+ All Categories
Home > Documents > 600R10100 (Nutrient Control Design Manual)

600R10100 (Nutrient Control Design Manual)

Date post: 08-Apr-2018
Category:
Upload: giuseppe-pastorelli
View: 232 times
Download: 0 times
Share this document with a friend

of 369

Transcript
  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    1/368

    Nutrient Control Design Manual

    Office of Research and DevelopmentNational Risk Management Research Laboratory - Water Supply and Water Resources Division

    EPA/600/R-10/100 | August 2010 | www.epa.gov/n

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    2/368

    EPA/600/R10/100August2010

    NutrientControlDesignManual

    by

    TheCadmusGroup,Inc

    57WaterStreet

    Watertown,MA02472

    Scientific,Technical,Research,Engineering,andModelingSupport(STREAMS)

    TaskOrder68

    ContractNo. EPC05058

    GeorgeT.Moore,TaskOrderManager

    UnitedStatesEnvironmentalProtectionAgency

    OfficeofResearchandDevelopment/NationalRiskManagementResearchLaboratory

    26WestMartinLutherKingDrive,MailCode445

    Cincinnati,Ohio,45268

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    3/368

    NutrientControlDesignManual iii August2010

    Foreword

    TheU.S.EnvironmentalProtectionAgency(EPA)ischargedbyCongresswithprotectingtheNations

    land,air,andwaterresources. Underamandateofnationalenvironmentallaws,theAgencystrivesto

    formulateandimplementactionsleadingtoacompatiblebalancebetweenhumanactivitiesandthe

    abilityofnaturalsystemstosupportandnurturelife.Tomeetthismandate,EPAsresearchprogramisprovidingdataandtechnicalsupportforsolvingenvironmentalproblemstodayandbuildingascience

    knowledgebasenecessarytomanageourecologicalresourceswisely,understandhowpollutantsaffect

    ourhealth,andpreventorreduceenvironmentalrisksinthefuture.

    TheNationalRiskManagementResearchLaboratory(NRMRL)istheAgencyscenterforinvestigationof

    technologicalandmanagementapproachesforpreventingandreducingrisksfrompollutionthat

    threatenhumanhealthandtheenvironment. Thefocusofthelaboratorysresearchprogramison

    methodsandtheircosteffectivenessforpreventionandcontrolofpollutiontoair,landwaterand

    subsurfaceresources;protectionofwaterqualityinpublicwatersystems;remediationofcontaminated

    sites,sedimentsandgroundwater;preventionandcontrolofindoorairpollution;andrestorationof

    ecosystems. NRMRLcollaborateswithbothpublicandprivatesectorpartnerstofostertechnologies

    thatreducethecostofcomplianceandtoanticipateemergingproblems. NRMRLsresearchsolutionsto

    environmentalproblemsby:developingandpromotingtechnologiesthatprotectandimprovethe

    environment;advancingscientificandengineeringinformationtosupportregulatoryandpolicy

    decisions;andprovidingthetechnologicalsupportandinformationtransfertoinsureimplementationof

    environmentalregulationsandstrategiesatthenational,state,andcommunitylevels.

    ThispublicationhasbeenproducedaspartoftheLaboratorysstrategiclongtermresearchplan. Itis

    publishedandmadeavailablebyEPAsOfficeofResearchandDevelopmenttoassisttheuser

    communityandtolinkresearcherswiththeirclients.

    SallyGutierrez,Director

    NationalRiskManagementResearchLaboratory

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    4/368

    NutrientControlDesignManual iv August2010

    Notice

    ThisdocumentwaspreparedbyTheCadmusGroup,Inc.(Cadmus)underEPAContractNo.EPC05058,

    TaskOrder68.TheCadmusTeamwasleadbyPatriciaHertzlerandLauraDufresnewithSeniorAdvisors

    CliffordRandall,EmeritusProfessorofCivilandEnvironmentalEngineeringatVirginiaTechandDirector

    oftheOccoquanWatershedMonitoringProgram;JamesBarnard,GlobalPracticeandTechnology

    LeaderatBlack&Veatch;DavidStensel,ProfessorofCivilandEnvironmentalEngineeringatthe

    UniversityofWashington;andJeanetteBrown,ExecutiveDirectoroftheStamfordWaterPollution

    ControlAuthorityandAdjunctProfessorofEnvironmentalEngineeringatManhattanCollege.

    Disclaimer

    Theviewsexpressedinthisdocumentarethoseoftheindividualauthorsanddonotnecessarily,reflect

    theviewsandpoliciesoftheU.S.EnvironmentalProtectionAgency(EPA). Mentionoftradenamesor

    commercialproductsdoesnotconstituteendorsementorrecommendationforuse.Thisdocumenthas

    beenreviewedinaccordancewithEPAspeerandadministrativereviewpoliciesandapprovedfor

    publication.

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    5/368

    NutrientControlDesignManual v August2010

    Abstract

    ThepurposeofthisEPAdesignmanualistoprovideupdated,stateofthetechnologydesign

    guidanceonnitrogenandphosphoruscontrolatmunicipalWastewaterTreatmentPlants(WWTPs).

    SimilartopreviousEPAmanuals,thismanualcontainsextensiveinformationontheprinciplesof

    biologicalnutrientremovalandchemicalphosphorusremovaltoserveasthebasisfordesign.Adetaileddescriptionoftechnologies,bothconventionalandemerging,servesasaresourceforpreliminary

    technologyselection. BecausemostWWTPsintheUnitedStatesareequippedwithsecondary

    treatment,thefocusofthisdesignmanualisonretrofitstoaddnutrientremovaltoexistingWWTPs

    ratherthanonnewtreatmentplantdesign,althoughguidanceforgreenfielddesignispresented. Also

    newfrompreviousversions,designguidancehereinisbasedontheuseofmathematicalmodelsand

    simulators.Simulatorsallowdesignerstostudykinetic aswellastimebasedsolutionswhile

    determiningthetotalmassbalancesofmanyconstituents.Theyhavebecomeincreasinglypowerful,

    easytouse,andwidelyacceptedforthedesignofbiologicalnutrientremovalfacilities. Themanualalso

    includesnewinformationonemergingissuesintheindustrysuchassustainabilityinwastewater

    treatmentdesignandoperation,nutrientrecoveryandreuse,effluentdissolvedorganicnitrogen,and

    measurementoflowphosphorusconcentrations.

    ThisreportwassubmittedinfulfillmentofEPAContractNo.EPC05058,TaskOrder68,byThe

    CadmusGroup,Inc.underthesponsorshipoftheUnitedStatesEnvironmentalProtectionAgency.This

    reportcoversaperiodfromNovember2007throughApril2010andrepresentsworkcompletedasof

    April2010.

