late

Olig

ocen

e

NP19/20

NP25

NN1

NP24

NP23

NP22

NP21

NP18

NP17

NP16

P21

P22

a

b

P20

P19

P18

P16

P15

P14

P12

NP15b

c

P11

Base of carbonate

1132CForaminiferdatums

Foraminiferzone

Nanno-fossilzone

Sequenceboundaries

Wilson Bluff

Tortachilla

Tuketja

Tuit

Aldinga

Jan Juc

Regionaltransgression

1130AC

?

(iv)

(iii)

(ii)

(i)

Jerboa1

?

?

?

?

(infe

rred

)

1134A

N4? ??

Age

(M

a)

? ?

B P. kugleri (23.8)

B Gq. dehiscens (23.2)

T P. opima s.s. (27.1)

B G. angulisuturalis (29.4)

T Ch. cubensis (28.5)

T T. ampliapertura (30.3)

T Pseudohastigerina (32.0)

T T. cerroazulensis (33.8)T Cr. inflata (34.0)

B T. cunialensis (35.2)

B Po. semiinvoluta (38.4)

T Gb. beckmanni (40.1)

Gs. primordius acme (24.3)

B Cr. inflata (35.5)

B Gb. beckmanni (40.5)

B Gk. index (42.9)

B P. pseudokugleri (25.9)

T Gt. labiacrassata (27.1)

T D. globularis (22.8)

B P. opima (30.6)

T Gk. index (34.3)

T A. primitiva (39.0)

T M. spinulosa (38.1)

T A. bullbrooki (40.5)

B Gs. primordius (26.7)

T Acarinina (37.5)

T S. angiporoides (30.0)

T T. frontosa (39.1)

T A. collactea (37.7)

B T. pomeroli (42.4)

B M. lehneri (43.5)

B Gb. kugleri (45.8)

T M. aragonensis (43.6)

F8. Eocene–Oligocene carbonates, p. 24.

Page 10: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 10

Neritic sediments of the Tuketja Transgression include the upper Wil-son Bluff Limestone (Eucla Basin), Blanche Point Formation (St. Vin-cent Basin), Narrawaturk Marl (western Otway Basin), and Castle CoveLimestone (eastern Otway Basin). Almost all of these rock units aretruncated by unconformities at or close to the Eocene/Oligoceneboundary (McGowran et al., 1997a). The subsequent Aldinga Transgres-sion during the early Oligocene revived carbonate deposition in all ba-sins.

Tuit Transgression and Eocene/Oligocene Boundary

McGowran et al. (1992) discussed, in detail, foraminiferal species da-tums and assemblage characteristics across the Eocene/Oligoceneboundary in sections from the St. Vincent Basin. The Tuit has been sub-sequently identified to represent a sequence bounded by Pr3 and Pr4/Ru1 equivalents (McGowran and Li, 1997). However, it has not beenrecognized biostratigraphically, being characterized unsatisfactorily byP. insolita and P. micra and the absence of older (Eocene) and younger(Oligocene) species. Nor can it be seen in this study (Fig. F8), likely be-ing subsumed in the boundary hiatus.

Aldinga Transgression

The lower Oligocene assemblage in the St. Vincent and Gambier Ba-sins is characterized by Cassigerinella chipolensis, Cassigerinella winniana,C. cubensis, S. angiporoides, and T. increbescens, plus some A. aculeata thatare probably reworked. Within available constraints, this carbonate-generating flooding occurred coevally at our sites. We have not mademuch progress in breaking out the three lower Oligocene (Rupelian) se-quences as biofacies packages, but a beginning has been made (Li et al.,2000). The lower Oligocene chert-carbonate facies are not known fromthe Eucla Basin because of mid-Oligocene erosion (Lowry, 1970; Li etal., 1996) (Fig. F8). This mid-Oligocene unconformity has been ob-served in other southern Australian basins, including the Otway, Mur-ray, and Gippsland Basins (McGowran et al. 1997a) (Fig. F5). In theGambier Basin (or western Otway Basin), the mid-Oligocene section iseither a shallow-water limestone or concealed by dolomitization (Li etal., 2000). At shallower localities of the Gambier, the Compton Con-glomerate and similar facies unconformably overlie upper Eocene sedi-ments (Ludbrook, 1961; White, 1996) (Fig. F4). Although dating theexact duration of the unconformity is difficult on few available markerspecies and datums in poorly preserved neritic assemblages, the indica-tions are that the mid-Oligocene hiatus could have ~2-m.y. duration.This hiatus is represented by the Marshall Paraconformity in NewZealand, presumably related to a glacioeustatic fall and the inception ofthe Antarctic Circumpolar Current (Carter, 1985; Fulthorpe et al.,1996).

Jan Juc Transgression

There are three sequences in the upper Oligocene (Chattian), andthey are clearly manifested in regional biofacies (Li et al., 1999). We donot make that subdivision here, but the Chattian package, as a whole, isseen above the mid-Oligocene hiatus. The assemblage in its lower partis characterized by G. triseriata, G. labiacrassata, and, in favorable facies,P. opima and G. angulisuturalis. Carbonates of late Oligocene age are

Page 11: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 11

present more widely than the lower Oligocene sediments as limestonesof the Ehrick–lower Mannum Formations accumulated in a more in-land sea to the east of the Bight, the Murray Basin (Ludbrook, 1958a,1961; Lindsay, 1985; Lukasik et al., 2000). The Eucla carbonate platformadvanced again with the deposition of the Abrakurrie Limestone(Lowry, 1970; James and Bone, 1991; Li et al., 1996). Farther to the east,in Torquay, the Jan Juc Formation with its warm-water fossilassemblages typifies this regional event (McGowran et al., 1997b; Li etal., 1999) (Fig. F8).

It is noteworthy that the depocenter during the later Eocene was notin what is now the slope but the coastal area of the Bight where WilsonBluff Limestone as thick as 300 m has been reported (Lowry, 1970, fig.19). Carbonate production was probably stimulated by a warm nearlysubtropical oceanic environment, enhanced by the first flow of a proto-Leeuwin Current from the northwest (Shafik, 1990; McGowran et al.,1997b) interacting with nutrient-rich southern waters on a subsidingcontinental margin (McGowran et al., 1997a). The subsequent globalcooling in the latest Eocene and early Oligocene lowered sea level hasbeen confirmed isotopically from other deep-sea localities and conti-nental margins (Miller et al., 1991, 1998). The low sea level causedlarge-scale downcuttings and unconformities, such as those observed atLeg 182 sites. Sediment removal by underwater currents could havebeen also significant especially after the Tasman Gateway was fullyopen and the circumantarctic flow became intensified. Such erosionaland nondepositional activities appear to be stronger in areas next toSite 1130 with a present water depth of ~500 m. The late Oligocenewarming generated a warm-temperate environment in the region, sup-porting again a planktonic foraminiferal assemblage with subtropicalimmigrants.

A correlation of the Paleogene succession with global third-ordersequences and boundaries reveals some matching patterns, especially inthe four major unconformities falling close to four major sequenceboundaries: Bart1, Pr1, Pr4/Ru1, and Ru4/Ch1 of Hardenbol et al.(1998) (Fig. F8).

SUMMARY AND CONCLUSIONS

1. Paleogene sediments recovered at Sites 1126, 1130, 1132, and1134 in the Great Australian Bight contain middle Eocene to lateOligocene planktonic foraminifers correlated mainly to(sub)tropical Zones P12–P22. The biostratigraphic results con-firm previous studies that widespread neritic carbonate deposi-tion was initiated in the middle Eocene, probably responding toglobal warming and the accelerated separation between Austra-lia and Antarctica at ~43 Ma.

2. The fossil foraminiferal fauna is typically southern temperate,with some warm-water species present in middle–late Eoceneand late Oligocene time. The warm-water species were probablytransported as immigrants by a warm-water system similar to thepresent-day Leeuwin Current during warming periods.

