+ All Categories
Home > Documents > 5989-9552EN.pdf

5989-9552EN.pdf

Date post: 16-Apr-2015
Category:
Upload: asim2
View: 11 times
Download: 0 times
Share this document with a friend
48
This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent’s line of EEsof electronic design automation (EDA) products and services, please go to: www.agilent.com/find/eesof Agilent EEsof EDA
Transcript
Page 1: 5989-9552EN.pdf

This document is owned by Agilent Technologies, but is no longer kept current and may contain obsolete or

inaccurate references. We regret any inconvenience this may cause. For the latest information on Agilent’s

line of EEsof electronic design automation (EDA) products and services, please go to:

www.agilent.com/fi nd/eesof

Agilent EEsof EDA

nstewart
Text Box
Presentation on Large Signal Model Extraction of GaAs MESFETs and GaN HEMT Devices
Page 2: 5989-9552EN.pdf

February 26, 2008 1

Nickolas Kingsley, PhDYusuke Tajima, PhD

Auriga Measurement Systems650 Suffolk Street, Suite 410

Lowell MA, 01854 USA

Large signal model extraction of GaAs MESFETs and GaN

HEMT Devices

Page 3: 5989-9552EN.pdf

2

Introduction

1. Modeling steps will be described for small signal, noise, and large signal models

2. Model extraction examples will be presented for GaAs pHEMTs and GaN HEMT devices

Page 4: 5989-9552EN.pdf

3

Topics

1. Model extraction programs2. Small signal and noise model

extraction3. Large signal model extraction steps

Page 5: 5989-9552EN.pdf

4

Model extraction programs

1. ICCAP(Agilent)Versatile extraction platform.Customer can add extraction process for different models.

2. Model Station (Auriga)Limited to FET family of devices.Good for small signal, noise and large signal models.Generates models compatible for ADS and MWO.

Page 6: 5989-9552EN.pdf

5

Model Station Dialog Box

Page 7: 5989-9552EN.pdf

6

Data Inputs to Model Station

Small signal data inputs

Large signal data inputs

Page 8: 5989-9552EN.pdf

7

Topics

1. Model extraction programs2. Small signal and noise model

extraction3. Large signal model extraction steps

Page 9: 5989-9552EN.pdf

CAPID=CdsC=0.3498 pF

CAPID=CgdC=0.1065 pF

CAPID=CgsC=1.906 pF

INDID=LdL=0.118 nH

INDID=LgL=0.1378 nH

INDID=LsL=0.001114 nH

RESID=RiR=0.5284 Ohm

1

2

3

4

VCCSID=U1M=0.1935 SA=0 DegR1=1817 OhmR2=88.48 OhmF=0 GHzT=2.5 ps

INDID=LgdL=0 nH

RESID=RgdR=0 Ohm

T1 2

RESTID=Rd1R=1.029 OhmT=16.85 DegC

T1 2

RESTID=Rg1R=2.536 OhmT=16.85 DegC

T

1

2

RESTID=Rs1R=0.4443 OhmT=16.85 DegC

CAPID=CggC=0 pF

RESID=RggR=1e5 Ohm

PORTP=1Z=50 Ohm

PORTP=2Z=50 OhmID=EN1 ID=EN2

ID=EN3

ID=EN4

ID=EN5

ID=EN6 ID=EN7ID=EN8 ID=EN9

ID=EN10

ID=EN11

ID=EN12

ID=EN13Cval=.5

8

Small signal model

Page 10: 5989-9552EN.pdf

9

150x80 1.

01

.0-

1.0

10.

0

10.0

-10.0

5.0

5.0

-5.0

2.0

2.0

-2.0

3.0

3.0

-3.0

4.0

4.0

-4.0

0.2

0.2

-0.2

0.4

0.4

-0.4

0.6

0.6

-0.

6

0.8

0.8

-0.

