+ All Categories
Home > Documents > 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

5. D R : M G D N R M SCREECH T 2 - Texas A&M University

Date post: 16-Oct-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
36
Tucholke, B.E., Sibuet, J.-C., Klaus, A., et al., 2004 Proceedings of the Ocean Drilling Program, Initial Reports Volume 210 5. DATA REPORT: MARINE GEOPHYSICAL DATA ON THE NEWFOUNDLAND NONVOLCANIC RIFTED MARGIN AROUND SCREECH T RANSECT 2 1 Donna J. Shillington, 2 W. Steven Holbrook, 3 Brian E. Tucholke, 4 John R. Hopper, 5 Keith E. Louden, 6 Hans Christian Larsen, 7 Harm J.A. Van Avendonk, 8 Sharon Deemer, 9 and Jeremy Hall 9 ABSTRACT Marine geophysical data collected from the eastern Grand Banks across the Newfoundland Basin during the summer of 2000 comprise a grid of seismic, magnetic, gravity, and multibeam bathymetric data around Sites 1276 and 1277. Multichannel seismic reflection profiles image the sedimentary and crustal structure of the Newfoundland non- volcanic rifted margin. This report presents prestack time-migrated seis- mic reflection profiles together with the coincident magnetic and grav- ity data collected during the site survey. INTRODUCTION In July–August 2000, >3000 km of multichannel seismic (MCS) re- flection, magnetic, gravity, and multibeam bathymetric data and 1000 km of wide-angle reflection/refraction data were acquired along three transects across the eastern Grand Banks and Newfoundland Basin dur- ing the Studies of Continental Rifting and Extension on the Eastern Ca- nadian Shelf (SCREECH) survey (Fig. F1). This was a two-ship program, with MCS, magnetic, gravity, and multibeam bathymetric data acquired by the Maurice Ewing (Cruise 00-07) and wide-angle reflection/refrac- tion data acquired by ocean-bottom seismometers/hydrophones (OBS/ 1 Shillington, D.J., Holbrook, W.S., Tucholke, B.E., Hopper, J.R., Louden, K.E., Larsen, H.C., Van Avendonk, H.J.A., Deemer, S., and Hall, J., 2004. Data report: Marine geophysical data on the Newfoundland nonvolcanic rifted margin around SCREECH transect 2. In Tucholke, B.E., Sibuet, J.- C., Klaus, A., et al., Proc. ODP, Init. Repts., 210, 1–36 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA. 2 Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, United Kingdom. Correspondence author: [email protected] 3 Department of Geology and Geophysics, University of Wyoming, 1000 East University Avenue, Department 3006, Laramie WY 82071, USA. 4 Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole MA 02543-1541, USA. 5 IfM-GEOMAR/Leibniz-Institute for Marine Science, Dynamics of the Crust and Mantle Research Division, GEOMAR, Wischhofstrasse 1-3, 24148 Kiel, Germany. 6 Department of Oceanography, Dalhousie University, Halifax NS B3H 4J1, Canada. 7 IODP-MI Sapporo Office, Creative Research Initiative “Sousi” (CRIS), Hokkaido University, N21W10 Kitaku, Sapporo 001-0021, Japan. 8 Institute for Geophysics, University of Texas, 4412 Spicewood Springs Road, Building 600, Austin TX 78759, USA. 9 Memorial University of Newfoundland, St. John’s NF A1B 3X5, Canada. MS 210IR-105
Transcript
Page 1: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

Tucholke, B.E., Sibuet, J.-C., Klaus, A., et al., 2004Proceedings of the Ocean Drilling Program, Initial Reports Volume 210

5. DATA REPORT: MARINE GEOPHYSICAL DATA ON THE NEWFOUNDLAND NONVOLCANIC RIFTED MARGIN AROUND SCREECH TRANSECT 21

Donna J. Shillington,2 W. Steven Holbrook,3 Brian E. Tucholke,4 John R. Hopper,5 Keith E. Louden,6 Hans Christian Larsen,7 Harm J.A. Van Avendonk,8 Sharon Deemer,9 and Jeremy Hall9

ABSTRACT

Marine geophysical data collected from the eastern Grand Banksacross the Newfoundland Basin during the summer of 2000 comprise agrid of seismic, magnetic, gravity, and multibeam bathymetric dataaround Sites 1276 and 1277. Multichannel seismic reflection profilesimage the sedimentary and crustal structure of the Newfoundland non-volcanic rifted margin. This report presents prestack time-migrated seis-mic reflection profiles together with the coincident magnetic and grav-ity data collected during the site survey.

INTRODUCTION

In July–August 2000, >3000 km of multichannel seismic (MCS) re-flection, magnetic, gravity, and multibeam bathymetric data and 1000km of wide-angle reflection/refraction data were acquired along threetransects across the eastern Grand Banks and Newfoundland Basin dur-ing the Studies of Continental Rifting and Extension on the Eastern Ca-nadian Shelf (SCREECH) survey (Fig. F1). This was a two-ship program,with MCS, magnetic, gravity, and multibeam bathymetric data acquiredby the Maurice Ewing (Cruise 00-07) and wide-angle reflection/refrac-tion data acquired by ocean-bottom seismometers/hydrophones (OBS/

1Shillington, D.J., Holbrook, W.S., Tucholke, B.E., Hopper, J.R., Louden, K.E., Larsen, H.C., Van Avendonk, H.J.A., Deemer, S., and Hall, J., 2004. Data report: Marine geophysical data on the Newfoundland nonvolcanic rifted margin around SCREECH transect 2. In Tucholke, B.E., Sibuet, J.-C., Klaus, A., et al., Proc. ODP, Init. Repts., 210, 1–36 [CD-ROM]. Available from: Ocean Drilling Program, Texas A&M University, College Station TX 77845-9547, USA.2Southampton Oceanography Centre, European Way, Southampton SO14 3ZH, United Kingdom. Correspondence author: [email protected] of Geology and Geophysics, University of Wyoming, 1000 East University Avenue, Department 3006, Laramie WY 82071, USA.4Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole MA 02543-1541, USA.5IfM-GEOMAR/Leibniz-Institute for Marine Science, Dynamics of the Crust and Mantle Research Division, GEOMAR, Wischhofstrasse 1-3, 24148 Kiel, Germany.6Department of Oceanography, Dalhousie University, Halifax NS B3H 4J1, Canada.7IODP-MI Sapporo Office, Creative Research Initiative “Sousi” (CRIS), Hokkaido University, N21W10 Kitaku, Sapporo 001-0021, Japan.8Institute for Geophysics, University of Texas, 4412 Spicewood Springs Road, Building 600, Austin TX 78759, USA.9Memorial University of Newfoundland, St. John’s NF A1B 3X5, Canada.

MS 210IR-105

Page 2: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 2

Hs) deployed and retrieved by the Oceanus (Cruise 359-2). The northerntwo transects were collected conjugate to seismic and drilling transectson the Iberia margin (Ocean Drilling Program [ODP] Legs 103, 149, and173) based on the reconstruction of Srivastava et al. (2000). SCREECHtransect 1 is conjugate to the ODP Leg 103 transect, and SCREECH tran-sect 2 is conjugate to the ODP Leg 149/173 transect. Taken together, thegeophysical data sets collected on the Newfoundland and Iberia mar-gins constitute the most complete information available for conjugatemargins of a nonvolcanic rift.