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    6/368

    NutrientControlDesignManual vi August2010

    Contents

    AcronymsandAbbreviations ....................................................................................................... xviii

    Acknowledgements ....................................................................................................... xxii

    1. Introduction ....................................................................................................... 111.1 HistoryofNutrientRemoval.................................................................................... 11

    1.2 PurposeandScopeofthisManual.......................................................................... 13

    1.3 ManualOrganization............................................................................................... 15

    1.4 References ....................................................................................................... 16

    2. NeedforandBenefitsofNitrogenandPhosphorusRemoval............................................. 21

    2.1 Introduction ....................................................................................................... 21

    2.2 SourcesofNitrogenandPhosphorusinWastewater.............................................. 22

    2.2.1 Nitrogen...................................................................................................... 22

    2.2.2 Phosphorus................................................................................................. 23

    2.3 StatusofWastewaterTreatmentintheUnitedStates........................................... 23

    2.4 NutrientImpairmentofU.S.Waterways................................................................. 25

    2.4.1 NorthernGulfofMexico............................................................................. 25

    2.4.2 ChesapeakeBay......................................................................................... 26

    2.4.3 GreatLakes................................................................................................. 26

    2.4.4 LongIslandSound....................................................................................... 26

    2.5 ClimateChangeImpacts.......................................................................................... 27

    2.6 FederalandStateRegulationsandInitiativestoReduceNutrientPollution..........28

    2.6.1 WaterQualityStandards............................................................................ 28

    2.6.2 TotalMaximumDailyLoads(TMDLs)......................................................... 210

    2.6.3 NPDESPermitting....................................................................................... 210

    2.6.4 WaterQualityTrading................................................................................ 211

    2.6.5 TechnologyEvaluationandGuidance......................................................... 212

    2.7 IndustryInitiativesTheWERFNutrientRemovalChallenge................................. 213

    2.8 BenefitsofNutrientRemoval.................................................................................. 214

    2.8.1 ImprovedPlantPerformance...................................................................... 214

    2.8.2 CoRemovalofEmergingContaminants..................................................... 214

    2.8.3 NutrientRecoveryandReuse..................................................................... 215

    2.9 ChallengesofNutrientRemoval.............................................................................. 215

    2.9.1 EnergyRequirements.................................................................................. 215

    2.9.2 ReleaseofNitrousOxide............................................................................ 217

    2.10 References ....................................................................................................... 218

    3.

    Principles

    of

    Phosphorus

    Removal

    by

    Chemical

    Addition

    ....................................................

    3

    1

    3.1 Introduction ....................................................................................................... 31

    3.2 AvailableFormsofMetalSaltsandLime................................................................. 31

    3.3 EquationsandStoichiometry................................................................................... 32

    3.3.1 RemovablePhosphorus.............................................................................. 32

    3.3.2 ReactionsofMetalSaltsandPhosphorus.................................................. 32

    3.3.3 ReactionsofLimewithPhosphorus............................................................ 35

    3.4 SolidsSeparationProcesses..................................................................................... 35

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    7/368

    NutrientControlDesignManual vii August2010

    3.5 EffectsonSludgeProductionandHandling............................................................. 36

    3.6 TwoFactorsthatMayLimittheAbilityofPlantstoAchieve

    VeryLowEffluentLevels.......................................................................................... 37

    3.7 References ....................................................................................................... 38

    4. PrinciplesofBiologicalNitrogenRemoval........................................................................... 41

    4.1 Introduction ....................................................................................................... 41

    4.2 NitrogenRemovalbyBiomassSynthesis................................................................. 42

    4.3 MicrobiologyofNitrification.................................................................................... 43

    4.4 ReactionsandStoichiometryofNitrification........................................................... 45

    4.5 NitrificationKinetics................................................................................................. 46

    4.5.1 AOBkinetics................................................................................................ 410

    4.5.2 NOBkinetics................................................................................................ 413

    4.5.3 EffectsofTemperatureandDissolvedOxygenonNitrificationKinetics....414

    4.5.4 AOBandNOBKineticsatHighTemperature(SHARONprocess).............416

    4.6 InhibitoryEffectsofEnvironmentalConditionsonNitrification............................. 417

    4.7 DenitrificationFundamentals.................................................................................. 420

    4.8 MicrobiologyofDenitrification................................................................................ 420

    4.9 MetabolismandStoichiometryofHeterotrophicDenitrification........................... 421

    4.10 BiologicalDenitrificationKineticswithInfluentWastewater.................................. 422

    4.11 DenitrificationCarbonSourcesandRelativeConsumptionRatios.......................... 424

    4.12 DenitrificationKineticsofExogenousCarbonSources............................................ 428

    4.12.1 DenitrificationKineticswithMethanol....................................................... 428

    4.12.2 AlternativeExogenousSubstratesandDenitrificationKinetics.................430

    4.12.3 AcclimationTimeandDegradativeAbilityofDenitrifyingBacteriawith

    ExogenousSubstrates................................................................................. 431

    4.13 SpecificDenitrificationRates(SDNR)....................................................................... 432

    4.14 SimultaneousNitrificationDenitrification............................................................... 434

    4.15

    Metabolism

    and

    Stoichiometry

    and

    Kinetics

    of

    ANAMMOX

    .................................

    4

    35

    4.16 ImpactsonSludgeProductionandHandling........................................................... 436

    4.17 EffluentDissolvedOrganicNitrogen........................................................................ 436

    4.18 References ....................................................................................................... 439

    5. PrinciplesofBiologicalPhosphorusRemoval....................................................................... 51

    5.1 OverviewoftheBiologicalPhosphorusRemovalProcess....................................... 51

    5.2 SubstrateRequirements.......................................................................................... 53

    5.3 SourcesofVolatileFattyAcids................................................................................. 55

    5.3.1 FermentationintheCollectionSystem...................................................... 56

    5.3.2 AnaerobicFermentationofPrimaryorReturnActivatedSludge...............57

    5.3.3 CommercialSources................................................................................... 510

    5.4 EnvironmentalConditions....................................................................................... 511

    5.4.1 DissolvedOxygenandNitratesintheAnaerobicZone.............................. 511

    5.4.2 OxygenintheAerobicZone........................................................................ 511

    5.4.3 pH ....................................................................................................... 512

    5.4.4 Temperature............................................................................................... 512

    5.4.5 Cations ....................................................................................................... 513

    5.5 Kinetics ....................................................................................................... 513

    5.5.1 SolidsRetentionTime(SRT)........................................................................ 513

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    8/368

    NutrientControlDesignManual viii August2010

    5.5.2 HydraulicRetentionTime(HRT) ................................................................ 514

    5.6 ImportantDesignandOperationalConsiderations................................................. 514

    5.6.1 AvoidingSecondaryReleaseofPhosphorus............................................... 514

    5.6.2 AvoidingBackmixing................................................................................... 516

    5.6.3 FlowandLoadBalancing............................................................................ 517

    5.7 ImpactsonSludgeProcessingandHandling........................................................... 517

    5.8 References ....................................................................................................... 518

    6. OverviewofNitrogenandPhosphorusRemovalTechnologies........................................... 61

    6.1 Introduction ....................................................................................................... 61

    6.2 NitrogenRemovalTechnologies.............................................................................. 62

    6.2.1 NitrogenRemovalinSingleProcessUnit.................................................... 63

    6.2.1.1ModifiedLudzackEttinger(MLE)Process..................................... 63

