+ All Categories
Home > Documents > 59223623 Synchronous Digital Hierarchy[2]

59223623 Synchronous Digital Hierarchy[2]

Date post: 06-Apr-2018
Category:
Upload: mendo5361
View: 216 times
Download: 0 times
Share this document with a friend

of 85

Transcript
  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    1/85

    Synchronous Digital HierarchySynchronous Digital Hierarchy

    Muhammad Zeeshan

    Frame Structure, Overheads and Pointers

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    2/85

    2

    SDH Overview

    SDH Frame Structure

    SDH Multiplexing

    Overhead

    Pointers

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    3/85

    SDH OVERVIEW

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    4/85

    4

    SDH Definition

    Synchronous Digital Hierarchy (SDH) is a standard

    which is developed by the International

    Telecommunication Union (ITU)

    It is documented in standard G.707 and its extension G.708

    It was developed to replace the Plesiochronous Digital

    Hierarchy (PDH) system for transporting large amounts of

    telephone and data traffic and to allow forinteroperability

    between equipment from different vendors

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    5/85

    5

    Limitation of PDH

    INTERFACES:

    Electrical interfaces

    There are only regional standards, instead of universal standards

    Optical interfaces

    No unified standards for optical line equipments, manufacturers

    develop equipment according to their own standards

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    6/85

    6

    PDH: the electric interface is a standard interface, but the opticalinterface is not a standard interface

    Special PDH optical signal

    Manufacturer

    A

    Manufacturer

    B

    Standard electric interface

    2Mbit/s or 34Mbit/s

    PDH Network

    Manufacturer

    B

    Standardization of optical interface

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    7/85

    7

    Limitations of PDH

    MULTIPLEXING METHOD:

    Asynchronous Multiplexing

    Code rate justification is required for matching and

    accepting clock difference

    The locations of the low-rate signals in high-rate signals

    are not regular nor fixed

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    8/85

    8

    European Series

    565Mb/s565Mb/s

    139Mb/s139Mb/s

    34Mb/s34Mb/s

    8Mb/s8Mb/s

    2Mb/s2Mb/s

    4

    4

    4

    4

    Japanese SeriesNorth American Series

    1.6Gb/s1.6Gb/s

    400Mb/s400Mb/s

    100Mb/s100Mb/s

    32Mb/s32Mb/s

    6.3Mb/s6.3Mb/s

    1.5Mb/s1.5Mb/s

    274Mb/s274Mb/s

    45Mb/s45Mb/s

    6.3Mb/s6.3Mb/s

    44

    4

    4

    6

    7

    3

    5

    64Kb/s64Kb/s

    24 30

    3

    3

    Limitations of PDH

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    9/85

    9

    Limitations of PDH

    140/34 Mb/s 34/140Mb/s

    34/8 Mb/s 8/34 Mb/s

    8/2 Mb/s 2/8 Mb/s

    2 Mb/s

    Optical/Electrical Electrical/Optical

    multiplexing

    demultipexing

    AddingandDroppingin PDH

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    10/85

    10

    Limitations of PDH

    OPERATION & MAINTENANCE (OAM)

    PDH signal frame structure has very few overhead bytes

    for Operation, Administration, and Maintenance (OAM)

    NETWORK MANAGEMENT INTERFACE

    No universal network management interface for PDH

    network

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    11/85

    11

    Advantages of SDH over PDH

    INTERFACE

    Electrical interfaces

    SDH provides a set of standard rate levels----STM-N.

    (N= 4n =1, 4, 16, 64).

    The basic signal transmission structure level is STM-1, at a rate of

    155Mb/s

    Optical interfaces

    Optical interfaces adopt universal standards. Line coding of SDH

    signals involves scrambling, instead of inserting redundancy codes

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    12/85

    12

    SDH Network

    Standard optical interface

    Uniform STM-N optical signal

    Manufacturer

    A

    Manufacturer

    B

    Standardization of optical interface

    SDH has standard optical interface

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    13/85

    13

    Advantages of SDH over PDH

    MULTIPLEXING METHOD

    Low-rate SDH signals high-rate SDH

    Signals via byte interleaved multiplexing method

    PDH signals SDH

    Synchronous multiplexing method and flexible mapping structure

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    14/85

    14

    STM-256

    STM-64

    STM-16

    STM-4

    STM-1

    4

    4

    4

    4

    STM-1, 2, 34, 140 Mb/s

    STM-N

    N

    SDH Multiplexing

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    15/85

    15

    SDHSDH SignalsSignals BitBit rate(Mb/s)rate(Mb/s)