3. Four major hiatuses were identified: (1) between Zones P12–13and lower P15 in the middle Eocene, (2) within Zone P15, (3) be-tween Zones P16 and P18 across the Eocene/Oligocene bound-ary, and (4) between Zones P19–20 and Subzone P21b in themid-Oligocene. At Site 1130, lower Oligocene ooze unconform-

Page 12: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 12

ably overlies a middle Eocene Zone P12 sandy limestone and thewhole Oligocene was condensed in a 35-m package that is onlyhalf as thick as the contemporary sediments from up- and down-slope, indicating stronger erosion and/or minimal deposition atthis upper slope locality.

4. The dated unconformities represent regional events through theneritic realm in southern Australia, and they appear to be localmanifestations of the global sequence boundaries close to 39.1,37.1–36.0, 33.7, and 28.5 Ma, respectively. The estimated dura-tion of each hiatus between 1 and 2 m.y. from the present midand upper slope appeals to further studies of neritic sections inorder to better understand the timing and amplitude of uncon-formities and their bearing on the evolutionary history of thesouthern Australian margin.

ACKNOWLEDGMENTS

This research used samples provided by the Ocean Drilling Program(ODP). ODP is sponsored by the U.S. National Science Foundation(NSF) and participating countries under management of Joint Oceano-graphic Institutions (JOI), Inc. Funding for this research was providedby the Australian Research Council and ODP Australia Secretariat. Themanuscript benefited from comments by two anonymous reviewers.The Centre for Electron Microscopy and Microanalysis of Adelaide Uni-versity provided the electronic scanning facility.

Page 13: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 13

REFERENCES

Berggren, W.A., 1992. Paleogene planktonic foraminifer magnetobiostratigraphy ofthe Southern Kerguelen Plateau (Sites 747–749). In Wise, S.W., Jr., Schlich, R., et al.,Proc. ODP, Sci. Results, 120 (Pt. 2): College Station, TX (Ocean Drilling Program),551–568.

Berggren, W.A., Kent, D.V., Swisher, C.C., III, and Aubry, M.-P., 1995. A revised Ceno-zoic geochronology and chronostratigraphy. In Berggren, W.A., Kent, D.V., Aubry,M.-P., and Hardenbol, J. (Eds.), Geochronology, Time Scales and Global StratigraphicCorrelation. Spec. Publ.—SEPM, 54:129–212.

Blow, W.H., 1979. The Cainozoic Globigerinida: Leiden (E.J. Brill).Bolli, H.M., Saunders, J.B., and Perch-Nielsen, K. (Eds.), 1985. Plankton Stratigraphy:

Cambridge (Cambridge Univ. Press).Carter, R.M., 1985. The mid-Oligocene Marshall Paraconformity, New Zealand: coin-

cidence with global eustatic sea-level fall or rise? J. Geol., 93:359–371.Carter, R.M., McCave, I.N., Richter, C., Carter, L., et al., 1999. Proc. ODP, Init. Repts.,

181 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University,College Station, TX 77845-9547, U.S.A.

Crespin, I., 1956. Fossiliferous rocks from the Nullarbor Plains. Rept.—Bur. Miner.Resour., Geol. Geophys. (Aust.), 25:27–42.

Feary, D.A., Hine, A.C., Malone, M.J., et al., 2000. Proc. ODP, Init. Repts., 182 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Sta-tion, TX 77845-9547, U.S.A.

Fulthorpe, C.S., Carter, R.M., Miller, K.G., and Wilson, J., 1996. The Marshall Para-conformity: a mid-Oligocene record of inception of the Antarctic CircumpolarCurrent and coeval glacio-eustatic lowstand. Mar. Pet. Geol., 13:61–77.

Glaessner, M.F., 1951. Three foraminiferal zones in the Tertiary of Australia. Geol.Mag., 88:273–283.

————, 1953. Time-stratigraphy and the Miocene epoch. Geol. Soc. Am. Bull.,64:647–658.

Haq, B.U., Hardenbol, J., and Vail, P.R., 1988. Mesozoic and Cenozoic chronostrati-graphy and cycles of sea-level change. In Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., and Van Wagoner, J.C. (Eds.), Sea-LevelChanges—An Integrated Approach. Spec. Publ.—SEPM, 42:72–108.

Hardenbol, J., Thierry, J., Farley, M.B., Jacquin, T.H., de Graciansky, P.-C., and Vail,P.R. (with numerous contributors), 1998. Mesozoic and Cenozoic sequence chro-nostratigraphic framework of European basins. In Graciansky, P.-C., Hardenbol, J.,Jacquin, T., and Vail, P.R. (Eds.), Mesozoic–Cenozoic Sequence Stratigraphy of EuropeanBasins. Spec. Publ.—SEPM, 60:3–13, 763–781, and chart supplements.

Huber, B.T., 1991. Paleogene and early Neogene planktonic foraminifer biostratigra-phy of Sites 738 and 744, Kerguelen Plateau (southern Indian Ocean). In Barron, J.,Larsen, B., et al., Proc. ODP, Sci. Results, 119: College Station, TX (Ocean DrillingProgram), 427–449.

James, N.P., and Bone, Y., 1991. Origin of a cool-water, Oligo-Miocene deep shelflimestone, Eucla Platform, southern Australia. Sedimentology, 38:323–341.

Jenkins, D.G., 1966. Planktonic foraminiferal zones and new taxa from the Danian tolower Miocene of New Zealand. N. Z. J. Geol. Geophys., 8:1088–1126.

————, 1971. New Zealand Cenozoic planktonic foraminifera. N. Z. Geol. Surv. Pale-ontol. Bull., 42:1–278.

————, 1985. Southern mid-latitude Paleocene to Holocene planktic foraminifera.In Bolli, H.M., Saunders, J.B., and Perch-Nielsen, K. (Eds.), Plankton Stratigraphy:Cambridge (Cambridge Univ. Press), 263–282.

————, 1993. Cenozoic southern mid- and high-latitude biostratigraphy and chro-nostratigraphy based on planktonic foraminifera. In Kennett, J.P., and Warnke,

Page 14: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 14

D.A. (Eds.), The Antarctic Paleoenvironment: A Perspective on Global Change. Antarct.Res. Ser., 60:125–144.

Jenkins, D.G., and Srinivasan, M.S., 1986. Cenozoic planktonic foraminifers from theequator to the sub-Antarctic of the southwest Pacific. In Kennett, J.P., von derBorch, C.C., et al., Init. Repts. DSDP, 90: Washington (U.S. Govt. Printing Office),795–834.

Kennett, J.P., 1977. Cenozoic evolution of Antarctic glaciation, the circum-AntarcticOcean, and their impact on global paleoceanography. J. Geophys. Res., 82:3843–3860.

Kennett, J.P., and Stott, L.D., 1990. Proteus and Proto-oceanus: ancestral Paleogeneoceans as revealed from Antarctic stable isotopic results: ODP Leg 113. In Barker,P.F., Kennett, J.P., et al., Proc. ODP, Sci. Results, 113: College Station, TX (OceanDrilling Program), 865–880.

Leckie, R.M., Farnham, C., and Schmidt, M.G., 1993. Oligocene planktonic foramini-fer biostratigraphy of Hole 803D (Ontong Java Plateau) and Hole 628A (LittleBahama Bank), and comparison with the southern high latitudes. In Berger, W.H.,Kroenke, L.V., and Mayer, L.A., Proc. ODP, Sci. Results, 130: College Station, TX(Ocean Drilling Program), 113–136.

Li, Q., Davies, P.J., and McGowran, B., 1999. Foraminiferal sequence biostratigraphyof the Oligo-Miocene Janjukian strata from Torquay, southeastern Australia. Aust.J. Earth Sci., 46:261–273.

Li, Q., James, N.P., Bone, Y., and McGowran, B., 1996. Foraminiferal biostratigraphyand depositional environments of the mid-Cenozoic Abrakurrie Limestone, EuclaBasin, southern Australia. Aust. J. Earth Sci., 43:437–450.

