+ All Categories
Home > Documents > 57363392 Design Guide

57363392 Design Guide

Date post: 04-Apr-2018
Category:
Upload: superlativo
View: 216 times
Download: 0 times
Share this document with a friend

of 200

Transcript
  • 7/29/2019 57363392 Design Guide

    1/200

    Amplifier DesignGuide

    August 2005

  • 7/29/2019 57363392 Design Guide

    2/200ii

    Notice

    The inform at ion cont ained in t his docum ent is subject to cha nge without notice.

    Agilent Techn ologies ma kes n o warr an ty of an y kind with r egard t o th is mat erial,

    including, but n ot limited t o, the implied war ra nt ies of mer cha nt ability an d fitn ess

    for a pa rt icula r pur pose. Agilent Techn ologies sh a ll not be liable for er rors cont ain ed

    her ein or for incidenta l or consequen tial da ma ges in conn ection with th e fur nishing,

    perform an ce, or use of this m at erial.

    Warranty

    A copy of the specific warr an ty t erm s t ha t apply to th is softwar e product is available

    upon r equest from your Agilent Techn ologies rep resent a tive.

    Restricted Rights LegendUse, duplica t ion or disclosure by the U. S. Government is subject to res t r ict ions as se

    fort h in subpar agr aph (c) (1) (ii) of th e Right s in Techn ical Da ta an d Comput er

    Software clause at DFARS 252.227-7013 for DoD agencies, and subparagraphs (c) (1

    an d (c) (2) of the Commercial Comput er Softwa re Rest ricted Right s clau se a t FAR

    52.227-19 for other agencies.

    Agilent Technologies, Inc. 1983-2005

    395 Page Mill Road, Pa lo Alto, CA 94304 U.S.A.

    Acknowledgments

    Mentor Gra phics is a t ra dema rk of Mentor Gra phics Corporat ion in th e U.S. and

    oth er coun tr ies.

    Microsoft , Windows, MS Windows, Windows NT, an d MS-DOS ar e U.S.

    registered trademarks of Microsoft Corporation.

    Pentium is a U.S. register ed t ra dema rk of Intel Corporat ion.

    PostScript

    an d Acrobat

    ar e tr adem ar ks of Adobe System s Incorporat ed.UNIX is a register ed tra dema rk of th e Open Group.

    J ava is a U.S. tr adem ar k of Sun Microsystem s, Inc.

    SystemC is a registered t ra dema rk of Open SystemC In itiative, Inc. in th e United

    Stat es an d oth er coun tr ies a nd is u sed with permission.

  • 7/29/2019 57363392 Design Guide

    3/200ii

    Contents1 Amplifier QuickStart Guide

    Using DesignGuides................................................................................................. 1-1

    Accessing the Documentation............................................................................ 1-3

    Basic Procedures ..................................................................................................... 1-3

    Selecting the Appropriate Simulation Type............................................................... 1-7

    DC and Bias Point Simulations........................................................................... 1-7

    S-Parameter Simulations.................................................................................... 1-8

    Nonlinear Simulations......................................................................................... 1-8

    Tools ......................................................................................................................... 1-15

    2 Introduction

    List of Available Data Displays.................................................................................. 2-2

    References for Power Amplifier Examples ............................................................... 2-10

    3 DC and Bias Point Simulations

    DC and Bias Point Simulations > BJT I-V Curves, Class A Power, Eff., Load, Gm vs. Bias

    3-2

    DC and Bias Point Simulations > BJT Output Power, Distortion vs. Load R ............ 3-4

    DC and Bias Point Simulations > BJT Fmax vs. Bias............................................... 3-5

    DC and Bias Point Simulations > BJT Ft vs. Bias..................................................... 3-6

    DC and Bias Point Simulations > BJT Noise Fig., S-Params, Gain, Stability, and Circles vs.

    Bias ........................................................................................................................ 3-7

    DC and Bias Point Simulations > BJT Stability vs. Bias ........................................... 3-10

    DC and Bias Point Simulations > FET I-V Curves, Class A Power, Eff., Load, Gm vs. Bias3-11

    DC and Bias Point Simulations > FET Output Power, Distortion vs. Load R............ 3-13

    DC and Bias Point Simulations > FET Fmax vs. Bias .............................................. 3-14

    DC and Bias Point Simulations > FET Ft vs. Bias .................................................... 3-15

    DC and Bias Point Simulations > FET Noise Fig., S-Params, Gain, Stability, and Circles vs.

    Bias ........................................................................................................................ 3-16

    DC and Bias Point Simulations > FET Stability vs. Bias........................................... 3-19

    4 S-Parameter Simulations

    S-Parameter Simulations > S-Params., Noise Fig., Gain, Stability, Circles, and Group Delay4-2

    S-Parameter Simulations > Feedback Network Optimization to Attain Stability ....... 4-5

    S-Parameter Simulations > S-Params, Gain, NF, Stability, Group Delay vs. Swept

    Parameters............................................................................................................. 4-6

    S-Parameter Simulations > S-Params., Stability, and Group Delay vs. Frequency and Input

    Power ..................................................................................................................... 4-9

    http://-/?-
  • 7/29/2019 57363392 Design Guide

    4/200iv

    5 1-Tone Nonlinear Simulations

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion.................... 5-2

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion (w/PAE)...... 5-3

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion vs. Power ... 5-5

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion vs. Power (w/PAE)5-7

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion vs. Frequency5-91-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion vs. Frequency

    (w/PAE) .................................................................................................................. 5-10

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion vs. Frequency &

    Power ..................................................................................................................... 5-12

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion vs. Frequency &

    Power (w/PAE) ....................................................................................................... 5-14

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion at X dB Gain

    Compression.......................................................................................................... 5-16

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion at X dB Gain

    Compression vs. Freq. ........................................................................................... 5-18

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion at X dB Gain

    Compression (w/PAE) vs. 1 Param. ....................................................................... 5-20

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion at X dB Gain

    Compression (w/PAE) vs. 2 Params. ..................................................................... 5-22

    1-Tone Nonlinear Simulations > Noise Figure, Spectrum, Gain, Harmonic Distortion 5-24

    1-Tone Nonlinear Simulations > Large-Signal Load Impedance Mapping................ 5-25

    1-Tone Nonlinear Simulations > Load-Pull - PAE, Output Power Contours.............. 5-26

    1-Tone Nonlinear Simulations > Load-Pull - PAE, Output Power Contours at X dB Gain

    Compression.......................................................................................................... 5-281-Tone Nonlinear Simulations > Source-Pull - PAE, Output Power Contours........... 5-30

    1-Tone Nonlinear Simulations > Harmonic Impedance Opt. - PAE, Output Power, Gain5-32

    1-Tone Nonlinear Simulations > Harmonic Gamma Opt. - PAE, Output Power, Gain 5-35

    6 Statistical Design and Optimization for Amplifiers

    Overview of Techniques ........................................................................................... 6-1

    Yield Analysis ..................................................................................................... 6-2

    Yield Optimization............................................................................................... 6-4

    Yield Analysis Displays: YSH, MH, SRP ............................................................ 6-4

    Statistical Design Methodology .......................................................................... 6-11Performing Yield Analysis................................................................................... 6-12

    Using the Statistical Simulations .............................................................................. 6-14

    Using the DesignGuide Schematics................................................................... 6-16

    Selecting the Appropriate Simulation Schematic ............................................... 6-16

    Selecting the Appropriate Data Display.............................................................. 6-17

    Choosing Parameter Statistics ........................................................................... 6-17

    Yield Analysis Schematics.................................................................................. 6-19

  • 7/29/2019 57363392 Design Guide

    5/200v

    Linear Analysis Using S-Parameters as Measurements .......................................... 6-20

    Linear Analysis Using Group Delay and Noise Figure as Measurements................ 6-23

    Linear Analysis Using S-Parameters, Group Delay and Noise Figure as Measurements6-25

    Nonlinear Analysis Using 1-Tone Harmonic Balance with Harmonic Distortion and Spectrum

    as Measurements .................................................................................................. 6-27

    Nonlinear Analysis Using 2-Tone Harmonic Balance with Third and Fifth Order Intercepts asthe Measurements ................................................................................................. 6-29

    Yield Optimization Schematics................................................................................. 6-31

    Linear Optimization Using S-Parameters as Measurements.................................... 6-32

    Linear Optimization Using Group Delay and Noise Figure as Measurements ......... 6-33

    Linear Optimization Using S-Parameters, Group Delay and Noise Figure as Measurements

    6-34

    Nonlinear Optimization Using 1-Tone Harmonic Balance with Harmonic Distortion and

    Spectrum as Measurements .................................................................................. 6-35

    Nonlinear Optimization Using 2-Tone Harmonic Balance with Third and Fifth Order

    Intercepts as Measurements.................................................................................. 6-36

    7 2-Tone Nonlinear Simulations

    2-Tone Nonlinear Simulations > Spectrum, Gain, TOI and 5thOI Points .................. 7-2

    2-Tone Nonlinear Simulations > Spectrum, Gain, TOI and 5thOI Points (w/PAE) .... 7-3

    2-Tone Nonlinear Simulations > Spectrum, Gain, TOI and 5thOI Points vs. Power.. 7-5

    2-Tone Nonlinear Simulations > Spectrum, Gain, TOI and 5thOI Points vs. Power (w/PAE)

    7-7

    2-Tone Nonlinear Simulations > Spectrum, Gain, TOI and 5thOI Points vs. Frequency7-9

    2-Tone Nonlinear Simulations > Spectrum, Gain, TOI and 5thOI Points vs. Frequency

    (w/PAE) .................................................................................................................. 7-112-Tone Nonlinear Simulations > Spectrum, Gain, TOI and 5thOI Points vs. 1 Param. (w/PAE

    7-13

    2-Tone Nonlinear Simulations > Spectrum, Gain, TOI and 5thOI Points vs. 2 Param. (w/PAE

    7-15

    2-Tone Nonlinear Simulations > Load-Pull - PAE, Output Power, IMD Contours...... 7-17

    2-Tone Nonlinear Simulations > Source-Pull - PAE, Output Power, IMD Contours .. 7-19

    2-Tone Nonlinear Simulations > Harmonic Impedance Opt. - PAE, Output Power, Gain, IMD

    7-21

    2-Tone Nonlinear Simulations > Harmonic Gamma Opt. - PAE, Output Power, Gain, IMD7-24

    8 Lumped 2-Element Z-Y Matching Networks

    Lumped 2-Element Z-Y Matching Networks > Rload, Shunt C/L, Series C/L for Desired Z

    8-2

    Lumped 2-Element Z-Y Matching Networks > Rload, Series C/L, Shunt C/L for Desired Z

    8-4

  • 7/29/2019 57363392 Design Guide

    6/200vi

    Lumped 2-Element Z-Y Matching Networks > Rload, Shunt C/L, Series C/L for Desired Y

    8-6

    Lumped 2-Element Z-Y Matching Networks > Rload, Series C/L, Shunt C/L for Desired Y

    8-8

    Lumped 2-Element Z-Y Matching Networks > Rload, Shunt C/L, Series C/L to Match Series