    6.2.1.2 4StageBardenpho........................................................................ 65

    6.2.1.3MLEor4StageBardephowithMembraneBioractor(MBR)........65

    6.2.1.4 SequencingBatchReactor(SBR).................................................... 66

    6.2.1.5 OxidationDitchwithAnoxicZone................................................. 67

    6.2.1.6 StepFeedBiologicalNitrogenRemoval(BNR).............................. 68

    6.2.1.7 SimultaneousNitrificationDenitrification(SNdN)........................ 69

    6.2.1.8 IntegratedFixedFilmActivatedSludge(IFAS)............................... 610

    6.2.1.9MovingBedBiofilmReactor(MBBR).............................................. 611

    6.2.2 SeparateStageProcessesNitrification.................................................... 612

    6.2.2.1 SuspendedGrowthNitrification.................................................... 612

    6.2.2.2 AttachedGrowthNitrification....................................................... 612

    6.2.3 SeparateStageProcessesDenitrification................................................ 613

    6.2.3.1 DenitrificationFilters..................................................................... 614

    6.3 PhosphorusRemovalTechnologies......................................................................... 616

    6.3.1 PhosphorusRemovalbyChemicalAddition............................................... 616

    6.3.2

    Biological

    Phosphorus

    Removal

    ..................................................................

    6

    19

    6.3.2.1 Phoredox(A/O)............................................................................. 620

    6.3.2.2 OxidationDitchwithAnaerobicZone............................................ 621

    6.4 CombinedNitrogenandPhosphorusRemovalTechnologies................................. 622

    6.4.1 Biological..................................................................................................... 622

    6.4.1.1 3StagePhoredox(A2/0)............................................................... 622

    6.4.1.2 5StageBardenpho........................................................................ 623

    6.4.1.3 UniversityofCapetown(UCT),ModifiedUCT,andVirginiaInitiative

    Project(VIP)................................................................................... 624

    6.4.1.4Westbank....................................................................................... 626

    6.4.1.5 OxidationDitchwithAnoxicandAnaerobicZones....................... 626

    6.4.1.6 SequencingBatchReactor(SBR).................................................... 627

    6.4.2 HybridChemical/Biological....................................................................... 627

    6.4.2.1 BluePlainsProcess........................................................................ 628

    6.4.2.2 BiologicalChemicalPhosphorusandNitrogenRemoval(BCFS)

    Process.......................................................................................... 628

    6.5 EffluentFiltration..................................................................................................... 629

    6.5.1 ConventionalDownflowFilters................................................................. 629

    6.5.2 ContinuousBackwashingUpflowSandFilters(Dynasand)........................ 629

    6.5.3 PulsedBedFilters........................................................................................ 630

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    9/368

    NutrientControlDesignManual ix August2010

    6.5.4 TravelingBridgeFilters............................................................................... 630

    6.5.5 Discfilters.................................................................................................... 630

    6.5.6 MembraneFilters....................................................................................... 631

    6.6 SidestreamManagement........................................................................................ 632

    6.7 TechnologyPerformance......................................................................................... 634

    6.7.1 RemovalEfficienciesofBNRTechnologiesGeneralDiscussion...............636

    6.7.2 TechnologyPerformanceStatisticsbasedonFullScaleOperatingData...637

    6.8 FactorsinSimultaneouslyAchievingLowNitrogenandPhosphorusEffluent

    Concentrations ....................................................................................................... 642

    6.9 References ....................................................................................................... 643

    7. EstablishingDesignObjectives.............................................................................................. 71

    7.1 Introduction ....................................................................................................... 71

    7.2 CharacterizingExistingTreatment........................................................................... 72

    7.3 DesignFlowRates.................................................................................................... 73

    7.3.1 CharacterizingExistingFlow....................................................................... 73

    7.3.2 ProjectingFutureConditions...................................................................... 75

    7.3.3 SettingDesignFlowRates........................................................................... 76

    7.4 Wastewatercharacteristics..................................................................................... 77

    7.4.1 DataCollection............................................................................................ 77

    7.4.2 DataVerification......................................................................................... 710

    7.5 TargetEffluentConcentrationsforTotalNitrogenandTotalPhosphorus..............715

    7.6 GoalsforReliability,Sustainability,andProcessFlexibility..................................... 716

    7.7 SludgeTreatmentOptions....................................................................................... 718

    7.8 SiteConstraints ....................................................................................................... 718

    7.9 SelectinganOverallProcessDesignFactor............................................................ 719

    7.10 References ....................................................................................................... 720

    8.

    Selecting

    Candidate

    Treatment

    Processes

    for

    Plant

    Upgrades

    ...........................................

    8

    1

    8.1 Introduction ....................................................................................................... 81

    8.2 TechnologySelectionFactors.................................................................................. 81

    8.2.1 SeasonalPermitLimits................................................................................ 81

    8.2.2 Footprint..................................................................................................... 82

    8.2.3 HydraulicConsiderations............................................................................ 83

    8.2.4 Chemicalneeds........................................................................................... 83

    8.2.5 AvailableSludgeTreatmentandOptions................................................... 83

    8.2.6 EnergyConsiderations................................................................................ 84

    8.2.7 StaffingandTrainingRequirements........................................................... 85

    8.2.8 TechnologySelectionConsiderationsforSmallFlowSystems...................85

    8.3 AdvantagesandDisadvantagesofTechnologyTypes............................................. 86

    8.4 OverviewofRecommendedApproach.................................................................... 88

    8.5 RecommendedUseofAdvancedTools................................................................... 811

    8.6 Patentissues ....................................................................................................... 812

    8.7 References ....................................................................................................... 813

    9. DesignApproachforPhosphorusRemovalbyChemicalAddition ...................................... 91

    9.1 Introduction ....................................................................................................... 91

    9.2 SelectingaChemicalPrecipitant.............................................................................. 91

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    10/368

    NutrientControlDesignManual x August2010

    9.2.1 AdvantagesandDisadvantagesofMetalSalts........................................... 91

    9.2.2 AdvantagesandDisadvantagesofLime..................................................... 93

    9.2.3 Costs ....................................................................................................... 93

    9.3 SelectingPoint(s)ofApplication.............................................................................. 94

    9.4 DeterminingtheChemicalDose.............................................................................. 97

    9.5 DesigningaChemicalFeedSystem.......................................................................... 910

    9.5.1 Liquidfeedsystems.................................................................................... 911

    9.5.1.1 Storagetanks................................................................................. 911

    9.5.1.2 FeedMethods................................................................................ 911

    9.5.2 DryFeedSystems........................................................................................ 912

    9.5.2.1 Storage........................................................................................... 912

    9.5.2.2 FeedMethods................................................................................ 913

    9.5.2.3 LimeSlaking................................................................................... 914

    9.6 DesigningforRapidMixandFlocculation............................................................... 915

    9.6.1 TypesofMixers........................................................................................... 915

    9.6.2 DesignFactors............................................................................................. 917

    9.6.2.1 VelocityGradient........................................................................... 917

    9.6.2.2 PowerRequirements..................................................................... 918

    9.6.2.3 HydraulicRetentionTime.............................................................. 919

    9.6.2.4 VesselGeometry............................................................................ 920

    9.6.3 SummaryofTypicalDesignParameters..................................................... 920

    9.7 SolidsSeparationProcesses..................................................................................... 921

    9.7.1 PrimaryandSecondaryClarification........................................................... 922

    9.7.2 TertiaryProcesses....................................................................................... 922

    9.8 OperationalFactors................................................................................................ 922

    9.8.1 DoseControl............................................................................................... 922

    9.8.2 MakeupWater........................................................................................... 923

    9.8.3 SludgeProductionandHandling................................................................ 923

    9.8.4

    pH

    Adjustment

    ............................................................................................

