+ All Categories
Home > Documents > 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are...

5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are...

Date post: 16-Jan-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
41
June 9, 2016 Precision Wall Systems 10980 Alder Circle Dallas, TX 75238 Attn: Stephen Loyd RE: Zara Broadway Plaza Walnut Creek, CA Letter of Compliance: Per your request, we have reviewed the referenced project’s design parameters for the 30 mm Caliza Limra Limestone units. This structural review was performed to determine the integrity of the specified stone material and the specific requirements and/or deviations to the standard installation requirements for the Gridworx Aluminum Anchoring System. Design Wind and Seismic Pressures have been evaluated and determined in accordance with the 2013 California Building Code and ASCE 7-10. Interpretation of the Building Codes for the project location, the maximum building height, and site specific parameters for Components and Cladding, with tributary areas of 10 square feet, yields critical design pressures as follows: Typical Wind Zone regions as +14.73 psf / -15.97 psf Corner Wind Zone regions as +14.73 psf / -19.72 psf Seismic on Body Components as +/- 10.575 psf Seismic on Connection Components as +/- 33.047 psf Specific site parameters for the project have been interpreted as: Basic Wind Speed = 110 mph Mean Roof Height = 45’-0” Exposure = B Category = II Importance Factor, IW = 1.0 Importance Factor, IE = 1.0 Specific Requirements and Materials identified for compliance are as follows: Stone Material = Caliza Limra Limestone Min MOD Rupture = NA Min FLEX Strength = 1000 psi Density = 152 pcf Weight (1.181” stone) = 16.54 psf Nominal thickness = 1.181” Tolerance - (+ / - 1/8”) Gage from face = 0.500” Tolerance - (+ / - 1/16”) Kerf width = 0.188” Tolerance - (+ / - 1/16”) Kerf depth = 0.500” Tolerance - (+ 1/8, - 1/16”) 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270.6869
Transcript
Page 1: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

June 9, 2016

Precision Wall Systems10980 Alder CircleDallas, TX 75238

Attn: Stephen Loyd

RE: Zara Broadway PlazaWalnut Creek, CA

Letter of Compliance:

Per your request, we have reviewed the referenced project’s design parameters for the 30 mmCaliza Limra Limestone units. This structural review was performed to determine the integrity of thespecified stone material and the specific requirements and/or deviations to the standard installationrequirements for the Gridworx Aluminum Anchoring System.

Design Wind and Seismic Pressures have been evaluated and determined in accordance with the2013 California Building Code and ASCE 7-10. Interpretation of the Building Codes for the projectlocation, the maximum building height, and site specific parameters for Components and Cladding,with tributary areas of 10 square feet, yields critical design pressures as follows:

Typical Wind Zone regions as +14.73 psf / -15.97 psf Corner Wind Zone regions as +14.73 psf / -19.72 psf

Seismic on Body Components as +/- 10.575 psfSeismic on Connection Components as +/- 33.047 psf

Specific site parameters for the project have been interpreted as:

Basic Wind Speed = 110 mphMean Roof Height = 45’-0” Exposure = BCategory = IIImportance Factor, IW = 1.0 Importance Factor, IE = 1.0

Specific Requirements and Materials identified for compliance are as follows:

Stone Material = Caliza LimraLimestone Min MOD Rupture = NA

Min FLEX Strength = 1000 psiDensity = 152 pcfWeight (1.181” stone) = 16.54 psf

Nominal thickness = 1.181” Tolerance - (+ / - 1/8”)Gage from face = 0.500” Tolerance - (+ / - 1/16”)Kerf width = 0.188” Tolerance - (+ / - 1/16”)Kerf depth = 0.500” Tolerance - (+ 1/8, - 1/16”)

5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270.6869

Page 2: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

Precision Wall Systems – Components Provided:

Stone Strength = Meets Safety Factor > 8.0 AGAINST BREAKAGEMeets Safety Factor > 12.0 AGAINST KERF BREAK

Gridworx Extrusions = 6005 – T5 aluminum continuous provided in 12’-0” lengths Top of stone L Bracket Anchors, 6” long (1) bracket required per foot of panel widthExtended Interm. T at bottom of 5 5/8” thick cornice stoneExtended Top and Starter J at some locations

“Z” Channels = “Z” vertical furring (1”x1”x1”), Thickness = 0.090”6005-T5 Aluminum Install at 16” o.c. horizontally

Discrete Clips = Discrete Clip Thickness = 1/8”, 4” long6005-T5 Aluminum Install at 24” o.c. vertical spacing

Extrusion Fasteners = Elco Dril-Flex #12-14to “Z” Channel/Studs 1 1/2” long at “Z” Channel, 2” long at stud framing

(SAE J 429 / Grade 5 with Stalgard Coating)

Shim Stack = Full-bearing Hi-Impact resistant plastic shimsMinimum 1/16” Bond Breaker at dissimilar metalsMaximum allowable shim stack = 5/8”

“Z” Channel Fasteners = Elco Dril-Flex #12-14 x 7/8” longto Discrete Clip (SAE J 429 / Grade 5 with Stalgard Coating)

(2) per Discrete Clip

Discrete Clip Fasteners = Elco Dril-Flex #12-14 x 2” longto Studs (SAE J 429 / Grade 5 with Stalgard Coating)

(2) per Discrete Clip

Gridworx Fork Supports = Standard Fork Support6005 – T5 aluminum Continuous at fascia panels, min. 3” long at soffit panels

T-31 Anchors = 1 1/4” Stone Anchors at Fork SupportInstall @ 16” o.c. horizontally at cornice fascia panelsInstall for soffit intermediate support @ 16” o.c. spacing

Aluminum L Bracket = 2” x 2” x 0.09” Aluminum Angle, 2” longat Soffit 6005 – T5 aluminum

Install at discrete clip locations at soffit conditionsw/ (2) Elco Dril-Flex #12-14 x 7/8” long

Silicone = Low modulus silicone applied at Gridworx L Brackets.

Recommended = Dow Corning 790 Silicone or equal and open cell Joint Sealant backer rod.

Cantilevered extrusions bypassing the substrate or attachment are acceptable for distancesequal to half the typical supported span. The stone panels are to be supported for wind anddead load at each course and not to be hard stacked to a specific level or starter extrusion.