    R-C or R-L Device.................................................................................................. 8-10Lumped 2-Element Z-Y Matching Networks > Rload, Series C/L, Shunt C/L to Match Series

    R-C or R-L Device.................................................................................................. 8-12

    Lumped 2-Element Z-Y Matching Networks > Rload, Shunt C/L, Series C/L to Match Shunt

    R-C or R-L Device.................................................................................................. 8-14

    Lumped 2-Element Z-Y Matching Networks > Rload, Series C/L, Shunt C/L to Match Shunt

    R-C or R-L Device.................................................................................................. 8-16

    9 Lumped Multi-Element Z-Y Matching Networks

    Lumped Multi-Element Z-Y Matching Networks > Rload, Series C/L, Shunt C/L, Series L/C

    for Desired Z .......................................................................................................... 9-2Lumped Multi-Element Z-Y Matching Networks > Rload, Shunt C, Series L, Series C for

    Desired Z ............................................................................................................... 9-3

    Lumped Multi-Element Z-Y Matching Networks > Rload, Series L, Shunt C, Series L/C for

    Desired Z ............................................................................................................... 9-5

    Lumped Multi-Element Z-Y Matching Networks > Rload, Shunt C, Series L, Shunt C for

    Desired Y ............................................................................................................... 9-6

    Lumped Multi-Element Z-Y Matching Networks > Rload, Shunt C, Series L, Series C, Shun

    L/C for Desired Y.................................................................................................... 9-7

    Lumped Multi-Element Z-Y Matching Networks > Rload, Series C/L, Shunt C/L, Series L/C

    to Match Series R-C or R-L Device........................................................................ 9-9Lumped Multi-Element Z-Y Matching Networks > Rload, Shunt C, Series L/C, Series C to

    Match Series R-C or R-L Device............................................................................ 9-10

    Lumped Multi-Element Z-Y Matching Networks > Rload, Series L, Shunt C, Series L/C to

    Match Series R-C or R-L Device............................................................................ 9-12

    Lumped Multi-Element Z-Y Matching Networks > Rload, Shunt C, Series L, Shunt C Shunt

    R-C or R-L Device.................................................................................................. 9-13

    Lumped Multi-Element Z-Y Matching Networks > Rload, Shunt C, Series L, Series C, Shun

    L/C to Match Shunt R-C or R-L Device.................................................................. 9-14

  • 7/29/2019 57363392 Design Guide

    7/200Using DesignGuides 1-1

    Chapter 1: Amplifier QuickStart GuideThe Am plifi er Qu ickS tart Gu id e is int ended to help you get sta rt ed using the

    Amplifier DesignGuide effectively. For detailed r eferen ce inform ation, r efer to

    subsequent cha pters of th is man ua l.

    The Am plifi er DesignGu id e includes man y useful simulation setups a nd da ta

    displays for am plifier design. The simu lation setu ps a re cat egorized by the t ype of

    s imula t ion des ir ed and the type of model ava ilable. Mos t of the s imula t ion setups a re

    for a na lysis, but th ere ar e some for synth esizing impeda nce mat ching n etwork s. The

    DesignGuide is not a complete solut ion for a mplifier des igners, but provides some

    useful t ools. Following ar e some feat ur e highlight s.

    Simulat ions of eight high-efficiency power am plifier examples

    A detailed section on st at istical design For m os t da t a d ispla ys, t h e equ a tion s a r e vis ible on a n Equ a t ion s scr een wit h in

    each dat a display file, to mak e it mu ch ea sier to see wha t is being calculat ed

    and how to modify it if necessa ry.

    Note This ma nu al is written describing and sh owing access th rough th e cascading

    men u preferen ce. If you ar e ru nn ing th e progra m th rough t he selection dia log box

    met hod, the a ppear an ce a nd inter face will be slight ly different .

    Using DesignGuides

    All DesignGuides can be accessed in the Schemat ic window through either cascading

    men us or dialog boxes. You can configu re your preferr ed meth od in t he Advan ced

    Design System Main window. Select t he DesignGuid e menu.

    The comm an ds in t his men u a re a s follows:

    DesignGuide Studio Documentation > Developer Studio Documentation is only available

    on th is men u if you ha ve inst alled th e DesignGu ide Developer St udio. It br ings up

    th e DesignGu ide Developer St ud io docum ent at ion. Anoth er way to access th e

    Developer S tu dio docum ent a tion is by selectin gHelp > Topics and In dex >

    DesignGuid es >Design Gu id e Developer S tudio (from an y ADS pr ogra m window).

  • 7/29/2019 57363392 Design Guide

    8/2001-2 Using DesignGuides

    Amplifier QuickStart Guide

    DesignGuide Developer Studio > Start DesignGuide Studio is only ava ilable on t his

    menu if you have insta lled the DesignGuide Developer Studio. I t launches the in it ia

    Developer St udio dialog box.

    Add DesignGuide brings up a directory browser in wh ich you can add a DesignGuide

    to your insta llat ion. This is primar ily int ended for u se with DesignGuides th at ar e

    cust om-built th rough th e Developer Stu dio.

    List/Remove DesignGuide brings u p a list of your inst alled DesignGuides. Select an y

    th at you would like to uninst all an d choose th e R em ove button.

    Preferences brings up a dialog box th at allows you t o:

    Disable the DesignGuide menu comma nds (all except Pr eferences) in th e Main

    window by un checking t his box. In t he Schema tic and Layout windows, th e

    complete DesignGuide menu and all of it s commands will be removed if th is box

    is unchecked.

    Select your preferr ed inter face meth od (cascading men us vs. dialog boxes).

    Close an d rest ar t th e progra m for your preference cha nges to ta ke effect.

  • 7/29/2019 57363392 Design Guide

    9/200Basic Procedures 1-3

    Note On P C system s, Windows r esour ce issues m ight limit th e use of cascading

    men us. When m ult iple windows ar e open , your system could become dest abilized.

    Thu s th e dialog box menu style might be best for t hese situ at ions.

    Accessing the Documentation

    To access t he docum ent at ion for th e DesignGuide, select eith er of the following:

    DesignGuide > Amplifier > Amplifier DesignGuide Documentation (from ADS

    Schem atic window)

    Help > Topics and Index > DesignGuides > Amplifier (from a ny ADS progra m

    window)

    Basic Procedures

    The feat ur es an d cont ent of th e Am plifier DesignGu ide ar e accessible from t he

    DesignGuid e men u foun d in any Advanced Design Syst em Schemat ic window, as

    shown h ere

  • 7/29/2019 57363392 Design Guide

    10/2001-4 Basic Procedures

    Amplifier QuickStart Guide

    The eight m enu selections from DC and Bias Poin t S im ulations through Lum ped

    Multi-Elem ent Z-Y Matchin g N etwork s ar e for selecting var ious simula tion setu ps

    an d am plifier examples. These ar e fur th er categorized, as explained in subsequen t

    sections of th is docum ent .

    Ea ch of th e eight men u selections from DC and Bias Poin t S im ula tion s toLum ped

    Multi-Elem ent Z-Y Matchin g N etwork s ha ve additiona l selections. The men u for

    schem at ics for DC an d bias point simula tions appea rs as follows.

    Select ing one of these menu it ems, such as BJ T I-V Cu rves... , cop ies a schemat ic in to

    your cur ren t project th at is set u p for gener at ing a bipolar jun ction tr an sistorscurrent-versus-voltage curves.

  • 7/29/2019 57363392 Design Guide

    11/200Basic Procedures 1-5

    The BJ T I-V cur ve schem at ic appears as follows.

    Ea ch sch em a tic h a s a sa m ple device t h at h a s a lr ea dy been sim u la t ed. Th e sim u la t ed

    results a re displayed in a dat a display file that opens au tomatically after th e

    schema tic is copied int o your project. Modify th e BJ T by editing its m odel, or deleteth e device an d repla ce it with a differen t one. The red boxes enclose pa ra met ers you

    should set, such a s t he r an ge of base curr ent s a nd th e ra nge of collector voltages.

    After m ak ing modificat ions, run a simu lation a nd t he da ta display will upda te.

    Note All schema tics have a sample device an d/or m odel, or a sa mple amp lifier. The

    da ta d isplay tha t opens a ft er you make a menu select ion has pre-s imula ted da ta from

    the device or amplifier. You must replace the device or amplifier on the schemat ic and

    ru n a new simulation. The data display will be updat ed with th e new data .

  • 7/29/2019 57363392 Design Guide

    12/2001-6 Basic Procedures

    Amplifier QuickStart Guide

    Following ar e th e resu lts of th e simu lation.

    Mos t of t h e in for m at ion on t h is da t a disp la y a n d on ot h er s in t h e Des ign Gu id e is in aforma t t ha t engineers can easily understa nd.

    Tips

    We ha ve minimized th e visibility of equations t ha t you should not need to

    modify. They ar e included in a separ at e Equa tions page.

    Informa tion a bout items on a data display th at you would wan t t o modify is

    enclosed in red boxes.

    Many of th e data displays have multiple pages. Those tha t do have a note

    indicat ing what inform at ion is on oth er pa ges.

    If, after selecting a DesignGu ide men u comm an d th at ha s insert ed a schem at ic an d

    opened a dat a display, you r e-na me th e schem at ic an d th en ru n a simu lation, the

    most efficient way to display th e resu lts is to open t he da ta display file th at

    corr esponded t o th e origina l schem at ic, and u pdat e th e defau lt dat aset na me (which

  • 7/29/2019 57363392 Design Guide

    13/200Selecting the Appropriate Simulation Type 1-7

    is usu ally th e sam e as t he n ew na me of your schem at ic), to display your latest

    simulation results.

    Selecting the Appropriate Simulation Type

    The Amplifier DesignGu ide is divided int o eight cat egories for d ifferen t simu lat ion

    types. Your design object ive and the type of models you have available will determine

    which men u selections you select fir st .

    DC and Bias Point Simulations

    If you h a ve a N on lin ea r F ET or BJT m odel a va ila ble, you ca n s ta r t wit h DC and Bias

    Point S im ulations, as shown h ere.

    These selections can be used t o deter mine da ta such a s t he following:

    I-V cur ves of a device

    Approxima te class A out put power a nd optimal bias point

    Gm, fmax, and ft versus bias

    Noise figure and S-param eters versus bias

    Optimal sour ce and load impedances for ma ximum gain or minimum noise

    figur e, versus bias

  • 7/29/2019 57363392 Design Guide

    14/2001-8 Selecting the Appropriate Simulation Type

    Amplifier QuickStart Guide

    Note While th is DesignGuide is ta rgeted t o power a mplifier designer s, man y of the

    schema tics and da ta displays ar e quite useful for sm all-signa l or low-noise amplifier

    designer s a s well.

    S-Parameter Simulations

    If you h ave only S-para met ers (possibly with n oise dat a) available, or wan t t o

    simula te a n am plifiers sm all-signa l perform an ce, sta rt with S-Parameter

    Simulations, as shown here.