8

S11 and S22Swp Max26.4GHz

Swp Min0.2GHz

S(1,1)FET Schematic

S(1,1)SParm Data

S(2,2)FET Schematic

S(2,2)SParm Data

0

15

30

45

60

75

90

105

120

135

150

165

-180

-165

-150

-135

-120

-105 -9

0

-75

-60

-45

-30

-15

S12Swp Max

26.4 GHz

Swp Min0.2 GHz

Mag Max0.05

0.01Per Div

S(1,2)FET Schematic

S(1,2)SParm Data

0

15

30

45

60

75

90

105

120

135

150

165

-180

-165

-150

-135

-120

-105 -9

0

-75

-60

-45

-30

-15

S21Swp Max

26.4 GHz

Swp Min0.2 GHz

Mag Max20

5Per Div

S(2,1)FET Schematic

S(2,1)SParm Data

Page 11: 5989-9552EN.pdf

10

Extraction of Models at multiple bias points

Page 12: 5989-9552EN.pdf

11

Small signal model with noise sources

CAPID=CdsC=0.03942 9 pF

CAPID=CgdC=0.02953 pF

CAPID=CgsC=0.125579 pF

INDID=LdL=0.007666 nH

INDID=LgL=0.000293 nH

INDID=LsL=0.001929 nH

RESID=RiR=0.5 Ohm

T1 2

RESTID=RgR=2.07231 OhmT=16.85 DegC

T

1

2

RESTID=RsR=1.98319 OhmT=16.85 DegC

1

2

3

4

VCCSID=U1M=0.09605 SA=0 DegR1=979421 OhmR2=190.957 OhmF=1e18 GHzT=0.391458 ps

1

2

3

4

VINCORID=VIN1V1SQ=0.020672I2SQ=1043.23CorrR=0.123144CorrI=0.303625

T1 2

RESTID=RdR=2.60038 OhmT=16.85 DegC

INDID=LgdL=0 nH

RESID=RgdR=0 Ohm

CAPID=Cgg1C=0 pF

RESID=Rgg1R=100000 Ohm

PORTP=1Z=50 Ohm

PORTP=2Z=50 Ohm

Noise is generated from parasitic resistive elements as well as intrinsic noise sources as shown here. Noise sources are defined by voltage and current noise sources and correlation (complex) between them.

Page 13: 5989-9552EN.pdf

12

Noise parameters simulated from extracted model are compared with the measured results (Vd=0.9V, 8mA)

Freq 2-26GHz

Page 14: 5989-9552EN.pdf

13

Topics

1. Model extraction programs2. Small signal and noise model

extraction3. Large signal model extraction steps

Page 15: 5989-9552EN.pdf

14

Large signal model extraction steps

1. Extraction of Auriga model- Charge conservation satisfied

2. Our modeling steps- Define de-embedding parameters.- DC IV- Pulsed IV- (Pulsed) S parameters- Temperature test- Loadpull verification

Page 16: 5989-9552EN.pdf

15

Many models draw non-physical gate current because they were violating Charge Conservation Law

Cgs(Vgs, Vds)

Vgs Vds

0

0.1

0.2

0.3

0.4

0.5

0.6

-1.5 -1 -0.5 0 0.5 1

Cgs(pF) vs Vgs with Vds as a parameter

Vd=0V

Vd=0.5V

Vd=1VVd=2V

Vd=3VVd=4V

Vd=5V

Vd=6V

Typical Cgs dependency on gate and drain voltages

Page 17: 5989-9552EN.pdf

16

Charge conservationAs is well known, if the charge conservation is not

satisfied at terminals, the device model will draw non-physical current in order to maintain charge neutrality under RF drive.

VgsVgdVgsCgd

VgdVdsVgsCgs

∂∂

=∂

∂ ),(),(

Capacitors are constrained by the equation above in new Auriga model (LS6)

Page 18: 5989-9552EN.pdf

17

0 10 20 30 32Power (dBm)

Gate Current 50ohms A

0

0.01

0.02

0.03

0.04A

0

0.01

0.02

0.03

0.04

A

p2

|Icomp(I_METER.AMP2,0)|[*,X] (L)50ohm power simulation LS6

|Icomp(I_METER.AMP1,0)|[*,X] (R, A)50ohm power simulation LS6

|Icomp(I_METER.AMP1,0)|[1,X] (R, A)50ohm power simulation LS5

|Icomp(I_METER.AMP2,0)|[*,X] (L)50ohm power simulation LS5

p1: Freq = 2.6 GHz

p2: Freq = 2.6 GHz

Traditional(LS5)

Data

Gate current under RF driveMeasured data vs traditional model (LS5)

Without charge conservation, a large non-physical current flows through gate terminal. This is not real.