Page 3: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),
Page 4: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

10980 Alder CircleDallas, TX 75238(214) 774-4502

ZARA BROADWAY PLAZAWALNUT CREEK, CA

SUPPLEMENTARY CALCULATIONS 1ST SUBMITTAL

June 9, 2016

5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270.6869

Page 5: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA Broadway PlazaStructural CalculationsWalnut Creek, CAPrepared By: SJM

Item Description Page #

1 ASCE 7-10 Windload Analysis 3

2 ASCE 7-10 Seismic Analysis 4

3 Stone Analysis 6

4 Typical Gridworx System 11

5 ASHRAE System 22

6 Miscellaneous Reference 32

Applicable Building Code: 2013 California Building Code / Chapters 16, 19, 20, 24ASCE 7- 10 Minimum Design Loads for Buildings and Other Structures

Computer Programs: MCAL Software; Cbeam 2005, Aprop 2.2, IBC-ASCE 7 3.0 Parametric Technology Corporation; MathCAD 14 Bentley Systems Inc.; Staad Pro 2007 Architectural Wall Systems Inc.; Analysis 2010 Standards Design Group Inc; Window Glass Design

TABLE OF CONTENTS

ZARA - PRECISION JUN 09 2016 2

Page 6: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

FILE: AWS WL Spreadsheet (ASCE 7-10).xls

WIND LOADING (ASCE 7-10) - COMPONENTS AND CLADDING DESIGN METHODDESIGN CRITERIABasic Wind Speed (V) 110 mph Enclosure Classification Enclosed

Exposure Category B 1.00

Risk Category II Corner Zone Distance 8.5 ft

45 ft

Building Least Width 85 ft

WIND LOAD REQUIREMENTS

0.85 (+) WL (-) WL

Hurricane Prone Region? No 0.18 -0.18

No

0.79

1200 ft

20.80 psf

WIND PRESSURE CALCULATION – LRFD

Zone 4: Typical Zone 5: Corner

Area (SF) GCp(+) PSF GCp(-) PSF GCp(+) PSF GCp(-) PSF

10 1.00 24.54 -1.10 -26.62 1.00 24.54 -1.40 -32.86

20 0.95 23.50 -1.05 -25.58 0.95 23.50 -1.29 -30.58

50 0.88 22.05 -0.98 -24.13 0.88 22.05 -1.15 -27.66

100 0.82 20.80 -0.92 -22.88 0.82 20.80 -1.05 -25.58

WIND PRESSURE CALCULATION – ASD (0.6 FACTOR APPLIED)

Zone 4: Typical Zone 5: Corner

Area (SF) GCp(+) PSF GCp(-) PSF GCp(+) PSF GCp(-) PSF

10 1.00 14.73 -1.10 -15.97 1.00 14.73 -1.40 -19.72

20 0.95 14.10 -1.05 -15.35 0.95 14.10 -1.29 -18.35

50 0.88 13.23 -0.98 -14.48 0.88 13.23 -1.15 -16.60

100 0.82 12.48 -0.92 -13.73 0.82 12.48 -1.05 -15.35

Topographic Factor (Kzt)

Height Above Ground Level, z

Directionality Factor (Kd)

Internal Pressure Coefficient (GC

pi)

Wind Borne Debris Region?

Velocity Pressure Exposure Coefficient (K

z)

Nominal Height of Atmospheric boundary layer (z

g)

Velocity Pressure (qh) (q

h = 0.00256 K

z K

d K

zt V2)

ZARA - PRECISION JUN 09 2016 3

Page 7: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

SEISMIC ANALYSIS PER ASCE 7-10

Each element or component and its connections to the structure shall be designed to resist a total lateral seismic force, Fp, as provided by the following ASCE 7-10 equation (13.3-1 pg. 113):

≔Fp ⋅―――――⋅⋅⋅0.4 ap Sds WE

⎛⎜⎝――Rp

IE

⎞⎟⎠

⎛⎜⎝

+1 ⋅2 ―z

h

⎞⎟⎠

Coefficient Values for Input:

≔Sds 1.332 (Structural Notes Sheet S-000.00)

≔IE 1.0 (ASCE 7-10 - Section 13.1.3)

≔h ⋅45 ft (Structure Roof Height)

≔z ⋅45 ft (Worst Case Height of Component Attachment)

≔WE ⋅16.54 psf (Weight of 1.181" thick Caliza Limra Limestone + 1/8" Tolerance)

Due to the continuity of the curtainwall system and a series of lateral load resisting anchors, applied seismic loading can be modified as a uniformly distributed load proportionate to the mass distribution over the height.Therefore, the computed magnitude of the seismic load can be compared to the windload pressure to determine the governing normal design load for anchoring components. In-plane requirements must be independently investigated utilizing the computed seismic requirements and continuity developed by the applicable element.

Per Section 13.4 Nonstructural Component Anchorage:

1. Bodies of the connection shall be designed for the force determined by Equation (13.3-1) where:

≔Rp_Body 2.5 and ≔ap_Body 1.0 (Values from Table 13.5-1 pg. 117)

Therefore, ≔Fp_Body ⋅―――――――⋅⋅⋅0.4 ap_Body Sds WE

―――Rp_Body

IE

⎛⎜⎝

+1 ⋅2 ―z

h

⎞⎟⎠

=Fp_Body 10.575 psf

2. All Fasteners in the connecting system. such as bolts, inserts, weld and dowels, shall be designed for the forces determined by Equation (13.3-1) where:

≔Rp_Connection 1.0 and ≔ap_Connection 1.25 (Values from Table 13.5-1 pg. 117)

Therefore, ≔Fp_Connection ⋅――――――――⋅⋅⋅0.4 ap_Connection Sds WE

――――Rp_Connection

IE

⎛⎜⎝

+1 ⋅2 ―z

h

⎞⎟⎠

=Fp_Connection 33.047 psf

Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD), these values can be multiplied by the seismic load factor of 0.7 per ASCE 7-10 Section 2.4 pg. 8.

BC-ASCE7-2010-Seismic.mcdx-------- ---------------------------------------------------------------------------------------

ZARA - PRECISION JUN 09 2016 4

Page 8: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

SEISMIC ANALYSIS PER ASCE 7-10

Each element or component and its connections to the structure shall be designed to resist a total lateral seismic force, Fp, as provided by the following ASCE 7-10 equation (13.3-1 pg. 113):

≔Fp ⋅―――――⋅⋅⋅0.4 ap Sds WE

⎛⎜⎝――Rp

IE

⎞⎟⎠

⎛⎜⎝

+1 ⋅2 ―z

h

⎞⎟⎠

Coefficient Values for Input:

≔Sds 1.332 (Structural Notes Sheet S-000.00)

≔IE 1.0 (ASCE 7-10 - Section 13.1.3)

≔h ⋅45 ft (Structure Roof Height)

≔z ⋅45 ft (Worst Case Height of Component Attachment)

≔WE ⋅72.83 psf (Weight of 5.625" thick Caliza Limra Limestone + 1/8" Tolerance)

Due to the continuity of the curtainwall system and a series of lateral load resisting anchors, applied seismic loading can be modified as a uniformly distributed load proportionate to the mass distribution over the height.Therefore, the computed magnitude of the seismic load can be compared to the windload pressure to determine the governing normal design load for anchoring components. In-plane requirements must be independently investigated utilizing the computed seismic requirements and continuity developed by the applicable element.

Per Section 13.4 Nonstructural Component Anchorage:

1. Bodies of the connection shall be designed for the force determined by Equation (13.3-1) where:

≔Rp_Body 2.5 and ≔ap_Body 1.0 (Values from Table 13.5-1 pg. 117)

Therefore, ≔Fp_Body ⋅―――――――⋅⋅⋅0.4 ap_Body Sds WE

―――Rp_Body

IE

⎛⎜⎝

+1 ⋅2 ―z

h

⎞⎟⎠

=Fp_Body 46.565 psf

2. All Fasteners in the connecting system. such as bolts, inserts, weld and dowels, shall be designed for the forces determined by Equation (13.3-1) where:

≔Rp_Connection 1.0 and ≔ap_Connection 1.25 (Values from Table 13.5-1 pg. 117)

Therefore, ≔Fp_Connection ⋅――――――――⋅⋅⋅0.4 ap_Connection Sds WE

――――Rp_Connection

IE

⎛⎜⎝

+1 ⋅2 ―z

h

⎞⎟⎠

=Fp_Connection 145.514 psf

Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD), these values can be multiplied by the seismic load factor of 0.7 per ASCE 7-10 Section 2.4 pg. 8.