    9

    25

    9.8.5 EffectonBiosolidsApplications.................................................................. 925

    9.9 References ....................................................................................................... 925

    10. DesignApproachforBiologicalNutrientRemoval............................................................... 101

    10.1 Introduction ....................................................................................................... 101

    10.2 PreliminaryDesignApproach.................................................................................. 103

    10.3 OverviewofRecommendedApproachforPlantModeling..................................... 105

    10.4 EstablishingModelingObjectivesandRequirements............................................. 107

    10.4.1 IntendedModelUse................................................................................... 107

    10.4.2 GoalsforModelAccuracy........................................................................... 107

    10.4.3 Dynamicvs.SteadyStateSimulation.......................................................... 108

    10.5 SelectingaProcessSimulationModel..................................................................... 109

    10.6 DataCollection ....................................................................................................... 1012

    10.6.1 ProcessConfiguration................................................................................. 1013

    10.6.2 OperatingConditions.................................................................................. 1016

    10.7 CharacterizationofOrganicMaterial...................................................................... 1016

    10.7.1 RelationshipofOrganicMaterialandSuspendedSolidsinWastewater...1020

    10.7.2 MethodsforDeterminingCODFractions................................................... 1022

    10.7.3 DataChecks................................................................................................. 1025

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    11/368

    NutrientControlDesignManual xi August2010

    10.8 CharacterizationofNutrientFractions.................................................................... 1026

    10.8.1 Nitrogen...................................................................................................... 1026

    10.8.2 Phosphorus................................................................................................. 1029

    10.9 KineticandStoichiometricParameters................................................................... 1032

    10.10 Calibration ....................................................................................................... 1033

    10.11 Validation ....................................................................................................... 1037

    10.12 SimulationofDesignAlternativesforNutrientRemoval........................................ 1038

    10.13 AdditionalProceduresforDesign............................................................................ 1039

    10.13.1SequencingBatchReactors(SBRs)............................................................. 1039

    10.13.2DenitrificationFilters.................................................................................. 1040

    10.13.3PrimarySludgeFermenters........................................................................ 1041

    10.14 DesignChecksforBiologicalNitrogenandPhosphorusRemoval........................... 1042

    10.15 References ....................................................................................................... 1047

    11. DesignApproachforEffluentFiltration............................................................................... 111

    11.1 Introduction ....................................................................................................... 111

    11.2 SelectionofFiltrationTechnology........................................................................... 112

    11.3 GranularMediaFilters............................................................................................. 113

    11.3.1 InfluentWaterQuality................................................................................ 114

    11.3.2 MediaSpecifications................................................................................... 114

    11.3.3 FilterLoadingRate...................................................................................... 116

    11.3.4 Headloss...................................................................................................... 116

    11.3.5 BackwashRequirements............................................................................. 117

    11.3.6 FlowControl............................................................................................... 119

    11.4 ClothMediaFilters................................................................................................... 1110

    11.5 LowPressureMembranes....................................................................................... 1111

    11.5.1 MembraneMaterial.................................................................................... 1112

    11.5.2 MembraneConfiguration........................................................................... 1113

    11.5.3

    Process

    Considerations

    ...............................................................................

    11

    14

    11.5.4 PressureDrop............................................................................................. 1115

    11.5.5 FluxDetermination..................................................................................... 1115

    11.5.6 PerformanceData....................................................................................... 1116

    11.6 EmergingFiltrationTechnologiesforPhosphorusRemoval.................................... 1116

    11.6.1 TwoStageFiltration.................................................................................... 1116

    11.6.2 IronOxideCoatedMedia............................................................................ 1117

    11.7 References ....................................................................................................... 1118

    12. OperationandOptimizationtoEnhanceNutrientRemoval............................................... 121

    12.1 Introduction ....................................................................................................... 121

    12.2 AnalysisofExistingOperations................................................................................ 121

    12.2.1 DataAnalysis............................................................................................... 122

    12.2.2 UseofProcessSimulationModels.............................................................. 125

    12.3 IncorporatingSCADAandotherInstrumentation................................................... 126

    12.4 CommonOperationalChanges................................................................................ 126

    12.4.1 AdjustSRT................................................................................................... 126

    12.4.2 AdjustAerationRates................................................................................. 127

    12.4.3 AddBafflestoCreateHighFoodtoMicroorganism(F/M)Conditions.......127

    12.4.4 ChangeAerationSettingsinPlugFlowBasins............................................ 127

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    12/368

    NutrientControlDesignManual xii August2010

    12.4.5 MinimizeImpactofRecycleStreams.......................................................... 128

    12.4.6 ReconfigureFlowthroughExistingUnits.................................................... 128

    12.4.7 IncreaseVFAsforBiologicalPhosphorusRemoval..................................... 129

    12.5 References ....................................................................................................... 1210

    13. InstrumentationandControls..................................................................................................... 131

    13.1 Introduction ....................................................................................................... 131

    13.2 FactorsinSelectingInstrumentation....................................................................... 132

    13.3 BasicOnlineInstrumentation.................................................................................. 133

    13.3.1 Flow ....................................................................................................... 133

    13.3.2 TotalSuspendedSolids(TSS)...................................................................... 134

    13.3.3 SludgeBlanketDepth.................................................................................. 135

    13.3.4 DissolvedOxygen(DO)............................................................................... 135

    13.3.5 pH ....................................................................................................... 135

    13.3.6 ORP ....................................................................................................... 136

    13.4 OnlineInstrumentationforNutrientControl.......................................................... 136

    13.4.1 NitrogenCompounds.................................................................................. 136

    13.4.2 PhosphateandTotalPhosphorus............................................................... 137

    13.4.3 NADH(activebiomass)............................................................................... 138

    13.4.3 Respirometry.............................................................................................. 138

    13.5 TypesofControl....................................................................................................... 139

    13.5.1 Feedforward.............................................................................................. 139

    13.5.2 Feedback..................................................................................................... 1310

    13.5.3 Feedforwardandfeedback........................................................................ 1310

    13.5.4 Cascade....................................................................................................... 1310

    13.5.5 AdvancedControl....................................................................................... 1310

    13.6 ControlEquipmentSCADA.................................................................................... 1311

    13.7 References ....................................................................................................... 1313