Li, Q., and McGowran, B., 2000. Miocene foraminifera from Lakes Entrance oil shaft,southeastern Australia. Assoc. Australas. Paleontol. Mem. Ser., 22:1–142.

Li, Q., McGowran, B., and White, M.R., 2000. Sequences and biofacies packages inthe mid-Cenozoic Gambier Limestone, South Australia: reappraisal of foraminif-eral evidence. Aust. J. Earth Sci., 47:955–970.

Li, Q., Radford, S.S., and Banner, F.T., 1992. Distribution of microperforate tenuitellidplanktonic foraminifers in Holes 747A and 749B, Kerguelen Plateau. In Wise, S.W.,Jr., Schlich, R., et al., Proc. ODP, Sci. Results, 120: College Station, TX (Ocean Drill-ing Program), 569–594.

Lindsay, J.M., 1985. Aspects of South Australian Tertiary foraminiferal biostratigra-phy, with emphasis on studies of Massilina and Subbotina. Spec. Publ.—Miner.Resour. Rev. (South Aust. Dep. Mines Energy), 5:187–231.

Lowry, D.C., 1970. Geology of the Western Australian part of the Eucla Basin. Bull.—Geol. Surv. West. Aust., 122.

Ludbrook, N.H., 1958a. The Eucla Basin in South Australia. In Glaessner, M.F., andParkin, L.W. (Eds.), The Geology of South Australia. J. Geol. Soc. Aust., 5:127–135.

————, 1958b. The stratigraphic sequence in the western portion of the EuclaBasin. J. R. Soc. West. Aust., 41:108–114.

————, 1961. Stratigraphy of the Murray Basin in South Australia. Bull.—Geol. Surv.South Aust., 36:1–96.

Lukasik, J.J., James, N.P., McGowran, B., and Bone, Y., 2000. An epeiric ramp: low-energy, cool-water carbonate facies in a Tertiary inland sea, Murray Basin, SouthAustralia. Sedimentology, 47:851–881.

McGowran, B., 1964. Foraminiferal evidence for the Paleocene age of the Kings ParkShale, (Perth Basin, Western Australia). J. Proc. R. Soc. West. Aust., 47:81–86.

————, 1965. Two Paleocene foraminiferal faunas from the Wangerrip Group, Peb-ble Point coastal section, western Victoria. Proc. R. Soc. Victoria, 79:2–74.

————, 1979. The Tertiary of Australia: foraminiferal overview. Mar. Micropaleontol.,4:235–264.

————, 1986. Cainozoic oceanic and climatic events: the Indo-Pacific foraminiferalbiostratigraphic records. Palaeogeogr., Palaeoclimatol., Palaeoecol., 55:247–265.

————, 1989. The later Eocene transgression in southern Australia. Alcheringa,13:45–68.

Page 15: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 15

————, 1990. Fifty million years ago. Am. Sci., 78:30–39.————, 1991. Maastrichitian and early Cainozoic, southern Australia: foraminiferal

biostratigraphy. In Williams, M.A.J., De Deckker, P., and Kershaw, A.P. (Eds.), TheCainozoic of the Australian Region. Spec. Publ.—Geol. Soc. Aust., 18:79–98.

————, 1992. Eocene patterns and process. Encyclopedia of Earth System Science: SanDiego (Academic Press), 2:163–176.

McGowran, B., and Li, Q., 1997. Stratigraphic excursion to Maslin and Aldinga Bays.In Third Aust. Mar. Geol. Conf. Field Guide, Dep. Geol. Geophys., Univ. Adelaide, 1–47.

McGowran, B., Li, Q., Cann, J., Padley, D., McKirdy, D.M., and Shafik, S., 1997b. Bio-geographic impact of the Leeuwin Current in southern Australia since the latemiddle Eocene. Palaeogeogr., Palaeoclimatol., Palaeoecol., 136:19–40.

McGowran, B., Li, Q., and Moss, G., 1997a. The Cenozoic neritic record in southernAustralia: the biogeohistorical framework. In James, N.P., and Clarke, J., Cool-WaterCarbonates. Spec. Publ.—SEPM, 56:185–203.

McGowran, B., and Lindsay, J.M., 1969. A middle Eocene planktonic foraminiferalassemblage from the Eucla Basin. Quat. Geol. Notes, Geol. Surv. South Aust., 30:2–10.

McGowran, B., Lindsay, J.M., and Harris, W.K., 1971. Attempted reconciliation of Ter-tiary biostratigraphic systems, Otway Basin. In Wopfner, H., and Douglas, J.G.(Eds.), The Otway Basin in Southeastern Australia. Spec. Bull. S. Aust., Geol. Surv.—Victoria, Geol. Surv., 273–281.

McGowran, B., Moss, G., and Beecroft, A., 1992. Late Eocene and early Oligocene insouthern Australia: local neritic signals of global and oceanic changes. In Prothero,D.R., and Berggren, W.A. (Eds.), Eocene–Oligocene Climatic and Biotic Evolution: Prin-ceton (Princeton Univ. Press), 178–201.

Miller, K.G., Mountain, G.S., Browning, J.V., Kominz, M., Sugarman, P.J., Christie-Blick, N., Katz, M.B., and Wright, J.D., 1998. Cenozoic global sea level, sequences,and the New Jersey transect: results from coastal plain and continental slope drill-ing. Rev. Geophys., 36:569–601.

Miller, K.G., Wright, J.D., and Fairbanks, R.G., 1991. Unlocking the Ice House: Oli-gocene–Miocene oxygen isotopes, eustasy, and margin erosion. J. Geophys. Res.,96:6829–6848.

Nocchi, M., Amici, E., and Premoli Silva, I., 1991. Planktonic foraminiferal biostratig-raphy and paleoenvironmental interpretation of Paleogene faunas from the suban-tarctic transect, Leg 114. In Ciesielski, P.F., Kristoffersen, Y., et al., Proc. ODP, Sci.Results, 114: College Station, TX (Ocean Drilling Program), 233–279.

Quilty, P.G., 1969. Upper Eocene planktonic foraminiferida from Albany, WesternAustralia. J. R. Soc. West. Aust., 52:41–58.

————, 1981. Late Eocene benthic foraminiferida, south coast, western Australia. J.R. Soc. West. Aust., 64:79–100.

Shafik, S., 1990. The Maastrichtian and early Tertiary record of the Great AustralianBight Basin and its onshore equivalents on the Australian southern margin: a nan-nofossil study. BMR J. Aust. Geol. Geophys., 11:473–497.

Shipboard Scientific Party, 2000a. Explanatory notes. In Carter, R.M., McCave, I.N.,Richter, C., Carter, L., A., et al., Proc. ODP, Init. Repts., 181 [Online]. Available fromWorld Wide Web: http://www-odp.tamu.edu/publications/181_IR/chap_02/chap_02.htm. [Cited YYYY-MM-DD]

————, 2000b. Explanatory notes. In Feary, D.A., Hine, A.C., Malone, M.J., et al.,Proc. ODP, Init. Repts., 182 [Online]. Available from World Wide Web: http://www-odp.tamu.edu/publications/182_IR/chap_03/chap_03.htm. [Cited YYYY-MM-DD]

Stott, L.D., and Kennett, J.P., 1990. Antarctic Paleogene planktonic foraminifer bio-

stratigraphy: ODP Leg 113, Sites 689 and 690. In Barker, P.F., Kennett, J.P., et al.,Proc. ODP, Sci. Results, 113: College Station, TX (Ocean Drilling Program), 549–569.

White, M.R., 1996. Subdivision of the Gambier Limestone. Miner. Resour. Rev. (SouthAust. Dep. Mines Energy), 1:35–39.