The purpose of the SCREECH program was to (1) distinguish betweencompeting hypotheses for the origin of “transitional” crust lying be-tween unambiguous oceanic crust and continental crust on the New-foundland margin, (2) compare the crustal structure of the Newfound-land margin to the conjugate Iberia margin in order to learn moreabout the processes that extend and ultimately rupture continentalcrust, and (3) obtain site survey data that could be used to select andjustify ODP drill sites in the Newfoundland Basin. In a larger context,the SCREECH program was germane to investigating broader issues re-lated to continental rifting, such as the relative importance of pure andsimple shear during margin formation (Lister et al., 1986; McKenzie,1978; Wernicke, 1985) and the transition from late-stage rifting to earlyseafloor spreading (Cochran and Martinez, 1988; Hopper et al., 2004;Taylor et al., 1995).

Nonvolcanic rifted margins are produced by rifting that is not ac-companied by significant magmatism, which is in contrast to the volu-minous magmatism that commonly covers and masks extensionalstructures on volcanic margins (e.g., Louden and Chian, 1999). Thus,nonvolcanic margins are excellent places to image the structures associ-ated with rifting and initial seafloor spreading. The lack of magmatismon nonvolcanic margins is often attributed to very slow and cold rift-ing, where conductive heat loss may suppress melt generation (Bownand White, 1995), although alternative theories call for rapid strain lo-calization and continental rupture (Harry and Bowling, 1999) or de-pressed subcontinental geotherms (Reston and Phipps Morgan, 2004).

Seismic and drilling investigations of nonvolcanic margins, particu-larly the Iberia margin, have identified zones of serpentinized peridotitebetween thinned continental crust and “normal” oceanic crust (Beardand Hopkinson, 2000; Boillot et al., 1992; Dean et al., 2000; Pickup etal., 1996; Whitmarsh et al., 2001). Geochemical studies of samples re-covered during ODP Legs 149 and 173 suggest that this altered mantleis subcontinental in origin (Abe, 2001; Hébert et al., 2001). Exhumed,serpentinized mantle has been emplaced over a width of as much as100 km on some sections of the Iberia margin (Dean et al., 2000; Pickupet al., 1996). Additionally, bright, subhorizontal reflections have beenobserved in seismic sections from the Galicia Bank and the southernIberia Abyssal Plain margin, and they are interpreted to be mechanicalstructures (detachment surfaces) related to final thinning of continentalcrust, unroofing of subcontinental mantle, or both (Chian et al., 1999;de Charpal et al., 1978; Krawczyk and Reston, 1995; Manatschal et al.,2001; Reston et al., 1996, 2001).

The identification of exhumed subcontinental mantle on the Iberiamargin immediately raises the question of the origin and characteristicsof crust on the conjugate Newfoundland margin. Previous geophysicalstudies recognized a zone of crust of disputed affinity between oceaniccrust and continental crust on the Newfoundland margin (Keen et al.,1989; Reid, 1994; Srivastava et al., 2000; Tucholke et al., 1989). Here,

F1. Bathymetric map of the New-foundland margin, p. 9.

52°W 50° 48° 46° 44° 42°

-5000 -4000 -3000 -2000 -1000 0

Bathymetry (m)

SCREECH Experiment

Transect 3

Transect 1

Transect 2

Site 1276Site 1277GRAND

BANKS

FLEMISHCAP

Newfoundlandseamounts

NEWFOUNDLANDBASIN

BeothukKnoll

Flem

ish

Pas

s

1000

2000

3000

4000

42°

44°

46°

48°

50°N

Page 3: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 3

this is termed “transitional crust.” The presence of low-amplitude mag-netic anomalies, the unusual reflection characteristics of basement inMCS sections, and a previous lack of extensive wide-angle reflection/refraction data allowed three possible explanations for the origin of thistransitional crust: (1) slow-spreading oceanic crust (Srivastava et al.,2000; Sullivan and Keen, 1978), (2) thinned, possibly intruded conti-nental crust (Tucholke et al., 1989; Tucholke and Ludwig, 1982), and (3)exhumed, serpentinized mantle (Reid, 1994). A significant part of themotivation for collecting seismic reflection and refraction data duringthe SCREECH survey and for drilling during ODP Leg 210 was to inves-tigate the origin of the transitional crust on the Newfoundland marginand thus to better constrain the evolution of the Newfoundland–Iberiarift. Site 1276 was located within the zone of transitional crust, and Site1277 was drilled seaward of transitional crust near magnetic AnomalyM1 on crust that is interpreted to be oceanic.

In this contribution, we present prestack time-migrated seismic re-flection sections, together with the coincident magnetic and gravitydata, to place Leg 210 drilling results into a regional context. SCREECHline 2MCS is conjugate to the ODP Leg 149/173 drilling transect acrossthe Iberia Abyssal Plain on the Iberia margin (Srivastava et al., 2000).Interpretations of prestack depth migrations of the SCREECH transect 2survey will appear in a forthcoming paper.

GEOPHYSICAL DATA

During the SCREECH experiment, coincident MCS reflection, wide-angle seismic reflection/refraction, magnetic, gravity, and multibeambathymetric data were collected along three primary transects acrossthe Newfoundland margin. Each transect reached from unambiguouscontinental crust seaward past a magnetic anomaly identified by Srivas-tava et al. (2000) as M3, and thus onto presumed oceanic crust (Fig. F1).MCS data were also collected on lines parallel and perpendicular to alltransects, particularly around line 2MCS.

MCS data were acquired using the 480-channel, 6-km streamer of theMaurice Ewing. The MCS data have a sampling interval of 4 ms, a shot-spacing of 50 m, a fold of 60, a recording length of ~16 s, and a com-mon midpoint (CMP) spacing of 6.25 m. The tuned 8540-in3 air gun ar-ray of the Maurice Ewing provided the seismic source. A CMP navigationmap for SCREECH transect 2 MCS lines can be found in the “Supple-mentary Material” contents list.

Wide-angle data along transects 1, 2, and 3 were recorded on 29 OBS/Hsfrom Dalhousie University, the Geological Survey of Canada, andWoods Hole Oceanographic Institution, and they were deployed and re-covered from the Oceanus. Twenty-seven of these instruments were de-ployed along SCREECH transect 2; the locations of instruments on theseaward portion of SCREECH transect 2 are shown on the CMP trackmap (see the “Supplementary Material” contents list). The wide-angledata have a shot spacing of 200 m and a sampling interval of ~10 ms.

Magnetic data were acquired throughout the SCREECH survey usinga towed Geometrics G-886 marine magnetometer. Gravity data werealso collected along each line using a BELL BGM-3 gravimeter withgyro-stabilizing platform.

Data acquired along SCREECH line 2MCS and the attending grid-lines, hereafter called the SCREECH transect 2 survey, are the subject of

Page 4: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 4

this chapter (Figs. F1, F2). Line 2MCS begins at the edge of the easternGrand Banks and then passes southeast over Flemish Pass, BeothukKnoll, and transitional crust in the Newfoundland Basin. It ends ~60km seaward of magnetic Anomaly M0, which is widely recognized asone of the oldest unambiguous seafloor-spreading anomalies in the ba-sin (Tucholke et al., 1989). Line 2MCS crosses both Sites 1276 and 1277.