Page 19: 5989-9552EN.pdf

18

Charge Conserved Model (LS6)vs Traditional model (LS5)

(Example: Gate current behavior under RF drive.)0 10 20 30 32

Power (dBm)

Gate Current 50ohms A

0

0.01

0.02

0.03

0.04A

0

0.01

0.02

0.03

0.04

A

p2

|Icomp(I_METER.AMP2,0)|[*,X] (L)50ohm power simulation LS6

|Icomp(I_METER.AMP1,0)|[*,X] (R, A)50ohm power simulation LS6

|Icomp(I_METER.AMP1,0)|[1,X] (R, A)50ohm power simulation LS5

|Icomp(I_METER.AMP2,0)|[*,X] (L)50ohm power simulation LS5

p1: Freq = 2.6 GHz

p2: Freq = 2.6 GHz

Traditional(LS5)

Charge conserved (LS6)

Data

With charge conserved model, gate current under rf drive is well simulated.

Page 20: 5989-9552EN.pdf

19

Large signal model extraction steps1. Extraction of Auriga model

- Charge conservation satisfied

2. Our modeling steps- Define de-embedding parameters.- DC IV- Pulsed IV- (Pulsed) S parameters- Temperature test- Small signal and Loadpull verification

Page 21: 5989-9552EN.pdf

20

De-embedding

235um 235um

A A’B B’

Reference planesMeasurement A-A’Modeling B-B’

1

2

3

Auriga_LS6_FETID=MF1DESC=8x100AFAC=1AL=1Temp=23.85 DegC

MLINID=TL1W=0.076 mmL=0.3 mm

MLINID=TL2W=0.076 mmL=0.3 mm

PORTP=1Z=50 Ohm

PORTP=2Z=50 Ohm

AA’B

B’

Input de-embedding box

Output de-embedding box

Page 22: 5989-9552EN.pdf

21

Our modeling steps

- Define deembedding parameters.- DC IV- Pulsed IV- (Pulsed) S parameters- Temperature test- Small signal and Loadpull verification

Page 23: 5989-9552EN.pdf

22

DC IV measurement

1. This is an important step to screen chips and select the chips for modeling.

2. DC is used to measure gate diode characteristic for both forward and reverse.

Page 24: 5989-9552EN.pdf

23

Measurement of Diodes between G-S and G-D

VdIg

VgG

D

S

VdIg

VgG

D

S

D1

D2

0.0V

0.5V

1.0, 1.5, 2.0V

VdCurrent limit

D2D1+D2

Page 25: 5989-9552EN.pdf

24

Our modeling steps

- Define deembedding parameters.- DC IV- Pulsed IV- (Pulsed) S parameters- Temperature test- Small signal and Loadpull verification

Page 26: 5989-9552EN.pdf

25

Pulsed IV and S parameter measurements

Characterization using pulse technique becomes only tool to measure large devices within thermal limits.

- Pulsed IV- Pulsed S parameters

Page 27: 5989-9552EN.pdf

26

Principle of Pulsed IV

All the IV data are measured in short pulses while the bias point is kept at the quiescent point .

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

Id (m

A)

pe

ak 5

.3 a

mps

Vd (volts)

QuiescentVd = 50 vId = 150 mA

Vg 2.0

Vg 1.0

Vg 0

Vg -0.5

Vg -1.0

Page 28: 5989-9552EN.pdf

27

Pulsed IV system AU4550

AU4550

Pulser

Pulser

DUT

Page 29: 5989-9552EN.pdf

28

Why Pulsed IV?1. Thermal 2 Field induced traps

Quiescent condition 0Vd, 0Vg Quiescent condition 6Vd,-4Vg

Pulsed IV data of a pHEMT at different quiescent conditions

Page 30: 5989-9552EN.pdf

29

Pulsed IV and IV Model

(Blue) Pulsed IV Data Quiescent point (50V, 200mA)(Red) Modeled Pulsed IV

0 20 40 60 80 100Vds (Volts)

IV Curves

0

1

2

3

4

5

6

Id(A

)

Page 31: 5989-9552EN.pdf

30

Different results for Cgd and Rds between CW(10Vds) and Pulsed bias (10Vds peak, 50V quiescent)

Strong quiescent bias dependency on Cdg and Rds!

CW and Pulsed Cgd

0

1

2

3

4

5

-2 -1.5 -1 -0.5 0

Vgs (V)

Cgd

(pF)

Pulsed

CW

CW and Pulsed Rds

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

-2 -1.5 -1 -0.5 0Vgs (V)

Rds

(Ohm

)

Pulsed

CW

Page 32: 5989-9552EN.pdf

31

Similar Results for Cgs and Gm Between CW(10V) and Pulsed Bias (10Vds Peak, 50V Quiescent)

CW and Pulsed gm 10Vds

0

0.5

1

1.5

2

2.5

-2 -1.5 -1 -0.5 0

Vgs(V)G

m (S

)

Pulsed

CW

CW and Pulsed Cgs

0

10

20

30

40

50

-2 -1.5 -1 -0.5 0

Vgs (V)

Cgs

(pF)

CW

Pulsed

Cgs, Gm showed little dependency on quiescent bias condition

Page 33: 5989-9552EN.pdf

32

Pulsed S Parameter Set up

Bias Tee

Bias Tee

PNA

Bias Tee

Bias Tee

VNA

DUT

VNA was used to take S parameters during the pulsed bias applied through bias tees.