BC-ASCE7-2010-Seismic - Cornice.mcdx-------- ---------------------------------------------------------------------------------------

ZARA - PRECISION JUN 09 2016 5

Page 9: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

STONE ANALYSIS

ZARA - PRECISION JUN 09 2016 6

Page 10: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA - PRECISION JUN 09 2016 7

Page 11: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

DESIGN OF CALIZA LIMRA UNIT – FASCIA

Design Data: Material Type: Limestone Nominal Dimensions / Tolerance:

ASTM C99 MOR = NA (psi) Nominal Thickness, t = 1.181 (in)

ASTM C880 FLEX = 1000 (psi) Tolerance, e1 (thickness) = 0.125 (in)

ASTM C97 Density = 152 (pcf) Kerf Gage, kg = 0.5 (in)

Kerf Thickness, kt = 0.1875 (in)

Safety Factor: Span = 8 Kerf Depth, kd = 0.625 (in)

Anchor = 12 Tolerance, e2 (kerf) = 0.0625 (in)

Kerf Engagement, ke = 0.25 (in)Kerf Length / Clip, l = 6 (in) (Standard)

Design Loads: (+WL) = 14.43 (psf) Seis*0.7 (Stone) = 7.40 (psf)

(-WL) = 19.72 (psf) Seis*0.7 (Kerf) = 23.13 (psf)

MATERIAL SPECIFICATIONS

Average Rupture Strength (MOR) = NA psiAverage Flexural Strength (FLEX) = 1,000 psi

= 125 psi= 83 psi

A(G) NOM. THICKNESS MIN. THICKNESS KERF KERF

PANEL PANEL GROSS PANEL STRENGTH STRENGTH CAPACITY CAPACITY

WIDTH, W HEIGHT, H AREA WEIGHT RATIO RATIO (FRONT) (BACK)

(in.) (in.) (lb.)

60.000 24.000 10.000 165.427 0.339 0.424 0.272 0.556 Uniform Load

60.000 22.000 9.167 151.641 0.285 0.357 0.249 0.510

60.000 24.000 10.000 165.427 0.339 0.424 0.420 0.859 Point Load

60.000 22.000 9.167 151.641 0.285 0.357 0.385 0.787

MINIMUM THICKNESS CHECKPANEL PANEL MIN. THICKNESS

WIDTH, W HEIGHT, H REQUIRED CONTROLLING

(in.) (in.) (in.) FACTOR

60.000 24.000 0.813 Nom. Thickness

60.000 22.000 0.756 Nom. Thickness

NOTES:ALLOWABLE STRESSES AND DESIGN PROCEDURES FOR STONE STRENGTH USE AVERAGE TEST VALUES PER ASTM C99 "MODULUS OF RUPTURE"AND ASTM C880 "FLEXURAL STRENGTH - MODIFIED" COMPARED TO SPECIFIED AND /OR INDUSTRY STANDARD SAFETY FACTORS.

DESIGN THICKNESS = "Nominal - Tolerance @ Thickness (e1)".

KERF GAGE = "kg" is defined as the nominal dimension for kerf location off stone face.

KERF THICKNESS = "kt" is defined as the dimension for kerf fabrication width.

KERF DEPTH = "kd" is defined as the dimension for kerf fabrication depth into edge of stone.

KERF ENGAGEMENT = "ke" is defined as the depth of kerf clip into the kerf depth.

KERF TOLERANCE = "e2" is defined as the dimension tolerance for kerf location off stone face.

KEFT CLIP LENGTH = "l" is the defined dimension of the clip at top of stone at 1/4 points of panel.

ALL DESIGN STRESSES AND DESIGN VALUES ACCOUNT FOR NOMINAL DIMENSIONS AND THE APPROPRIATE TOLERANCES.

Allowable Span Stress, Fbspan

(Min AVG / S.F.) Allowable Anchor Stress, Fb

anchor (Min AVG / S.F.)

(ft.2) (fbn / Fb

span) (fb

min / Fb

span) (fb

Kf / Fb

anchor) (fb

Kb / Fb

anchor)

ZARA - PRECISION JUN 09 2016 8

Page 12: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

DESIGN OF CALIZA LIMRA UNIT – CORNICE

Design Data: Material Type: Limestone Nominal Dimensions / Tolerance:

ASTM C99 MOR = NA (psi) Nominal Thickness, t = 5.625 (in)

ASTM C880 FLEX = 1000 (psi) Tolerance, e1 (thickness) = 0.125 (in)

ASTM C97 Density = 152 (pcf) Kerf Gage, kg = 4.8125 (in)

Kerf Thickness, kt = 0.1875 (in)

Safety Factor: Span = 8 Kerf Depth, kd = 0.625 (in)

Anchor = 12 Tolerance, e2 (kerf) = 0.0625 (in)

Kerf Engagement, ke = 0.25 (in)Kerf Length / Clip, l = 6 (in) (Standard)

Design Loads: (+WL) = 14.43 (psf) Seis*0.7 (Stone) = 32.60 (psf)

(-WL) = 19.72 (psf) Seis*0.7 (Kerf) = 101.86 (psf)

MATERIAL SPECIFICATIONS

Average Rupture Strength (MOR) = NA psiAverage Flexural Strength (FLEX) = 1,000 psi

= 125 psi= 83 psi

A(G) NOM. THICKNESS MIN. THICKNESS KERF KERF

PANEL PANEL GROSS PANEL STRENGTH STRENGTH CAPACITY CAPACITY

WIDTH, W HEIGHT, H AREA WEIGHT RATIO RATIO (FRONT) (BACK)

(in.) (in.) (lb.)

60.000 9.000 3.750 273.125 0.003 0.004 0.004 0.449 Uniform Load

60.000 9.000 3.750 273.125 0.003 0.004 0.006 0.694 Point Load

MINIMUM THICKNESS CHECKPANEL PANEL MIN. THICKNESS

WIDTH, W HEIGHT, H REQUIRED CONTROLLING

(in.) (in.) (in.) FACTOR

60.000 9.000 0.899 Kerf-Back

NOTES:ALLOWABLE STRESSES AND DESIGN PROCEDURES FOR STONE STRENGTH USE AVERAGE TEST VALUES PER ASTM C99 "MODULUS OF RUPTURE"AND ASTM C880 "FLEXURAL STRENGTH - MODIFIED" COMPARED TO SPECIFIED AND /OR INDUSTRY STANDARD SAFETY FACTORS.

DESIGN THICKNESS = "Nominal - Tolerance @ Thickness (e1)".

KERF GAGE = "kg" is defined as the nominal dimension for kerf location off stone face.

KERF THICKNESS = "kt" is defined as the dimension for kerf fabrication width.

KERF DEPTH = "kd" is defined as the dimension for kerf fabrication depth into edge of stone.

KERF ENGAGEMENT = "ke" is defined as the depth of kerf clip into the kerf depth.

KERF TOLERANCE = "e2" is defined as the dimension tolerance for kerf location off stone face.

KEFT CLIP LENGTH = "l" is the defined dimension of the clip at top of stone at 1/4 points of panel.