    14. SustainableNutrientRecoveryandReuse............................................................................ 141

    14.1 Introduction ....................................................................................................... 141

    14.2 SeparatingandTreatingWasteOnSite................................................................... 141

    14.3 UsingWastewaterTreatmentByproducts.............................................................. 142

    14.3.1 Durham,OR,AdvancedWastewaterTreatmentFacility............................ 143

    14.3.2 EastBayMunicipalUtilityDistrict,CA........................................................ 144

    14.4 References ....................................................................................................... 145

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    13/368

    NutrientControlDesignManual xiii August2010

    Appendices

    AppendixA. RecommendationsforMethanolSafety

    AppendixB. OrganicCompoundsandInhibitoryConcentrationstoNitrification

    AppendixC. MathematicalModelsforWastewaterTreatment

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    14/368

    NutrientControlDesignManual xiv August2010

    Tables

    Table31. ChemicalPrecipitants.............................................................................................. 32

    Table41. PhylogenyofAmmoniaOxidizingBacteria.............................................................. 44

    Table42. PhylogenyofNitriteOxidizingBacteria................................................................... 45

    Table43. SummaryofTestResultsonMeasuringSpecificEndogenousDecayCoefficient

    Rates(AllRatesat20C)........................................................................................... 411

    Table44. SummaryofAOBNitrificationKineticCoefficientValues........................................ 412

    Table45. ComparisonofNitrificationHalfVelocityCoefficients(mg/L)inMBRand

    ConventionalActivatedSludge(CAS)Systems........................................................ 412

    Table46. SummaryofNOBNitrificationKineticCoefficientValues....................................... 414

    Table47. NH4NandNO2NConcentrationsthatMayInhibitNitrificationasaFunction

    ofpHat20C. ....................................................................................................... 419

    Table48. HeterotrophicBacteriaKineticCoefficientsinAnoxic/AerobicActivated

    Sludge ....................................................................................................... 424

    Table49. BiomassYieldsReportedforExogenousCarbonSources....................................... 428

    Table

    4

    10.

    Reported

    Maximum

    Specific

    Growth

    Rates

    at

    20C

    and

    Temperature

    CoefficientsforMethanolUtilizationunderAnoxicandAerobicconditions..........429

    Table411. ReportedKsvaluesforNO3Nreductionwithmethanolat20C............................. 429

    Table412. ComparisonofMaximumSpecificGrowthratesforMethanol,Acetate,andCorn

    SyrupatHighandLowTemperatures..................................................................... 430

    Table413. ForBNRActivatedSludge,RatioofDenitrificationRatewithSubstrateAddition

    toDenitrificationRatewithNoAddition................................................................. 431

    Table414. RatioofDenitrificationRatesforOtherSubstratesatDay50withEthanolor

    MethanolAdditionVersusnoAddition................................................................... 432

    Table415. RangeofreportedSDNRvaluesinBNRactivatedsludgetreatment...................... 433

    Table4.16. ANAMMOXBacteriaBiokineticParametersat300C............................................. 435

    Table51. VolatileFattyAcidsTypicallyFoundinFermentedWastewater............................. 54

    Table52. MinimumRatiosforAchievingTotalPhosphorusEffluentConcentrationof

    lessthan1.0mg/L.................................................................................................... 54

    Table53. EffectofCorrosionandOdorControlTechniquesonVFAProductionin

    WastewaterCollectionSystems.............................................................................. 57

    Table61. MatrixofBiologicalNitrogenRemovalTechnologies.............................................. 63

    Table62. IFASMediaTypes,Applications,andDesignConsiderations.................................. 610

    Table63. MatrixofPhosphorusRemovalTechnologies........................................................ 616

    Table64. MatrixofCombinedBiologicalPhosphorusandNitrogenRemovalTechnologies.622

    Table65. MatrixofTertiaryFiltrationTechnologies............................................................... 629

    Table71. InfluentFlowComponents...................................................................................... 74

    Table72. FlowCharacterization.............................................................................................. 74

    Table73. ComparisonofFlowRatesandFlushVolumesBeforeandAfterU.S.Energy

    PolicyAct ....................................................................................................... 75

    Table74. ExamplePermitLimitsforNutrients........................................................................ 716

    Table81. AdvantagesandDisadvantagesofTechnologyTypes............................................ 87

    Table82. ExternalCarbonSources......................................................................................... 812

    Table83. IFASMediaTypes,Applications,andDesignConsiderations.................................. 815

    Table91. AdvantagesandDisadvantagesofCommonAluminumandIronSalts...................92

    Table92. AdvantagesandDisadvantagesofMetalSaltApplicationPoints........................... 96

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    15/368

    NutrientControlDesignManual xv August2010

    Table93. TypesofChemicalFeeders...................................................................................... 910

    Table94. CommonlyUsedEquipmentforRapidMixing......................................................... 916

    Table95. ValuesofNPandNQforVariousTypesofImpellers................................................ 918

    Table96. TypicalDesignParametersforTurbineandPropellerMixer................................... 921

    Table101. CommonlyUsedProcessSimulators....................................................................... 1010

    Table102. CODandParticulateFractionsinMunicipalWastewater....................................... 1019

    Table103. TKNFractionsinMunicipalWastewater.................................................................. 1028

    Table104. TotalPhosphorusFractionsinMunicipalWastewater............................................ 1031

    Table105. DesignChecksforBiologicalNitrogenRemoval...................................................... 1043

    Table106. DesignChecksforBiologicalPhosphorusRemoval................................................. 1045

    Table111. CommonFilterMediaandCharacteristics.............................................................. 115

    Table112. FilterMediaDepthsandParticleSizes.................................................................... 115

    Table113. MembraneCharacteristics....................................................................................... 1114

    Table114. AdvantagesandDisadvantagesofMembraneMaterials........................................ 1115

    Table115. PhosphorusRemovalReportedFromMembranePilotStudies.............................. 1119

    Table116. PilotTestResultsfortheBlueWaterBluePROSystem........................................ 1121

    Table121. RecommendedParametersforDataEvaluation..................................................... 123

    Table131. SummaryofBasicOnLineInstrumentation............................................................ 132

    Table132. ComparisonofOnlineNitrateAnalyzers ................................................................ 137

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    16/368

    NutrientControlDesignManual xvi August2010

    Figures

    Figure21. PopulationservedbyPOTWsnationwideforselectyearsbetween1940and2004

    andprojectedto2024(ifallneedsaremet),organizedbywastewater

    treatment type........................................................................................................ 25

    Figure22. WaterqualitybasedapproachoftheCleanWaterAct.......................................... 210

    Figure41. PercentnitrogenremovalduetobiomasssynthesisasafunctionofSRTand

    influentBOD/Nratio................................................................................................ 43

    Figure42. EffectofSRTandtemperatureoneffluentNH4+NandNO2

    Nconcentrations

    usingkineticdatainTable46and44forCMAS.................................................... 415