    STMSTM--11 155155..520520 oror 155155MM

    STMSTM--44 622622..080080 oror622622MM

    STMSTM--1616 24882488..320320 oror22..55GG

    STMSTM--6464 99539953..280280 oror 1010GG

    SDH higher-rate signal (STM-4,16,64) is exactly 4 times that

    of the lower-rate signal (STM-1)

    STM: Synchronous Transport Module

    SDH Signals and Data Rates

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    16/85

    16

    ADM155Mbit/s

    Optical interface

    155Mbit/s

    Optical interface

    2Mbit/s

    Electric signal

    SDH: Economical and easy way for network!

    Adding and dropping in SDH

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    17/85

    17

    Advantages of SDH over PDH

    OPERATION & MAINTENANCE

    Abundant overhead bits are used for OAM.

    Unnecessary to add redundancy bits to monitor line

    performance during line coding

    COMPATIBILITY

    SDH network and the existing PDH network can work

    together

    SDH network can accommodate the signals of other hierarchies

    such as ATM, FDDI, and Ethernet

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    18/85

    SDH FRAME STRUCTURE

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    19/85

    19

    STM-N Frame Structure

    For the convenience of signal analysis, the frame

    structures of the signals are often illustrated as block

    frame structures

    The frame structure of PDH signals, ATM signals and

    data packets of IP network are also block frames

    The frame of E1 signals is a block frame of 1 Rows x32 Columns consisting of 32 Bytes

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    20/85

    20

    RSOHRSOH

    MSOHMSOH

    11

    33

    44

    55

    99

    STMSTM--N payloadN payload

    (including POH)(including POH)

    99 261261

    270 Columns270 Columns

    9 Rows9 Rows

    PP

    OO

    HH

    AUAU--PTRPTR

    RSOHRSOH:: RegeneratorRegenerator SectionSection OverheadOverhead

    MSOHMSOH:: MultiplexMultiplex SectionSection OverheadOverhead

    POHPOH:: PathPath OverheadOverhead

    AUPTRAUPTR:: AdministrativeAdministrative UnitUnit PointerPointer

    125125 ss

    STM-1 Frame Structure

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    21/85

    21

    RSOHRSOH

    MSOHMSOH

    11

    33

    44

    55

    99

    STMSTM--N payloadN payload

    (including POH)(including POH)

    99NN 261261NN

    270270NN

    ColumnsColumns

    9 Rows9 Rows

    PP

    OO

    HH

    AUAU--PTRPTR

    RSOHRSOH:: RegeneratorRegenerator SectionSection OverheadOverhead

    MSOHMSOH:: MultiplexMultiplex SectionSection OverheadOverhead

    POHPOH:: PathPath OverheadOverhead

    AUPTRAUPTR:: AdministrativeAdministrative UnitUnit PointerPointer

    STM-N Frame Structure125125 ss

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    22/85

    22

    SDH Frame Structure - ANATOMY

    Transmission rate of single byte of STM-N frame:

    STM-N frame contains 2430xN Bytes and each frame is

    transmitted every 125 s

    That means a given byte is transmitted 8000 times a second

    Transmission rate of a single byte:

    8000 x 8 = 64 Kbps

    Transmission rate of a STM-1 frame:

    9 rows x 270 columns x 8000 frames/s x 8 bits = 15,55,20,000 bps

    = 155.52 Mbps

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    23/85

    23

    11

    21612161

    270270

    24302430

    271271 540540

    1st Byte of1st Byte of

    STM frame # 1STM frame # 1Last byte ofLast byte of

    STM frame # 1STM frame # 1

    STMSTM--1 Frame # 11 Frame # 1 11stst ByteByte

    STMSTM FrameFrame ## 22

    Transmission Mode: ByteTransmission Mode: Byte--byby--Byte,Byte,From Left to right & top to bottomFrom Left to right & top to bottom

    TransmissionTransmission DirectionDirection

    1st1st

    ByteByte

    24302430thth

    ByteByte

    STM-1 Frame Transmission

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    24/85

    24

    SDH Frame Structure

    Payload

    area for services transmission in STM-N

    2M, 34M, and 140M signals are packed and carried

    in the payload of STM-N frame over SDH network

    Path Overhead (POH) after packing low rate

    signals, POH is added for OAM of every frame

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    25/85

    25

    SDH Frame Structure

    Section Overhead (SOH)

    monitors the whole STM-

    N frame

    Regenerator Section Overhead (RSOH) monitors the

    whole STM-N frame.