ALL DESIGN STRESSES AND DESIGN VALUES ACCOUNT FOR NOMINAL DIMENSIONS AND THE APPROPRIATE TOLERANCES.

Allowable Span Stress, Fbspan

(Min AVG / S.F.) Allowable Anchor Stress, Fb

anchor (Min AVG / S.F.)

(ft.2) (fbn / Fb

span) (fb

min / Fb

span) (fb

Kf / Fb

anchor) (fb

Kb / Fb

anchor)

ZARA - PRECISION JUN 09 2016 9

Page 13: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

DESIGN OF CALIZA LIMRA UNIT – SOFFIT

Design Data: Material Type: Limestone Nominal Dimensions / Tolerance:

ASTM C99 MOR = NA (psi) Nominal Thickness, t = 1.181 (in)

ASTM C880 FLEX = 1000 (psi) Tolerance, e1 (thickness) = 0.125 (in)

ASTM C97 Density = 152 (pcf) Kerf Gage, kg = 0.5 (in)

Kerf Thickness, kt = 0.1875 (in)

Safety Factor: Span = 8 Kerf Depth, kd = 0.625 (in)

Anchor = 12 Tolerance, e2 (kerf) = 0.0625 (in)

Kerf Engagement, ke = 0.25 (in)Kerf Length / Clip, l = 6 (in) (Standard)

Design Loads: (+WL) = 14.43 (psf) Seis*0.2+DL (Stone) = 18.66 (psf)

(-WL+DL) = 36.26 (psf) Seis*0.2+DL (Kerf) = 23.15 (psf)

MATERIAL SPECIFICATIONS

Average Rupture Strength (MOR) = NA psiAverage Flexural Strength (FLEX) = 1,000 psi

= 125 psi= 83 psi

A(G) NOM. THICKNESS MIN. THICKNESS KERF KERF

PANEL PANEL GROSS PANEL STRENGTH STRENGTH CAPACITY CAPACITY

WIDTH, W HEIGHT, H AREA WEIGHT RATIO RATIO (FRONT) (BACK)

(in.) (in.) (lb.)

8.000 16.000 0.889 14.705 0.277 0.347 0.181 0.581 Uniform Load

8.000 16.000 0.889 14.705 0.277 0.347 0.187 0.598 Point Load

MINIMUM THICKNESS CHECKPANEL PANEL MIN. THICKNESS

WIDTH, W HEIGHT, H REQUIRED CONTROLLING

(in.) (in.) (in.) FACTOR

8.000 16.000 0.747 Nom. Thickness

NOTES:ALLOWABLE STRESSES AND DESIGN PROCEDURES FOR STONE STRENGTH USE AVERAGE TEST VALUES PER ASTM C99 "MODULUS OF RUPTURE"AND ASTM C880 "FLEXURAL STRENGTH - MODIFIED" COMPARED TO SPECIFIED AND /OR INDUSTRY STANDARD SAFETY FACTORS.

DESIGN THICKNESS = "Nominal - Tolerance @ Thickness (e1)".

KERF GAGE = "kg" is defined as the nominal dimension for kerf location off stone face.

KERF THICKNESS = "kt" is defined as the dimension for kerf fabrication width.

KERF DEPTH = "kd" is defined as the dimension for kerf fabrication depth into edge of stone.

KERF ENGAGEMENT = "ke" is defined as the depth of kerf clip into the kerf depth.

KERF TOLERANCE = "e2" is defined as the dimension tolerance for kerf location off stone face.

KEFT CLIP LENGTH = "l" is the defined dimension of the clip at top of stone at 1/4 points of panel.

ALL DESIGN STRESSES AND DESIGN VALUES ACCOUNT FOR NOMINAL DIMENSIONS AND THE APPROPRIATE TOLERANCES.

Allowable Span Stress, Fbspan

(Min AVG / S.F.) Allowable Anchor Stress, Fb

anchor (Min AVG / S.F.)

(ft.2) (fbn / Fb

span) (fb

min / Fb

span) (fb

Kf / Fb

anchor) (fb

Kb / Fb

anchor)

ZARA - PRECISION JUN 09 2016 10

Page 14: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

TYPICAL GRIDWORX SYSTEM

ZARA - PRECISION JUN 09 2016 11

Page 15: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

FILE: Fastener Loads(10-3-2014).xls

Gridworx Fastener Loads – Fascia

Design Data:

(-WL) = 19.72 (psf)

(+WL) = 14.43 (psf)

Seismic = 33.047 (psf)

Stone Density = 152 (pcf)

Stone Thickness = 1.181 (in)

Thickness Tolerance = 0.125 (in)

Stone Height = 24 (in)

Stone Width = 60 (in)

Horizontal Fastener Spacing = 16 (in)

Fastener Bending = 1.313 (in)

Intermediate Anchorage = None

LOADING CONDITIONS: -WL + DL, AND DL ONLYTension (1) Tension (2) Shear Compression Bearing Area

(lb) (lb) (lb) (lb) (psi)

STANDARD TOP J 57 NA 0 27 0.271 98

STANDARD INTERMEDIATE T 50 12 22 30 0.813 36

STANDARD STARTER J 71 NA 44 71 0.673 106

LOADING CONDITION: +WL + DL

Tension (1) Tension (2) Shear Compression Bearing Area

(lb) (lb) (lb) (lb) (psi)

STANDARD TOP J 16 NA NA 19 0.460 42

STANDARD INTERMEDIATE T 9 0 22 55 0.813 68

STANDARD STARTER J 71 NA 44 109 0.673 163

Maximum Tension = 71 lbs

Maximum Shear = 44 lbs

FASTENER CONDITIONS

#12-14 Dril-Flex (16ga metal) 71 130 44 474 58 69 N.A. O.K.

fP (C/A)

(in2)

fP (C/A)

(in2)

Allowable fp = 350psi for 1/2" regular gypsum board

Max Tension (lb)

Allowable Tension (lb)

Max Shear

(lb)

Allowable Shear (lb)

Max Bending Stress (ksi)

Allowable Bending Stress

(ksi)

T-31 Anchors per row

Capacity Check

ZARA - PRECISION JUN 09 2016 12

Page 16: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

FILE: Fastener Loads(10-3-2014).xls

Gridworx Fastener Loads – Cornice

Design Data:

(-WL) = 19.72 (psf)

(+WL) = 14.43 (psf)

Seismic = 145.514 (psf)

Stone Density = 152 (pcf)

Stone Thickness = 5.625 (in)

Thickness Tolerance = 0.125 (in)

Stone Height = 9 (in)

Stone Width = 60 (in)

Horizontal Fastener Spacing = 16 (in)

Fastener Bending = 1.313 (in)

Intermediate Anchorage = None

LOADING CONDITIONS: -WL + DL, AND DL ONLYTension (1) Tension (2) Shear Compression Bearing Area

(lb) (lb) (lb) (lb) (psi)

EXTENDED INTERMEDIATE T 73 0 18 49 0.813 60

LOADING CONDITION: +WL + DL

Tension (1) Tension (2) Shear Compression Bearing Area

(lb) (lb) (lb) (lb) (psi)

EXTENDED INTERMEDIATE T 33 0 18 58 0.813 72

Maximum Tension = 73 lbs

Maximum Shear = 18 lbs

FASTENER CONDITIONS

#12-14 Dril-Flex (16ga metal) 73 130 18 474 24 69 N.A. O.K.