DATA PROCESSING AND DESCRIPTION

Seismic Reflection Data

Figure F3 shows a prestack time migration of the seaward portion ofline 2MCS, and Figure F4 shows the rest of the lines in the SCREECHtransect 2 survey. Prior to migration and stacking, processing consistedonly of muting bad traces and applying a minimum-phase bandpass fil-ter that limited the frequency content to 10–100 Hz. For all lines exceptlines 104 and 305, smoothed interval-velocity sections were generatedfrom stacking velocities picked on semblance plots and were used to ap-ply Kirchhoff migrations to prestack data. Kirchhoff migration of CMPgathers yielded migrated gathers, which were then stacked to producethe final prestack time-migrated section. Lines 104 and 305 have a dif-ferent processing flow. Line 104 is a poststack, water-velocity, fre-quency-wavenumber migration, and line 305 is an unmigrated stack.

Time migrations of the SCREECH transect 2 survey reveal severalfirst-order seismic characteristics of the crust. Three distinct crustalzones are readily identified (Fig. F3). Unambiguous continental crustextends seaward to at least CMP ~220000 on line 2MCS. At this loca-tion, a continental block capped by what may be faulted prerift sedi-ments is observed both on line 2MCS and on line 301, which crossesline 2MCS at this location (Figs. F3, F4Q). Seaward of CMP 220000, ap-parently featureless basement, capped by a sequence of very bright re-flections including the U reflection, continues seaward for ~70 km. Thisinterval constitutes the transitional crust in this part of the Newfound-land Basin. It is unclear where the top of basement lies in most of thiscrustal domain. However, toward the seaward end of this zone, somebasement topography gradually becomes apparent and then gives wayto higher-amplitude relief at CMP ~230000 (near magnetic AnomalyM3). High basement relief (>1 km) continues seaward to the end of theSCREECH transect 2 survey.

Basement in the 70-km-wide transitional zone from CMP 220000 to230000 appears nearly featureless in MCS sections (Figs. F3, F4A, F4E,F4P, F4R, F4S, F4T, F4U). The top of basement usually cannot be identi-fied, and intracrustal reflections are not observed in most of this do-main. A few hints of the seismic character of this crust can be observedon lines 209 and 303 (Fig. F4P, F4S), where some basement topographycan be identified. The apparent lack of reflectivity of the transitionalcrust might indicate that it is homogeneous, that its impedance is littledifferent from the overlying deep lithologic section, or that there is lowsignal penetration through the U reflection and other bright reflectionsin the lowermost lithologic section.

Basement topography seaward of magnetic Anomaly M3 on line2MCS forms a series of margin-parallel ridges; a contoured plot of base-ment topography (in two-way traveltime) is shown in Figure F5. Theridge topography is most apparent where lines 204a, 204b, and 206(Fig. F4J, F4K, F4M) cross line 2MCS (Fig. F3) and along lines 107 and

F2. Bathymetric map of the sea-ward part of SCREECH transect 2, p. 10.

46°W 45° 44° 43°

-5000 -4000 -3000 -2000 -1000 0

104301

305

208

206

202

106

204

10830

3

2 MCS

302 209

205

207

203

105

107

201

109

MCS gridlines around Sites 1276 and 1277

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

45°

46°N

CMP

Line 2MCS

Tw

o-w

ay tr

avel

time

(s)

Mag

netic

ano

mal

y (n

T)

222000 223000 224000 225000 226000 227000 228000 229000 230000 231000 232000 233000 234000 235000 236000 237000 238000 239000 240000 241000 242000 243000 244000 245000 246000 247000 248000 249000 250000

Line 104

Line 108

Line 206Line 208

Line 303Line 305

4

5

6

7

8

9

10

217000 218000 219000 220000 221000

Line 301

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

5 km

Line 106

Line 202

Line 204

12771276

M3 M0

NW SE

-200

-100

0

100

200

0

20

40

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

F3. Prestack time migration of SCREECH line 2MCS, p. 11.

Line 104

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

Mag

netic

ano

mal

y (n

T)

0

20

40

Fre

e-ai

r an

omal

y (m

Gal

)

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

113000114000115000116000117000118000119000120000121000122000123000124000125000126000127000128000129000130000131000132000133000134000135000136000137000138000139000140000141000

CMP

Magnetic anomaly Free-air anomaly

SW NE

5 km

U

F4. Other MCS lines, p. 12.

F5. Gridded picks of prestack time migrations, p. 33.

Contour interval: 200 ms

Two-way traveltimeto basement in the SCREECH

transect 2 survey

7000

7000

8000

45°W 44° 43°

45°

46°N

6000 7000 8000

TWT to basement (ms)

Site 1276

Site 1277

Page 5: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 5

109 (Fig. F4D, F4F); in this area, three distinct high-amplitude ridgesare observed. One of these ridges rises above the seafloor, as is seen online 205 (Fig. F4L). The reflective character of the ridges is consistentbetween lines; the uppermost basement is highly reflective, whereas thedeeper crust appears relatively transparent.

Magnetic Data

Magnetic anomalies were calculated by subtracting the InternationalGeomagnetic Reference Field (2000–2005) for epoch 2000.0 from thetotal magnetic intensity measured on the ship (Mandea et al., 2000).Total magnetic intensity readings were taken from a towed GeometricsG-886 marine magnetometer at 12-s intervals. All values where themagnetometer stopped working (and the measured total magnetic in-tensity equaled zero) were removed, and the remaining data weresmoothed using a boxcar filter with a length of 1 km. Figure F6 showsship-track magnetic data collected on margin-normal lines plotted ontop of an image of gridded magnetic data compiled by Verhoef et al.(1996). The shipboard magnetic data are also plotted in blue above eachof the seismic sections in Figures F3 and F4. Missing data in the figuresindicate long periods of time when the magnetometer was not working.

Magnetic anomalies in the transitional crust along line 2MCS displaycomparatively low amplitudes, as observed in previous magnetic pro-files collected in this region (e.g., Srivastava et al., 2000; Verhoef et al.,1996). Average magnetic-anomaly amplitudes are typically <100–150nT. The “J-anomaly,” which is located at the seaward edge of the transi-tional crust, has been identified on both the Newfoundland and Iberiamargins and was formed between Anomalies M0 and M2 (Rabinowitz etal., 1978; Russell and Whitmarsh, 2003; Tucholke and Ludwig, 1982).Although this is a high-amplitude anomaly in the southern Newfound-land Basin, its amplitude in the area of the SCREECH transect 2 surveyis similar to anomaly amplitudes in the transitional crust. The locationsof magnetic Anomalies M3 and M0 that were previously identified bySrivastava et al. (2000) are labeled on Figures F3 and F4 by arrows thatindicate the center of an idealized block of constant polarity. Theseanomalies are also labeled as dashed lines on Figure F6.