    Multiplex Section Overhead (MSOH) monitors each

    STM-1 of the STM-N frame.

    RSOH, MSOH, and POH compose the integratedmonitoring system of SDH.

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    26/85

    26

    SDH Network NE Types

    Terminal Multiplexer(TM)

    Add/Drop Multiplexer(ADM)

    Regenerator(REG)

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    27/85

    27

    Regenerator

    Regenerator has the job of regenerating the clock and amplitude

    relationships of the incoming data signals that have attenuated

    and distorted by dispersion

    The regenerator replaces the RSOH bytes before re-transmitting

    the signal

    RegeneratorSTM-N STM-N

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    28/85

    28

    Terminal Multiplexer

    Terminal multiplexers are used to combine

    plesiochronous and synchronous input signals into

    higher bit rate STM-N signals

    Terminal Multiplexer

    PDH

    SDH STM-N

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    29/85

    29

    Add / Drop Multiplexer

    PDH and SDH signals can be extracted from or

    inserted into high speed SDH bit streams by means of

    ADMs

    Add / Drop Multiplexer

    PDHSDH

    STM-N

    Towards other NEs

    Customers

    IPATM

    STM-N

    Towards other NEs

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    30/85

    30

    Sections in the SDH Network

    There are three sections in the SDHPath

    Multiplex Section

    Regenerator Section

    The overheads are always generated at the beginning of a

    section and only evaluated at the end of a section

    Terminal

    MultiplexerAdd/Drop

    MultiplexerTerminal

    MultiplexerREG REG REG

    Path

    Multiplex Section

    Regenerator Section

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    31/85

    31

    Payload

    Path

    Section

    Optical

    Payload

    Path

    Section

    OpticalOptical FiberCable

    RSOH

    MSOH

    POH

    Overhead Layer

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    32/85

    32

    How to understand SOH and POH?

    Both SOH and POH are OAM bytes added to ensure correct andflexible transmission of signals

    SOH and POH are used in different layers to supervise and

    administrate the signals. RSOH and MSOH are used in RS and MS

    separately, but HPOH and LPOH are used for VC-3/VC4 and VC12LPOH----used to supervise small package (VC-12)

    HPOH----used to supervise big package (VC-3 / VC-4)

    MSOH----used to supervise the carriage(STM-1) of the truck

    RSOH----used to supervise the motorcade formed by trucks (STM-4/16/64)

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    33/85

    33

    SDH Frame Structure

    AU Pointer (AU-PTR)

    Used for alignment of lower rate signals in the payload of STM-N

    frame to accurately locate the payload

    AU-PTR is added in transmitting end, when the signal is packed

    into the payload of STM-N frame

    At receiving end, the low rate signal is dropped from STM-N

    frame according to the AU-PTR value

    Low-rate signals in the STM frame are arranged obeying some

    rules byte interleave; so only have to locate the first low-rate

    signal in the STM frame

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    34/85

    SDH MULTIPLEXING

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    35/85

    35

    SDH Multiplexing

    SDH Multiplexing includes:Low to high rate SDH signals (STM-1 STM-N)

    PDH to SDH signals (2M, 34M & 140M STM-N)

    Other hierarchy signals to SDH Signals (ATM STM-N)

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    36/85

    36

    SDH Multiplexing Structure

    STM-1 AU-4

    TU-3

    AUG-1

    TUG-3 VC-3 C-3

    VC-4 C-4

    TU-12 VC-12 C-12

    TUG-2

    1 1

    3

    1

    7

    3

    139264 kbit/s

    34368 kbit/s

    2048 kbit/s

    Pointer processing

    Multiplexing

    Mapping

    Aligning

    AUG-4

    AUG-16

    AUG-64

    STM-4

    STM-16

    STM-64

    1

    1

    1

    4

    4

    4

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    37/85

    37

    Mapping, Aligning and Multiplexing

    Low-rate tributaries are multiplexed into STM-N signals through three procedures:

    Mapping

    Aligning

    Multiplexing.