fP (C/A)

(in2)

fP (C/A)

(in2)

Allowable fp = 350psi for 1/2" regular gypsum board

Max Tension (lb)

Allowable Tension (lb)

Max Shear

(lb)

Allowable Shear (lb)

Max Bending Stress (ksi)

Allowable Bending Stress

(ksi)

T-31 Anchors per row

Capacity Check

ZARA - PRECISION JUN 09 2016 13

Page 17: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

FILE: Fastener Loads(10-3-2014).xls

Gridworx Fastener Loads – Soffit

Design Data:

(-WL+DL) = 36.26 (psf)

(+WL) = 14.43 (psf)

Seismic = 33.047 (psf)

Stone Density = 152 (pcf)

Stone Thickness = 1.181 (in)

Thickness Tolerance = 0.125 (in)

Stone Height = 16 (in)

Stone Width = 8 (in)

Horizontal Fastener Spacing = 8 (in)

Fastener Bending = 1.313 (in)

Intermediate Anchorage = None

LOADING CONDITIONS: -WL + DL, AND DL ONLYTension (1) Tension (2) Shear Compression Bearing Area

(lb) (lb) (lb) (lb) (psi)

STANDARD TOP J 30 NA 0 14 0.271 51

STANDARD INTERMEDIATE T 24 8 10 14 0.813 17

STANDARD STARTER J 96 NA 21 33 0.673 49

LOADING CONDITION: +WL + DL

Tension (1) Tension (2) Shear Compression Bearing Area

(lb) (lb) (lb) (lb) (psi)

STANDARD TOP J 5 NA NA 6 0.460 14

STANDARD INTERMEDIATE T 7 0 10 22 0.813 27

STANDARD STARTER J 33 NA 21 46 0.673 68

Maximum Tension = 96 lbs

Maximum Shear = 21 lbs

FASTENER CONDITIONS

#12-14 Dril-Flex (16ga metal) 96 130 21 474 27 69 N.A. O.K.

fP (C/A)

(in2)

fP (C/A)

(in2)

Allowable fp = 350psi for 1/2" regular gypsum board

Max Tension (lb)

Allowable Tension (lb)

Max Shear

(lb)

Allowable Shear (lb)

Max Bending Stress (ksi)

Allowable Bending Stress

(ksi)

T-31 Anchors per row

Capacity Check

ZARA - PRECISION JUN 09 2016 14

Page 18: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

FILE: Interior Fastener Loads(10-6-2015).xls

Gridworx Fastener Loads – Slim Starter with Fork Support

Design Data:

(-WL) = 19.72 (psf)

(+WL) = 14.43 (psf)

Seismic = 33.047 (psf)

Stone Density = 152 (pcf)

Stone Thickness = 1.181 (in)

Thickness Tolerance = 0.125 (in)

Stone Height = 7.875 (in)

Stone Width = 60 (in)

Horizontal Fastener Spacing = 16 (in)

Fastener Bending = 1.313 (in)

Intermediate Anchorage = None

LOADING CONDITIONS: -WL + DL, AND DL ONLYTension (1) Tension (2) Shear Compression Bearing Area

(lb) (lb) (lb) (lb) (psi)

INTERIOR STARTER J 16 NA 14 15 0.542 28

LOADING CONDITION: +WL + DL

Tension (1) Tension (2) Shear Compression Bearing Area

(lb) (lb) (lb) (lb) (psi)

INTERIOR STARTER J 15 NA 14 28 0.542 51

Maximum Tension = 16 lbs

Maximum Shear = 14 lbs

FASTENER CONDITIONS

#12-14 Dril-Flex (16ga metal) 16 130 14 474 19 69 N.A. O.K.

fP (C/A)

(in2)

fP (C/A)

(in2)

Allowable fp = 350psi for 1/2" regular gypsum board

Max Tension (lb)

Allowable Tension (lb)

Max Shear

(lb)

Allowable Shear (lb)

Max Bending Stress (ksi)

Allowable Bending Stress

(ksi)

T-31 Anchors per row

Capacity Check

ZARA - PRECISION JUN 09 2016 15

Page 19: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA - PRECISION JUN 09 2016 16

Page 20: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

0.50

0"0.

500"

0.250"

Intermediate T Anchor

1/4" X 1/2" FOAM TAPEPRE-APPLIED TO

CONTINUOUS STONEGRIDWORX L BRACKETS

GRIDWORX L BRACKET6" LONG

0.37

5"N

OM

.t (nom.)

System Depth (nom.)

ktkg

WATERPROOFING MEMBRANEAT FACE OF SHEATHING SPEC'DAND PROVIDED BY OTHERS

FULL BEARING HI-IMPACT RESISTANT PLASTIC SHIMS

HIGH GRADE SHEATHINGOVER METAL STUDS @ 16" O.C.

GRIDWORX INTERMEDIATET ANCHORPREP EXTRUSION WITH0.228" x 1" SLOT - 16" O.C.

# 12-14 x 2" DRIL-FLEXSTALGARD FINISH

# 12-14 x 2" DRIL-FLEXSTALGARD FINISH

LOW MODULUS SILICONEAPPLIED INTO KERF ATANCHOR LOCATIONS

SCALE:3/8" JOINTS - STEEL FRAMING

INTERMEDIATE T ANCHOR

FULL

ZARA - PRECISION JUN 09 2016 17

Page 21: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA - PRECISION JUN 09 2016 18

Page 22: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

kt #12 x 2" DRIL-FLEX, FINISH: STALGARD

FULL BEARING HI-IMPACT RESISTANT PLASTIC SHIMS

1/4" X 1/2" FOAM TAPEPRE-APPLIED TO

Gridworx L Brackets

Gridworx L Bracket6" LONG

(1) PER FT OF STONE WIDTH(AT LEAST (2) PER PANEL)

LOW MODULUS SILICONEAPPLIED INTO KERF AT ANCHOR LOCATIONS

GRIDWORX INTERMEDIATET ANCHOR

WATERPROOFING MEMBRANEAT FACE OF SHEATHING SPEC'DAND PROVIDED BY OTHERS

HIGH GRADE SHEATHINGOVER METAL STUDS @ 16" O.C.

0.37

5"N

OM

.

5.625" 0.250"

System Depth (nom.)

4.813

SCALE:3/8" JOINTS - STEEL FRAMING

EXTENDED INT T ANCHOR

FULL

Extended Int T Anchor

ZARA - PRECISION JUN 09 2016 19

Page 23: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

CENTER LINE OF T-31 FASTENER

(REFER TO CUTTING TICKET)

FULL BEARING HI-IMPACTRESISTANT PLASTIC SHIMS

FIELD VERIFY (AS NEEDED, 5/8" MAX)

1.5" GRIDWORX STEELFASTENER 16" O.C.

GRIDWORX SLIM STARTER ANCHOR

5/8"

1/4"

GRIDWORX TYPE #31 1-1/4" ANCHORS.

EPOXIED IN 1/4" HOLES DRILLED 45°.

LOW MODULUS SILICONEAPPLIED INTO T-31 SLOT

INSTALL AT 16" O.C. SPACING

HIGH GRADE SHEATHINGOVER METAL STUDS

@16" O.C.