Gravity Data

Prior to calculating gravity anomalies, Eötvös corrections were ap-plied to raw gravity readings to correct for ship course and speed. Thefree-air anomaly was calculated by subtracting the theoretical gravityfrom the corrected measured gravity. Theoretical gravity was derived bythe 1980 Gravity Formula (Moritz, 1988). All measurements where thegravimeter stopped working or was not level (and the reading equaledzero) were removed, and the remaining data were smoothed using aboxcar filter with a length of 1 km. The free-air gravity data are plottedin red above each seismic section in Figures F3 and F4. Figure F7 showsship-track free-air gravity data along margin-normal lines plotted ontop of gridded Geosat free-air gravity data (e.g., Douglas and Cheney,1990). Missing data indicate long periods of time when the gravimeterwas not working.

The seaward portion of the SCREECH transect 2 survey lies in a re-gion of consistently positive free-air anomalies. In the SCREECH survey,as in prior studies (Verhoef et al., 1987), little variation in free-air anom-aly values is observed.

F6. Magnetic anomalies from the gridded data, p. 34.

Magnetic anomaliesaround the SCREECH

transect 2 survey

500 nT

46°W 45° 44° 43°

45°

46°N

Magnetic anomalies (nT)

Site 1276

Site 1277

-200 0 200-100 100

M3

M0

F7. Gridded Geosat free-air gravity data, p. 35.

Free-air gravity around the SCREECH

transect 2 survey

-80 -60 -40 -20 0 20 40 60 80

Free-air gravity (mGal)

10 mGal

46°W 45° 44° 43°

45°

46°N

Site 1276

Site 1277

Page 6: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 6

SUMMARY

MCS reflection data collected around Sites 1276 and 1277 (Fig. F8)delineate three distinct crustal zones. The first of these, in the westernportion of the SCREECH transect 2 survey, is extended continentalcrust; at its seaward edge is a probable continental block topped byfaulted, possibly prerift sediments. Seaward of the continental crust, a70-km-wide zone of nearly featureless basement, capped by the U re-flection, is observed. Site 1276 was drilled over this zone of transitionalcrust. Toward the seaward end of this zone of transitional crust, base-ment topographic relief gradually increases and gives way to a zone ofhigh-relief basement at the seaward end of the SCREECH transect 2 sur-vey. This crust contains the oldest recognized magnetic anomalies (M3,M1, and M0) generated by seafloor spreading. Basement in this domainforms a series of margin-parallel ridges that are highly reflective in theupper 0.5 s of the crust in seismic reflection records. Site 1277 wasdrilled on one of these basement ridges near Anomaly M1. In futurestudies, interpretations of the SCREECH geophysical data will be usedin conjunction with Leg 210 drilling results to constrain the evolutionof rifting and early seafloor spreading in the Newfoundland–Iberia rift.

ACKNOWLEDGMENTS

The SCREECH program was funded by U.S. National Science Founda-tion (NSF) grant OCE-9819053, the Danish Research Foundation (Dan-marks Grundforskningsfond), and the Natural Science and EngineeringCouncil of Canada. D. Shillington was also supported by NSF grantOCE-0241940 and the University of Wyoming Graduate School. B. Tu-cholke acknowledges support by the Henry Bryant Bigelow Chair inOceanography at Woods Hole Oceanographic Institution. We thank theships’ officers and crew, scientists, technicians, and students whohelped to conduct the seismic experiment during Oceanus Cruise 359-2and Maurice Ewing Cruise 00-07. We also thank J.-C. Sibuet and BobWhitmarsh for their helpful comments on the manuscript. This isWoods Hole Oceanographic Institution Contribution No. 11,103.

F8. SCREECH line 2MCS and par-allel track lines with location maps, p. 36.

Tw

o-w

ay tr

avel

time

(s)

119000 120000 121000 122000 123000 124000 125000 126000 127000 128000 129000 130000 131000

NW NE

5 km Line 105

152000 153000 154000 155000 156000 157000 158000 159000 160000 161000 162000 163000 164000 165000 166000 167000 168000 169000 170000 171000 172000

Line 106

Line 202

Line 204

Line 206Line 208 SE

Tw

o-w

ay tr

avel

time

(s)

307000 308000 309000 310000 311000 312000 313000 314000 315000 316000 317000 318000

Line 104

Line 303Line 305

Line 301NW

5 km

Line 109Line 302

Tw

o-w

ay tr

avel

time

(s)

137000138000139000140000141000142000143000144000145000146000147000148000

Line 206Line 208NW

5 km

253000254000255000256000257000258000259000260000261000262000263000

SE

Line 201Line 107

Line 204

Tw

o-w

ay tr

avel

time

(s)

222000 223000 224000 225000 226000 227000 228000 229000 230000 231000 232000 233000 234000 235000 236000 237000 238000 239000 240000 241000 242000 243000 244000 245000 246000 247000 248000 249000 250000

Line 104

Line 108

Line 206Line 208

Line 303Line 305

217000 218000 219000 220000 221000

Line 301

5 km

Line 106

Line 202Line 204

12771276

Line 2MCS

Tw

o-w

ay tr

avel

time

(s)

299000300000

SW NE

5 km

Tw

o-w

ay tr

avel

time

(s)

283000284000

NW SE

5 km

Tw

o-w

ay tr

avel

time

(s)

268000 269000

NW SE

5 km

Tw

o-w

ay tr

avel

time

(s)

290000291000292000293000

NW SE

5 km

Line 209 Line 205

Line 207 Line 203

52°W 50° 48° 46° 44° 42°

42°

44°

46°

48°

50°N

SCREECH Experiment

Transect 3

Transect 1

Transect 2

GRANDBANKS

FLEMISHCAP

Newfoundlandseamounts

4004200

-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

46°W 45° 44° 43°

45°

46°N

301

305

208

206

202

106

204

108

2MCS

302 209

205

105

107

201

109

MCS gridlines around Sites 1276 and 1277

Bathymetry (m)

Site 1276

Site 1277

303

4000

3800

4600

104

Tw

o-w

ay tr

avel

time

(s)

321000 322000 323000 324000

Line 2MCSSW NE

5 km

1276

Crossing line at Site 1276

Tw

o-w

ay tr

avel

time

(s)

285000286000287000288000289000

Line 2MCS

Line 109

Line 107SW NE

5 km

1277

Crossing line at Site 1277

Line 303 Line 206

NEWFOUNDLANDBASIN

BeothukKnoll

Flem

ish

Pas

s

Contour interval: 100 m

Contour interval: 200 m

4000

3000

2000

1000

NW

5

6

7

8

9

10

5

6

7

8

9

10

5

6

7

8

9

10

CMP CMP

CMP

CMP

4

5

6

7

8

9

10

4

5

6

7

8

9

10

CMP

5

6

7

8

9

10

5

6

7

8

9

10

5

6

7

8

9

10

CMP CMP

CMP CMP

5

6

7

8

9

10

5

6

7

8

9

10

CMP

A B

Page 7: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 7

REFERENCES

Abe, N., 2001. Petrochemistry of serpentinized peridotite from the Iberia AbyssalPlain (ODP Leg 173): its character intermediate between sub-oceanic to sub-conti-nental upper mantle. In Wilson, R.C.L., Whitmarsh, R.B., Taylor, B., andFroitzheim, N. (Eds.), Non-Volcanic Rifting of Continental Margins: Evidence from Landand Sea. Geol. Soc. Spec. Publ., 187:143–159.