    Figure43. EffectofDOconcentrationoneffluentNH4+NandNO2

    Nconcentrations

    usingkineticdatainTable44and46andat15CforCMAS............................... 415

    Figure44. EffectoftemperatureonminimalwashoutSRTAOB,HandNOB,Hfrom

    Hellingaetal.(1998)andAOB,MandNOB,MfromTables42and44................417

    Figure45. RatioofCODrequiredtoNO3NcompletelyreduceNO3N(CRNO3)asa

    functionofthebiomassyield.................................................................................. 426

    Figure51. TheoryofBPRinactivatedsludge........................................................................... 51

    Figure52. BPRataWWTP ....................................................................................................... 53

    Figure53 BiologicalPathwaysofMethaneFormation............................................................ 5.8

    Figure54. Exampleofsecondaryreleaseinsecondanoxiczone............................................. 514

    Figure61. ModifiedLudzackEttinger(MLE)process............................................................... 64

    Figure62. 4stageBardenphoprocess..................................................................................... 65

    Figure63. Commonconfigurationforamembranebioreactor4stagebardenphotreatment

    system ....................................................................................................... 66

    Figure64. Operatingperiodsofasequencingbatchreactor................................................... 67

    Figure65. Exampleoxidationditchconfiguration.................................................................... 68

    Figure66. Stepfeedbiologicalnitrogenremoval..................................................................... 67

    Figure67. Downflowdenitrificationfilter................................................................................ 614

    Figure68. Continuousbackwashupflowsand(CBUS)filters................................................... 615

    Figure69. Closeupofcontinuousbackwashupflowsand(CBUS)filter.................................. 615

    Figure610. Densadeghighrateclarificationprocessflowdiagram......................................... 618

    Figure611. CoMagTMprocessflowdiagram............................................................................ 619

    Figure612. Phoredoxprocess(A/O)......................................................................................... 621

    Figure613. Oxidationditchwithanaerobiczone....................................................................... 622

    Figure614. 3StagePhoredoxprocess(A2/O)........................................................................... 623

    Figure615. 5stageBardenphoprocess.................................................................................... 624

    Figure616. UCTandModifiedUCTprocess............................................................................... 625

    Figure617. Westbankprocess.................................................................................................... 626

    Figure618. VT2processschematic............................................................................................. 627

    Figure619. TheBluePlainsprocess............................................................................................ 628

    Figure620. Probabilityplotofsecondaryeffluentphosphorusdata......................................... 639

    Figure621. Technologyperformancestatisticsfornitrogenremovalplants............................. 640

    Figure622. Technologyperformancestatisticsforphosphorusremovalplants....................... 640

    Figure71 Netsludgeproductionversussolidsretentiontimeandtemperature ..................714

    Figure91. Possibleapplicationpointsforchemicaladdition(C)............................................. 94

    Figure92. Schematicofcommonjartestingapparatus........................................................... 99

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    17/368

    NutrientControlDesignManual xvii August2010

    Figure93. Typicaldrychemicalfeedsystem............................................................................ 913

    Figure101. Unifiedprotocolforactivatedsludgemonitoring.................................................. 106

    Figure102. Essentialrequirementsforwastewatertreatmentprocesssimulation..................1013

    Figure103. Examplesimulatorconfigurationforabiologicalnutrientremovalplant..............1014

    Figure104. CODcomponentsformunicipalwastewater........................................................... 1018

    Figure105. RelationshipbetweenBOD,COD,TSS,andVSS...................................................... 1021

    Figure106. TKNcomponentsformunicipalwastewater........................................................... 1027

    Figure107. Phosphoruscomponentsinmunicipalwastewater................................................ 1030

    Figure111. Upflowcontinuousbackflowfilter.......................................................................... 1111

    Figure112. OperationalmodelsoftheFuzzyFilter.................................................................. 1112

    Figure113. CutawayviewofAquaDiskclothmediafilter........................................................ 1113

    Figure114. Hollowfibermembraneconfigurationwithinsidetooutsideflow........................ 1116

    Figure115. ParksonDynasandD2advancedfiltersystem......................................................... 1120

    Figure116. BluePROprocess................................................................................................... 1121

    Figure121. Spatialandtemporalprofilesofammonia.............................................................. 125

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    18/368

    NutrientControlDesignManual xviii August2010

    AcronymsandAbbreviations

    A/O Anaerobic/Oxic,Phoredox

    A2/O Anaerobic/Anoxic/Oxic,3StagePhoredox

    AMO AmmoniaMonooxygenase

    ANAMMOX AnaerobicAmmoniaOxidation

    AOB AmmoniaOxidizingBacteria

    AS ActivatedSludge

    ASCE AmericanSocietyofCivilEngineers

    ASM ActivatedSludgeModel

    AT3 AerationTank3

    BABE BioAugmentationBatchEnhanced

    BAF BiologicalAeratedFilter

    BAR BioAugmentationRegeneration/Reaeration

    BCFS BiologicalChemicalPhosphorusandNitrogenRemoval

    bDON BiodegradableFractionofDissolvedOrganicNitrogen

    BHRC

    Ballasted

    High

    Rate

    Clarification

    Processes

    BNR BiologicalNutrientRemoval

    BOD BiochemicalOxygenDemand

    BOD5 BiochemicalOxygenDemand(5day)