    These can be used t o determ ine dat a such as th e following:

    Noise figure a nd NFm in, maximum available gain, and S-param eters

    Optimal sour ce and load impedances to at ta in the minimum n oise figur e or

    ma ximu m gain

    Feedback network element values to att ain stabili ty

    Noise an d available gain circles

    Sta bility circles an d stability factors

    Sta bility and S-para meters versus power (actually th ese require a nonlinear

    model.)

    Gr ou p Dela y

    Nonlinear Simulations

    If you h a ve a n on lin ea r d evice m odel a va ila ble a n d wa n t t h e opt im a l sou r ce a n d loa d

    impedan ces at th e fun dam ent al frequen cy (to maximize out put power an d/or

    power-added efficiency), use Load-Pull or Sour ce-Pull schema tics in 1-Tone N onlinea

    Simulations, as sh own here.

  • 7/29/2019 57363392 Design Guide

    15/200Selecting the Appropriate Simulation Type 1-9

    If you h a ve a n on lin ea r d evice m odel a va ila ble a n d wa n t t h e opt im a l sou r ce a n d loa dimpedan ces at th e fun dam ent al frequen cy (to maximize out put power an d/or

    power-added efficiency, or min imize th ird- or fifth -order int erm odulat ion distort ion),

    use Load-Pu ll or Sour ce-Pu ll schem at ics in 2-Tone Nonlinear Simulations, as shown

    here.

  • 7/29/2019 57363392 Design Guide

    16/2001-10 Selecting the Appropriate Simulation Type

    Amplifier QuickStart Guide

    If you h a ve a n on lin ea r d evice m odel a va ila ble a n d wa n t t h e opt im a l sou r ce a n d loa d

    impedan ces at the fun dament al and harmonic frequencies (to maximize output

    power and/or power-added efficiency), use the Harmonic Impedance Opt or Harmonic

    Gam ma Opt schema tics in 1-Tone N onlinear S im ulations, as shown here.

    The differen ce between t he t wo opt imizat ions is th at in one case, you specify the

    ra nges of allowed rea l an d ima gina ry impeda nces, an d in th e oth er, you specify th e

    allowed reflection coefficient s as circula r r egions on th e Smith Ch ar t.

    If you h a ve a n on lin ea r device m odel a va ila ble a n d wa n t t h e opt im a l sou r ce a n d loa d

    impedan ces at the fun dament al and harmonic frequencies (to maximize output

    power a nd /or power-added efficiency, an d m inimize int erm odulat ion d istort ion), use

    th e Ha rm onic Impeda nce Optimization or Ha rm onic Gam ma Optimization

    schematics in 2-Tone N onlinear S im ulation, as sh own here.

    Again , the differen ce between th e two opt imizat ions is th at in one case, you specify

    th e ra nges of allowed real a nd ima gina ry impedan ces, an d in t he other case you

    specify the allowed reflection coefficient s a s circular regions on t he Sm ith Cha rt .

  • 7/29/2019 57363392 Design Guide

    17/200Selecting the Appropriate Simulation Type 1-11

    If you a lready ha ve an a mplifier design, and you wan t t o cha ra cter ize th e nonlinea r

    per form an ce over frequ ency, power, and oth er swept pa ra met ers, select t he

    appr opriat e schemat ic from 1-Tone N onlinear S im ulations, as shown here.

  • 7/29/2019 57363392 Design Guide

    18/2001-12 Selecting the Appropriate Simulation Type

    Amplifier QuickStart Guide

    The selections for 2-Tone N onlinear S im ulation follow.

    There are several high-efficiency power amplifier examples. Simulat ions of these can

    be accessed u nder Power Am plifier Exam ples - By Class of Operation. Included ar e

    Class AB thr ough Class F, with Doher ty a nd Class S examples a s well.

    Amplifier sta tist ical design is a lso available. These schem at ics a nd dat a displays,

    which descr ibe s teps you may take to minimize per formance var ia t ion and maximize

    yield, can be accessed u nder Am plifi er S tatis tica l Design .

  • 7/29/2019 57363392 Design Guide

    19/200Selecting the Appropriate Simulation Type 1-13

  • 7/29/2019 57363392 Design Guide

    20/2001-14 Selecting the Appropriate Simulation Type

    Amplifier QuickStart Guide

    If you wa n t t o gen er a te a n a r bit r ar y im peda n ce or a dm it t an ce, or m a tch t o a devices

    equivalent input or out put circuit, u sing ideal, lum ped elements only, use one of th e

    schematics under Lum ped 2-Elem ent Z and Y Matchin g N etwork , as sh own her e.

    Lum ped, multi-elemen t m at ching net work s can also be used, as shown here.

    Note The Pass ive Circuit DesignGuide includes impedan ce m at ching capa bilities.

  • 7/29/2019 57363392 Design Guide

    21/200Tools 1-15

    Tools

    These ut ilities pr ovide added fun ctiona lity to th is DesignGu ide. They can be seen in

    the following figu re. A brief descript ion is pr ovided for each below. For more

    inform at ion select th e help but ton in t he individua l ut ility.

    Transistor Bias UtilityThe Transistor Bias Utility provides SmartComponents and automated-assistants for

    th e design a nd simu lation of comm on r esistive an d active tr an sistor bias n etwork s.

    The au tomated capabilities can determine th e tr an sistor DC para meters, design an

    appr opriat e network to achieve a given bias point , and simu late a nd display the

    achieved per form an ce. All SmartComponents can be modified wh en selected. You

    simply select a SmartComponentan d with lit tle effort redes ign or verify th eir

    performance.

  • 7/29/2019 57363392 Design Guide

    22/2001-16 Tools

    Amplifier QuickStart Guide

    Smith Chart Utility

    This DesignGuide Utility provides full smith char t capabilit ies, synthesis of matching

    net work s, allowing impeda nce ma tching an d plott ing of const an t

    Gain/Q/VSWR/N oise circles. This guide assu mes you ha ve inst alled th e a ssociated

    DesignGuide with a ppr opr iat e licens ing codewords.

    Impedance Matching Utility

    The Impeda nce Mat ching Ut ility perform s th e synth esis of lumped a nd distr ibuted

    impedan ce m at ching n etwork s ba sed on pr ovided specificat ions. The Ut ility feat ur es

    au tomat ic simula tion, sensitivity an alysis, and display setup t o ena ble simple and

    efficient componen t verifica tion.

  • 7/29/2019 57363392 Design Guide

    23/2002-1

    Chapter 2: IntroductionThe Am plifi er DesignGu id e has m any simulation setups a nd data displays that are

    useful for am plifier design. The simu lation setu ps a re cat egorized by the t ype of

    s imula t ion des ir ed and the type of model ava ilable. Mos t of the s imula t ion setups a re

    for a na lysis, but th ere a re a lso some for synth esizing impedan ce ma tching networks

    Note Th is m a nu a l a ssum es t h a t you a r e fa m ilia r wit h a ll of t h e ba sic ADS pr ogr a m

    opera t ions. For a dditiona l inform ation, refer t o th e ADS S chem atic Capture and

    Layoutmanual .

    This m anu al is orga nized as follows:

    Reference ta bles in t his cha pter, listing all simulat ion setu ps, with links to theappr opriat e ma nu al pages for det ailed inform at ion

    Chapt ers for each type of simulation setu p, as identified on t he DesignGuide

    menu (which is accessed from ADS Schematic window). Detai led information on

    each simulat ion s etu p is included.

    Note The Power Amplifier exam ples ar e not docum ent ed in det ail, but for th e list of

    data displays, refer to Table 2-5. For a lis t of r eferences for these, r efer to References

    for Power Amplifier E xam ples on pa ge 2-10.

  • 7/29/2019 57363392 Design Guide

    24/2002-2 List of Available Data Displays

    Introduction

    List of Available Data Displays

    The ta bles th at follow list all dat a displays th at ar e included with ea ch simu lation.

    Table 2-1 shows all data displays included for DC a nd Bias Point Simulat ions.

    Table 2-2 shows all dat a displays used for S-Para met er Simu lations.

    Table 2-1. DC and Bias Point Simu lations

    Simulation Data Displays

    BJT I-V Curves, Class A Power, Eff., Load,Gm vs. Bias

    BJT_IV_Gm_PowerCalcs.dds, (ClassA_calcs;IV and Gm vs. Bias pages)

    BJT Output Power, Distortion vs. Load R BJT_dynamic_LL.dds

    BJT Fmax vs. Bias BJT_fmax_vs_bias.dds

    BJT Ft vs. Bias BJT_ft_vs_bias.dds

    BJT Noise Fig., S-Params, Gain, Stability, andCircles vs. Bias

    BJT_SP_NF_Match_Circ.dds, (NF, SP, Gains, at allBias Pts.; Matching at 1 Bias Point; andCircles_Ga_Gp_NF_Stability pages)

    BJT Stability vs. Bias BJT_Stab_vs_bias.dds

    FET I-V Curves, Class A Power, Eff., Load,Gm vs. Bias

    FET_IV_Gm_PowerCalcs.dds, (ClassA_calcs;IV and Gm vs. Bias pages)

    FET Output Power, Distortion vs. Load R FET_dynamic_LL.dds

    FET Fmax vs. Bias FET_fmax_vs_bias.dds

    FET Ft vs. Bias FET_ft_vs_bias.ddsFET Noise Fig., S-Params, Gain, Stability, andCircles vs. Bias

    FET_SP_NF_Match_Circ.dds, (NF, SP, Gains, at allBias Pts.; Matching at 1 Bias Point; andCircles_Ga_Gp_NF_Stability pages)

    FET Stability vs. Bias FET_Stab_vs_bias

    Table 2-2. S-Para meter Simu lations

    Simulation Data Displays

    S-Params., Noise Fig., Gain, Stability, Circles,and Group Delay

    SP_NF_GainMatchK.dds, (NF, Gain, Stab. Fact.,Matching; Gain, Noise, and Stability Circles; SParameters, Group Delay pages)

    Feedback Network Optimization to AttainStability

    Gain_and_Stab_opt.dds

  • 7/29/2019 57363392 Design Guide

    25/200List of Available Data Displays 2-3

    Table 2-3 shows all dat a displays u sed for 1-Tone Nonlinea r Simulat ions.

    S-Params, Gain, NF, Stability, Group Delay vs.Swept Parameters

    SP_NF_GainMatchKsweep.dds (Matching for Gainor NF; Stability Factors and Minimum NF, S Paramsand MAG at 1 Freq.; Group Delay pages)

    S-Params., Stability, and Group Delay vs.Frequency and Input Power

    Stab_vs_freq_pwr.dds (Stability and S-ParameterPlots; Group Delay pages)

    Table 2-3. 1-Tone Nonlinear Simulat ions

    Simulation Data Displays

    Spectrum, Gain, Harmonic Distortion HB1Tone.dds

    Spectrum, Gain, Harmonic Distortion (w/PAE) HB1TonePAE.dds

    Spectrum, Gain, Harmonic Distortion vs.Power

    HB1TonePswp.dds, (Spectrum, Gain Comp.,Harmonics; AM-to-AM, AM-to-PM Plots pages

    Spectrum, Gain, Harmonic Distortion vs.Power (w/PAE)

    HB1TonePAE_Pswp.dds, (Spectrum, Gain Comp.,PAE, Harmonics; AM-to-AM, AM-to-PM Plots pages

    Spectrum, Gain, Harmonic Distortion vs.Frequency

    HB1ToneFswp.dds

    Spectrum, Gain, Harmonic Distortion vs.