Beard, J.S., and Hopkinson, L., 2000. A fossil serpentinization-related hydrothermalsystem, ODP Leg 173, Site 1068 (Iberia Abyssal Plain): some aspects of mineral andfluid chemistry. J. Geophys. Res., 105:16527–16540.

Boillot, G., Beslier, M.O., and Comas, M., 1992. Seismic image of undercrusted ser-pentinite beneath a rifted margin. Terra Nova, 4:25–33.

Bown, J.W., and White, R.S., 1995. The effect of finite extension rate on melt genera-tion at continental rifts. J. Geophys. Res., 100:18011–18030.

British Oceanographic Data Centre, 2003. GEBCO Digital Atlas—Centenary Edition(GEBCO-CE) [CD-ROM]. Available from: British Oceanographic Data Centre,Joseph Proudman Building, 6 Brownlow Street, Liverpool L3 5DA, United King-dom.

Chian, D., Louden, K.E., Minshull, T.A., and Whitmarsh, R.B., 1999. Deep structure ofthe ocean–continent transition in the southern Iberia Abyssal Plain from seismicrefraction profiles: Ocean Drilling Program (Legs 149 and 173) transect. J. Geophys.Res., 104:7443–7462.

Cochran, J.R., and Martinez, F., 1988. Evidence from the northern Red Sea on thetransition from continental to oceanic rifting. Tectonophysics, 153:25–53.

Dean, S.M., Minshull, T.A., Whitmarsh, R.B., and Louden, K.E., 2000. Deep structureof the ocean–continent transition in the southern Iberia abyssal plain from seismicrefraction profiles: the IAM-9 transect at 40°20�N. J. Geophys. Res., 105:5859–5886.

de Charpal, O., Guennoc, P., Montadert, L., and Roberts, D.G., 1978. Rifting, crustalattenuation and subsidence in the Bay of Biscay. Nature, 275:706–711.

Douglas, B.C., and Cheney, R.E., 1990. Geosat: beginning of a new era in satelliteoceanography. J. Geophys. Res., 95:2833–2836.

Harry, D.L., and Bowling, J.C., 1999. Inhibiting magmatism on nonvolcanic riftedmargins. Geology, 27:895–898.

Hébert, R., Gueddari, K., Laflèche, M.R., Beslier, M.-O., and Gardien, V., 2001. Petrol-ogy and geochemistry of exhumed peridotites and gabbros at non-volcanic mar-gins: ODP Leg 173 West Iberia ocean–continent transition zone. In Wilson, R.C.L.,Whitmarsh, R.B., Taylor, B., and Froitzheim, N. (Eds.), Non-Volcanic Rifting of Conti-nental Margins: A Comparison of Evidence from Land and Sea, Geol. Soc. Spec. Publ.,187:161–189.

Hopper, J.R., Funck, T., Tucholke, B.E., Larsen, H.C., Holbrook, W.S., Louden, K., Shil-lington, D., and Lau, K.W.H., 2004. Continental breakup and the onset of ultra-slow seafloor spreading off Flemish Cap on the Newfoundland rifted margin. Geol-ogy, 32:93–96.

Keen, C.E., Peddy, C., de Voogd, B., and Matthews, D., 1989. Conjugate margin ofCanada and Europe: results from deep seismic profiling. Geology, 17:173–176.

Krawczyk, C.M., and Reston, T.J., 1995. Detachment faulting and continental break-up: the S reflector offshore Galicia. In Banda, E., Torne, M., and Talwani, M. (Eds.),Rifted Ocean–Continent Boundaries: Dordrecht (Kluwer), 231–246.

Lister, G.S., Etheridge, M.A., and Symonds, P.A., 1986. Detachment faulting and evo-lution of passive continental margins. Geology, 14:246–250.

Louden, K.E., and Chian, D., 1999. The deep structure of non-volcanic rifted conti-nental margins. Phil. Trans. R. Soc. Lond., 357:767–804.

Manatschal, G., Froitzheim, N., Rubenach, M., and Turrin, B.D., 2001. The role ofdetachment faulting in the formation of an ocean–continent transition: insightsfrom the Iberia Abyssal Plain. In Wilson, R.C.L., Whitmarsh, R.B., Taylor, B., and

Page 8: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 8

Froitzheim, N. (Eds.), Non-Volcanic Rifting of Continental Margins: A Comparison ofEvidence from Land and Sea. Geol. Soc. Spec. Publ., 187:405–428.

Mandea, M., Macmillan, S., Bondar, T., Golovkov, V., Langlais, B., Lowes, F., Olsen,N., Quinn, J., and Sabaka, T., 2000. International geomagnetic reference field,2000. Geophys. J. Int., 141:259–262.

McKenzie, D., 1978. Some remarks on the development of sedimentary basins. EarthPlanet. Sci. Lett., 40:25–32.

Moritz, H., 1988. 1980 Gravity Formula. In Tscherning, C.C. (Ed.), The Geodesist'sHandbook. Bull. Geod., 62:356.

Pickup, S.L.B., Whitmarsh, R.B., Fowler, C.M.R., and Reston, T.J., 1996. Insight intothe nature of the ocean–continent transition off West Iberia from a deep multi-channel seismic reflection profile. Geology, 24:1079–1082.

Rabinowitz, P.D., Cande, S.C., and Hayes, D.E., 1978. Grand Banks and J-AnomalyRidge. Science, 202:71–73.

Reid, I.D., 1994. Crustal structure of a nonvolcanic rifted margin east of Newfound-land. J. Geophys. Res., 99:15161–15180.

Reston, T.J., Krawczyk, C.M., and Klaeschen, D., 1996. The S reflector west of Galicia(Spain): evidence from prestack depth migration for detachment faulting duringcontinental breakup. J. Geophys. Res., 101:8075–8091.

Reston, T.J., Pennell, J., Stubenrauch, A., Walker, I., and Perez-Gussinye, M., 2001.Detachment faulting, mantle serpentinization, and serpentinite-mud volcanismbeneath the Porcupine Basin, southwest of Ireland. Geology, 29:587–590.

Reston, T.J., and Phipps Morgan, J., 2004. Continental geotherm and the evolution ofrifted margins. Geology, 32:133–136.

Russell, S.M., and Whitmarsh, R.B., 2003. Magmatism at the West Iberia non-volcanicrifted continental margin: evidence from analyses of magnetic anomalies. Geophys.J. Int., 154:706–730.

Srivastava, S.P., Sibuet, J.-C., Cande, S., Roest, W.R., and Reid, I.R., 2000. Magneticevidence for slow seafloor spreading during the formation of the Newfoundlandand Iberian margins. Earth Planet. Sci. Lett., 182:61–76.

Sullivan, K.D., and Keen, C.E., 1978. On the nature of the crust in the vicinity of thesoutheast Newfoundland Ridge. Can. J. Earth Sci., 15:1462–1471.

Taylor, B., Goodliffe, A., Martinez, F., and Hey, R., 1995. Continental rifting and ini-tial sea-floor spreading in the Woodlark Basin. Nature, 374:534–537.