Page 16: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 16

APPENDIX

Acarinina aculeata (Jenkins).Acarinina bullbrooki (Bolli) (Pl. P1, figs. 5, 6; Pl. P3, figs. 10, 13).Acarinina collactea (Finlay) (Pl. P1, figs. 7, 8).Acarinina densa (Cushman) (Pl. P1, fig. 1).Acarinina primitiva (Finlay) (Pl. P1, figs. 2, 3; Pl. P3, figs. 14, 15).Acarinina spp. (Pl. P1, fig. 4; Pl. P4, figs. 13, 14).Cassigerinella winniana (Howe) (Pl. P2, fig. 14).Catapsydrax dissimilis Cushman and Bermudez (Pl. P2, figs. 29, 30).Catapsydrax unicavus Bolli, Loeblich, and Tappan (Pl. P1, figs. 13, 14).Chiloguembelina cubensis (Palmer) (Pl. P1, fig. 12; Pl. P3, fig. 13).Dentoglobigerina globularis (Bermudez) (Pl. P3, fig. 5).Globigerina angulisuturalis Bolli (Pl. P3, figs. 2, 3).Globigerina bulloides d’Orbigny.Globigerina ciperoensis Bolli (Pl. P3, fig. 1).Globigerina officinalis Subbotina (Pl. P3, fig. 4).Globigerina praebulloides Blow.Globigerinatheka index (Finlay) s.l. (Pl. P1, figs. 9, 10; Pl. P3, fig. 9; Pl. P4, fig. 1).Globigerinatheka luterbacheri Bolli (Pl. P1, fig. 11).Globigerinita glutinata Parker.Globigerinita naparimaensis Bronnimann (Pl. P2, fig. 12).Globigerina primordius Blow.Globoquadrina praedehiscens Blow and Banner (Pl. P3, fig. 8).Globoquadrina pseudovenezuelana Blow and Banner (Pl. P2, figs. 17, 18).Globoquadrina tripartita (Koch) (Pl. P3, fig. 7).Globoquadrina venezuelana (Hedberg) (Pl. P3, fig. 6).Globorotalodes suteri Bolli (Pl. P1, figs. 15, 16).Globorotalodes sp. (Pl. P1, fig. 17).Globoturborotalita brevis (Jenkins).Globoturborotalita labiacrassata (Jenkins) (Pl. P2, fig. 16).Guembelitria triseriata (Terquem) (Pl. P2, fig. 13).Hantkenina alabamensis Cushman (Pl. P1, fig. 18).Paragloborotalia kugleri (Bolli).Paragloborotalia nana (Bolli) (Pl. P2, fig. 21).Paragloborotalia optima (Bolli) (Pl. P2, figs. 22, 23).Paragloborotalia pseudocontinuosa (Jenkins) (Pl. P2, figs. 26–28).Paragloborotalia pseudomayeri (Bolli) (Pl. P1, fig. 24).Paragloborotalia semivera (Hornibrook) (Pl. P2, figs. 24, 25).Planorotalites cf. australiformis (Jenkins).Praetenuitella insolita (Jenkins) (Pl. P2, figs. 2, 3).Praetenuitella praegemma Li (Pl. P2, figs. 4–6).Pseudohastigerina micra (Cole) (Pl. P2, fig. 1; Pl. P3, fig. 12).Subbotina angiporoides (Hornibrook) (Pl. P1, fig. 29; Pl. P2, fig. 15).Subbotina linaperta (Finlay) (Pl. P1, fig. 28; Pl. P3, fig. 11).Subbotina minima (Jenkins) (Pl. P1, fig. 30).Tenuitella gemma (Jenkins) (Pl. P2, fig. 7).Tenuitella munda (Jenkins) (Pl. P2, fig. 10).Tenuitella pseudoedita (Subbotina) (Pl. P2, fig. 9).Tenuitellinata angustiumbilicata (Bolli) (Pl. P2, fig. 8).Tenuitellinata juveniles (Bolli) (Pl. P2, fig. 11).Turborotalia topilensis (Cushman).Turborotalia ampliapertura (Bolli) (Pl. P2, fig. 19).Turborotalia cerroazulensis (Cole) s.l. (Pl. P1, figs. 19–22).Turborotalia euapertura (Jenkins) (Pl. P2, fig. 20).Turborotalia increbescens (Bandy) (Pl. P1, figs. 25, 26).Turborotalia pseudoampliapertura (Blow and Banner) (Pl. P1, fig. 27).Turborotalia sp. (Pl. P1, fig. 23).

7 8 9 10 11

13 14 15 16 17

19 20 21 22 23

25 26 27 28 29

1 2 3 4 5

18

12

6

24

30

P1. Planktonic foraminifers, Holes 1126D and 1134A, p. 25.

7 8 9 10 11

13 14 15 16 17

19 20 21 22 23

25 26 27 28 29

1 2 3 4 5

18

12

6

24

30

P2. Planktonic foraminifers, Holes 1126D and 1134A, p. 26.

100 µm

200 µm

50 µm50 µm

c

m

b

ch

s

50 µm50 µm50 µm

7 8 9

10 11

1 2 4 5

12

6

13

14 15

P3. Planktonic foraminifers, Holes 1134A and 1132C, p. 27.

br

br

in

in

g

200 µm

7

1 2

3 45

6

200 µm

200 µm

100 µm 100 µm

50 µm200 µm

P4. Planktonic foraminifers, Holes 1132C, p. 28.

Page 17: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 17

Figure F1. A. Map showing the modern circulation around southern Australia and the location of Cenozoicbasins. B. Location of ODP Leg 182 sites and oil exploration drill hole Jerboa-1. Contours in meters.

127°E 129°128°

34°

33°S

Eyre Terrace

Jerboa-1

1131

1127

1126

1128

1129

11301132

11331134

3000

2000

200

100

500

3500

4000

4500

2500

1500

1000

West wind drift

E. A

ustra

lian

Cur

rent

Tasman

Current

1

2

3

5

4

6 7

Cenozoic basinssouthern Australia

0 50 km

ODP Leg 182

A

B

Great Australian Bight

1-Bremer

2-Eucla

3-St. Vincent

4-Murray

5-Otway

6-Bass

7-Gippsland

Subtropical Convergence

W. AustralianC

urrentLeeuw

in

C u rrent

Page 18: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. L

I ET A

L.E

OC

EN

E–OL

IGO

CE

NE P

LA

NK

TO

NIC F

OR

MIN

IFER

AL B

IOST

RA

TIG

RA

PH

Y1

8

Figure planktonic foraminifers. Thezonati ran, 1989, 1991; McGowranet al., , et al., 2000, table T3).

30

24

26

28

32

34

36

38

40

42

44

46

48

50

52

54

56

58

60

62

64

66

stralia

Age

(M

a)

ubensis

iscens (23.2)

seudokugleri (25.9) iata

ubensis (28.5)iana

oides (30.0)

iata

olensis

dex (34.3)

(39.0)

a

sa (39.3)

rolidex (42.9)

raliformis

sica micra

sicailcoxensis

(53.6)

(54.7) "pseudoiota"

domenardii (59.2)

gleri s.s.(23.8) imordius acme (24.3)

iacrassata (27.1)

brevis

raliformis (55.5)

i (40.5)

range

of range

F2. Paleogene geochronostratigraphy of Berggren et al. (1995) with P-zonation and datum levels of diagnosticon of Jenkins (1966, 1971, 1993) is also shown, together with datum levels found in southern Australia (McGow1997a). Numbers are estimated ages in million years mainly by Berggren et al. (1995) (cf. Feary, Hine, Malone

b

b

NP19/20

NP25

NN1

NP24

NP23

NP22NP21

NP18

NP17

NP16

NP15

NP14

NP13

NP12

NP11NP10

NP9

NP8NP6

NP5

NP4

NP3NP2NP1

c

a

a

Pα & PO

M1aN4 a

P. eugubina (64.9-65.0)S. triloculinoides (64.5)

Gq. dehiscens (23.2)Pg. kugeri s.s. (23.8)Gs. primordius acme (24.3)

Pg. opima (27.1)

Ch. cubensis (28.5)G. angulisuturalis (29.4) T. ampliapertura (30.3)

Pseudohastigerina (32.0)

T. cerroazulensis (33.8)C. inflata (34.0)

T. cunialensis (35.2)

Po. semiinvoluta (38.4)

Gb. beckmanni (40.1-40.5)