    Frequency (w/PAE)

    HB1TonePAE_Fswp.dds

    Spectrum, Gain, Harmonic Distortion vs.Frequency & Power

    HB1ToneFPswp.dds, (Spectrum, Gain, Harmonics;AM-to-AM, AM-to-PM Plots pages)

    Spectrum, Gain, Harmonic Distortion vs.Frequency & Power (w/PAE)

    HB1TonePAE_FPswp.dds, (Spectrum, Gain, PAE,Harmonics; AM-to-AM, AM-to-PM Plots pages

    Spectrum, Gain, Harmonic Distortion atX dB Gain Compression

    HB1ToneGComp.dds

    Spectrum, Gain, Harmonic Distortion at X dBGain Compression vs. Freq.

    HB1ToneGCompFswp.dds

    Spectrum, Gain, Harmonic Distortion at X dBGain Compression (w/PAE) vs. 1 Param.

    HB1ToneGComp1swp.dds

    Spectrum, Gain, Harmonic Distortion at X dBGain Compression (w/PAE) vs. 2 Params.

    HB1ToneGComp2swp.dds

    Noise Figure, Spectrum, Gain, HarmonicDistortion

    HB1ToneNoise.dds

    Large-Signal Load Impedance Mapping LoadMapper.dds

    Table 2-2. S-Para meter Simu lations (cont inued)

    Simulation Data Displays

  • 7/29/2019 57363392 Design Guide

    26/2002-4 List of Available Data Displays

    Introduction

    Table 2-4 shows all dat a displays u sed for 2-Tone Nonlinea r Simulat ions.

    Load-Pull - PAE, Output Power Contours HB1Tone_LoadPull.dds

    Load-Pull - PAE, Output Power Contours at X

    dB Gain Compression

    HB1Tone_LoadPull_GComp.dds

    Source-Pull - PAE, Output Power Contours HB1Tone_SourcePull.dds

    Harmonic Impedance Opt. - PAE, OutputPower, Gain

    HarmZopt1tone.dds, (Power, Gain, Spectrum; OptSource and Load Zs; and Waveforms pages)

    Harmonic Gamma Opt. - PAE, Output Power,Gain

    HarmGammaOpt1tone.dds, (Power, Gain,Spectrum; Opt Source and Load Zs; and Waveformspages

    Table 2-4. 2-Tone Nonlinear Simulat ions

    Simulation Data Displays

    Spectrum, Gain, TOI and 5thOI Points HB2Tone.dds

    Spectrum, Gain, TOI and 5thOI Points(w/PAE)

    HB2TonePAE.dds

    Spectrum, Gain, TOI and 5thOI Points vs.Power

    HB2TonePswp.dds

    Spectrum, Gain, TOI and 5thOI Points vs.Power (w/PAE)

    HB2TonePAE_Pswp.dds

    Spectrum, Gain, TOI and 5thOI Points vs.Frequency

    HB2ToneFswp.dds

    Spectrum, Gain, TOI and 5thOI Points vs.Frequency (w/PAE)

    HB2TonePAE_Fswp.dds

    Spectrum, Gain, TOI and 5thOI Points vs. 1Param. (w/PAE)

    HB2TonePAE_1swp.dds

    Spectrum, Gain, TOI and 5thOI Points vs. 2

    Param. (w/PAE)

    HB2TonePAE_2swp.dds

    Load-Pull - PAE, Output Power, IMD Contours HB2Tone_LoadPull.dds

    Source-Pull - PAE, Output Power, IMDContours

    HB2Tone_SourcePull.dds

    Harmonic Impedance Opt. - PAE, OutputPower, Gain, IMD

    HarmZopt2tone.dds, (Power, Gain, Spectra; OptSource and Load Zs; and Waveforms pages)

    Table 2-3. 1-Tone Nonlinea r Simu lations (cont inued)

    Simulation Data Displays

    http://-/?-http://-/?-
  • 7/29/2019 57363392 Design Guide

    27/200List of Available Data Displays 2-5

    Ta ble 2-5 shows a ll da t a displa ys u sed in t h e Power Amplifier Examples - By Class of

    Operation category. For reference information on these examples, refer to References

    for Power Amplifier E xam ples on pa ge 2-10.

    Harmonic Gamma Opt. - PAE, Output Power,Gain, IMD

    HarmGammaOpt2tone.dds, (Power, Gain, Spectrum;Opt Source and Load Zs; and Waveforms pages)

    Table 2-5. Power Amplifier Exam ples - By Clas s of Opera tion

    Simulation Data Displays

    Class AB > Load-Pull - PAE, Output PowerContours

    HB1Tone_LoadPull_ClassAB.dds

    Class AB > Spectrum, Gain, HarmonicDistortion, and PAE vs. Power

    HB1TonePAE_Pswp_ClassAB.dds

    Class AB > Spectrum, Gain, HarmonicDistortion, and PAE vs. 1 Swept Parameter

    HB1TonePAE1swp_ClassAB.dds

    Class AB > Spectrum, Gain, TOI and 5thOIPoints, and PAE vs. Power

    HB2TonePAE_Pswp_ClassAB.dds

    Class B > Load-Pull - PAE, Output PowerContours

    HB1Tone_LoadPull_ClassB.dds

    Class B > Spectrum, Gain, HarmonicDistortion, and PAE vs. Power HB1TonePAE_Pswp_ClassB.dds

    Class B > Spectrum, Gain, HarmonicDistortion, and PAE vs. 1 Swept Parameter

    HB1TonePAE1swp_ClassB.dds

    Class B > Spectrum, Gain, TOI and 5thOIPoints, and PAE vs. Power

    HB2TonePAE_Pswp_ClassB.dds

    Class C > Load-Pull - PAE, Output PowerContours

    HB1Tone_LoadPull_ClassC.dds

    Class C > Spectrum, Gain, Harmonic

    Distortion, and PAE vs. Power

    HB1TonePAE_Pswp_ClassC.dds

    Class C > Spectrum, Gain, HarmonicDistortion, and PAE vs. 1 Swept Parameter

    HB1TonePAE1swp_ClassC.dds

    Class D > Load-Pull - PAE, Output PowerContours

    HB1Tone_LoadPull_ClassD.dds

    Class D > Spectrum, Gain, HarmonicDistortion, and PAE vs. Power

    HB1TonePAE_Pswp_ClassD.dds

    Table 2-4. 2-Tone Nonlinea r Simu lations (cont inued)

    Simulation Data Displays

    http://-/?-
  • 7/29/2019 57363392 Design Guide

    28/2002-6 List of Available Data Displays

    Introduction

    Table 2-6 shows all dat a d isplays used in the Amplifier Sta t istical Design category.

    Class D > Spectrum, Gain, HarmonicDistortion, and PAE vs. 1 Swept Parameter

    HB1TonePAE1swp_ClassD.dds

    Class E > Load-Pull - PAE, Output PowerContours HB1Tone_LoadPull_ClassE.dds

    Class E > Spectrum, Gain, HarmonicDistortion, and PAE vs. Power

    HB1TonePAE_Pswp_ClassE.dds

    Class E > Spectrum, Gain, HarmonicDistortion, and PAE vs. 1 Swept Parameter

    HB1TonePAE1swp_ClassE.dds

    Class F > Load-Pull - PAE, Output PowerContours

    HB1Tone_LoadPull_ClassF.dds

    Class F > Spectrum, Gain, Harmonic

    Distortion, and PAE vs. Power

    HB1TonePAE_Pswp_ClassF.dds

    Class F > Spectrum, Gain, HarmonicDistortion, and PAE vs. 1 Swept Parameter

    HB1TonePAE1swp_ClassF.dds

    Doherty> Load-Pull - PAE, Output PowerContours

    HB1Tone_LoadPull_Doherty.dds

    Doherty > Spectrum, Gain, HarmonicDistortion, and PAE vs. Power

    HB1TonePAE_Pswp_Doherty.dds

    Doherty > Spectrum, Gain, HarmonicDistortion, and PAE vs. 1 Swept Parameter

    HB1TonePAE1swp_Doherty.dds

    Doherty > Spectrum, Gain, TOI and 5thOIPoints, and PAE vs. Power

    HB2TonePAE_Pswp_Doherty.dds

    Class S > Spectrum, Output Power, Distortion,PAE

    ClassS_PA_1.dds

    Table 2-5. Power Amplifier E xamples - By Class of Operat ion (cont inued)

    Simulation Data Displays

  • 7/29/2019 57363392 Design Guide

    29/200List of Available Data Displays 2-7

    Table 2-6. Amplifier Sta tist ical Design

    Simulation Data Displays

    S-Parameter Simulation Yield Sensitivity Histogram - One(YSH_SParams_One.dds)

    Yield Sensitivity Histograms - Four(YSH_SParams_Four.dds)

    Measurement Histogram - One(MH_SParams_One.dds)

    Measurement Histograms - Four(MH_SParams_Four.dds)

    Statistical Response Plots (SRP_SParams.dds)

    Group Delay, Noise Figure Simulation Yield Sensitivity Histogram - One

    (YSH_GrpDly_NF_One.dds)Yield Sensitivity Histograms - Four(YSH_GrpDly_NF_Four.dds)

    Measurement Histogram - One(MH_GrpDly_NF_One.dds)

    Measurement Histograms - Four(MH_GrpDly_NF_Four.dds)

    Statistical Response Plots (SRP_GrpDly_NF.dds)

    S-Parameters, Group Delay, Noise Figure

    Simulation

    Yield Sensitivity Histogram - One

    (YSH_Sparams_GrpDly_One.dds)

    Yield Sensitivity Histograms - Four(YSH_Sparams_GrpDly_Two.dds)

    Gain, Spectrum, Harmonic Dist. Simulation Yield Sensitivity Histogram(YSH_1Tone_HD_Spect.dds)

    Measurement Histogram(MH_1Tone_HD_Spect.dds)

    Statistical Response Plots(SRP_1Tone_HD_Spect.dds)

    Third- and Fifth-Order Intercept Simulation Yield Sensitivity Histogram(YSH_2Tone_TOI_5OI.dds)

    Measurement Histogram (MH_2Tone_TOI_5OI.dds)

    Statistical Response Plot(SRP_2Tone_TOI_5OI.dds)

    http://-/?-http://-/?-http://-/?-http://-/?-
  • 7/29/2019 57363392 Design Guide

    30/2002-8 List of Available Data Displays

    Introduction

    Table 2-7 shows all dat a d isplays used for Lu mped 2-Elemen t Z-Y Mat chin g

    Networks.

    Table 2-8 shows all dat a d isplays used for Lu mped Mu lti-E lement Z-Y Mat chin g

    Networks.