Tucholke, B.E., Austin, J.A., and Uchupi, E., 1989. Crustal structure and rift-drift evo-lution of the Newfoundland Basin. In Tankard, A.J., and Balkwell, H.R. (Eds.),Extensional Tectonics and Stratigraphy of the North Atlantic Margins. AAPG Mem.,46:247–263.

Tucholke, B.E., and Ludwig, W.J., 1982. Structure and origin of the J Anomaly Ridge,western North Atlantic Ocean. J. Geophys. Res., 87:9389–9407.

Verhoef, J., Roest, W.R., Macnab, R., Arkani-Hamed, J., and Members of the ProjectTeam, 1996. Magnetic anomalies of the Arctic and North Atlantic Oceans and adja-cent land areas. Open File 3125, Parts A and B [CD-ROM and Proj. Rep.]. Availablefrom: Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography,PO Box 1006, Dartmouth NS B2Y 4A2, Canada.

Verhoef, J., Woodside, J., and Macnab, R., 1987. Geophysical mapping over the off-shore region of eastern Canada. Eos, Trans. Am. Geophys. Union, 68:577–579.

Wernicke, B., 1985. Uniform sense normal simple shear of the continental crust. Can.J. Earth Sci., 22:108–125.

Whitmarsh, R.B., Manatschal, G., and Minshull, T.A., 2001. Evolution of magma-poor continental margins from rifting to seafloor spreading. Nature, 413:150–154.

Page 9: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 9

Figure F1. Bathymetric map of the Newfoundland margin extracted from the GEBCO Digital Atlas pub-lished by the British Oceanographic Data Centre on behalf of Intergovernmental Oceanographic Commis-sion and the International Hydrographic Organization (British Oceanographic Data Centre, 2003). Con-tour interval = 200 m. Black lines = tracks of the SCREECH survey, yellow stars = locations of Sites 1276 and1277. Coincident MCS, wide-angle seismic reflection/refraction, magnetic, gravity, and multibeam bathy-metric data were acquired on transects 1, 2, and 3. MCS, magnetic, gravity, and multibeam bathymetricdata were acquired on other lines.

52°W 50° 48° 46° 44° 42°

-5000 -4000 -3000 -2000 -1000 0

Bathymetry (m)

SCREECH Experiment

Transect 3

Transect 1

Transect 2

Site 1276Site 1277GRAND

BANKS

FLEMISHCAP

Newfoundlandseamounts

NEWFOUNDLANDBASIN

BeothukKnoll

Flem

ish

Pas

s

1000

2000

3000

4000

42°

44°

46°

48°

50°N

Page 10: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 10

Figure F2. Bathymetric map of the area around the seaward part of SCREECH transect 2 from the GEBCODigital Atlas (British Oceanographic Data Centre, 2003). Contour interval = 200 m. MCS lines are indicatedwith white lines and labeled by line number, and they are shown in Figures F3, p. 11, and F4, p. 12. Yellowstars = locations of Sites 1276 and 1277.

46°W 45° 44° 43°

-5000 -4000 -3000 -2000 -1000 0

104301

305

208

206

202

106

204

10830

3

2 MCS

302 209

205

207

203

105

107

201

109

MCS gridlines around Sites 1276 and 1277

Bathymetry (m)

Site 1276

Site 127746

004400

4200

4000

3800

3600

45°

46°N

Page 11: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SH

ILL

ING

TO

N E

T AL.

CH

AP

TE

R 5

, DA

TA

RE

PO

RT: M

AR

INE G

EO

PH

YSIC

AL D

AT

A1

1

Figure See Figure F2, p. 10, and the map at the bottom for the location. A CMP navigationmap fo “Supplementary Material” contents list. Inverted solid triangles with labels = cross-ings w malies M0 and M3 as identified by Srivastava et al. (2000). CMP = common midpoint.(This f

CMP

Line 2MCS

Tw

o-w

ay tr

avel

time

(s)

Mag

netic

ano

mal

y (n

T)

0 232000 233000 234000 235000 236000 237000 238000 239000 240000 241000 242000 243000 244000 245000 246000 247000 248000 249000 250000

Line 206ne 208

4

5

6

7

8

9

10

217000

Fre

e-ai

r an

omal

y (m

Gal

)

5 km

Line 106

Line 202

Line 204

1277

M3 M0

NW SE

-200

-100

0

100

200

0

20

40

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

F3. Prestack time migration of SCREECH line 2MCS.r SCREECH transect 2 MCS lines can be found in the

ith other MCS profiles. Solid arrows = locations of Anoigure is available in an oversized format.)

222000 223000 224000 225000 226000 227000 228000 229000 230000 23100

Line 104

Line 108

LiLine 303Line 305

218000 219000 220000 221000

Line 301

Magnetic anomalyFree-air anomaly

1276

Page 12: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SH

ILL

ING

TO

N E

T AL.

CH

AP

TE

R 5

, DA

TA

RE

PO

RT: M

AR

INE G

EO

PH

YSIC

AL D

AT

A1

2

Figure . All sections except lines 104 and 305 are prestack time migrations. Line 104is a wa is an unmigrated stack. See Figure F2, p. 10, and the map at the bottom of eachfigure tion map for SCREECH transect 2 MCS lines can be found in the “Supplemen-tary M crossings with other MCS profiles. Solid arrows = locations of Anomalies M0,M1, an locations of Sites 1276 and 1277. CMP = common midpoint. A. Line 104. (Thisfigure pages.)

Line 104

45° 44° 43°

-3000 -2000 -1000 0

104

305

208

206

202

106

204

10830

3

S

209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

-200

-100

0

100

200

Mag

netic

ano

mal

y (n

T)

0

20

40

Fre

e-ai

r an

omal

y (m

Gal

)

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

113000114000115000116000117000118000119000120000121000122000123000124000125000126000141000

CMP

SW NE

5 km

F4. Other MCS lines within the SCREECH transect 2 surveyter-velocity frequency-wavenumber migration, and line 305for the location, indicated by a thick red line. A CMP navigaaterial” contents list. Inverted solid triangles with labels =d M3 as identified by Srivastava et al. (2000), yellow stars =

is available in an oversized format.) (Continued on next 20

46°W

45°

46°N

-5000 -4000

301

2 MC

302

4000

3800

3600

127000128000129000130000131000132000133000134000135000136000137000138000139000140000

Magnetic anomaly Free-air anomaly

U

Page 13: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SH

ILL

ING

TO

N E

T AL.

CH

AP

TE

R 5

, DA

TA

RE

PO

RT: M

AR

INE G

EO

PH

YSIC

AL D

AT

A1

3

Figure

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

000 129000 130000 131000

Mag

netic

ano

mal

y (n

T)

Fre

e-ai

r an

omal

y (m

Gal

)

SE

-200

-100

0

100

200

0

20

40

F4 (continued). B. Line 105. (This figure is available in an oversized format.)

119000 120000 121000 122000 123000 124000 125000 126000 127000 128

CMP

Magnetic anomalyFree-air anomaly

NW

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

32 MCS

302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

Line 105

M3 M0

U

Page 14: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 14

Figure F4 (continued). C. Line 106.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

132000 133000 134000 135000 136000

CMP

Line 2MCS

Line 109

Mag

netic

ano

mal

y (n

T)

Line 106

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

SW NE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

20

40

Page 15: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SH

ILL

ING

TO

N E

T AL.