    BPR BiologicalPhosphorusRemoval

    CCF ContinuousContactFiltration

    CFD ComputationalFluidDynamic

    CIP CleaninPlace

    CMAS CompletelyMixedActivatedSludge

    C/N CarbontoNitrogenRatio

    COD ChemicalOxygenDemand

    COV CoefficientofVariation

    CR ConsumptiveRatio

    CSO CombinedSewerOverflow

    CSTR ContinuousStirredTankReactors

    CWA CleanWaterAct

    CWSRF CleanWaterStateRevolvingFund

    DAF DissolvedAirFlotation

    DO DissolvedOxygen

    DON DissolvedOrganicNitrogen

    DSS DesignatedSuspendedSolids

    EBPR EnhancedBiologicalPhosphorusRemoval

    EDC EndocrineDisruptingChemicals

    EDTA EthyleneDiamineTetraaceticAcid

    ENR EnhancedNutrientRemoval

    EPA U.S.EnvironmentalProtectionAgency

    FFS FixedfilmSystems

    F/M FoodtoMicroorganismratio

    FWPCA FederalWaterPollutionControlAct

    FWS FreeWaterSurface

    GAO GlycogenAccumulatingOrganism

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    19/368

    NutrientControlDesignManual xix August2010

    GMP GoodModelingPractices

    HRSD HamptonRoadsSanitationDistrict

    HRT HydraulicRetentionTime

    iDON InertDissolvedOrganicNitrogen

    IFAS IntegratedFixedFilmActivatedSludge

    ISF IntermittentSandFilter

    ISS InertSuspendedSolids

    IWA InternationalWaterAssociation

    JHB JohannesburgProcess

    LOT LimitofTechnology

    MAUREEN MainstreamAutotrophicRecycleEnhancedNremoval

    MBBR MovingBedBiofilmReactor

    MBR MembraneBioreactor

    MCL MaximumContaminantLevel

    MF Microfiltration

    MGD MillionGallonsperDay

    mg/L Milligramsperliter

    MLE ModifiedLudzackEttinger

    MLSS MixedLiquorSuspendedSolids

    MLVSS MixedLiquorVolatileSuspendedSolids

    MMDF MaximumMonthDesignFlow

    MUCT ModifiedUniversityofCapetown

    MWRDGC MetropolitanWaterReclamationDistrictofGreaterChicago

    N Nitrogen

    NF Nanofiltration

    NTU NephelometricTurbidityUnits

    NOAA NationalOceanicandAtmosphericAdministration

    NOB NitriteOxidizingBacteria

    NPDES

    National

    Pollutant

    Discharge

    Elimination

    System

    NTT NitrogenTradingTool

    ORD EPAOfficeofResearchandDevelopment

    ORP OxidationReductionPotential

    OSHA OccupationalSafetyandHealthAdministration

    OUR OxygenUptakeRate

    OWASA OrangeWaterandSewerAuthority

    OWM EPAOfficeofWastewaterManagement

    P Phosphorus

    PACl PolyaluminumChloride

    PAH PolycyclicAromaticHydrocarbons

    PAO PhosphateAccumulatingOrganism

    PHA Polyhydroxyalkanoate

    PHB Polyhydroxybutyrate

    PHV Polyhydroxyvalerate

    PID PhasedIsolationDitch

    PLC ProgrammableLogicController

    POTW PubliclyOwnedTreatmentWorks

    PPCPs PharmaceuticalsandPersonalCareProducts

    RAS ReturnActivatedSludge

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    20/368

    NutrientControlDesignManual xx August2010

    RBC RotatingBiologicalContactor

    rbCOD ReadilyBiodegradableChemicalOxygenDemand

    rDON RecalcitrantDissolvedOrganicNitrogen

    RO ReverseOsmosis

    RSF RecirculatingSandFilters

    SAV SubmergedAquaticVegetation

    SBCOD SlowlyBiodegradableChemicalOxygenDemand

    SBR SequencingBatchReactors

    SCADA SupervisoryControlandDataAcquisition

    SCM SurfaceComplexationModeling

    SDNR SpecificDenitrificationRate

    SHARON SingleReactorHighActivityAmmoniaRemovalOver Nitrite

    SNdN SimultaneousNitrificationDenitrification

    SRT SolidsRetentionTime

    SSO SanitarySewerOverflow

    STAC ChesapeakeBayProgramScientificandTechnicalAdvisory

    Committee

    SWIS SubsurfaceWastewaterInfiltrationSystem

    TAL TechnologyAchievableLimit

    TAN TotalAmmoniaNitrogen

    TDS TotalDissolvedSolids

    TKN TotalKjeldahlNitrogen

    TMDL TotalMaximumDailyLoads

    TN TotalNitrogen

    TP TotalPhosphorus

    TSS TotalSuspendedSolids

    TUDP BioPModeloftheDelftUniversityofTechnology

    UCT UniversityofCapetownProcess

    UF

    Ultrafiltration

    UOSA UpperOccoquanSewageAuthority

    USDA U.S.DepartmentofAgriculture

    USEPA U.S.EnvironmentalProtectionAgency

    USGS U.S.GeologicalSurvey

    VFA VolatileFattyAcid

    VIP VirginiaInitiativePlant

    VSS VolatileSuspendedSolids

    WAS WasteActivatedSludge

    WEF WaterEnvironmentFederation

    WEFTEC WaterEnvironmentFederationTechnicalExhibitionand

    Conference

    WERF WaterEnvironmentResearchFoundation

    WQS WaterQualityStandards

    WWTP WastewaterTreatmentPlant

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    21/368

    NutrientControlDesignManual xxi August2010

    Acknowledgements

    Theprincipleauthorsofthisdocument,titledNutrientControlDesignManual,were:

    Dr.CliffordRandall,ProfessorEmeritusofCivilandEnvironmentalEngineeringatVirginiaTechand

    DirectoroftheOccoquanWatershedMonitoringProgram

    Dr.JamesBarnard,GlobalPracticeandTechnologyLeaderatBlack&Veatch

    Dr.H.DavidStensel,ProfessorofCivilandEnvironmentalEngineeringattheUniversityofWashington

    LauraDufresne,SeniorEngineer,theCadmusGroup,Inc.

    EPAtechnicaldirectionandoversightwereprovidedbyDanMurray,EPAOfficeofResearchand

    Development,NationalRiskManagementLaboratory.

    EPAtechnicalreviewsofthedocumentwereperformedby:

    EPAOfficeofResearchandDevelopmentDonaldBrown

    DouglasGrosse

    RichardBrenner

    JamesSmith

    MarcMills

    JeffryYang

    EdwinBarth

    EPAHeadquartersDonaldAnderson

    PhilZahreddine

    JamesWheeler

    EPARegionsDavidPincumbe,Region1

    RogerJanson,Region1

    RussMartin,Region5

    DaveRagsdale,Region10

    Externaltechnicalreviewsofthedocumentwereperformedby

    JeanetteBrown,StamfordWaterPollutionControlAuthority

    TanyaSpano,MetropolitanWashingtonCouncilofGovernments(MWCOG)

    S.JohKang,TetraTech

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    22/368

    ThefollowingmembersoftheOhioWaterEnvironmentAssociation:

    DaleE.Kocarek,StantecConsulting,Inc.

    WilliamBarhorst,ARCADIS

    DennisP.Meek,DMEngineering

    KimRiddell,CityofDelphos

    PaulFletcher,Jones&HenryEngineers

    JasonTincu,CityofXenia

    GaryHickman,CityofColumbus

    RogerF.Gyger,m2tTechnologies

    TedMarten,CityofTwinsburg

    DavidWilson,ButlerCountyWaterandSewer

    KarenHarrison,Jordan,Jones,Goulding

    MaryLong,Black&Veatch

    RobertHollis,SummitCounty

    RickNoss,StantecConsulting

    ThepingChen,AECOM

    ShaunBeauchesne,HachCompany

    DavidFrank,ARCADIS

    ThefollowingmembersoftheWaterEnvironmentResearchFoundation(WERF)NutrientsChallenge

    Team:

    JBNeethling,HDREngineering,Inc.

    MarioBenisch,HDREngineering,Inc.