Gb. kugleri (45.8)

M. aragonensis (43.6)

M. aragonensis (52.3)

H. nuttalli (49.0)

P. palmerae (50.4)M. formosa (50.8)

M. lensiformis (54.0)M. velascoensis (54.7)M. subbotinae (55.9)P. pseudomenardii (55.9)A. soldadoensis (56.5)A. subsphaerica (57.1)

A. subsphaerica (59.2)P. pseudomenardii (59.2)Ig. albeari (60.0) M. angulata (61.0)Pr. uncinata (61.2)

Pr. inconstans (63.0)P. sompressa (63.0)

{

{

{

M. formosa (54.0){

Ch. cubensis

M. velascoensis

P. pseudomenardii

SP15

SP14

SP13

SP12

SP11

SP10

SP9

SP8

SP7

SP6

SP5

SP4

SP3

SP1SP2

Gq. dehiscens (23.2)

Gt. brazieri

Ch. cubensis (28.5)

S. angiporoides (30.0)

Gt. brevis

A. aculeata

Gk. index (42.9)

M. crater

P. pseudomenardii (59.2)

Gt. brevis

A. primitiva (39.0)

M. crater

M. velascoensis (55.9)

{

{

{

Pα & PO

M1aN4a

Geochonostratigraphy Nanno-plankton

Planktonic foraminifers Southern mid-latitude Southern Au

65.0

60.9

57.9

54.8

49.0

41.3

37.0

33.7

28.5

23.8

Pg. opima (30.6)

Acarinina aculeataChiloguembelina c

Chattian

Rupelian

Priabonian

Bartonian

Lutetian

Ypresian

Thanetian

Selandian

Danian

Olig

ocen

eE

ocen

eP

aleo

cene

early

late

early

late

mid

dle

early

late

C6CC7

C8

C9

C10

C11

C12

C13

C15C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C7A

P. wilcoxensis

T. euapertura

S. angiporoides

Gt. brevis

S. linaperta

T. inconspicua

Gk. index

A. primitiva

M. crater

S. triloculinoides

G. pauciloculata

Gt. brazieri

G. daubjergensis

P. wilcoxensis (54.5)

G. daubjergensis

G. pauciloculata

Globoquadrina deh

Paragloborotalia pGuembelitria triser

Chiloguembelina cCassigerinella winn

Subbotina angipor

Guembelitria triser

Cassigerinella chip

Globigerinatheka in

Acarinina primitivaAcarinina collactea

Hantkenina primitiv

Acarinina aculeata

Turborotalia fronto

Turborotalia pomeGlobigerinatheka in

Planorotalites aust

Morozovella caucaPseudohastigerinaAcarinina primitivaMorozovella caucaChiloguembelina w

Morozovella aequa

Morozovella acutaPseudohastigerina

Planorotalites pseu

Paragloborotalia kuGlobigerinoides pr

Pg. opima, Gt. lab

Globoturborotalita

Planorotalites aust

Acarinina collactea

Acarinina bullbrook

P21

P22

a

b

P20

P19

P18

P16

P15

P14

P12

P11

P10

P9

P7

P6a

b

P4

P5

P3

P1b

a

c

b

a

c

ba

P21

P22

a

b

P20

P19

P18

P16

P15

P14

P12

P11

P10

P9

P7

P6a

b

P4

P5

P3

P1b

a

c

b

a

c

ba

Top of

Bottom

Page 19: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. L

I ET A

L.E

OC

EN

E–OL

IGO

CE

NE P

LA

NK

TO

NIC F

OR

MIN

IFER

AL B

IOST

RA

TIG

RA

PH

Y1

9

Figure based on 38 samples (includ-ing six 10%, abundant (A) = >10%–30%, a

Ten

uite

lla s

pp.

Sub

botin

a lin

aper

ta

Tur

boro

talia

incr

ebes

cens

Tur

boro

talia

pse

udoa

mpl

iape

rtur

a

Tur

boro

talia

eua

pert

ura

P22

P19-P20

P18

P16/

P15

P12

early

Olig

ocen

ela

teO

ligoc

ene

late

Eoc

ene

mid

dle

Eoc

ene

Tur

boro

talia

cer

roaz

ulen

sis

Ten

uite

llina

ta s

pp.

Dep

th (

mbs

f)

200

220

240

260

280

300

320

340

360

380

400

420

440

460

?

?

Zone Age

cf.

cf.

C

P cf.

C

CPCRCRCC

PR

P

R

cf.

PA

A

cf.

R R

RRR

cf.

C

P

C

CR

C

P

?

R

P

F3. Distribution of planktonic foraminifers throughout the Eocene and Oligocene in Holes 1126A and 1126D thin sections). Foraminiferal relative abundance: present (P) = <1%, rare (R) = 1%–5%, common (C) = >5%–nd dominant (D) = >30%.

Aca

rinin

a bu

llbro

oki

Par

aglo

boro

talia

sem

iver

a

Glo

boro

talo

des

sute

ri

Sub

botin

a an

gipo

roid

es

Chi

logu

embe

lina

cube

nsis

Pse

udoh

astig

erin

a m

icra

Glo

bige

rinat

heka

inde

x

Glo

botu

rbor

otal

ita la

biac

rass

ata

Glo

bige

rinoi

des

prim

ordi

us

Glo

boqu

adrin

a tr

ipar

tita

Par

aglo

boro

talia

kug

leri

s.l.

6R

7R

8R

9R

28R

29R

30R

31R

32R

33R

10R

11R

12R

13R

14R

15R

16R

17R

18R

19R

20R

21R

22R

23R

24R

25R

26R

27R

Pra

eten

uite

lla in

solit

a

Glo

bige

rina

bullo

ides

s.l.

25X

26X

27X

28X

29X

30X31X32X

Aca

rinin

a ac

ulea

ta

Aca

rinin

a co

llact

ea

Aca

rinin

a pr

imiti

va

Han

tken

ina

prim

itiva

Par

aglo

boro

talia

opi

ma

Glo

bige

rinat

heka

lute

rbac

heri

Cat

apsy

drax

uni

cavu

s

Glo

bige

rina

angu

lisut

ural

is

Glo

bige

rina

cipe

roen

sis

Glo

boqu

adrin

a pr

aede

hisc

ens

Glo

boqu

adrin

a de

hisc

ens

Par

aglo

boro

talia

nan

a

Aca

rinin

a de

nsa

Glo

bige

rinita

spp

.

Cas

sige

rinel

la w

inni

ana

Cat

apsy

drax

dis

sim

ilis

Gue

mbe

litria

tris

eria

ta

Par

aglo

boro

talia

pse

udom

ayer

i

Pra

eten

uite

lla p

raeg

emm

a

Hole1126A

Hole1126D

P

P

PP

P

C

PR

AC

Barren

R C

R P P

R RC CPPPC

CRP

RR

CCC

PP

CCC

R

P

P

CCCP

C A

R A

C A C

C

R

C

C

P

R

R

C

C

R

C

C

CPCPCARCR

R

PP C

P

PP

C

RP

C

PP

R

PP P

R

P

PPP

C

C

CRCCRCR

P

P

P

P

R

R

R

RR

P

R

PP

R

R

P

P

PR

P

PP

R

R

R

RP

R

cf.

No sample

No sample

No sample

No sample

No sample

No sample

No sample

C

P

CR

C

PP

PP

C

C

RR

Page 20: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. L

I ET A

L.E

OC

EN

E–OL

IGO

CE

NE P

LA

NK

TO

NIC F

OR

MIN

IFER

AL B

IOST

RA

TIG

RA

PH

Y2

0

Figure e in Holes 1130A and 1130C based on 32 samples (includ-ing 16 %–5%, common (C) = >5%–10%, abundant (A) = >10%–30%, a

P R R

Orb

ulin

a su

tura

lis +

O. u

nive

rsa

Glo

boro

talia

ple

siot

umid

a

late

Olig

ocen

em

iddl

eE

ocen

e

P R R

C

CP

Neo

glob

oqua

drin

a pa

chyd

erm

aG

lobo

rota

lia s

citu

la

P

late

Mio

cene

Pla

noro

talit

es s

pp.