CH

AP

TE

R 5

, DA

TA

RE

PO

RT: M

AR

INE G

EO

PH

YSIC

AL D

AT

A1

5

Figure

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

1370001380001

Mag

netic

ano

mal

y (n

T)

Fre

e-ai

r an

omal

y (m

Gal

)

SE

-200

-100

0

100

200

20

40

M0

F4 (continued). D. Line 107. (This figure is available in an oversized format.)

13900014000014100014200014300014400014500014600014700048000

CMP

Line 204Line 206

Line 208

Line 107

Magnetic anomalyFree-air anomaly

NW

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

M3

Page 16: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 16

Figure F4 (continued). E. Line 108.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

149000150000CMP

Line 2MCS

Mag

netic

ano

mal

y (n

T)

Line 108

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

SW NE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

U

-200

-100

0

100

200

0

20

40

Page 17: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SH

ILL

ING

TO

N E

T AL.

CH

AP

TE

R 5

, DA

TA

RE

PO

RT: M

AR

INE G

EO

PH

YSIC

AL D

AT

A1

7

Figure ersized format.)

162000 163000 164000 165000 166000 167000 168000 169000 170000 171000 172000

CMP

Line 106

Line 202

ine 109

Tw

o-w

ay tr

avel

time

(s)

Fre

e-ai

r an

omal

y (m

Gal

)

Mag

netic

ano

mal

y (n

T)

5

6

7

8

9

10

NW SE

5° 44° 43°

-3000 -2000 -1000 0

104

208

206

202

106

204

10830

3

209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

-200

-100

0

100

200

0

20

40

F4 (continued). F. Line 109. (This figure is available in an ov

152000 153000 154000 155000 156000 157000 158000 159000 160000 161000

Line 204

Line 206Line 208

LMagnetic anomalyFree-air anomaly

5 km

46°W 4

45°

46°N

-5000 -4000

301

305

2 MCS302

4000

3800

3600

M3 M0M1

Page 18: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SH

ILL

ING

TO

N E

T AL.

CH

AP

TE

R 5

, DA

TA

RE

PO

RT: M

AR

INE G

EO

PH

YSIC

AL D

AT

A1

8

Figure

Tw

o-w

ay tr

avel

time

(s)

253000254000

Mag

netic

ano

mal

y (n

T)

Fre

e-ai

r an

omal

y (m

Gal

)

SE

-200

-100

0

100

200

0

20

40

F4 (continued). G. Line 201. (This figure is available in an oversized format.)

5

6

7

8

9

10

255000256000257000258000259000260000261000262000263000

CMP

Line 201Magnetic anomalyFree-air anomaly

NW

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

Page 19: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 19

Figure F4 (continued). H. Line 202.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

264000265000266000267000CMP

Line 109

Line 2MCS

Mag

netic

ano

mal

y (n

T)

Line 202

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

SW NE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

0

20

40

Page 20: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 20

Figure F4 (continued). I. Line 203.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

268000269000CMP

Mag

netic

ano

mal

y (n

T)

Line 203

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

NW SE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

0

20

40

Page 21: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 21

Figure F4 (continued). J. Line 204a.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

270000 271000 272000 273000CMP

Line 2MCS

Line 109

Mag

netic

ano

mal

y (n

T)

Line 204a

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

SW NE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

0

20

40

Page 22: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 22

Figure F4 (continued). K. Line 204b.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

279000 280000 281000 282000CMP

Line 107

Mag

netic

ano

mal

y (n

T)

Line 204b

0 Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

SW NE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

20

40

Page 23: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 23

Figure F4 (continued). L. Line 205.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

283000284000CMP

Mag

netic

ano

mal

y (n

T)

Line 205

0 Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

NW SE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

20

40

Page 24: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 24

Figure F4 (continued). M. Line 206.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

285000286000287000288000289000CMP

Line 2MCS

Line 109Line 107

Mag

netic

ano

mal

y (n

T)

Line 206

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

SW NE

5 km

1277

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

0

20

40

Page 25: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 25

Figure F4 (continued). N. Line 207.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

290000291000292000293000CMP

Mag

netic

ano

mal

y (n

T)

Line 207

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

NW SE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

0

20

40

M3

Page 26: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 26

Figure F4 (continued). O. Line 208.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

294000 295000 296000 297000CMP

Line 2MCS

Line 107Line 109

Mag

netic

ano

mal

y (n

T)

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

SW NE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2MCS

302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

0

20

40

Line 208

Page 27: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 27

Figure F4 (continued). P. Line 209.

Tw

o-w

ay tr

avel

time

(s)

299000300000CMP

Mag

netic

ano

mal

y (n

T)

Line 209

Fre

e-ai

r an

omal

y (m

Gal

)

NW SE

Magnetic anomalyFree-air anomaly

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

0

20

40

5 km

5

6

7

8

9

10

Page 28: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 28

Figure F4 (continued). Q. Line 301.

4

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

302000303000CMP

Line 2MCS

Mag

netic

ano

mal

y (n

T)

Line 301

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

SW NE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

-200

-100

0

100

200

0

20

40

Page 29: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SH

ILL

ING

TO

N E

T AL.

CH

AP

TE

R 5

, DA

TA

RE

PO

RT: M

AR

INE G

EO

PH

YSIC

AL D

AT

A2

9

Figure F4 (continued). R. Line 302. (This figure is available in an oversized format.)

4

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

3070 00 318000

04

Line 303

Mag

netic

ano

mal

y (n

T)

Fre

e-ai

r an

omal

y (m

Gal

)

SE

-20

-10

10

20

0

20

40

Line 302

00 308000 309000 310000 311000 312000 313000 314000 315000 316000 3170CMP

Line 1Line 305

Line 301

Magnetic anomalyFree-air anomaly

NW

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

0

0

0

0

0

Page 30: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 30

Figure F4 (continued). S. Line 303.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

321000 322000 323000 324000CMP

Line 2MCS

Mag

netic

ano

mal

y (n

T)

Line 303

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic anomalyFree-air anomaly

SW NE

5 km

1276

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

U

-200

-100

0

100

200

0

20

40

Page 31: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 31

Figure F4 (continued). T. Line 304.

5

6

7

8

9

10

Tw

o-w

ay tr

avel

time

(s)

324000325000CMP

Mag

netic

ano

mal

y (n

T)

Line 304

Fre

e-ai

r an

omal

y (m

Gal

)

Magnetic Free-air

NW SE

5 km

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

304

U

-200

-100

0

100

200

0

20

40

Page 32: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 32

Figure F4 (continued). U. Line 305.

46°W 45° 44° 43°

45°

46°N

-5000 -4000 -3000 -2000 -1000 0

104

301

305

208

206

202

106

204

10830

3

2 MCS302 209

205

207

203

105

107

201

109

Bathymetry (m)

Site 1276

Site 1277

460044

00

4200

4000

3800

3600

Tw

o-w

ay tr

avel

time

(s)

326000327000328000329000330000331000CMP

Line 2MCS

Line 302

-200

-100

0

100

200

Mag

netic

ano

mal

y (n

T)

Line 305

0

20

40

Fre

e-ai

r an

omal

y (m

Gal

)

SW NE

Magnetic anomalyFree-air anomaly

5 km

U

5

6

7

8

9

10

Page 33: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 33

Figure F5. Contoured two-way traveltime (TWT) to basement from gridded picks of prestack time migra-tions shown in Figures F3, p. 11, and F4, p. 12. The map covers the same area as Figure F2, p. 10. Note thenorth-northeast/south-southwest–oriented margin-parallel ridges in the seaward portion of the SCREECHtransect 2 survey. Yellow stars = locations of Sites 1276 and 1277. Contour interval = 200 ms.