    MAPPING

    SDH mapping is a procedure by which tributaries are adapted into virtual containers at the

    boundary of an SDH network, for example, E1 into VC-12, E3 into VC-3, E4 into VC-4.

    ALIGNING

    SDH aligning is a procedure by which the frame-offset information is incorporated into the

    tributary unit, by adding a pointer

    The pointer value constantly locates the start point of the VC frame within the payload, so that

    the receiving end can correctly separate the corresponding VCMULTIPLEXING

    SDH multiplexing is the procedure by which multiple lower order path layer signals are adapted

    into a higher order path

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    38/85

    38

    Multiplexing Structure

    C: Container

    VC: Virtual Container

    TU: Tributary Unit

    TUG: Tributary Unit GroupAU: Administrative Unit

    AUG: Administrative Unit Group

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    39/85

    39

    Mb Signal Mapping Procedure

    C12

    RateAdaptation

    2 Mbps Signal

    1 4

    1

    9

    125 s

    1 Byte Path

    Overhead

    (POH)

    1 4

    1

    9

    VC12

    C-12 Size: (9 Rows x 4 Columns) 2 = 34 Bytes

    C12

    POH

    VC-12 Size: (9 Rows x 4 Columns) 1 = 35 Bytes

    125 s

    VC-12 = C-12 + (1 Byte POH)

    C-12 Frame Duration = 125 s

    VC-12 Frame Duration = 125 s

    There can be four different POH

    bytes for one C-12 V5, J2, N2, K4

    MAPPING

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    40/85

    40

    Mb Signal Mapping Procedure

    Multiplexingx 3

    1 12

    1

    9

    TUG2

    T

    U

    -

    12

    125 s

    1 4

    1

    9

    VC12

    C12

    POH

    125 s

    1 Byte Tributary

    Unit Pointer(TU-PTR)

    1 4TU12

    C12

    POH

    125 s

    PTR

    T

    U

    -

    12

    T

    U

    -

    12

    TUG-2 size: (9 Rows x 12 Columns) = 108 Bytes

    TU-12 Size : (9 Rows x 12 Columns) = 36 Bytes

    TU-12 = VC-12 + (1 Byte TU-PTR)

    TUG-2 = TU-12 + TU-12 + TU-12

    TU-12 and TUG-2 Frame Duration = 125 s

    ALIGNING MULTIPLEXING

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    41/85

    41

    RR

    Mb Signal Mapping Procedure

    1 12

    1

    9

    TUG2

    T

    U

    -12

    125 s

    T

    U

    -12

    T

    U

    -12

    Multiplexing

    x 71 86

    1

    9

    TUG3

    125 s

    T

    U

    G

    -

    2

    T

    U

    G

    -

    2

    T

    U

    G

    -

    2

    T

    U

    G

    -

    2

    T

    U

    G

    -

    2

    T

    U

    G

    -

    2

    T

    U

    G

    -

    2

    TUG-3 Size = (TUG-2) x 7 + R (2 Columns)

    TUG-3 Frame Duration = 125 s

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    42/85

    42

    Mb Signal Mapping Procedure

    1 86

    1

    9

    TUG3

    125 s

    Multiplexing

    x 3

    R

    P

    O

    H

    1 261

    1

    9

    VC4

    125 s

    T

    U

    G

    -

    3

    T

    U

    G

    -

    3

    T

    U

    G

    -

    3

    R

    VC-4 = TUG-3 + TUG-3 + TUG-3 + R (2 Columns) + POH (1 Column)

    VC-4 Frame Size = 9 Rows x 261 Columns = 2349 Bytes

    VC-4 Frame Duration = 125 s

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    43/85

    43

    VC4

    Mb Signal Mapping Procedure

    1 2611

    9

    125 s

    AU-PTR

    AU4

    VC4

    1 2701

    9

    125 s

    AUG1 270

    1

    9

    125 s

    STM-11 270

    1

    9

    125 s

    Multiplexing

    x 1

    RSOH and

    MSOH

    AU-PTR

    VC4AU-PTR

    VC4AU-PTR

    MSOH

    RSOH

    2MbMultiplexingRoute

    2 Mb C-12 VC-12 TU-12 TG-2 TG-3 VC-4 AU-4 AUG STM-1

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    44/85

    44

    34 Mb Signal Mapping Procedure

    C3

    Rate

    Adaptation

    34 Mbps Signal

    1 84

    1

    9125 s

    Path

    Overhead(POH)