LOW MODULUS SILICONE WITH OPEN CELL

BACKER ROD

B.O.STONE

160'-9 1/2"

EXTERIOR STONE HANGING SYSTEM

STEEL FRAMING

SECTION DETAIL

ZARA - PRECISION JUN 09 2016 20

Page 24: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA - PRECISION JUN 09 2016 21

Page 25: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ASHRAE SYSTEM

ZARA - PRECISION JUN 09 2016 22

Page 26: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA - PRECISION JUN 09 2016 23

Page 27: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

STONE COURSE HEIGHT = 22"Z-CHANNEL

Z-CHANNEL

Z-CHANNEL

Z-CHANNEL

Z-CHANNEL

WL = 22" x 33.047PSF x 0.7 = 3.534#/IN

ZARA BROADWAY PLAZACbeam R5

Architectural Wall Systems6/8/2016 14:15 File: Horiz Intermediate T(16)

HORIZONTAL INTERMEDIATE TBy: SJM

1Driven by Cbeam © R5

Deflection Results

Stress Results Span M(in-lb) fb-m(ksi)

Member Information Span Length(in) I(in^4) S(in^3) E(psi)

Distributed Load InformationSpan W1(#/in) W2(#/in) X1(in) X2(in)

Support Reactions Joint Pounds

Max. Deflection = -0.0009" L/17430 (Span 1, @ 7.04")

1 @ 6.29" = 70 0.554 4 @ 0.00" = -97 0.769

1 16.000 0.163 0.126 1.0e+7 2 16.000 0.163 0.126 1.0e+7 3 16.000 0.163 0.126 1.0e+7 4 16.000 0.163 0.126 1.0e+7

1 3.534 3.534 0.000 16.000 2 3.534 3.534 0.000 16.000 3 3.534 3.534 0.000 16.000 4 3.534 3.534 0.000 16.000

1 22 2 65 3 53 4 65 5 22

For questions on Cbeam, a Windows-based program, contact:

MCALSOFT LLC. www.mcalsoftware.com

Ph (512) 270-6869

Email: [email protected]

12

34

5

1'-4

"1'

-4"

1'-4

"1'

-4"

3.53

4 lb

/in

ZARA - PRECISION JUN 09 2016 24

Page 28: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA - PRECISION JUN 09 2016 25

Page 29: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

COURSE HEIGHT = 22" CL DISCRETE

CL DISCRETE

CL DISCRETE

CL DISCRETE

CL DISCRETE

DEFLECTION AND STRESS OK BY INSPECTION

ZARA BROADWAY PLAZACbeam R5

Architectural Wall Systems6/8/2016 14:26 File: VERTICAL Z - 1IN DEEP(16in)

VERTICAL Z - 1" DEEPBy: SJM

1Driven by Cbeam © R5

Deflection Results

Stress Results Span M(in-lb) fb-m(ksi)

Member Information Span Length(in) I(in^4) S(in^3) E(psi)

Point Load InformationSpan P(#) X(in)

Joints Free to Displace

Free Joints - 1

Support Reactions Joint Pounds

Max. Deflection = -0.0213" L/1129 (Span 5, @ 12.24")Cant. Deflection = -0.0359" 2L/334 (Span 1, @ 0.00")

1 @ 6.00" = -390 4.643 5 @ 10.00" = 236 2.807

1 6.000 0.043 0.084 1.0e+7 2 24.000 0.043 0.084 1.0e+7 3 24.000 0.043 0.084 1.0e+7 4 24.000 0.043 0.084 1.0e+7 5 24.000 0.043 0.084 1.0e+7

1 65.000 0.000 2 65.000 16.000 3 65.000 14.000 4 65.000 12.000 5 65.000 10.000

2 97 3 57 4 72 5 82 6 17

65 #

65 #

65 #

65 #

65 #

1

23

45

6

6"2'

-0"

2'-0

"2'

-0"

2'-0

"

ZARA - PRECISION JUN 09 2016 26

Page 30: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

FILE: Tapping Fasteners - ADM10 - AISC14.xls

FASTENERS AT Z-CHANNEL TO DISCRETE CLIPDESIGN OF TAPPING FASTENERS SAE-J429/GRADE 5, OR ASTM-A449

Design Data: Shear, V= 44 (lb) Material at Fastener Head 6005-T5

Tension, T= 102 (lb) Hole or Slot Hole

Bending Eccentricity, e= 0 (in) Material Thickness (in) = 0.09

Quantity= 2 Flat Head (Y or N) N

Duration of Load Factor = 1 Material Tapped Into 6005-T5

Two Materials Flush? N Hole or Slot Hole

Dws = 0.5 (in) Material Thickness = 0.125

1 Capacity Check = For Each: T < Ta, V < Va

MATERIAL SPECIFICATIONS - FASTENER PROPERTIES

MINIMUM ULTIMATE TENSILE STRENGTH (Fu) = 120,000 psiMINIMUM TENSILE YIELD STRENGTH (Fy) = 92,000 psi

K A(R) FASTENER BENDING CHECK

D BASIC THREAD Fb (0.75xFyxDf) (KSI) = 69

FASTENER NOMINAL MINOR ROOT ALLOW. ALLOW. *FASTENER

SIZE DIAMETER DIAMETER AREA TENSION SHEAR INTERACTION MOMENT

N (IN.) (IN.) (LB.) (LB.) < DF (V*e) / 2

#6- 20 0.1380 0.0997 0.0078 375 216 0.029 0.0003 0 0.00

#8- 18 0.1640 0.1257 0.0124 596 344 0.011 0.0004 0 0.00

#10- 16 0.1900 0.1389 0.0152 727 420 0.008 0.0007 0 0.00

#12- 14 0.2160 0.1649 0.0214 1025 592 0.004 0.0010 0 0.00 #14- 14 0.2420 0.1880 0.0278 1332 769 0.002 0.0014 0 0.00

1/4"- 14 0.2500 0.1887 0.0280 1342 775 0.002 0.0015 0 0.00

1/4"- 20 0.2500 0.1887 0.0280 1342 775 0.002 0.0015 0 0.00

5/16"- 18 0.3125 0.2443 0.0469 2250 1299 0.001 0.0030 0 0.00

3/8"- 12 0.3750 0.2983 0.0699 3355 1937 0.000 0.0052 0 0.00

MATERIAL AT FASTENER HEAD MATERIAL TAPPED INTO

FASTENER ALLOW ALLOW CAPACITY FASTENER ALLOW. ALLOW. ALLOW. CAPACITY

SIZE PULL-OVER BEARING CHECK SIZE PULL-OUT BEARING TILTING CHECK

Ta (LB.) Va (LB.) < DF Ta (LB.) Va (LB.) Va (LB.) < DF

#6-20 686 315 O.K. #6-20 287 437 873 O.K.

#8-18 686 374 O.K. #8-18 317 519 952 O.K.

#10-16 686 433 O.K. #10-16 333 602 1025 O.K.

#12-14 686 492 O.K. #12-14 378 684 1093 O.K.

#14-14 686 552 O.K. #14-14 424 766 1157 O.K.

1/4"-14 686 570 O.K. 1/4"-14 438 792 1176 O.K.

1/4"-20 686 570 O.K. 1/4"-20 438 792 1176 O.K.

5/16"-18 686 713 O.K. 5/16"-18 605 990 1314 O.K.

3/8"-12 686 855 O.K. 3/8"-12 656 1188 1440 O.K.