Contour interval: 200 ms

Two-way traveltimeto basement in the SCREECH

transect 2 survey

7000

7000

8000

45°W 44° 43°

45°

46°N

6000 7000 8000

TWT to basement (ms)

Site 1276

Site 1277

Page 34: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 34

Figure F6. Color map of magnetic anomalies from the gridded data compiled by Verhoef et al. (1996). Themap covers the same area as Figure F2, p. 10. The SCREECH survey lines in this area are indicated in white,with magnetic anomalies plotted along the margin-normal tracks. Positive anomalies are shown in black.Yellow stars = locations of Sites 1276 and 1277. Dashed lines = locations of Anomalies M0 and M3, as iden-tified by Srivastava et al. (2000).

Magnetic anomaliesaround the SCREECH

transect 2 survey

500 nT

46°W 45° 44° 43°

45°

46°N

Magnetic anomalies (nT)

Site 1276

Site 1277

-200 0 200-100 100

M3

M0

Page 35: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SHILLINGTON ET AL.CHAPTER 5, DATA REPORT: MARINE GEOPHYSICAL DATA 35

Figure F7. Color map of gridded Geosat free-air gravity data (Douglas and Cheney, 1990). The map coversthe same area as Figure F2, p. 10. The SCREECH survey lines in this area are indicated in white, with gravitydata plotted along the margin-normal tracks. Values above 20 mGal are shown in black. Yellow stars = lo-cations of Sites 1276 and 1277.

Free-air gravity around the SCREECH

transect 2 survey

-80 -60 -40 -20 0 20 40 60 80

Free-air gravity (mGal)

10 mGal

46°W 45° 44° 43°

45°

46°N

Site 1276

Site 1277

Page 36: 5. D R : M G D N R M SCREECH T 2 - Texas A&M University

SH

ILL

ING

TO

N E

T AL.

CH

AP

TE

R 5

, DA

TA

RE

PO

RT: M

AR

INE G

EO

PH

YSIC

AL D

AT

A3

6

Figure location maps. Bathymetricmaps s = locations of Sites 1276 and1277. CREECH transect 2 MCS gridaroun annel seismic (MCS) dip-linereflect nd 1277. The profiles are ar-ranged indicated in the lower right-hand ese strike profiles that crossline 2M y common midpoint (CMP)numb ly, a description of data pro-cessin Description,” p. 4, and Figs.F3, p.

00

SE

Tw

o-w

ay tr

avel

time

(s)

30700

N

09

25300000

SE

Line 201

Tw

o-w

ay tr

avel

time

(s)

000217000 2180

5 kme 2MCS

52°W

42°

44°

46°

48°

50°N

Tra

GRANDBANKS

NW4

5

6

7

8

9

10

4

5

6

7

8

9

10

A

F8. A. Studies of Continental Rifting and Extension on the Eastern Canadian Shelf (SCREECH) experimenthowing the locations of multichannel seismic (MCS) reflection profiles acquired during SCREECH. White starsThe map at the far left shows the entire SCREECH experiment, and the map at right shows a close-up of the Sd Leg 210 drill sites. B. SCREECH line 2MCS and parallel MCS lines showing prestack time-migrated, multichion profiles from the seaward portion of the SCREECH transect 2 survey. Line 2MCS crosses both Sites 1276 a according to their location within the MCS grid, shown on the bathymetric maps at the left. Line number is

corner of each profile. Inverted solid triangles = intersections with margin-parallel MCS strike lines. Two of thCS at Sites 1276 and 1277 are shown at the lower left and lower right, respectively. All profiles are labeled b

er, and a map with CMP navigation is available (see the “Supplementary Material” contents list). Additionalg and plots of prestack time migrations of all sections from this grid are available (see “Data Processing and 11, and F4, p. 12). (This figure is available in an oversized format.)

Tw

o-w

ay tr

avel

time

(s)

119000 120000 121000 122000 123000 124000 125000 126000 127000 128000 129000 130000 131000

NW NE

5 km Line 105

152000 153000 154000 155000 156000 157000 158000 159000 160000 161000 162000 163000 164000 165000 166000 167000 168000 169000 170000 171000 1720

Line 106

Line 202

Line 204

Line 206Line 208

0 308000 309000 310000 311000 312000 313000 314000 315000 316000 317000 318000

Line 104

Line 303Line 305

Line 301W

5 km

Line 1Line 302

Tw

o-w

ay tr

avel

time

(s)

137000138000139000140000141000142000143000144000145000146000147000148000

Line 206Line 208NW

5 km

2540255000256000257000258000259000260000261000262000263000

Line 107

Line 204

222000 223000 224000 225000 226000 227000 228000 229000 230000 231000 232000 233000 234000 235000 236000 237000 238000 239000 240000 241000 242000 243000 244000 245000 246000 247000 248000 249000 250

Line 104

Line 108

Line 206Line 208

Line 303Line 305

00 219000 220000 221000

Line 301

Line 106

Line 202Line 204

12771276

Lin

Tw

o-w

ay tr

avel

time

(s)

299000300000

SW NE

5 km

Tw

o-w

ay tr

avel

time

(s)

283000284000

NW SE

5 km

Tw

o-w

ay tr

avel

time

(s)

268000 269000

NW SE

5 km

Tw

o-w

ay tr

avel

time

(s)

290000291000292000293000

NW SE

5 km

Line 209 Line 205

Line 207 Line 203

50° 48° 46° 44° 42°

SCREECH Experiment

nsect 3

Transect 1

Transect 2

FLEMISHCAP

Newfoundlandseamounts

4004200

-8000 -7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000

46°W 45° 44° 43°

45°

46°N

301

305

208

206

202

106

204

108

2MCS

302 209

205

105

107

201

109

MCS gridlines around Sites 1276 and 1277

Bathymetry (m)

Site 1276

Site 1277

303

4000

3800

4600

104

Tw

o-w

ay tr

avel

time

(s)

321000 322000 323000 324000

Line 2MCSSW NE

5 km

1276

Crossing line at Site 1276

Tw

o-w

ay tr

avel

time

(s)

285000286000287000288000289000

Line 2MCS

Line 109

Line 107SW NE

5 km

1277

Crossing line at Site 1277

Line 303 Line 206

NEWFOUNDLANDBASIN

BeothukKnoll

Flem

ish

Pas

s

Contour interval: 100 m

Contour interval: 200 m

4000

3000

2000

1000

5

6

7

8

9

10

5

6

7

8

9

10

5

6

7

8

9

10

CMP CMP

CMP

CMP

CMP

5

6

7

8

9

10

5

6

7

8

9

10

5

6

7

8

9

10

CMP CMP

CMP CMP

5

6

7

8

9

10

5

6

7

8

9

10

CMP

B


Recommended