    Table 2-7. Lumped 2-Elemen t Z-Y Mat ching N etworks

    Simulation Data DisplaysRload, Shunt C/L, Series C/L for Desired Z Zdesired1.dds

    Rload, Series C/L, Shunt C/L for Desired Z Zdesired2.dds

    Rload, Shunt C/L, Series C/L for Desired Y Ydesired1.dds

    Rload, Series C/L, Shunt C/L for Desired Y Ydesired2.dds

    Rload, Shunt C/L, Series C/L to Match Series R-Cor R-L Device

    Zmatch1.dds

    Rload, Series C/L, Shunt C/L to Match Series R-C

    or R-L Device

    Zmatch2.dds

    Rload, Shunt C/L, Series C/L to Match Shunt R-Cor R-L Device

    Ymatch1.dds

    Rload, Series C/L, Shunt C/L to Match Shunt R-Cor R-L Device

    Ymatch2.dds

    Table 2-8. Lumped Mu lti-Elemen t Z-Y Mat ching Net works

    Simulation Data Display

    Rload, Series C/L, Shunt C/L, Series L/C forDesired Z

    Zdesired1M.dds

    Rload, Shunt C, Series L, Series C for Desired Z Zdesired2M.dds

    Rload, Series L, Shunt C, Series L/C for DesiredZ

    Zdesired3M.dds

    Rload, Shunt C, Series L, Shunt C for Desired Y Ydesired1M.dds

    Rload, Shunt C, Series L, Series C, Shunt L/C forDesired Y

    Ydesired2M.dds

    Rload, Series C/L, Shunt C/L, Series L/C toMatch Series R-C or R-L Device

    Zmatch1M.dds

    Rload, Shunt C, Series L/C, Series C to MatchSeries R-C or R-L Device

    Zmatch2M.dds

  • 7/29/2019 57363392 Design Guide

    31/200List of Available Data Displays 2-9

    Rload, Series L, Shunt C, Series L/C to MatchSeries R-C or R-L Device

    Zmatch3M.dds

    Rload, Shunt C, Series L, Shunt C Shunt R-C orR-L Device

    Ymatch1M.dds

    Rload, Shunt C, Series L, Series C, Shunt L/C toMatch Shunt R-C or R-L Device

    Ymatch2M.dds

    Table 2-8. Lum ped Multi-Element Z-Y Mat ching Networks (cont inued)

    Simulation Data Display

  • 7/29/2019 57363392 Design Guide

    32/2002-10 References for Power Amplifier Examples

    Introduction

    References for Power Amplifier Examples

    Class AB

    [1]Cripps S.C., RF Power Amplifiers for Wireless Communications, 1999 Artech

    House, ISBN # 0-89006-989-1.(pa ges 120-125)

    [2] Kenin gton P.B., High-Linear ity RF Amplfier Design, 2000 Art ech House,

    ISBN # 1-58053-143-1. (pa ges 101-102)

    Class B

    [1]Cripps S.C., RF Power Amplifiers for Wireless Communications, 1999 Artech

    House, ISBN # 0-89006-989-1. (pa ges 93-112)

    [2] Kenin gton P.B., High-Linear ity RF Amplfier Design, 2000 Art ech House,

    ISBN # 1-58053-143-1. (pa ges 97-101)

    Class C

    [1]Cripps S.C., RF Power Amplifiers for Wireless Communications, 1999 Artech

    House, ISBN # 0-89006-989-1.(pa ge 124)

    [2] Kenin gton P.B., High-Linear ity RF Amplfier Design, 2000 Art ech House,

    ISBN # 1-58053-143-1. (pa ges 102-112)

    Class D

    [1]Cripps S.C., RF Power Amplifiers for Wireless Communications, 1999 ArtechHouse, ISBN # 0-89006-989-1.(pa ges 130-132)

    [2] Kenin gton P.B., High-Linear ity RF Amplfier Design, 2000 Art ech House,

    ISBN # 1-58053-143-1. (pa ges 113-121)

    Class E

    [1]Cripps S.C., RF Power Amplifiers for Wireless Communications, 1999 Artech

    House, ISBN # 0-89006-989-1.(pa ges 170-177)

    [2] Kenin gton P.B., High-Linear ity RF Amplfier Design, 2000 Art ech House,ISBN # 1-58053-143-1. (pa ges 121-122)

    Class F

    [1]Cripps S.C., RF Power Amplifiers for Wireless Communications, 1999 Artech

    House, ISBN # 0-89006-989-1.(pa ges 132-140)

  • 7/29/2019 57363392 Design Guide

    33/200References for Power Amplifier Examples 2-11

    [2] Kenin gton P.B., High-Linear ity RF Amplfier Design, 2000 Art ech House,

    ISBN # 1-58053-143-1. (pa ges 122-123)

    Class S

    [1]Cripps S.C., RF Power Amplifiers for Wireless Communications, 1999 Artech

    House, ISBN # 0-89006-989-1.(pa ges 246-248)

    [2] Kenin gton P.B., High-Linear ity RF Amplfier Design, 2000 Art ech House,

    ISBN # 1-58053-143-1. (pa ges 124-126)

    [3] 3. Kahn L.R., Single Sideband Tra nsm ission by En velope E limina tion an d

    Rest ora t ion, Pr oc. IRE, Vol. 40, Ju ly 1952, pp. 803-806.

    Doh ert y

    [1]1. Cripps S.C., RF Power Amplifiers for Wireless Communications, 1999

    Artech House, ISBN # 0-89006-989-1.(pa ges 225-239)

    [2] 2. Kenin gton P.B., High-Linear ity RF Amplfier Design, 2000 Artech House,

    ISBN # 1-58053-143-1. (pa ges 493-499)

    General

    [1]1. Sokal N.O. RF Power Amplifiers, Classes A through S, Proc. Wireless and

    Microwave Technology 1997 Chanatilly, VA.

  • 7/29/2019 57363392 Design Guide

    34/2002-12 References for Power Amplifier Examples

    Introduction

  • 7/29/2019 57363392 Design Guide

    35/2003-1

    Chapter 3: DC and Bias Point SimulationsThe tem plates in t he DC and Bias Point Simulat ions m enu ar e concerned with

    choosing a bias point , an d its effects on out pu t power, gain, noise figur e,

    tr an scondu cta nce, etc.

  • 7/29/2019 57363392 Design Guide

    36/2003-2

    DC and Bias Point Simulations

    DC and Bias Point Simulations > BJT I-V Curves, Class A Power, Eff.,Load, Gm vs. Bias

    Description

    This simu lation setu p genera tes t he I-V cur ves of a BJ T. Var ious dat a dependent on

    th e I-V cur ves, such a s t ra nsconducta nce, class A out pu t power, and efficiency a realso shown. Both th e base cur ren t an d t he collector-to-emitt er voltage a re swept.

    Needed to Use Schematic

    Nonlinea r BJ T model

    Main Schematic Settings

    Sweep ra nges for ba se cur ren t a nd collector volta ge

    Data Display Outputs

    BJ T_IV_Gm_PowerCalcs.dds, Clas sA_calcs pa ge:

    Device I-V curves

    Load line set by placing a m ar ker on th e I-V curves at t he knee, an d by a

    user-specifiable m aximum VCE.

    Maximum allowed DC power dissipation curve, with ma ximu m dissipat ion set

    by user.

    Given t he load line specified by th e knee of th e I-V cur ves an d th e maximumVCE:

    Optimu m collector voltage a nd collector curr ent , for ma ximu m power

    delivered t o the load while in Class A operat ion

    Corr esponding load resistance

    Corr esponding ma ximu m out put power

    Corr esponding DC power consu mpt ion

    Corr esponding DC-to-RF efficiency

    Given a different bias point, specified by a different ma rker:

    Load line between tha t ma rker a nd th e mark er at t he knee of th e I-V cur ve

    Resista nce of th is load line

    DC power consu mption a t t his bias point

  • 7/29/2019 57363392 Design Guide

    37/2003-3

    Outpu t power, assuming the device remains in Class A opera t ion (AC voltage

    does not exceed user-specified VCE, an d does not en ter th e knee region)

    DC-to-RF efficiency at th is bias point

    Device beta versus ba se cur rent at th e VCE specified by one of th e mar kers

    Note The est ima te of DC-to-RF efficiency an d out pu t power a re only

    ap proximat e, since no high-frequ ency effects ar e modeled in this sim ula t ion.

    BJ T_IV_Gm_PowerCalcs.dds, IV and Gm vs. Bias pa ge:

    Device I-V cur ves

    DC tra nsconductan ce (Gm) versu s VCE

    DC tra nsconductan ce (Gm) versu s IBB and VCE

    DC tra nscondu cta nce (Gm) versus collector cur ren t

    Collector current versu s base cur rent at one VCE

    Table of tr an sconductan ce values

    Schematic Name

    BJT_IV_Gm_PowerCalcs

    Data display name

    BJT_IV_Gm_PowerCalcs.dds

  • 7/29/2019 57363392 Design Guide

    38/2003-4

    DC and Bias Point Simulations

    DC and Bias Point Simulations > BJT Output Power, Distortion vs. LoadR

    Description

    This simulat ion set up genera tes t he I-V cur ves of a BJ T an d simula tes t he power

    delivered to a load resistor a s a fun ction of the r esistan ce value, at one bias point.

    Needed to Use Schematic

    Nonlinea r BJ T model

    Main Schematic Settings

    Sweep ra nges for ba se cur ren t, collector volta ge and load resist ance; bias point an d

    frequen cy for out put power versu s load resista nce simulat ion

    Data Display Outputs

    Device I-V curves

    Load lines for each of th e load r esista nces

    Power delivered to the load a s a fun ction of load r esista nce

    Output power a nd ha rmonic distortion at each load r esistan ce

    Schematic Name

    BJT_dynamic_LL

    Data Display Name

    BJT_dynamic_LL.dds

    Note

    The load power simu lations will show less th an optima l results a s th e simulat ion

    frequ ency is increa sed, because only a res istive load is presen ted to th e device. Also,

    no impeda nce ma tching is included at th e inpu t.

  • 7/29/2019 57363392 Design Guide

    39/2003-5

    DC and Bias Point Simulations > BJT Fmax vs. Bias

    Description

    This simu lates th e ma ximu m frequen cy of oscillation (th e frequen cy at which th e

    maximum ava ilable ga in drops to 0 dB), ver sus bias cur ren t , for a part icu la r va lue o

    VCE. It should help you det erm ine how high in frequen cy a device can be used.

    Needed to Use Schematic

    Nonlinea r BJ T model

    Main Schematic Settings

    VCE, base curr ent sweep limits, and frequency ra nge for S-para met er simu lation

    Data Display Outputs

    The maximum available gain versus base current and frequency

    dB(S21) versus base current and frequency

    The ma ximu m frequency of oscillation, which is dependent on a ma rker th at

    you move to select th e valu e of collector cur ren t

    Schematic Name

    BJ T_fma x_vs_bias

    Data Display Name

    BJ T_fma x_vs_bias.dds

  • 7/29/2019 57363392 Design Guide

    40/2003-6

    DC and Bias Point Simulations

    DC and Bias Point Simulations > BJT Ft vs. Bias

    Description

    This simu lates a devices ft, th e frequen cy at which th e sh ort -circuit cur ren t gain

    drops to un ity, versus bias cur ren t, for a pa rt icula r va lue of VCE. It should help you

    determ ine how high in frequency a device can be used.