NOTES:

ALLOWABLE STRESSES AND DESIGN PROCEDURES FOR TAPPING FASTENERS ARE PER ADM 2010 AND AISC 14TH,

RESPECTIVELY PER SUBSTRATE

ALLOW. TENSION = 0.4*Fu*A(R) (AAMA TIR-A9-91 2000 ADDENDUM PG 34)

ALLOW. PULL-OUT = Ks*D*t2*Fty2/3 (TYPICAL) (REF. SECTION J.5.5.1.1 ADM-10)

ALLOW. PULL-OVER = C*t1*Ftu1(Dws-D)/3 (TYPICAL) (REF SECTION J.5.5.2 ADM-10)

ALLOW. SHEAR = 0.4*Fu*A(R) / (SQRT(3)) (AAMA TIR-A9-91 2000 ADDENDUM PG 34)

ALLOW. BEARING/STEEL = 1.2*Fu*D*t (Fu = 58,000 psi) (J3-6a AISC) (HOLE)

ALLOW. BEARING/STEEL = 1.0*Fu*D*t (Fu = 58,000 psi) (J3-6c AISC) (SLOT)

ALLOW. BEARING/ALUM. = 2*Ftu*D*t/3 (REF. SECTION J.5.6.1 ADM -10)

Ftu for each Alum. Alloy referenced from ADM-10

*INTERACTION = (V / (ALLOW. SHEAR x QUANTITY) )^2 + (T / (ALLOW. TENSION x QUANTITY) )^2

DL = (1.181” + 0.125”) x 24” x 16” x 152PCF = 44#

DL(TENSION) = 44# x (1.333” + 0.625” + 1.0”) / 24 = 5#

WL + DL(TENSION) = 97# + 5# = 102# (REF: VERTICAL Z - 1” DEEP CBEAM)

Interaction = (fV/F

V)2 + (f

T/F

T)2

SX

fb

(IN.2) PI*D3/32 (M/SX)

A(R) = 0.7854*(K)2

ALLOW. TILTING = 4.2*(t2^3*d)^(1/2)*Ftu2/3 (REF SECTION J.5.6 EQ J.5-13 ADM-10)

ZARA - PRECISION JUN 09 2016 27

Page 31: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

FILE: Tapping Fasteners - ADM10 - AISC14.xls

FASTENERS AT DISCRETE CLIP TO STUDSDESIGN OF TAPPING FASTENERS SAE-J429/GRADE 5, OR ASTM-A449

Design Data: Shear, V= 44 (lb) Material at Fastener Head 6005-T5

Tension, T= 108 (lb) Hole or Slot Hole

Bending Eccentricity, e= 0.625 (in) Material Thickness (in) = 0.125

Quantity= 2 Flat Head (Y or N) N

Duration of Load Factor = 1 Material Tapped Into A-33

Two Materials Flush? N Hole or Slot Hole

Dws = 0.5 (in) Material Thickness = 0.054

1 Capacity Check = For Each: T < Ta, V < Va

MATERIAL SPECIFICATIONS - FASTENER PROPERTIES

MINIMUM ULTIMATE TENSILE STRENGTH (Fu) = 120,000 psiMINIMUM TENSILE YIELD STRENGTH (Fy) = 92,000 psi

K A(R) FASTENER BENDING CHECK

D BASIC THREAD Fb (0.75xFyxDf) (KSI) = 69

FASTENER NOMINAL MINOR ROOT ALLOW. ALLOW. *FASTENER

SIZE DIAMETER DIAMETER AREA TENSION SHEAR INTERACTION MOMENT

N (IN.) (IN.) (LB.) (LB.) < DF (V*e) / 2

#6- 20 0.1380 0.0997 0.0078 375 216 0.031 0.0003 14 26.65

#8- 18 0.1640 0.1257 0.0124 596 344 0.012 0.0004 14 15.88

#10- 16 0.1900 0.1389 0.0152 727 420 0.008 0.0007 14 10.21

#12- 14 0.2160 0.1649 0.0214 1025 592 0.004 0.0010 14 6.95 #14- 14 0.2420 0.1880 0.0278 1332 769 0.002 0.0014 14 4.94

1/4"- 14 0.2500 0.1887 0.0280 1342 775 0.002 0.0015 14 4.48

1/4"- 20 0.2500 0.1887 0.0280 1342 775 0.002 0.0015 14 4.48

5/16"- 18 0.3125 0.2443 0.0469 2250 1299 0.001 0.0030 14 2.29

3/8"- 12 0.3750 0.2983 0.0699 3355 1937 0.000 0.0052 14 1.33

MATERIAL AT FASTENER HEAD MATERIAL TAPPED INTO

FASTENER ALLOW ALLOW CAPACITY FASTENER ALLOW. ALLOW. ALLOW. CAPACITY

SIZE PULL-OVER BEARING CHECK SIZE PULL-OUT BEARING TILTING CHECK

Ta (LB.) Va (LB.) < DF Ta (LB.) Va (LB.) Va (LB.) < DF

#6-20 1039 437 O.K. #6-20 83 519 379 O.K.

#8-18 1039 519 O.K. #8-18 98 616 413 O.K.

#10-16 1039 602 O.K. #10-16 114 714 444 O.K.

#12-14 1039 684 O.K. #12-14 130 812 474 O.K.

#14-14 1039 766 O.K. #14-14 145 910 501 O.K.

1/4"-14 1039 792 O.K. 1/4"-14 150 940 509 O.K.

1/4"-20 1039 792 O.K. 1/4"-20 150 940 509 O.K.

5/16"-18 1039 990 O.K. 5/16"-18 187 1175 570 O.K.

3/8"-12 1039 1188 O.K. 3/8"-12 225 1409 624 O.K.

NOTES:

ALLOWABLE STRESSES AND DESIGN PROCEDURES FOR TAPPING FASTENERS ARE PER ADM 2010 AND AISC 14TH,

RESPECTIVELY PER SUBSTRATE

ALLOW. TENSION = 0.4*Fu*A(R) (AAMA TIR-A9-91 2000 ADDENDUM PG 34)

ALLOW. PULL-OUT = Ks*D*t2*Fty2/3 (TYPICAL) (REF. SECTION J.5.5.1.1 ADM-10)

ALLOW. PULL-OVER = C*t1*Ftu1(Dws-D)/3 (TYPICAL) (REF SECTION J.5.5.2 ADM-10)

ALLOW. SHEAR = 0.4*Fu*A(R) / (SQRT(3)) (AAMA TIR-A9-91 2000 ADDENDUM PG 34)

ALLOW. BEARING/STEEL = 1.2*Fu*D*t (Fu = 58,000 psi) (J3-6a AISC) (HOLE)

ALLOW. BEARING/STEEL = 1.0*Fu*D*t (Fu = 58,000 psi) (J3-6c AISC) (SLOT)

ALLOW. BEARING/ALUM. = 2*Ftu*D*t/3 (REF. SECTION J.5.6.1 ADM -10)

Ftu for each Alum. Alloy referenced from ADM-10

*INTERACTION = (V / (ALLOW. SHEAR x QUANTITY) )^2 + (T / (ALLOW. TENSION x QUANTITY) )^2

DL = (1.181” + 0.125”) x 24” x 16” x 152PCF = 44#

DL(TENSION) = 44# x (1.333” + 0.625” + 1.0” + 3.25”) / 24 = 11#

WL + DL(TENSION) = 97# + 11# = 108# (REF: VERTICAL Z - 1” DEEP CBEAM)

Interaction = (fV/F

V)2 + (f

T/F

T)2

SX

fb

(IN.2) PI*D3/32 (M/SX)

A(R) = 0.7854*(K)2

ALLOW. TILTING = 4.2*(t2^3*d)^(1/2)*Ftu2/3 (REF SECTION J.5.6 EQ J.5-13 ADM-10)

ZARA - PRECISION JUN 09 2016 28

Page 32: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

#12-14 x 2" HWHDRIL-FLEX

LOW MODULUS SILICONEAPPLIED INTO KERF ATANCHOR LOCATIONS

#12-14 x 2" HWHDRIL-FLEX

1/8" THK. ALUM. CLIP4" LONG6005 - T5

0.090" THK. ALUM. " Z " CLIP CONTINUOUS6005 - T5

Starter J Anchor

t (nom.)