    C3

    1 85

    1

    9125 s

    P

    O

    H

    VC3

    C-3 Frame Size: 9 rows x 84 columns = 756 Bytes

    C-3 Frame Duration: 125 s

    VC-3 = C-3 + (POH) POH = 9 Rows x 1 Column = 9 Byte

    VC-3 Frame Size: 9 Rows x 85 Columns = 765 Bytes

    VC-3 Frame Duration: 125 s

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    45/85

    45

    34 Mb Signal Mapping Procedure

    VC3

    Tributary

    Unit Pointer

    1 86

    1

    9

    125 s

    Fixed

    Stuffing Bits1 86

    1

    9

    125 s

    TU3

    H1

    H2

    H3

    R

    TUG3TU3H1

    H2

    H3

    TU-3 = VC-3 + TU-PTR TU-PTR = 3 Byte Pointer (H1, H2 and H3)

    TUG-3 = TU-3 + R (Fixed StuffingBits)

    R (Fixed Stuffing Bits) = 6 Bytes (Fixed Stuffing Bits)

    TU-3 and TUG-3 Frame Duration = 125 s

    STUFFING

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    46/85

    46

    34 Mb Signal Mapping Procedure

    T

    U

    G

    3

    1 261

    1

    9

    125 s

    P

    O

    H

    R R

    VC4Multiplexing

    x 3

    TU3

    1 86

    1

    9

    125 s

    H1

    H2

    H3

    R

    TUG3

    VC-4 = TUG-3 + TUG-3 + TUG-3 + R (2 Columns) + POH (1 Column)

    VC-4 Frame Size = 9 Rows x 261 Columns = 2349 Bytes

    VC-4 Frame Duration = 125 s

    T

    U

    G

    3

    T

    U

    G

    3

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    47/85

    47

    VC4

    34 Mb Signal Mapping Procedure

    1 2611

    9

    125 s

    AU-PTR

    AU4

    VC

    4

    1 2701

    9

    125 s

    AUG1 270

    1

    9

    125 s

    STM-11 270

    1

    9

    125 s

    Multiplexing

    x 1

    RSOH and

    MSOH

    AU-PTR

    VC

    4

    AU-PTR

    VC

    4

    AU-PTR

    MSOH

    RSOH

    34MbMultiplexingRoute

    34 Mb C-3 VC-3 TU-3 TUG-3 VC-4 AU-4 AUG STM-1

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    48/85

    48

    VC-4 = C-4 + (POH) POH = 9 Rows x 1 Column = 9 Byte

    VC-4 Frame Size: 9 Rows x 261 Columns = 2349 Bytes

    140 Mb Signal Mapping Procedure

    C4

    Rate

    Adaptation

    140 Mbps Signal

    1 260

    1

    9

    125 s

    C-4 Frame Size: 9 rows x 260 columns = 2340 Bytes

    C-4 Frame Duration: 125 s

    Path

    Overhead(POH)