    Needed to Use Schematic

    Nonlinea r BJ T model

    Main Schematic Settings

    VCE, base curr ent sweep limits, and frequency ra nge for S-para met er simu lation

    Data Display Outputs

    Short circuit current gain versus base current and frequency

    F r equ en cy a t wh ich t h e sh or t -cir cu it cu r ren t ga in dr ops t o 0 dB, a t t h e collect or

    bias cur ren t specified by a movable ma rk er

    Schematic Name

    BJ T_ft

    Data Display Name

    BJT_ft.dds

  • 7/29/2019 57363392 Design Guide

    41/2003-7

    DC and Bias Point Simulations > BJT Noise Fig., S-Params, Gain,Stability, and Circles vs. Bias

    Description

    This simulat es th e S-par am eters a nd n oise par am eters of a device, versus bias

    voltage and current, at a single frequency. You specify the collector voltage sweepra nge an d th e base cur ren t sweep ra nge, an d th e single frequen cy for S-para met er

    an d n oise ana lysis. The optimal source and load impedan ces for m inimum noise

    figur e an d for ma ximu m gain a re compu ted, as well as t he a vailable gain circles,

    power gain circles, noise circles, and sour ce a nd load st ability circles.

    Needed to Use Schematic

    Nonlinea r BJ T model

    Main Schematic SettingsSweep ra nges for base cur ren t an d collector voltage a nd frequen cy for S-par am eter

    analysis.

    Data Display Outputs

    BJ T_SP_NF _Mat ch_Circ.dds, NF, SP, Gains a t all Bias Pt s. page:

    Minimum noise figure versus VCE and base current

    dB(S21), dB(S12), dB(S11), and dB(S22) versu s collector volta ge and base

    current

    Maximum available gain versus base curr ent a nd collector voltage

    Associated power gain (with input m at ched for m inimum noise figur e and

    out put conjugat ely mat ched) versu s collector voltage a nd base cur ren t

    BJ T_SP_NF _Mat ch_Circ.dds, Mat chin g at 1 Bias Point page:

    Minimum n oise figure an d dB(S21) versus collector cur ren t a t a collector

    volta ge selected by moving a ma rk er on t he I -V cur ves.

    DC I-V curves

    Smith cha rt with t ra ces of th e optima l sour ce reflection coefficients for

    minimum noise figure, and the following reflect ion coefficients (gammas) a t the

    selected bia s point :

    Gamma source for minimum noise figure

  • 7/29/2019 57363392 Design Guide

    42/2003-8

    DC and Bias Point Simulations

    Gamma load for ma ximum power gain when input is terminat ed for

    minimu m noise figur e

    Gamm a sour ce for simultan eous conjugate mat ch (with out regard to noise)

    Gamm a load for simultan eous conjugate mat ch (with out r egar d to noise)

    Listing column s of dat a corr esponding to the bias point selected by moving a

    ma rk er on th e I-V cur ves:

    VCE

    IC

    Approximat e DC power consumption

    S-pa r am et er s, dB

    Maximum available power gain, dB Minimum noise figure, dB

    Sopt for minimum n oise figur e in polar coordinat es and in magnitude and

    phase

    Zopt for minimum n oise figure

    Associated power gain in dB, if th e input is ma tched for m inimu m n oise

    figur e an d th en t he output is mat ched for ma ximum power gain

    Corr esponding load impedance for a ssociated power gain

    Sour ce an d load impedances for simulta neous conjugate ma tching (with out

    regar d t o noise)

    Input an d output impedances when source and load are terminated in 50

    ohms

    Stability factor, K

    Frequency of the S-param eter simulations

    BJ T_SP_NF_Match_Circ.dds, Circles_Ga_Gp_NF _St ability pa ge:

    All at one bias p oint selected by moving a ma rk er on th e devices I-V cur ves:

    Sta bility factor, K, and sour ce stability circles. Note t ha t t he Smith Char t

    size is fixed, so if th e sta bility circles ar e far out side th e Smith Cha rt , th ey

    will not be displayed. If you cha nge the Sm ith Cha rt scaling to Aut o Scale,

    the circles will be visible.

  • 7/29/2019 57363392 Design Guide

    43/2003-9

    Available gain a nd n oise circles on one Smith Cha rt , an d power gain circles

    on a different Smith Char t.

    Minimum noise figure, source impedance (Zopt) required to achieve th is noise

    figur e, an d th e optima l load impeda nce for power t ra nsfer when th e sour ce

    impeda nce is Zopt

    Maximum available gain, and t he sour ce and load impedances required for

    simu lta neous conjugat e ma tching (only valid if K>1)

    Noise figure with t he simultaneous conjugate mat ch condition

    Noise figure, tran sducer power gain, and optimal load impedance if th e

    sour ce impedan ce is chosen a rbitr ar ily by moving a m ar ker (Gam ma S) on a

    Smith Cha rt . This is useful if you mu st ma ke some compr omise between

    noise and gain, or if you n eed to avoid an un st able region.

    Tran sducer power gain, an d optimal sour ce impedance an d corr esponding

    noise figure, if th e load impedan ce is chosen a rbitr ar ily by moving a ma rk er

    (Gam ma L) on a Smith Cha rt . This is useful if you n eed to avoid an un sta ble

    region.

    Schematic Name

    BJT_SP_NF_Match_Circ

    Data Display Name

    BJT_SP_NF_Match_Circ.dds

  • 7/29/2019 57363392 Design Guide

    44/2003-10

    DC and Bias Point Simulations

    DC and Bias Point Simulations > BJT Stability vs. Bias

    Description

    Th is sim u la t es t h e S-pa r am et er s of a t r an sis tor, wit h t h e ba se cu r ren t swept a n d t h e

    emitt er bias voltage const an t, t o determ ine th e sta bility factors as a fun ction of base

    cur ren t. It should help you det erm ine th e dependence of th e sta bility factor on th ebias point .

    Needed to Use Schematic

    Nonlinea r BJ T model

    Main Schematic Settings

    VCE, base curr ent sweep limits, and frequency ra nge for S-para met er simu lation

    Data Display Outputs

    Stability measure, B1, versus base current and frequency

    Sta bility factor, K, versus base cur rent an d frequency

    Geomet rically-derived load st ability factor, mu , versus base cur ren t a nd

    frequency

    Geomet rically-derived sour ce sta bility factor, mu_prime, versus ba se cur ren t

    an d frequen cy

    Schematic NameBJT_Stab_vs_bias

    Data Display Name

    BJT_Stab_vs_bias.dds

  • 7/29/2019 57363392 Design Guide

    45/2003-11

    DC and Bias Point Simulations > FET I-V Curves, Class A Power, Eff.,Load, Gm vs. Bias

    Description

    This simu lation setu p genera tes t he I-V cur ves of a FE T. Var ious dat a dependent on

    th e I-V cur ves, such a s t ra nsconducta nce, class A out pu t power, and efficiency a realso shown. Both th e gat e an d dra in voltages ar e swept.

    Needed to Use Schematic

    Nonlinea r F ET model

    Main Schematic Settings

    Sweep ran ges for gat e an d dra in voltages

    Data Display Outputs

    FET_IV_Gm_PowerCalcs.dds, ClassA_calcs pa ge:

    Device I-V curves

    Load line set by placing a m ar ker on th e I-V curves at t he knee, an d by a

    user-specifiable maximum VDS

    Maximum allowed DC power dissipation curve, with ma ximu m dissipat ion set

    by user.

    Given t he load line specified by th e knee of th e I-V cur ves an d th e maximumVDS:

    Optimum drain voltage and dra in curr ent, for m aximum power delivered to

    th e load while in Class A opera tion

    Corresponding load resistance

    Corresponding maximum output power

    Corresponding DC power consumption

    Corr esponding DC-to-RF efficiency

    Given a different bias point, specified by a different ma rker:

    Load line between th at m arker an d the marker at the knee of the I-V curve

    Resistance of this load line

    DC power consumption at t his bias point

  • 7/29/2019 57363392 Design Guide

    46/2003-12

    DC and Bias Point Simulations

    Outpu t power, assuming the device remains in Class A opera t ion (AC voltage

    does not exceed user-specified VDS, an d does not ent er t he k nee r egion)

    DC-to-RF efficiency at th is bias point

    Note The est ima tes of DC-to-RF efficiency and out pu t power a re onlyap proximat e, since no high-frequ ency effects ar e modeled in this sim ula t ion.

    FET_IV_Gm_PowerCalcs.dds, IV, Gm vs. Bias page:

    Device I-V curves

    DC transconductan ce (Gm) versus VDS

    DC tr an sconductan ce (Gm) versu s VGS and VDS

    DC tra nsconductan ce (Gm) versus drain curr ent

    Drain curr ent versus gate voltage at one VDS

    Table of transconductan ce values

    Schematic Name

    FET_IV_Gm_PowerCalcs

    Data Display Name

    FET_IV_Gm_PowerCalcs.dds

  • 7/29/2019 57363392 Design Guide

    47/2003-13

    DC and Bias Point Simulations > FET Output Power, Distortion vs. LoadR

    Description

    This simulat ion set up genera tes t he I-V cur ves of a F ET a nd simu lates t he power

    delivered to a load resistor a s a fun ction of the r esistan ce value, at one bias point.

    Needed to Use Schematic

    Nonlinea r F ET model

    Main Schematic Settings

    Sweep ra nges for gate voltage, drain voltage a nd load resista nce; bias point an d

    frequen cy for out put power versu s load resista nce simulat ion

    Data Display Outputs

    Device I-V curves

    Load lines for each of th e load r esista nces

    Power delivered to the load a s a fun ction of load r esista nce

    Output power a nd ha rmonic distortion at each load r esistan ce

    Schematic Name

    FET_dynamic_LL

    Data Display Name

    FET_dynamic_LL.dds

    Note

    The load power simu lations a re going to show less th an optima l results a s th e

    simula tion frequen cy is increa sed, becau se only a resistive load is present ed t o the

    device. Also, no impeda nce matchin g is included at the input .

  • 7/29/2019 57363392 Design Guide

    48/2003-14

    DC and Bias Point Simulations

    DC and Bias Point Simulations > FET Fmax vs. Bias

    Description

    This simu lates th e ma ximu m frequen cy of oscillation (th e frequen cy at which th e

    maximum ava ilable ga in drops to 0 dB), ver sus bias volt age, for a par t icu la r va lue o

    VDS. It should help you det erm ine how high in frequ ency a device can be used.

    Needed to Use Schematic

    Nonlinea r F ET model

    Main Schematic Settings

    VDS, gate voltage sweep limits, an d frequency ran ge for S-par am eter simula tion

    Data Display Outputs

    The maximu m available gain versus gat e voltage an d frequency

    dB(S21) versus gat e voltage and frequency

    The ma ximu m frequency of oscillation, which is dependent on a ma rker th at

    you m ove to select t he va lue of drain cur ren t

    Schematic Name

    FET_fmax_vs_bias

    Data Display Name

    FET_fmax_vs_bias.dds

  • 7/29/2019 57363392 Design Guide

    49/2003-15

    DC and Bias Point Simulations > FET Ft vs. Bias

    Description

    This simu lates a devices ft, th e frequen cy at which th e sh ort -circuit cur ren t gain

    drops t o un ity, versus gat e volta ge, for a pa rt icula r value of VDS. It sh ould h elp you

    determ ine how high in frequency a device can be used.