Sub

botin

a an

gipo

roid

esP

seud

ohas

tiger

ina

mic

ra

Ten

uite

lla s

pp.

S

ubbo

tina

linap

erta

Tur

boro

talia

incr

ebes

cens

Tur

boro

talia

ven

ezue

lana

Tur

boro

talia

eua

pert

ura

Pra

eten

uite

lla in

solit

a

Tur

boro

talia

cer

roaz

ulen

sis

Par

aglo

boro

talia

sem

iver

a

Pra

eten

uite

lla p

raeg

emm

a

Ten

uite

llina

ta s

pp.

Tru

ncor

otal

oide

s sp

p.T

urbo

rota

lia a

mpl

iape

rtur

a

?

P?

cf.

C

C

C

R

R

P

RR

cf.

P

P

R

cf.N17

P22

P21b

P20/P19

P12

early

Olig

o.

320

340

360

380

400

Dep

th (

mbs

f)

Zone Age

F4. Distribution of planktonic foraminifers throughout the Eocene and Oligocen thin sections). Foraminiferal relative abundance: present (P) = <1%, rare (R) = 1nd dominant (D) = >30%. T.D. = total depth. Olig. = Oligocene.

Aca

rinin

a bu

llbro

oki

Aca

rinin

a ac

ulea

ta

Aca

rinin

a co

llact

ea

R

R

P

C P

P

Glo

boro

talo

des

sute

ri

Chi

logu

embe

lina

cube

nsis

Glo

bige

rinat

heka

inde

x

Glo

botu

rbor

otal

ita la

biac

rass

ata

Glo

bige

rinoi

des

prim

ordi

us

Glo

boqu

adrin

a tr

ipar

tita

+ G

. sel

lii

Par

aglo

boro

talia

kug

leri

s.l.

Glo

bige

rina

bullo

ides

s.l.

Aca

rinin

a pr

imiti

va

Han

tken

ina

prim

itiva

Par

aglo

boro

talia

opi

ma

Glo

bige

rinat

heka

lute

rbac

heri

Cat

apsy

drax

uni

cavu

s

P

Glo

bige

rina

angu

lisut

ural

isG

lobi

gerin

a ci

pero

ensi

s

Glo

boqu

adrin

a de

hisc

ens

Glo

boqu

adrin

a gl

obul

osa

Par

aglo

boro

talia

nan

a

Glo

bige

rinita

spp

.

Cas

sige

rinel

la w

inni

ana

Cat

apsy

drax

dis

sim

ilis

Gue

mbe

litria

tris

eria

ta

2R

3R

4R

5R

6R

7R

8R

9R

10R

T.D.395.2 mbsf

34X

35X

36X

37X

38X

39X

40X

41XT.D.

380.4 mbsf

?

cf.

RRC

R

R

CR

CR

cf.

C

C

Rcf.

R

C

RR

C

C

CC P

cf.R

cf.

R

P

R

P

PR

R

Glo

bige

rina

quin

quel

oba

Glo

bige

rinel

la o

besa

P

PCR P

Hole1130A

Hole1130C

cf.

Page 21: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. L

I ET A

L.E

OC

EN

E–OL

IGO

CE

NE P

LA

NK

TO

NIC F

OR

MIN

IFER

AL B

IOST

RA

TIG

RA

PH

Y2

1

Figure in Hole 1132C based on 47 samples (including 34 thinsectio (C) = >5%–10%, abundant (A) = >10%–30%, and dom-inant

PP

PR

C

R late

Olig

ocen

em

iddl

eE

ocen

ee. Mio

.

Pla

noro

talit

es s

pp.

R

Sub

botin

a an

gipo

roid

es

Pse

udoh

astig

erin

a m

icra

Ten

uite

lla s

pp.

Sub

botin

a lin

aper

ta

Tur

boro

talia

incr

ebes

cens

Tur

boro

talia

pse

udoa

mpl

iape

rtur

a

Tur

boro

talia

eua

pert

ura

Pra

eten

uite

lla in

solit

a

Tur

boro

talia

cer

roaz

ulen

sis

Par

aglo

boro

talia

pse

udom

ayer

i

Pra

eten

uite

lla p

raeg

emm

a

Ten

uite

llina

ta s

pp.

CC

CC

C

PRP

C

R

RRR

Tru

ncor

otal

oide

s sp

p.

PP

440

460

480

500

520

540

560

580

600

?

P

Tur

boro

talia

am

plia

pert

ura

PPC C

CCR

CC

R

early

Olig

o.

cf.

P14

P12-older

P19/

P18

P22/

P21b

Dep

th (

mbs

f)

Zone Age

F5. Distribution of planktonic foraminifers throughout the Eocene and Oligocene ns). Foraminiferal relative abundance: present (P) = <1%, rare (R) = 1%–5%, common(D) = >30%. T.D. = total depth. Olig. = Oligocene.

P

Aca

rinin

a bu

llbro

oki

Glo

boro

talo

des

sute

ri

Chi

logu

embe

lina

cube

nsis

Glo

bige

rinat

heka

inde

x

Glo

botu

rbor

otal

ita la

biac

rass

ata

Glo

bige

rinoi

des

prim

ordi

us

Glo

boqu

adrin

a tr

ipar

tita

+ G

. sel

lii

Par

aglo

boro

talia

kug

leri

s.l.

Glo

bige

rina

bullo

ides

s.l.

Aca

rinin

a ac

ulea

ta

Aca

rinin

a co

llact

ea

Aca

rinin

a pr

imiti

va

Han

tken

ina

prim

itiva

Par

aglo

boro

talia

opi

ma

Glo

bige

rinat

heka

lute

rbac

heri

Cat

apsy

drax

uni

cavu

s

R P C CPG

lobi

gerin

a an

gulis

utur

alis

Glo

bige

rina

cipe

roen

sis

Glo

boqu

adrin

a pr

aede

hisc

ens

Glo

boqu

adrin

a de

hisc

ens

P

Par

aglo

boro

talia

nan

a

R

Aca

rinin

a de

nsa

Glo

bige

rinita

spp

.

Cas

sige

rinel

la w

inni

ana

Cat

apsy

drax

dis

sim

ilis

Gue

mbe

litria

tris

eria

ta

RRRPRR

P

CRCRC

C

RRR

?

PR

P

R

RPPRP

P

? ?

PC

RR

P

C

R

P

P

C R

PC

R

R

R

P

RR P

cf.

T.D. 603.2 mbsf

?cf.

?

R

Hole 1132C

Rare

Barren

23R

24R

25R

26R

27R

28R

29R

30R

31R

32R

33R

34R

35R

36R

37R

38R

39R

Page 22: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. L

I ET A

L.E

OC

EN

E–OL

IGO

CE

NE P

LA

NK

TO

NIC F

OR

MIN

IFER

AL B

IOST

RA

TIG

RA

PH

Y2

2

Figure 34A based on 24 samples (including eight thinsectio %–10%, abundant (A) = 10%–30%, and domi-nant (

260

300

340

P22

P16/

P15

P21b

Sub

botin

a an

gipo

roid

es

Pse

udoh

astig

erin

a m

icra

Ten

uite

lla s

pp.

Sub

botin

a lin

aper

ta

Tur

boro

talia

incr

ebes

cens

Tur

boro

talia

pse

udoa

mpl

iape

rtur

a

Tur

boro

talia

eua

pert

ura

Pra

eten

uite

lla in

solit

a

P

Tur

boro

talia

cer

roaz

ulen

sis

C

CR

P

P

C

RP

P

PP

P

R

RR

P

P

R

R

C

C

C

C

CP

P

P

R

P

R

P

P

P

P12

Pra

eten

uite

lla p

raeg

emm

a

Ten

uite

llina

ta ju

veni

lis

R

R

P

P

P

P

P

R

P

P R

cf.