    C4

    1 261

    1

    9

    125 s

    P

    O

    H

    VC4

    Rate Adaptation: The process of Bit stuffing, to account for different

    clock rates of the signals coming from different sources

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    49/85

    49

    140 Mb Signal Mapping Procedure

    VC4

    AU-PTR

    10 270

    1

    9

    125 s

    Multiplexing x 1

    AU-PTR

    AU-PTR: A 9 byte pointer is inserted at Row No 4

    AU4 Size: (1x9)+(9x261) = 2358 Bytes

    1 9

    A U 4

    10 270

    1

    9

    125 s

    1 9

    AU4 AUG4

    In case of 140 Mb signal mapping in STM-1, AU-4 and AUG are identical

    AU-4 and AUG Frame Duration: 125 s

    4

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    50/85

    50

    140 Mb Signal Mapping Procedure

    STM-1

    RSOH and

    MSOH

    1 270

    1

    9

    125 s

    A U 4

    10 2701

    9

    125 s

    1 9

    RSOH

    MSOH

    AUG4

    RSOH Size: 3 Rows x 9 Columns = 27 Bytes

    MSOH Size: 5 Rows x 9 Columns = 45 Bytes

    STM-1 Size: 9 Rows x 270 Columns = 2430 Bytes

    STM-1 Frame Size: 125 s

    3

    5

    A U 4

    270

    125 s

    1AUG4

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    51/85

    OVERHEADS

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    52/85

    52

    Overhead Bytes

    270

    1

    9

    STM-1 FrameStructure

    RSOH

    MSOH

    AU-PTR PO

    H

    OVER

    HEAD

    1

    PAYLOAD

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    53/85

    53

    Section Overhead (SOH)

    Overhead in SDH frame structure are classified as:

    Section Overhead SOH

    Path Overhead POH

    SOH is further divided into RSOH and MSOH

    RSOH can be accessed in the regenerator or at the terminal

    equipment

    MSOH can be processed at the terminal equipment

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    54/85

    54

    Regenerator Section Overhead RSOH

    A1 A1 A1 A2 A2 A2 J0 X X

    B1 E1 F1 X X

    D1 D2 D3

    : Media dependent bytes

    X: Bytes reserved for national use

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    55/85

    A1 and A2 Bytes

    Frame Alignment (Framing) Bytes

    Indicate the beginning of the STM-N frame

    A1 = F6H (11110110), A2=28H (00101000)

    In STM-N: (3XN) A1 bytes, (3XN) A2 bytes

    stream

    STM-N STM-N STM-N STM-N STM-N STM-N

    Finding frame head

    Frame # 1 Frame # 2 Frame # 3 Frame # 4 Frame # 5 Frame # 6

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    56/85

    A1 and A2 Bytes

    Framing

    Next

    process

    Find

    A1,A2

    OOF

    LOF

    N

    Y

    AIS

    over 3ms

    625 s

    OOF: Out Of Frame

    LOF: Loss Of Frame

    AIS: Alarm Indication Signal

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    57/85

    57

    Regenerator Section Trace J0 Byte

    Regenerator Section Trace Byte: J0

    Its used to transmit repetitively a Section Access Point

    Identifier so that a section receiver can verify its continued

    connection to the intended transmitterAnother usage of the J0 byte is that J0 byte in each STM-N

    frame is defined as an STM identifier C1 i.e., to identify

    individual STM-1 inside a multiplexed STM-N

    Within the domain of a single operator, this byte may use

    any character

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    58/85

    B1 Byte

    Tx

    2#STM-N

    Rx

    1#STM-N

    Calculate

    B1 of STM-N #1

    1#STM-N

    2#STM-N

    Verify B1 B2

    STM-NA1 00110011

    A2 11001100

    A3 10101010

    A4 00001111

    B 01011010

    BIP-8

    Bit interleaved ParityC

    ode (BIP-8) ByteA parity code (even parity), used to check the transmission

    errors over the RS

    Place the result

    of BIP in B1 of

    STM-N #2

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    59/85

    59

    F1 Byte

    User Channel Byte: F1

    Provides a 64 kb/s data/voice channel for special

    maintenance purposes.

    F1

    TM REG TMADM

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    60/85

    E1 and E2 Bytes

    Digital telephone channel

    E1-RS, E2-MS

    E1 and E2

    TM ADM TMREG

    Orderwire Bytes: Provides one 64 kbps each for voicecommunication

    E1: RS Orderwire Byte RSOH orderwire messageE2: MS Orderwire Byte MSOH orderwire message

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    61/85

    61

    Quiz

    If only E2 byte is used as order wire byte, then order

    wire voice communication is provided between:

    A and B

    B and C

    C and D

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    62/85

    62

    Quiz

    If only E1 byte is used as order wire byte, then order

    wire voice communication is provided between:

    A and B

    B and C

    C and D

    A and D

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    63/85

    D1 ~ D12 Bytes

    TMN

    DCC channel

    NE NE NENE

    OAM Information: Control, Maintenance,

    Remote Provisioning, Monitoring (Alarm &

    Performance), Administration

    Data Communications Channels (DCC) BytesMessage-based Channel for OAM between NEs and NMS