Standoff (nom.)

0.250" (+0.375"/- 0.250" Tol.)

0.37

5"M

IN

ktkg

SILICONE COMPATIBLEWEEP BAFFLE 30 DPI24" O.C. BASE COURSE

#12-14 x 1" HWH DRIL-FLEX

GRIDWORX STARTERJ ANCHOR

SCALE:SUBSTRATE - METAL STUD

STARTER J ANCHOR

FULL

ZARA - PRECISION JUN 09 2016 29

Page 33: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA - PRECISION JUN 09 2016 30

Page 34: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

#12-14 x 2" HWHDRIL-FLEX

LOW MODULUS SILICONEAPPLIED INTO KERF ATANCHOR LOCATIONS

GRIDWORX TOPJ ANCHOR

GRIDWORX L BRACKETW/ 1/4"x1/2" FOAM TAPE

#12-14 x 1" HWH DRIL-FLEX

#12-14 x 2" HWHDRIL-FLEX

1/8" THK. ALUM. CLIP4" LONG 6005 - T5

0.090" THK. ALUM. " Z " CLIP CONTINUOUS6005 - T5

Top J Anchor

0.37

5"M

IN

t (nom.)

Standoff (nom.)

0.250" (+0.375"/- 0.250" Tol.)

ktkg

SCALE:SUBSTRATE - METAL STUD

TOP J ANCHOR

FULL

ZARA - PRECISION JUN 09 2016 31

Page 35: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

MISCELLANEOUS REFERENCE

ZARA - PRECISION JUN 09 2016 32

Page 36: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA - PRECISION JUN 09 2016 33

Collin
Text Box
Collin
Text Box
Page 37: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

0.50

0"

0.28

7"

0.093"

0.85

0"0.

500"

0.83

0"

1.333"

1.24

3"0.

500"

0.50

0"

1.33

7"0.

663"

1.333"

Fastener Loads: (+WL + DL)2.

000"

0.250"

COMPRESSION = 0.287" x WL / (2/3 x 0.850"). = 0.507 x WL

BEARING AREA = 1/3 x 0.850" x 1.625" = 0.460 in²

fp = C/A = 0.500 x WL / A

0.16

7"

TENSION = DL x 1.333" / 2.0" = 0.670 x DL

DEADLOAD ONLY = CRITICAL TENSION

SHEAR = DL / 2

COMPRESSION = 1.337" x WL / 2.0" + 1.333" x DL / 2.0"0.670 x WL + 0.670 x DL

BEARING AREA = 0.500" x 1.625" = 0.813 in²

fp = C/A = 0.670 X ( WL + DL ) / A

TENSION = 1.333" x DL / (2/3 x 1.243") = 1.609 x DL

. SHEAR = DL

COMPRESSION = WL + 1.609 x DL.

BEARING AREA = 1/3 x 1.243" x 1.625" = 0.673 in²

fp = C/A = ( WL + 1.609 x DL ) / A

0.41

4"

0.28

3"

ZARA - PRECISION JUN 09 2016 34

Page 38: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA - PRECISION JUN 09 2016 35

Page 39: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

0.50

0"

0.28

8"0.093"

0.85

0"0.

500"

0.59

5"

0.700"

1.00

0"Fastener Loads: (-WL + DL) & (DL ONLY)

0.250" TENSION = WL + WL x 0.287" / (2/3 x 0.500"). = 1. 860 x WL

COMPRESSION = 1.860 x WL - WL. = 0.860 x WL

BEARING AREA = 1/3 x 0.500" x 1.625" = 0.271 in²

fp = C/A = 0.860 x WL / A

0.16

7"

-WL & DL:TENSION (1) = WL x 0.668" / 1.75" + DL x 0.7" / 1.75" . = 0.393 x WL + 0.4 x DL

TENSION (2) = WL x 1.062" / 1.75" - DL x 0.7" / 1.75". = 0.607 x WL - 0.4 x DL

SHEAR = DL / 2

DL ONLY:COMPRESSION = DL x 0.7" / 1.75" = 0.4 x DL

BEARING AREA = 0.500" x 1.625" = 0.813 in²

fp = C/A = 0.4 x DL /A

-WL & DL:DEADLOAD ONLY IS CRITICAL FOR DESIGN WINDLOADS < 50 PSF

TENSION = DL x 0.7" / (2/3 x 1.0") . = 1.05 x DL SHEAR = DL

COMPRESSION = 1.05 x DL. BEARING AREA = 1/3 x 1.0" x 1.625" = 0.542 in²

fp = C/A = 1.05 x DL / A

0.33

3"

0.50

0"0.

500"

1.06

2"0.

688"

0.700"

1.75

0"

ZARA - PRECISION JUN 09 2016 36

Page 40: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

0.50

0"0.

500"

1.06

2"0.

688"

0.700"

1.75

0"0.

500"

0.28

8"0.093"

0.85

0"0.

500"

0.59

5"

0.700"

1.00

0"Fastener Loads: (+WL + DL)

0.250"

COMPRESSION = 0.287" x WL / (2/3 x 0.850"). = 0.507 x WL

BEARING AREA = 1/3 x 0.850" x 1.625" = 0.460 in²

fp = C/A = 0.500 x WL / A

0.16

7"

TENSION = DL x 0.7" / 1.75" = 0.4 x DL

DEADLOAD ONLY = CRITICAL TENSION

SHEAR = DL / 2

COMPRESSION = 1.062" x WL / 1.75" + 0.7" x DL / 1.75"0.607 x WL + 0.4 x DL

BEARING AREA = 0.500" x 1.625" = 0.813 in²

fp = C/A = (0.607 x WL + 0.4 x DL ) / A

TENSION = 0.7" x DL / (2/3 x 1.0") = 1.05 x DL

. SHEAR = DL

COMPRESSION = WL + 1.05 x DL.

BEARING AREA = 1/3 x 1.0" x 1.625" = 0.542 in²

fp = C/A = ( WL + 1.05 x DL ) / A

0.28

3"

0.33

3"

ZARA - PRECISION JUN 09 2016 37

Page 41: 5118 Burnet Rd. l Suite E l Austin, TX l 78756 l 512.270 · Note: The above values for Fp are derived using a factored load method. For use with allowable stress design methods (ASD),

ZARA - PRECISION JUN 09 2016 38

aws-engineer
Text Box

Recommended