P240

280

320

360

380

R

P

Tur

boro

talia

am

plia

pert

ura

P

P19/

P18

?Dep

th (

mbs

f)

Zone Age

late

Olig

o.m

iddl

eE

ocen

ee. Mio

.ea

rlyO

ligoc

ene

late

Eoc

ene

F6. Distribution of planktonic foraminifers throughout the Eocene and Oligocene of Hole 11ns). Foraminiferal relative abundance: present (P) = <1%, rare (R) = 1%–5%, common (C) = 5D) = >30%. T.D. = total depth. Olig. = Oligocene. Mio. = Miocene.

P

T.D. 397.1 mbsf

27X

28X

29X

30X

31X

32X

33X

34X

35X

36X

37X

38X

39X

40X

41X

42X

43X

Aca

rinin

a bu

llbro

oki

Par

aglo

boro

talia

sem

iver

a

P

Glo

boro

talo

des

sute

ri

Chi

logu

embe

lina

cube

nsis

Glo

bige

rinat

heka

inde

x

Glo

botu

rbor

otal

ita la

biac

rass

ata

Glo

boqu

adrin

a tr

ipar

tita

Par

aglo

boro

talia

kug

leri

s.l.

Glo

bige

rina

bullo

ides

s.l.

Aca

rinin

a ac

ulea

ta

Aca

rinin

a co

llact

ea

Aca

rinin

a pr

imiti

va

Han

tken

ina

prim

itiva

Par

aglo

boro

talia

opi

ma

Glo

bige

rinat

heka

lute

rbac

heri

Cat

apsy

drax

uni

cavu

s

P

C

Glo

bige

rina

angu

lisut

ural

is

Glo

bige

rina

cipe

roen

sis

Glo

boqu

adrin

a pr

aede

hisc

ens

Glo

boqu

adrin

a de

hisc

ens

R

Par

aglo

boro

talia

nan

a

P

Aca

rinin

a de

nsa

26X

R

P

R

R

R

R

RR

P

PR

C

C

C

RC

C

CR

P

P

C

R

CR

P

P

P

R

R

R

R

R

C

C

C

R

CR

R

RR

P

P

P

P

P

P

Rare

PP

R

RP

PR

R

Cas

sige

rinel

la w

inni

ana

Cat

apsy

drax

dis

sim

ilis

P

P

P

P

R

P

P

P

RP

Glo

bige

rinita

spp

.

R

R P cf.

R

Gue

mbe

litria

tris

eria

ta

P

Par

aglo

boro

talia

pse

udom

ayer

i

P

P

P

P

R

R

R

R

P R P R R PRR cf.P

P

P

No sample

Hole1132A

Page 23: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. L

I ET A

L.E

OC

EN

E–OL

IGO

CE

NE P

LA

NK

TO

NIC F

OR

MIN

IFER

AL B

IOST

RA

TIG

RA

PH

Y2

3

Figure m this study and Jerboa-1 from McGowran (1991). Notethe di . = Oligocene. Mio. = Miocene.

30A/C488 m)

1132C(-218 m)

30R

31R

32R

33R

34R

35R

36R

37R

G. index, A. collactea

Planorotalites,Truncorotaloides

early

Olig

ocen

e

5X

6X

7X

8X

9X

0X

3R

4R

5R

6R

7R

8R

9R

10R

G. indexA. primitiva

P. opima

G. plesiotumida

late

Mio

.la

teO

ligo.

mid

dle

Eoc

ene

late

Eoc

ene

P

P

P

P

P

P12or

older

P12/

13

A. primitiva, A. bullbrooki

early

Olig

o.

S. angiporoides

520

540

560

580

Depth(mbsf)

mid

dle

Eoc

ene

early

Olig

o.m

iddl

eE

ocen

e

Sand with thininterbedded clay

Ooze/wakestone

Limestone/packstone

Sandy limestone

Chert

First occurrence

Last occurrence

Core recovery

F7. Biostratigraphic correlation between Leg 182 sites using foraminiferal data frofferent age of sediments at shallow sites in Holes 1130A, 1130C, and 1132C. Oligo

11(-

400

G. indexH. primitivaT. cunialensis

A. primitivaA. bullbrooki

A. collactea

1126D(-784 m)

21R

22R

23R

24R

25R

26R

27R

28R

340

360

380

400

420

Depth(mbsf)

3

3

3

3

3

4

320

340

380

15

13/12

16/15

260

280

300

320

340

P. micraG. index

A. aculeataA. collacta

A. primitiva

G. triseriata

T. increbescens

?

H. primitiva

Jerboa-1(-771 m)

1134A(-701 m)

34X

35X

36X

37X

38X

39X

40X

41X

42X

43X

300

320

340

360

380

G. index

A. collactea

A. primitivaA. bullbrooki

A. aculeata

S. linaperta

Depth(mbsf) Depth

(mbsf)

360

Depth(mbsf)

mid

dle

Eoc

ene

late

Eoc

ene

Page 24: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. L

I ET A

L.E

OC

EN

E–OL

IGO

CE

NE P

LA

NK

TO

NIC F

OR

MIN

IFER

AL B

IOST

RA

TIG

RA

PH

Y2

4

Figure sequences and their boundaries(Haq e ran et al. (1997a). The four re-gional Ru1 (iii), and R4/Ch1 (iv), eachinduc

25

30

35

40

45

1132C

Wilson Bluff

Tortachilla

Tuketja

Tuit

Aldinga

Jan Juc

Regionaltransgression

Age

(M

a)

F8. Stratigraphic positioning of the Eocene–Oligocene carbonates from the Great Australian Bight in global t al., 1988; Hardenbol et al., 1998). Regional transgressions after McGowran (1979, 1986, 1989) and McGow unconformities identified coincide, respectively, with major sequence boundaries Bart-1 (i), Pr1–Pr2 (ii), Pr4/ed by a major drop in sea level. T = top, B = bottom.

23.80

25.38

27.49

28.50

29.40

32.00

33.70

34.65

36.00

37.10

39.07

42.62

Ch4/Aq1

Ch 3

Ch 2

Ru4/Ch1

Ru 3

Ru 2

Pr4/Ru1

Pr3

Pr2

Pr1

Bart1

Lu4T

RT

R

R

1126D

Eoc

ene

late

mid

dle

early

late

Olig

ocen

e

NP19/20

NP25

NN1

NP24

NP23

NP22

NP21

NP18

NP17

NP16

P21

P22

a

b

P20

P19

P18

P16

P15

P14

P12

NP15b

c

P11

Base of carbonate

Foraminiferdatums

Foraminiferzone

Nanno-fossilzone

Sequenceboundaries

1130AC

?

(iv)

(iii)

(ii)

(i)

Jerboa1

?

?

?

?

(infe

rred

)

1134A

N4? ??

? ?

B P. kugleri (23.8)

B Gq. dehiscens (23.2)

T P. opima s.s. (27.1)

B G. angulisuturalis (29.4)

T Ch. cubensis (28.5)

T T. ampliapertura (30.3)

T Pseudohastigerina (32.0)

T T. cerroazulensis (33.8)T Cr. inflata (34.0)

B T. cunialensis (35.2)

B Po. semiinvoluta (38.4)

T Gb. beckmanni (40.1)

Gs. primordius acme (24.3)

B Cr. inflata (35.5)

B Gb. beckmanni (40.5)

B Gk. index (42.9)

B P. pseudokugleri (25.9)

T Gt. labiacrassata (27.1)

T D. globularis (22.8)

B P. opima (30.6)

T Gk. index (34.3)

T A. primitiva (39.0)

T M. spinulosa (38.1)

T A. bullbrooki (40.5)

B Gs. primordius (26.7)

T Acarinina (37.5)

T S. angiporoides (30.0)

T T. frontosa (39.1)

T A. collactea (37.7)

B T. pomeroli (42.4)

B M. lehneri (43.5)

B Gb. kugleri (45.8)

T M. aragonensis (43.6)