    Needed to Use Schematic

    Nonlinea r F ET m odel.

    Main Schematic Settings

    VDS, gate voltage sweep limits, an d frequency ran ge for S-par am eter simula tion

    Data Display Outputs

    Short circuit cur rent gain versu s gat e voltage an d frequency

    Frequency at which th e short -circuit cur rent gain drops to 0 dB, at th e drain

    bias cur ren t specified by a movable ma rk er

    Schematic Name

    FET_ft_vs_bias

    Data Display Name

    FET_ft_vs_bias.dds

  • 7/29/2019 57363392 Design Guide

    50/2003-16

    DC and Bias Point Simulations

    DC and Bias Point Simulations > FET Noise Fig., S-Params, Gain,Stability, and Circles vs. Bias

    Description

    This simulat es th e S-par am eters a nd n oise par am eters of a device, versus bias

    volta ges, a t a single frequ ency. You specify th e gat e and dra in volta ge sweep ra nges,and the s ingle fr equency for S-parameter and noise ana lys is. The op timal source and

    load imp edan ces for m inimum noise figur e an d for m aximum gain a re compu ted, as

    well as the avai lable gain circles, power gain circles, noise circles, and source and load

    stability circles.

    Needed to Use Schematic

    Nonlinea r F ET model

    Main Schematic SettingsSweep ran ges for gat e an d dra in voltages an d frequen cy for S-para met er a na lysis

    Data Display Outputs

    FE T_SP_NF _Mat ch_Circ.dds, NF, SP, Gains a t a ll Bias Pt s. pa ge:

    Minimum noise figure versus VGS and VDS

    dB(S21), dB(S12), dB(S11), and dB(S22) versu s VGS an d VDS

    Maximum available gain versus VGS and VDS

    Associated power gain (with input m at ched for m inimum noise figur e and

    out put conjugat ely ma tched) versus VGS an d VDS

    FE T_SP_NF _Mat ch_Circ.dds, Mat chin g at 1 Bias Point pa ge:

    Minimum n oise figure an d dB(S21) versu s drain cur rent a t a dra in voltage

    selected by moving a m ar ker on t he I-V cur ves.

    DC I-V curves

    Smith cha rt with t ra ces of th e optima l sour ce reflection coefficients forminimum noise figure, and the following reflect ion coefficients (gammas) a t the

    selected bia s point :

    Gamma source for minimum noise figure

    Gamma load for ma ximum power gain when input is terminat ed for

    minimu m noise figur e

  • 7/29/2019 57363392 Design Guide

    51/2003-17

    Gamm a sour ce for simultan eous conjugate mat ch (with out regard to noise)

    Gamm a load for simultan eous conjugate mat ch (with out r egar d to noise)

    Listing column s of dat a corr esponding to the bias point selected by moving a

    ma rk er on th e I-V cur ve:

    VDS

    IDS

    Approximat e DC power consumption

    S-pa r am et er s, dB

    Maximum available power gain, dB

    Minimum noise figure, dB

    Sopt for minimum n oise figur e in polar coordinat es and in magnitude andphase

    Zopt for minimum n oise figure

    Associated power gain in dB, if th e input is ma tched for m inimu m n oise

    figur e an d th en t he output is mat ched for ma ximum power gain

    Corr esponding load impedance for a ssociated power gain

    Sour ce an d load impedances for simulta neous conjugate ma tching (with out

    regar d t o noise)

    Input an d output impedances when source and load are terminated in 50

    ohms

    Stability factor, K

    Frequency of the S-param eter simulations

    FET_SP_NF_Match_Circ.dds, Circles_Ga_Gp_NF_Stability page:

    All at one bias p oint selected by moving a ma rk er on th e devices I-V cur ves:

    Sta bility factor, K, and sour ce stability circles. Note t ha t t he Smith Char t

    size is fixed, so if th e sta bility circles ar e far out side th e Smith Cha rt , th ey

    will not be displayed. If you cha nge the Sm ith Cha rt scaling to Aut o Scale,

    the circles will be visible.

    Available gain a nd n oise circles on one Smith Cha rt , an d power gain circles

    on a different Smith Char t.

  • 7/29/2019 57363392 Design Guide

    52/2003-18

    DC and Bias Point Simulations

    Minimum noise figure, source impedance (Zopt) required to achieve th is noise

    figur e, an d th e optima l load impeda nce for power t ra nsfer when th e sour ce

    impeda nce is Zopt

    Maximum available gain, and t he sour ce and load impedances required for

    simu lta neous conjugat e ma tching (only valid if K>1)

    Noise figure with t he simultaneous conjugate mat ch condition

    Noise figure, tran sducer power gain, and optimal load impedance if th e

    sour ce impedan ce is chosen a rbitr ar ily by moving a m ar ker (Gam ma S) on a

    Smith Cha rt . This is useful if you mu st ma ke some compr omise between

    noise and gain, or if you n eed to avoid an un st able region.

    Tran sducer power gain, an d optimal sour ce impedance an d corr esponding

    noise figure, if th e load impedan ce is chosen a rbitr ar ily by moving a ma rk er

    (Gam ma L) on a Smith Cha rt . This is useful if you n eed to avoid an un sta bleregion.

    Schematic Name

    FET_SP_NF_Match_Circ

    Data Display Name

    FET_SP_NF_Match_Circ.dds

  • 7/29/2019 57363392 Design Guide

    53/2003-19

    DC and Bias Point Simulations > FET Stability vs. Bias

    Description

    This simulat es th e S-para meters of a tr an sistor, with th e gate voltage swept a nd t he

    dra in bias voltage const an t, to determ ine th e sta bility factors as a fun ction of gate

    voltage. It sh ould h elp you determ ine th e dependen ce of the st ability factor on t hebias point .

    Needed to Use Schematic

    Nonlinea r F ET model

    Main Schematic Settings

    VDS, gate voltage sweep limits, an d frequency ran ge for S-par am eter simula tion

    Data Display Outputs

    Sta bility measur e, B1, versu s gate voltage and frequency

    Sta bility factor, K, versus gate voltage and frequency

    Geomet rically-derived load st ability factor, mu, versu s gate voltage an d

    frequency

    Geomet rically-derived source stability factor, mu_prime, versu s gat e voltage

    an d frequen cy

    Schematic NameFET_Stab_vs_bias

    Data Display Name

    FET_Stab_vs_bias.dds

  • 7/29/2019 57363392 Design Guide

    54/2003-20

    DC and Bias Point Simulations

  • 7/29/2019 57363392 Design Guide

    55/2004-1

    Chapter 4: S-Parameter SimulationsThe templat es in t he S-Par am eter Simulat ions ar e for simulating th e sma ll-signa l

    cha ra cter istics, such as noise figure, available ga in, st ability, group delay, etc., of a

    device or a n a mplifier. Except for t he las t one, th ese simu lat ions do not requ ire a

    nonlinea r m odel, but an am plifier with nonlinea r m odels can be used.

  • 7/29/2019 57363392 Design Guide

    56/2004-2

    S-Parameter Simulations

    S-Parameter Simulations > S-Params., Noise Fig., Gain, Stability, Circlesand Group Delay

    Description

    This simu lates th e S-par am eters, noise figure, sta bility, an d group delay of an y

    two-por t network , ver sus fr equency. You may use it with an S-parameter data file, orwith a nonlinea r a mplifier m odel.

    Needed to Use Schematic

    Any linea r or n onlinear model, including mea sur ed S-par am eters

    Main Schematic Settings

    Fr equency sweep ran ge

    Data Display Outputs

    SP_NF _Gain Mat chK.dds, NF, Gain , Sta b. Fact., Mat chin g pa ge:

    Minimum n oise figure an d noise figur e with 50 ohm t erminat ions versus

    frequency

    dB(S21), maximu m available gain, and a ssociated gain (when t he input is

    ma tched for NF min a nd t he out put is then conjugat ely ma tched), versu s

    frequency

    Sta bility factor, K, and geomet ric sta bility factors, mu _sour ce an d mu _load

    versus frequen cy

    Smith cha rt with t ra ces of th e optima l sour ce reflection coefficients for

    min imu m n oise figure, sour ce an d load st ability circles, and the following

    reflection coefficient s (gam ma s) a t a frequ ency selected by moving a m ar ker :

    Gamma source for minimum noise figure

    Gamma load for ma ximum power gain when input is terminat ed for

    minimu m noise figur e

    Gamm a sour ce for simultan eous conjugate mat ch (with out regard to noise)

    Gamm a load for simultan eous conjugate mat ch (with out r egar d to noise)

    Listing column s of dat a corr esponding to the frequen cy point selected by

    moving a m ar ker:

    S-pa r am et er s, dB

  • 7/29/2019 57363392 Design Guide

    57/2004-3

    Maximum available power gain, dB

    Minimum noise figure, dB

    Sopt for minimum n oise figur e in polar coordinat es and in magnitude and

    phase

    Zopt for minimum n oise figure

    Associated power gain in dB, if th e input is ma tched for m inimu m n oise

    figur e an d th en t he output is mat ched for ma ximum power gain

    Corr esponding load impedance for a ssociated power gain

    Sour ce an d load impedances for simulta neous conjugate ma tching (with out

    regar d t o noise)

    Stability factor, K

    SP_NF _Gain Mat chK.dds, Gain , Noise, an d St ability Circles page:

    All at one frequen cy selected by moving a m ar ker :

    Sta bility factor, K, an d sour ce and load st ability circles. Note t ha t t he Smith

    char t s ize is fixed , so if the s tability cir cles a re fa r ou t side the Smith char t , they

    will not be displayed. If you cha nge th e Smit h cha rt scaling to Aut o Scale, th e

    circles will be visible.

    Available gain a nd n oise circles

    Minimum noise figur e, sour ce impedan ce (Zopt) required to achieve th is noise

    figur e, an d th e optima l load impeda nce for power t ra nsfer when t he source

    impedan ce is Zopt, as well as t he t ra nsdu cer power gain with t hese source an d

    load impedances

    Maximum available gain, and t he sour ce and load impedances required for

    simu lta neous conjuga te m at chin g (only valid if K>1), and th e corr esponding

    noise figure

    Noise figure, tr an sducer power gain, an d optimal load impedance if th e sour ceimpedan ce is chosen ar bitra rily by moving a ma rk er (Gam ma S) on a Smith

    cha rt . This is useful if you mu st ma ke some compr omise between n oise an d

    gain, or if you n eed to avoid an un st able r egion.

    Power gain circles, on a different Sm ith cha rt

    Tran sducer power gain, optimal source impedance, and corresponding noise

    figur e, if the load impedan ce is chosen a rbitr ar ily by moving a ma rk er

  • 7/29/2019 57363392 Design Guide

    58/2004-4

    S-Parameter Simulations

    (Gam ma L) on a Smith cha rt . This is useful if you n eed to avoid an un sta ble

    region.