    RS-DCC D1 ~ D3 192 kbit/s (3X64 kbit/s)

    MS-DCC D4 ~ D12 576 kbit/s (9X64kbit/s)

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    64/85

    64

    Multiplex Section Overhead MSOH

    B2 B2 B2 K1 K2

    D4 D5 D6

    D7 D8 D9

    D10 D11 D12

    S1 M1 E2X X

    X: Bytes reserved for national use

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    65/85

    65

    B2 Bytes

    The B1 byte monitors the transmission error of the

    complete STM-N frame signal

    The B2 bytes monitor the error performance status foreach STM-1 frame within the STM-N frame

    There are N*3 B2 bytes in an STM-N frame with

    every three B2 bytes corresponding to an STM-1 frame

    B2 B t

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    66/85

    66

    B2 Bytes

    B2 Byte Principle

    At transmitting end, the BIP-Nx24 is computed over all bits of the STM-N frame except for the first three rows of SOH, and the result is placedin 3 bytes B2 of the preceding frame before scrambling.

    At receiving end, the BIP- Nx24 is computed over all bits of the frameexcept for the first three rows of SOH, and then Exclusive OR with theB2 bytes of the later arrived frame.

    If the value of Exclusive OR operation is zero, there is no bit block error.Any mismatch in result indicates transmission errors.

    For example

    BIP-N24 is computed over

    a frame of signal composed

    of 9 bytes.

    11001100 11001100 11001100

    01011101 01011101 01011101

    11110000 11110000 11110000BIP24

    01100001 01100001 01100001

    K1 d K2 (b1 b5)

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    67/85

    67

    K1 and K2 (b1 ~ b5)

    Automatic Protection Switching (APS) channelbytes

    Used for transmitting APS signaling to implement

    equipment self-healing function

    The K1 byte and K2(b1~b5) are used forautomatic switchover to a standby path

    K1 d K2 (b1 b5)

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    68/85

    68

    K1 and K2 (b1 ~ b5)

    NE-A NE-BWorking path

    Standby path

    Working path

    Standby path

    NE-B detects a transmission error on the line and informs NE-A via K1 byte

    to switchoverNE-A switches to the standby channel

    NE-A via K2 byte indicates the switchover in NE-B

    NE-B switches to the standby channel

    K1

    K2

    S1 Byte

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    69/85

    S1 Byte

    bits 5 ~ 8 Meaning

    0000 Quality unknown (existing sync. Network)Quality unknown (existing sync. Network)

    0010 G.811 PRCG.811 PRC

    0100 G.812 transitG.812 transit

    1000 G.812 localG.812 local

    1011G.813 SETS (Synchronous EquipmentG.813 SETS (Synchronous Equipment

    Timing Clock)Timing Clock)

    1111 Do not use for sync.Do not use for sync.

    Synchronization Status Message Byte (SSMB)Synchronization Status Message Byte (SSMB)

    This byte is used forThis byte is used forsynchronizationsynchronization of networkof network

    Bits 5 to 8 of S1 byte indicate theBits 5 to 8 of S1 byte indicate the qualityoftheincomingclockqualityoftheincomingclockThe smaller the value of S1 (b5The smaller the value of S1 (b5--b8), the higher the level of clock qualityb8), the higher the level of clock quality

    This helps to determine whether or not to switch the clock source, i.e.This helps to determine whether or not to switch the clock source, i.e.

    switch to higherquality clock sourceswitch to higherquality clock source

    M1 B t

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    70/85

    M1 Byte

    Tx Rx

    Traffic

    Multiplex Section Remote Error IndicationMS-REIByteThis byte is used to report back the number of error blocks

    detected by the receiver by evaluating three B2 bytesTx generate corresponding performance event MS-REI