Page 25: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 25

Plate P1. 1. Acarinina cf. densa; Sample 182-1126D-27R-CC, 0–2 cm. 2, 3. Acarinina primitiva; Sample 182-1126D-26R-CC, 23–25 cm. 4. Acarinina sp.; Sample 182-1126D-26R-CC, 23–25 cm. 5, 6. Acarinina bull-brooki; Sample 182-1126D-26R-CC, 23–25 cm. 7–8. Acarinina collactea; Sample 182-1126D-24R-CC, 30–33cm. 9, 10. Globigerinatheka index; (9) Sample 182-1134A-37X–CC, 32–35 cm; (10) Sample 182-1134A-35X-CC, 0–2 cm. 11. Globigerinatheka luterbacheri; Sample 182-1126D-21R-CC, 18–19 cm. 12. Chiloguembelinacubensis; Sample 182-1134A-39X-CC, 31–34 cm. 13, 14. Catapsydrax unicavus; (13) Sample 182-1126D-27R-CC, 0–2 cm; (14) Sample 182-1126D-26R-CC, 23–25 cm. 15, 16. Globorotaloides suteri; (15) Sample 182-1134A-35X-CC, 0–2 cm; (16) Sample 182-1134A-36X-CC, 29–32 cm. 17. Globorotaloides sp.; Sample 182-1126D-22R-CC, 15–17 cm. 18. Hantkenina alabamensis; Sample 182-1126D-21R-CC, 18–19 cm. 19–22. Tur-borotalia cerroazulensis s.l.; (19, 20) Sample 182-1126D-24R-CC, 30–33 cm; (21, 22) Sample 182-1134A-39X-CC, 31–34 cm. 23. Turborotalia sp.; Sample 182-1134A-35X-CC, 0–2 cm. 24. Paragloborotalia pseudomayeri;Sample 182-1134A-37X-CC, 32–35 cm. 25, 26. Turborotalia increbescens; Sample 182-1126D-22R-CC, 15–17cm. 27. Turborotalia pseudoampliapertura; Sample 182-1126D-24R-CC, 30–33 cm. 28. Subbotina linaperta;Sample 182-1126D-21R-CC, 18–19 cm. 29. Subbotina angiporoides; Sample 182-1126D-21R-CC, 18–19 cm.30. Subbotina minima; Sample 182-1134A-36X-CC, 29–32 cm.

7 8 9 10 11

13 14 15 16 17

19 20 21 22 23

25 26 27 28 29

1 2 3 4 5

18

12

6

24

30

Page 26: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 26

Plate P2. 1. Pseudohastigerina micra; Sample 182-1126D-24R-CC, 30–33 cm. 2, 3. Praetenuitella insolita; (2)Sample 182-1126D-21R-CC, 18–19 cm; (3) Sample 182-1134A-36X-CC, 29–32 cm. 4–6. Paretenuitella prae-gemma; (4) Sample 182-1126D-21R-CC, 18–19 cm; (5, 6) Sample 182-1134A-35X-CC, 0–2 cm. 7. Tenuitellagemma; Sample 182-1134A-32X-CC, 16–19 cm. 8. Tenuitellinata angustiumbilicata; Sample 182-1134A-32X-CC, 16–19 cm. 9. Tenuitella cf. pseudoedita; Sample 182-1134A-30X-CC, 22–25 cm. 10. Tenuitella munda–Tenuitellinata juvenilis transition; Sample 182-1134A-29X-CC, 18–21 cm. 11. Tenuitellinata juvenilis; Sample182-1134A-29X-CC, 18–21 cm. 12. Globigerinita naparimaensis; Sample 182-1134A-27X-CC, 34–37 cm. 13.Guembelitria triseriata; Sample 182-1134A-29X-CC, 18–21 cm. 14. Cassigerinella winniana; Sample 182-1134A-30X-CC, 22–25 cm. 15. Subbotina angiporoides; Sample 182-1134A-32X-CC, 16–19 cm. 16. Globotur-borotalita labiacrassata; Sample 182-1134A-30X-CC, 22–25 cm. 17, 18. Globoquadrina pseudovenezuelana;(17) Sample 182-1134A-32X-CC, 16–19 cm. (18) Sample 182-1134A-30X-CC, 22–25 cm. 19. Turborotaliaampliapertura; Sample 182-1134A-30X-CC, 22–25 cm. 20. Turborotalia euapertura; Sample 182-1134A-27X-CC, 34–37 cm. 21. Paragloborotalia nana; Sample 182-1134A-30X-CC, 22–25 cm. 22, 23. Paragloborotaliaopima; Sample 182-1134A-29X-CC, 18–21 cm. 24, 25. Paragloborotalia semivera; (24) Sample 182-1134A-29X-CC, 18–21 cm; (25) Sample 182-1134A-27X-CC, 34–37 cm. 26–28. Paragloborotalia pseudocontinuosa;(26) Sample 182-1134A-30X-CC, 22–25 cm; (27, 28) Sample 182-1134A-27X-CC, 34–37 cm. 29, 30. Cata-psydrax dissimilis; (29) Sample 182-1134A-27X-CC, 34–37 cm; (30) Sample 182-1134A-29X-CC, 18–21 cm.

7 8 9 10 11

13 14 15 16 17

19 20 21 22 23

25 26 27 28 29

1 2 3 4 5

18

12

6

24

30

Page 27: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 27

Plate P3. 1. Globigerina ciperoensis; Sample 182-1134A-29X-CC, 18–21 cm. 2, 3. Globigerina angulisuturalis;Sample 182-1134A-27X-CC, 34–37 cm. 4. Globigerina officinalis; Sample 182-1134A-27X-CC, 34–37 cm. 5.Dentoglobigerina globularis; Sample 182-1134A-27X-CC, 34–37 cm. 6. Globoquadrina venezuelana; Sample182-1134A-27X-CC, 34–37 cm. 7. Globoquadrina tripartita; Sample 182-1134A-27X-CC, 34–37 cm. 8. Globo-quadrina praedehiscens; Sample 182-1134A-27X-CC, 34–37 cm. 9. Planktonic assemblage dominated by Glo-bigerinatheka index; Sample 182-1132C-31R-1, 144 cm. 10. Acarinina bullbrooki; Sample 182-1132C-31R-1,82 cm. 11. Subbotina linaperta; Sample 182-1132C-43R-2, 27 cm. 12. Pseudohastigerina micra (m) and a cibi-cidid form (c); Sample 182-1132C-43R-2, 27 cm. 13. Acarinina bullbrooki (b), Chiloguembelina cubensis (ch),and a subbotinid form (s); Sample 182-1132C-31R-1, 11 cm. 14. Acarinina primitiva; Sample 182-1132C-31R-1, 11 cm. 15. Acarinina primitiva; Sample 182-1132C-31R-1, 66 cm.

100 µm

200 µm

50 µm50 µm

c

m

b

ch

s

50 µm50 µm50 µm

7 8 9

10 11

1 2 4 5

12

6

13

14 15

3

Page 28: 4. EOCENE-OLIGOCENE PLANKTONIC FORAMINIFERAL ...

Q. LI ET AL.EOCENE–OLIGOCENE PLANKTONIC FORMINIFERAL BIOSTRATIGRAPHY 28

Plate P4. 1. Globigerinatheka index (in), small globgierinids (g), and bryozoans (br); Sample 182-1132C-31R-1, 44 cm. 2. A benthic nonionid form; Sample 182-1132C-35R-1, 80 cm. 3. Acarinina sp.; Sample 182-1132C-31R-1, 82 cm. 4. Acarinina sp.; Sample 182-1132C-31R-1, 82 cm. 5. A large benthic Victoriella?; Sam-ple 182-1132C-32R-2, 78 cm. 6. Another large benthic Victoriella?; Sample 182-1132C-32R-2, 78 cm. 7. Alarge benthic Maslinella adelaidensis; Sample 182-1132C-43R-2, 27 cm.

br

br

in

in

g

200 µm

7

1 2

3 45

6

200 µm

200 µm

100 µm 100 µm

50 µm200 µm


Recommended