    SP_NF_GainMatchK.dds, S Parameters, Group Delay page:

    S11 and S22 on Sm ith cha rt s, also with a circle of const an t VSWR

    S21 an d S12 (linear u nits) on polar plots

    dB(S21) an d dB(S12) on a recta ngular plot

    Group Delay in seconds, versus frequen cy.

    Note This plot m ay be jagged if mea sur ed S-par am eter da ta is simu lated, an d

    th e num ber of mea sur ed points is sma ll.

    Schematic Name

    SP_NF_GainMatchK

    Data Display Name

    SP_NF_GainMatchK.dds

  • 7/29/2019 57363392 Design Guide

    59/2004-5

    S-Parameter Simulations > Feedback Network Optimization to AttainStability

    Description

    This schema tic optimizes component values in input , out put , an d feedback

    sta bilizat ion net work s, to sta bilize a 2-port net work, m inimize th e minimu m n oisefigure, an d m aximize gain (dB(S21).) You ma y delete componen ts or modify th e

    str uctur e of th e sta bilizat ion n etwork s.

    Needed to Use Schematic

    Any linea r or n onlinear model, including mea sur ed S-par am eters

    Main Schematic Settings

    Type of optimization algorithm (gradient, ran dom, genetic, etc.), goal weighting, goa

    values, an d frequ ency ran ges over which noise figur e an d gain goa ls will beevaluated.

    Data Display Outputs

    Geomet rically-derived sour ce and load st ability factors

    Gain , dB(S21)

    Minimum noise figure

    Values of optimized component s

    Schematic Name

    Gain_and_Stab_opt

    Data display name

    Gain_and_Stab_opt.dds

    Note

    The optimizat ion resu lts m ay vary su bsta nt ially, depending on t he t ype of

    opt imizat ion algor ithm used (set on the Nominal Opt imizat ion cont roller ) and on thegoals. Noise figure and gain have been included as opt imizat ion goals. Otherwise, the

    optimizer might fin d a sta ble net work, but with poor per form an ce as a n a mplifier.

    The feedback network topology might be modified, but the data display will a lso have

    to be adjust ed. For example, if you use a tr an smission line (inst ead of lum ped

    elemen ts) to att ain sta bility an d optimize the length an d/or width of th e line, these

    par am eters can be displayed on t he da ta display by insert ing new listing column s.

  • 7/29/2019 57363392 Design Guide

    60/2004-6

    S-Parameter Simulations

    S-Parameter Simulations > S-Params, Gain, NF, Stability, Group Delay vsSwept Parameters

    Description

    This schem at ic sweeps two par am eters in a circuit to determ ine how gain, noise

    figur e, ma tching impeda nces, sta bility an d group delay depend on th e twoparameters. Often th is sor t of a s imula t ion provides designers with more ins ight than

    an optimization. You mu st decide which two par am eters to sweep, an d you ma y

    modify th e net work to be simu lated.

    Needed to Use Schematic

    Any linea r or n onlinear model, including mea sur ed S-par am eters

    Main Schematic Settings

    Network topology, two parameters to sweep and their sweep ranges, frequency rangefor S-para met er simu lation

    Data Display Outputs

    SP_NF _Gain Mat chKsweep.dds, Mat chin g for Ga in or NF pa ge:

    Minimum noise figure versus frequency

    dB(S21), maximu m available gain, and a ssociated gain (when t he input is

    ma tched for NF min a nd t he out put is then conjugat ely ma tched), versu s

    frequency

    dB(S21), maximu m available gain, and a ssociated gain (when t he input is

    ma tched for NF min a nd t he out put is then conjugat ely ma tched), versu s each

    swept para meter, with th e oth er pa ra meter held const an t, at one frequency

    selected by a ma rk er

    Stability factor versus frequency

    Smith cha rt with t ra ces of th e optima l sour ce reflection coefficients for

    min imu m n oise figure, an d the following reflection coefficient s (gam ma s) a t a

    frequen cy selected by moving a ma rk er:

    Gamma source for minimum noise figure

    Gamma load for ma ximum power gain when input is terminat ed for

    minimu m noise figur e

    Gamm a sour ce for simultan eous conjugate mat ch (with out regard to noise)

  • 7/29/2019 57363392 Design Guide

    61/2004-7

    Gamm a load for simultan eous conjugate mat ch (with out r egar d to noise)

    Listing column s of dat a corr esponding to the frequen cy point selected by

    moving a m ar ker:

    S-pa r am et er s, dB

    Maximum available power gain, dB

    Minimum noise figure, dB

    Sopt for minimum n oise figur e in polar coordinat es and in magnitude and

    phase

    Zopt for minimum n oise figure

    Associated power gain in dB, if th e input is ma tched for m inimu m n oise

    figur e an d th en t he output is mat ched for ma ximum power gain

    Corr esponding load impedance for a ssociated power gain

    Sour ce an d load impedances for simulta neous conjugate ma tching (with out

    regar d t o noise)

    Stability factor, K

    SP_NF_GainMatchKsweep.dds, Stability Factors and Minimum NF page:

    Sta bility factor, K, versus both swept pa ra meters a nd frequency

    Sta bility factor, K, versus both swept par am eters, at one frequen cy selected bymoving a ma rker

    Minimum n oise figure versus both swept par ameters an d frequency

    Min imum noise figure ver sus both swept parameter s, a t one frequency selected

    by moving a ma rk er

    SP_NF_GainMa tchKsweep.dds, S Pa ra ms an d MAG a t 1 Fr eq. page:

    S-parameters versus both parameters

    Minimum noise figure versus both swept para meters

    Maximum available gain versus both swept para meters

    SP_NF _Gain Mat chKsweep.dds, Group Delay pa ge:

    Group delay versus both swept parameters an d frequency

    Group delay at one combination of th e swept pa ra meters, versus frequency

  • 7/29/2019 57363392 Design Guide

    62/200

  • 7/29/2019 57363392 Design Guide

    63/2004-9

    S-Parameter Simulations > S-Params., Stability, and Group Delay vs.Frequency and Input Power

    Description

    This schematic simulates the large-signal S-parameters of a device, versus frequency

    and input power. The stability factor, K, is computed from these S-parameters , us ingth e sta nda rd form ula foun d in t extbooks. This simu lation s etu p differs from t he

    LSSP con t roller in tha t small-s igna l mixer mode is used to in ject a small s igna l a t the

    out pu t of th e device, while th e inpu t is being driven by a lar ge signa l sour ce. This

    gives a m uch m ore r ealistic simula tion of S12 an d S22.

    Needed to Use Schematic

    Nonlinea r model, or an am plifier with nonlinea r device m odels

    Main Schematic SettingsRan ges over which to sweep th e input signa l frequen cy an d power

    Data Display Outputs

    Stab_vs_freq_pwr.dds, Stability an d S-Par amet er P lots pa ge:

    S-Param eters versus input frequency and input power

    Sta bility factor, K, versus input frequency and input power

    St ab_vs_freq_pwr.dds, Group Dela y pa ge:

    Group delay versu s frequen cy, with t he inpu t power selected by moving a

    marker

    Schematic Name

    Stab_vs_freq_pwr

    Data Display Name

    Stab_vs_freq_pwr.dds

    Note

    The st ability factor is only compu ted at th e frequen cy of the inpu t signa l. The

    sta bility factors at higher a nd lower frequencies ar e not compu ted.

  • 7/29/2019 57363392 Design Guide

    64/2004-10

    S-Parameter Simulations

  • 7/29/2019 57363392 Design Guide

    65/2005-1

    Chapter 5: 1-Tone Nonlinear Simulations

    The templates in t he 1-Tone Nonlinear Simulat ions ar e for simu lating the

    large-signa l cha ra cter istics of an am plifier or device, such as gain, ha rm onic

    distortion, power-added efficiency, gain compression, etc. Setups for simulating these

    versus frequen cy, power, and ar bitra ry swept p ar am eters ar e included. Load- an d

    Source-pull simulat ions and impedance optimizat ion setups are also included. These

    simulations do require nonlinear model(s).

  • 7/29/2019 57363392 Design Guide

    66/2005-2

    1-Tone Nonlinear Simulations

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion

    Description

    This is the mos t bas ic s imula t ion setup, and it s imula tes the spect rum, ou tpu t power

    power ga in, an d h ar monic dist ort ion of a device or a mplifier. A sa mple power

    am plifier is provided. You m us t r eplace th is am plifier with your own device oram plifier, and m odify the biases, as n eeded.

    Needed to Use Schematic

    A device or a n a mplifier u sing nonlinea r m odel(s)

    Main Schematic Settings

    Inpu t frequen cy an d a vailable source power

    Data Display Outputs

    Output spectrum and voltage waveform

    Ou t pu t p ower

    Transducer power gain (power delivered to the load minus power available from

    th e sour ce)

    Har monic distortion up t o the 5th, in dBc

    Schematic Name

    HB1Tone

    Data Display Name

    HB1Tone.dds

  • 7/29/2019 57363392 Design Guide

    67/2005-3

    1-Tone Nonlinear Simulations > Spectrum, Gain, Harmonic Distortion(w/PAE)

    Description

    This simu lation setu p is identical t o th e HB1Tone schema tic, except t ha t it includes

    two current probes and named voltage nodes for calculat ing power-added efficiency. Ialso simu lates t he spectru m, out put power, power gain, an d h ar monic distort ion of a

    device or a mplifier. A sa mple power a mplifier is pr ovided. You mu st rep lace th is

    am plifier with your own device or a mplifier, and you can modify th e biases, as

    described in the notes, below.

    Needed to Use Schematic

    A device or a n a mplifier u sing nonlinea r m odel(s)

    Main schematic settingsInpu t frequency, available sour ce power, and bias set tin gs

    Data Display Outputs

    Output spectrum and input an d output voltage waveforms

    Ou t pu t p ower

    Transducer power gain (power delivered to the load minus power available from

    th e sour ce)

    Har monic distortion up t o the 5th, in dBc

    Power-added efficiency (Pout at fun dam ent al minu s Available sour ce

    power)/(DC power consumption)

    High supply cur rent

    DC power consumption

    Therma l power dissipat ion in th e device or a mplifier

    Schematic NameHB1TonePAE

    Data Display Name

    HB1TonePAE.dds

  • 7/29/2019 57363392 Design Guide

    68/2005-4

    1-Tone Nonlinear Simulations

    Note

    Only bias su pplies on t he h ighes t level schem atic will be included in t he PAE

    calculat ion. So, for exa mple, if you r eplace th e sample amplifier with one with t he

    bias su pplies included in t he subcircuit, th ose su pplies will not be included in t he

    PAE calculat ion. On t he h ighest level schem at ic, you can delete one of th e two

    supplies an d/or r eplace th e voltage sour ces with cur ren t sour ces, an d t he PAE

    calculat ion will still be valid. You can modify th e componen ts in t he bia s n etwork,

    rea lizing th at th e DC power consu mpt ion is compu ted a s (th e DC voltage at th e

    Vs_high n ode) * (th e DC cur ren t in th e Is_h igh cur ren t pr obe) + (th e


Recommended