Page 34: 5989-9552EN.pdf

33

S parameter data

1. S parameters are taken over 50-150 bias points to derive small signal equivalent circuit model as a function of terminal voltages.

2. Voltage dependent Cgs, Cds and Cgd are modeled and parameterized into the Auriga large signal model.

Page 35: 5989-9552EN.pdf

34

Our modeling steps

- Define deembedding parameters.- DC IV- Pulsed IV- (Pulsed) S parameters- Temperature effect- Small signal and Loadpull verification

Page 36: 5989-9552EN.pdf

35

How short the pulses need be to be isothermal?

50 nSec sliding data window

Vds

Ids

Vq

Iq

t =0 t=tmaxT1 T2

dwell time2Vg

1Vg

0Vg

-1Vg

Id mA

IV Curves were measured between 0.2 and 50µsec on a GaN HEMT. No noticeable difference was observed. It can be concluded that channel temperature stays the same in this time frame for this device.

Page 37: 5989-9552EN.pdf

36

Temperature dependent IV curve model

-0.0344 50 100Vds (Volts)

IV Curves

-0.5

0

0.5

1

1.5

Id(A

)

25C

-0.0362 50 100Vds (Volts)

IV Curves

-0.5

0

0.5

1

1.5

Id(A

)

Model was derived from 25C pulsed IV data. Then scaled to other temperatures (0, 80, 150C) and compared to the pulsed IV data.

Blue: Pulsed IV DataRed: ModelVd=0-100VVdq=50V

0C

Page 38: 5989-9552EN.pdf

37

Temperature dependent IV curve model (2)

-0.0254 50 100Vds (Volts)

IV Curves

-0.5

0

0.5

1

1.5

Id(A

)

-0.0348 50 100Vds (Volts)

IV Curves

-0.2

0

0.2

0.4

0.6

0.8

1

Id(A

)

80C

Blue: Pulsed IV DataRed: ModelVd=0-100V

150C

Page 39: 5989-9552EN.pdf

38

Temperature model

))(*1(*)())(*1(*)())(*1(*)(

TnomTempTcoefRRdTRdTnomTempTcoefRRsTRsTnomTempTcoefIdsTIds

−+=−+=−+=

Temperature and Size scaling factors are available on the schematic.

Page 40: 5989-9552EN.pdf

39

Model Scaling

Scalable parameters-Intrinsic device parameters including currents, capacitors and resistive components (Ids, Cgs, Cgd, Rg, Rs, Rd)

Non Scalable parameters- Inductive components (Ld, Lg, Ls) - External circuit

Scalable models save time and

money

Page 41: 5989-9552EN.pdf

40

Our modeling steps

- Define deembedding parameters.- DC IV- Pulsed IV- (Pulsed) S parameters- Temperature effect- Small signal and Loadpull verification

Page 42: 5989-9552EN.pdf

41

Large signal model (Auriga LS6) Small signal verification (0.4-12GHz)

0 1.0

1.0

-1.

0

10.

0

10.0

-10.0

5.0

5.0

-5.0

2.0

2.0

-2.0

3.0

3.0

-3.0

4.0

4.0

-4.0

0.2

0.2

-0.2

0.4

0.4

-0.4

0.6

0.6

-0.

6

0.8

0.8

-0.

8

S11 and S22Swp Max

11.99GHz

Swp Min0.38GHz

S(1,1)FET Schematic

S(1,1)SParm Data

S(2,2)FET Schematic

S(2,2)SParm Data

0

15

30

45

60

75

90

105

120

135

150

165

-180

-165

-150

-135

-120

-105 -9

0

-75

-60

-45

-30

-15

S21Swp Max

11.99 GHz

Swp Min0.38 GHz

Mag Max20

5Per Div

S(2,1)FET Schematic

S(2,1)SParm Data

0

15

30

45

60

75

90

105

120

135

150

165

-180

-165

-150

-135

-120

-105 -9

0

-75

-60

-45

-30

-15

S12Swp Max

11.99 GHz

Swp Min0.38 GHz

Mag Max0.06

0.02Per Div

S(1,2)FET Schematic

S(1,2)SParm Data

S11, S22 S21 S12

40Vd –1.0Vg

S parameter simulation from the large signal model was verified over a wide bias range.