    B2 B2 B2

    Report no. of

    errors detected

    Evaluate B2 and

    detect bit errors

    M1

    Generate MS-REIMS-REI

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    71/85

    Path Overheads

    J1

    B3

    C2

    G1F2

    H4

    F3

    K3

    N1

    12

    3

    45

    6

    7

    89

    VC-n Path Trace Byte

    Path BIP-8

    Path Signal Label

    Path StatusPath UserChannel

    TU Multiframe Indicatio

    Path UserChannel

    AP Switching

    Network Operator

    Higher Order Path OverheadHigher Order Path Overhead

    1 2 3 4 5 6 7 8 9 10

    h l b l

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    72/85

    72

    Path Signal Label : C2 Byte

    C2 byte is used to indicate the type and composition

    of the VC-4 tributary information

    h S G

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    73/85

    73

    Path Status : G1 Byte

    Path status byte

    This byte is used to report back the fault from path sink to path

    source and is set in the POH of the opposite direction

    HP-REI HP-RDI Reserved

    87654321

    HP-REI: High order Path Remote Error Indication

    HP-RDI: High order Path Remote Defect Indication

    HP REI d HP RDI

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    74/85

    74

    HP-REI and HP-RDI

    Higher order Path Remote Error IndicationThe SDH NE (sink end) checks B3 bytes

    If error blocks are detected, the number oferror blocks detected

    is sent to the remote terminal in HP-REI signal

    The SDH NE (sink end) checks J1 and C2 bytes

    Higher order Path Remote Defect Indication

    If J1 and C2 fail to be consistent, HP-TIM (Higher order path

    Trace Identifier Mismatch) and HP-SLM (Higher order PathSignal Label Mismatch) alarms are generated

    HP-RDI is sent back to the remote end

    M l if I di i H4 B

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    75/85

    75

    Multiframe Indication : H4 Byte

    This byte indicates the frame

    label for a multiframe in the next

    VC-4 payload

    The value of this byte ranges

    from 00H to 03H

    P th O h d

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    76/85

    Path Overheads

    V5 J2 N2 K4

    VC-12 VC-12 VC-12 VC-12

    1

    9

    1 4

    500s VC

    -12 multiframe

    Low Order Path OverheadLow Order Path Overhead

    Path Status and Signal Label : V5 Byte

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    77/85

    77

    Path Status and Signal Label : V5 Byte

    BIP-2

    Parity code of VC-12

    LP-REI

    Low order Path Remote Error Indication

    LP-REI is set to "1" and returned to teh opposite direction if one or more errors are detected via BIP-2

    LP-RFI

    Low order Path Remote Failure Indication

    If a defect condition persists beyond the maximum allowed time, it becomes a failure, then LP-RFI is set to "1"

    and sent back to the source

    Signal Label

    Indicates type and composition of VC-12 tributary information

    LP-RFI

    Low order Path Remote Defect Indication

    If sink end detects a TU-12 AIS, it sets LP-RDI to "1" and sends back to the source

    BIP-2 LP-REI LP-RFI Signal Label LP-RDI

    87654321

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    78/85

    POINTERS

    P i t

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    79/85

    Pointers

    Pointers

    AU-PTR TU-PTR

    AU PTR

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    80/85

    AU-PTR

    RSOHRSOH

    AUAU--PTR

    PTR

    MSOHMSOH

    44

    11

    99

    AU PTR

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    81/85

    81

    AU-PTR

    Y: Fixed value 1001SS11

    F: Fixed value 11111111

    H3: Additional transmission capacity during negative

    justification

    H1 and H2: Pointer value is contained in the last ten bits of H1

    and H2

    H1 Y Y H2 F F H3 H3 H3

    87654321 9

    AU PTR

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    82/85

    82

    AU-PTR

    N: New data flag bits

    A notification to the receiver about the change in pointer value and pointer

    justification operation

    AU/TU type:

    For AU-4 and TU-3, SS=10

    I/D: Increment/Decrement bitsD bits are inverted to decrement next AU-PTR address (-ve justification)

    I bits are inverted to increment next AU-PTR address (+ve justification)

    N N N N S S I D I D I D I D I D

    H1 and H2

    TU PTR

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    83/85

    83

    TU-PTR

    The tributary unit pointer is used to indicate the

    specific location of the first byte (V5) of the VC-12

    within the TU-12 payload

    TU-PTR

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    84/85

    TU PTR

    VC-12 VC-12 VC-12 VC-12

    V1 V2 V3 V4

    1

    9

    500s VC-12 multiframe

    TU POINTERSTU POINTERS

  • 8/3/2019 59223623 Synchronous Digital Hierarchy[2]

    85/85

    THA

    NK YOU


Recommended