+ All Categories
Home > Documents > 59-261_Unit+1_W2011_CLEW (3)

59-261_Unit+1_W2011_CLEW (3)

Date post: 08-Apr-2018
Category:
Upload: peter-chemel
View: 218 times
Download: 0 times
Share this document with a friend

of 88

Transcript
  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    1/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    2/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    3/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    4/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    5/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    6/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    7/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    8/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    9/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    10/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    11/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    12/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    13/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    14/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    15/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    16/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    17/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    18/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    19/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    20/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    21/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    22/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    23/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    24/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    25/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    26/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    27/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    28/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    29/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    30/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    31/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    32/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    33/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    34/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    35/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    36/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    37/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    38/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    39/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    40/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    41/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    42/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    43/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    44/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    45/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    46/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    47/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    48/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    49/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    50/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    51/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    52/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    53/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    54/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    55/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    56/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    57/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    58/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    59/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    60/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    61/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    62/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    63/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    64/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    65/88

    59-261

    T itration cur v es of weak acids and bases (1 )

    ? A

    5

    H A c

    HA c

    1.74 10 M

    aK

    !

    ! v

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    66/88

    59-261

    T itration cur v es of weak acids and bases (2 )

    A buffer resists changes in pH

    Titration curves showgraphically that a weak acid andits anion can act as a buffer .

    The useful buffering region of aweak acid is generally between10% and 90% titration of theweak acid.

    Buffering region depends on p K a

    Buffering region spansapproximately pK a 1.0

    Figure 2-17

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    67/88

    59-261

    Henderson-Hasselbalch examples1 a) Calculate the pKa of lactic acid at pH 4.8 [lactate]=0.087 M; [lactic acid]= 0.010

    M.

    b) What will the pH of the above solution be upon addition of 0.007 M HCl?

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    68/88

    59-261

    Case 1- A dd acid to a buffer:

    Where x= [H+

    ] addedpH= pKa+ log ([A -]- x)/([H A ] + x)

    Case 2- add base to a buffer

    Where y= [OH -] added

    pH= pKa+ log ([A -] + y)/([H A ] - y)

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    69/88

    59-261

    A nother example:A solution was made by mixing 100 mL of 0.1 M HCl with 400 mL of 0.1 M

    sodium acetate, and diluting the mixture to 1 L. What is the pH of thesolution? (The p K a of acetic acid is 4.76)

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    70/88

    59-261

    Polyprotic acids as buffers

    Figure 2-18

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    71/88

    59-261

    Henderson-Hasselbalch examples2. What is the predominant species of H3PO4, H2PO4 , HPO42 and PO43 at pH = 6.0?

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    72/88

    59-261

    Henderson-Hasselbalch examples2. What is the predominant species of H3PO4, H2PO4 , HPO42 and PO43 at pH = 6.0?

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    73/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    74/88

    59-261

    Buffering of blood plasma

    24

    3

    [CO ( g)][H ]

    [HCO ]K !

    [H+] concentration can be controlled by regulating[CO2(g)] in the lungs and the [HCO3 ] in the blood.

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    75/88

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    76/88

    59-261

    Learning objecti v es

    Understand how water and weak acids ionizeCalculate pH/pOH from [H +] or [OH -]Use Henderson-Hasselbalch equation tocalculate pH s, pKa s, and concentrations of ionic speciesUnderstand titration cur v es and buffers.

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    77/88

    59-261

    Unit 1 Foundations______________________________

    Stereochemistry, configuration andconformation

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    78/88

    59-261

    Learning Objecti v es

    Understand configuration

    versus conformationUnderstand Enantiomers v ersus

    diastereomersBe able to identify chiral centersUnderstand RS system

    Determining absolute configuration Drawing molecules of a particular absolute

    configuration

    h

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    79/88

    59-261

    3D structure: StereochemistryStereoisomers : different molecules in which the bond order is the same but thespatial arrangement of the atoms is different .

    Structural formula ball and stick space filling

    Space filling is the most realistic : radius of each atom is proportional to its van der

    Waals radius .

    f

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    80/88

    59-261

    3D structure: ConfigurationConfiguration : the fixed spatial arrangement of atoms.

    Is conferred by:(i) double bonds (no freedom of rotation); or

    (ii) chiral centres (the specific sequence of arrangement of groups).

    Geometric (cis-trans) isomers : arrangement differs with respect to double bond.

    Example :These can be separated and havetheir own unique properties.

    3D Chi li (1 )

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    81/88

    59-261

    3D structure: Chirality (1 )Asymmetric carbon :

    a C atom with 4 differentsubstituents.

    The substituents may be arrangedin 2 different ways in 3-D space .

    Gives rise to 2 stereoisomers withsimilar or identical chemicalproperties, but with certaindiffering physical and biologicalproperties.

    Asymmetric carbon centres arechiral .

    Non-chiral carbons are symmetricor achiral .

    3D Chi li (2 )

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    82/88

    59-261

    3D structure: Chirality (2 )Presence of 2 or more ( n ) chiral centres in a molecule results in 2 n stereoisomers .

    Enantiomers : stereoisomers that are mirror images of each other.

    Diastereomers : stereoisomers that are not mirror images of each other.

    S d f i

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    83/88

    59-261

    Structure and functionEnantiomers have nearly identical chemical properties, however, they rotate plane-polarized light in opposite directions .

    In biochemistry: structure and function are intimately related .

    Biological interactions are stereospecific , e.g., enzymes, hormones, immuneresponses.

    T h lid id C f hi li

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    84/88

    59-261

    T halidomide: Consequences of chirality

    Has 1 chiral centre: 2 enantiomers.

    Late 1957 to the early 60 s:

    used for treating morning sickness inpregnant women.

    S enantiomer : an effective sedative.

    Many babies died, while 10,000 wereborn world-wide with, for example,stunted arms and legs.

    R enantiomer :

    teratogenic; malformation causing.

    Could it have been averted?

    M l l f i

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    85/88

    59-261

    Molecular conformationRefers to the spatial arrangement of substituents that are free to assume different

    configurations in space by the free rotation (no breaking) about single bonds.Rotational barriers due to steric hindrance and/or electronic factors.

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    86/88

    St ifi it

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    87/88

    59-261

    StereospecificityIn general, biomolecules in organisms occur in only one of their stereoisomers.

    Amino acids in proteins occur as the L-relative isomers.

    Glucose, a sugar, occurs in the (R absolute) or D-relative configuration.

    Living systems are able to

    control the chirality of themolecule synthesized as theenzymes involved are chiral.

    Enzymes and proteins arestereospecific : they are able

    to distinguish betweenstereoisomers.

    L i g Obj ti

  • 8/7/2019 59-261_Unit+1_W2011_CLEW (3)

    88/88

    Learning Objecti v es

    Understand configuration v ersus conformationUnderstand Enantiomers v ersusdiastereomersBe able to identify chiral centersUnderstand RS system

    Determining absolute configuration Drawing molecules of a particular absolute

    configuration


Recommended