Page 43: 5989-9552EN.pdf

42

Load Pull Testing and Simulation Results

DUTFixtured device

Focus iTuner708

ElectronicTuner

Load pull system

PA

Source

ReceiverBias Tee

Bias Tee

Power Supply

Power Supply

Page 44: 5989-9552EN.pdf

43

Loadpull simulation circuit

Prematch Fixture

Prematch Fixture3:Bias

12

HBTUNER2ID=TU1Mag1=0.58Ang1=-168 DegMag2=0.56Ang2=69.4 DegMag3=0Ang3=180 DegFo=2 GHzZo=50 Ohm

0 mA

SU

0 mA

3:Bias

1 2

HBTUNER2ID=TU2Mag1=0.56Ang1=84.9 DegMag2=0.4Ang2=-63.1 DegMag3=0Ang3=180 DegFo=2 GHzZo=50 Ohm

149 mA149 mAPOP=Z=

Device Model

Pin Pout

Page 45: 5989-9552EN.pdf

44

Device Simulation vs Single Tone Load Pull Data @ 2GHz

0 10 20 30 34Power (dBm)

Load pull adjusted source and load termination

10

20

30

40

50

0

20

40

60

80

p2

p1AMtoAM(PORT_2)[1,X,*] (L, dBm)Adjusted Load PullPAE(PORT_1,PORT_2)[1,X,*] (R)Adjusted Load Pull|Icomp(DCVS.V3,0)|[1,X,*] (R)Adjusted Load Pull|Icomp(DCVS.V4,0)|[1,X,*] (L)Adjusted Load Pull

PlotCol(1,2) (L)30LF run 1 w AMPMPlotCol(1,4) (R)30LF run 1 w AMPMPlotCol(1,6) (R)30LF run 1 w AMPM

p1: Freq = 2 GHzVg = -1.08

p2: Freq = 2 GHzVg = -1.08

%dBm Max Power47dBm

Max Eff67%

Page 46: 5989-9552EN.pdf

45

Device Simulation vs Two Tone Load Pull Data @ 2GHz

IM3

IM5

SimulationdBm

Page 47: 5989-9552EN.pdf

46

Summary

Modeling extraction steps for small signal and large signal model are described in this presentation using GaAs pHEMTs and GaNHEMT device data.Difficulties of modeling large devices, such as GaN HEMTs with 100W output power, were discussed.These models were used successfully to simulate 2.1GHz 100W GaN HEMT amplifier.

Thank you

Page 48: 5989-9552EN.pdf

www.agilent.com/fi nd/emailupdatesGet the latest information on the products and applications you select.

www.agilent.com/fi nd/agilentdirectQuickly choose and use your test equipment solutions with confi dence.

Agilent Email Updates

Agilent Direct

www.agilent.comFor more information on Agilent Technologies’ products, applications or services, please contact your local Agilent office. The complete list is available at:www.agilent.com/fi nd/contactus

AmericasCanada (877) 894-4414 Latin America 305 269 7500United States (800) 829-4444

Asia Pacifi cAustralia 1 800 629 485China 800 810 0189Hong Kong 800 938 693India 1 800 112 929Japan 0120 (421) 345Korea 080 769 0800Malaysia 1 800 888 848Singapore 1 800 375 8100Taiwan 0800 047 866Thailand 1 800 226 008

Europe & Middle EastAustria 0820 87 44 11Belgium 32 (0) 2 404 93 40 Denmark 45 70 13 15 15Finland 358 (0) 10 855 2100France 0825 010 700* *0.125 €/minuteGermany 01805 24 6333** **0.14 €/minuteIreland 1890 924 204Israel 972-3-9288-504/544Italy 39 02 92 60 8484Netherlands 31 (0) 20 547 2111Spain 34 (91) 631 3300Sweden 0200-88 22 55Switzerland 0800 80 53 53United Kingdom 44 (0) 118 9276201Other European Countries: www.agilent.com/fi nd/contactusRevised: March 27, 2008

Product specifi cations and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2008

For more information about Agilent EEsof EDA, visit:

www.agilent.com/fi nd/eesof

nstewart
Text Box
Printed in USA, Feburary 26, 2008 5989-9552EN

Recommended