    AmitPramanik,WERF

    Diagramsforillustrationofspecificconceptswereprovidedby:

    Dr.CliffordRandall,VirginiaTech

    Dr.JamesBarnard,BlackandVeatchDr.H.DavidStensel,UniversityofWashington

    NutrientControlDesignManual xxii August2010

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    23/368

    1.IntroductionChapter1covers:

    1.1 HistoryofNutrientRemoval

    1.2 PurposeandScopeofthisManual1.3 ManualOrganization

    1.4 References

    1.1 HistoryofNutrientRemoval1Biologicalnutrientremoval(BNR)atwastewatertreatmentplants(WWTP)beganintheearly

    1960s.PioneerssuchasLudzackandEttinger(1961)andWuhrman(1964)madeeffortstodevelop

    biologicalnitrogenremoval(nitrificationdenitrification)wastewatertreatmentsystems.Levinand

    Shapiro(1965)researchedbiologicalphosphorusremoval,anddevelopedapatentedprocessforit,

    knownasPhoStrip.However,thesystemsdevisedbyLudzack,Ettinger,andWuhrman,didnotutilizean

    internalrecycletoobtainsignificantutilizationoftheinfluentbiochemicaloxygendemand(BOD),and

    theproposedbiologicalmechanismsofthePhoStripprocessremainedcontroversialbecauseitstwo

    finalstepswerethereleaseofphosphorusfromactivatedsludgeunderanaerobicconditionsandthen

    chemicalprecipitationofthereleasedphosphorusinaseparatereactor.

    Themajorprocessdevelopmentbreakthroughsforbiologicalremovalofbothnitrogenand

    phosphorusutilizingtheinfluentBODresultedfromtheworkofJamesBarnardinSouthAfricainthe

    early1970s.Hefirstdevelopedasinglesludgeprocessconfigurationwithinternalrecyclethatutilized

    theinfluentBODfordenitrification(1973).Itsubsequentlybecamethestandardnitrogenremoval

    processforthewastewaterindustry.ItisnowknownasthemodifiedLudzackEttinger(MLE)process.

    Healsodemonstratedthatanaerobicaerobicsequencingofactivatedsludge,withinfluentBODfirst

    flowingintotheanaerobiczone,wasnecessarytoobtainrobustbiologicalphosphorusremoval(BPR).

    Thisdiscoverywasfirstpublishedin1975.Theoreticalsupportthatthemechanismwasbiologicaland

    notchemicalwassuppliedbyFuhsandChen(1975)inthesameyear.Barnarddevelopedseveral

    processconfigurationsforbothseparateandcombinedbiologicalremovalofnitrogenandphosphorus.

    Afourstageanoxicaerobicanoxicaerobicprocessdesignedprimarilyfornitrogenremovalwas

    patentedastheBardenphoProcess(1978).Thefivestageversion,createdbyaddingananaerobiczone

    asthefirststagebecameknownastheModifiedBardenphoProcess.

    Alsoduringthemid1970s,ananaerobicaerobicwastewatertreatmentconfigurationwasbeing

    developedintheUnitedStatesforcontroloffilamentousgrowthsinactivatedsludge.Thisprocesswas

    patented

    by

    Marshall

    Spector

    and

    acquired

    by

    Air

    Products

    and

    Chemical,

    Inc.

    They

    learned

    from

    BarnardthatanaerobicaerobicsequencingofactivatedsludgealsocouldbeusedtoaccomplishBPR

    andpatentedtheconfigurationastheAnaerobicOxic(AO)process,whichwasidenticaltothePhoredox

    configurationdevelopedbyBarnardinSouthAfrica.Theythencombineditwithananoxiczoneand

    patentedtheresultingconfigurationastheAnaerobicAnoxicOxic(A2/O)process,againidenticaltoa

    configurationdevelopedbyBarnard.Atthistime,thedetrimentalimpactsofnitraterecycleinreturn

    1ByDr.CliffordRandall,ProfessorEmeritus,VirginiaTech

    NutrientControlDesignManual 11 August2010

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    24/368

    NutrientControlDesignManual 12 August2010

    activatedsludge(RAS)totheanaerobiczoneonBPRperformancewasnotfullyunderstood,andmany

    ofthePhoStrip,Phoredox/A2/O,andModifiedBardenphoplantswereremovingphosphoruserratically.

    TheSouthAfricanGovernmentrequestedthatProfessorGerritMaraisandhiscoworkersatthe

    UniversityofCapeTowninvestigateandresolvetheissue.Theydevelopedamodificationofthe

    Phoredox/A2/Oconfiguration,dubbedtheUniversityofCapeTown(UCT)process,thatfirstsentthe

    RAStotheanoxiczonethenaddedasecondinternalrecycletorecycledenitrifiedmixedliquorfromthe

    effluentoftheanoxiczonebacktotheinfluentoftheanaerobiczone.Basedonthesuppositionthat

    denitrificationwouldoccuronlyintheanoxiczone,amodifiedversionoftheUCTprocesswas

    developedforwastewaterswithahighTotalKjeldahlNitrogen(TKN)toBODratio.

    BNRwasintroducedtoNorthAmericaintheearly1980sthroughimplementationofBNR

    facilitiesatKelowna,BC,Canada,andatOrangeCounty,FL.BNRwasintroducedtotheChesapeakeBay

    regionin1984byaseminarandaworkshoporganizedbyDr.CliffordRandall(VirginiaTech)andheldat

    Richmond,VA.Then,workingwiththeHamptonRoadsSanitationDistrict(HRSD)andtheVirginiaWater

    PollutionControlBoard,apilotplantstudyofahighrateUCTprocesswasconductedattheHRSD

    LambertsPointprimarytreatmentplantin198586,andfollowedbyfullscaleresearchdemonstrations

    oftheA/O,A2/OandUCTprocessesattheHRSDYorkRiverPlantfrom198690.OverlappingtheYork

    Riverdemonstrations,whichresultedinpatentingoftheVirginiaInitiativePlant(VIP)BNRprocess,were

    fullscaledemonstrationsofBNR(bothNandPremoval)attheAnneArundelCounty,MD,Maryland

    CityWWTP,andtheBowie,MD,WWTP.Alsooverlappingtheseeventswerethedesignand

    constructionoftheMauldinRoadWWTP,Greeneville,SC,andmodificationoftwoplantsinCharlotte,

    NC.NorthAmericanBNRdevelopmentsmovedrapidlyinthelate1980sandearly1990s,resultingin

    BPRandBNRimplementation,designandconstructionatsitesasdiverseastheBonnybrookWWTP,

    Alberta,Canada,HillsboroughCounty,FL,Frederick,MD,Atlanta,GA,andmodificationoftheHoward

    County,MD,WWTPfromthePhoStriptothePhoredox/A2/Oconfiguration.

    BNRbegantobeimplementedinEuropeonawidespreadbasisin1987,firstinGermanyand

    TheNetherlands,followedbyDenmark,Austria,CzechRepublic,ItalyandFrance.SchreiberKlarenlagen

    with

    their

    unique

    Simultech

    Process

    wherein

    BPR,

    nitrification,

    and

    denitrification

    all

    occurred

    simultaneouslyinonecontinuousflowreactorwasapacesetterinGermanywhileKruger,Inc.,ledthe

    wayinDenmarkundertheguidanceofProfessorPoulHarremoesandhiscoworkersattheDanish

    InstituteofTechnology.

    TheengineeringartofBNRhasprogressedtowardsmaturityduringthepasttwodecadeswith

    theadditionofadvancedpracticessuchasprefermentationofprimarysludgetoenhanceBPR,

    integrationoffixedfilmmediaintoactivatedsludge(IFAS)toenhancenitrogenremoval,utilizationof

    biologicalfiltersfornitrogenremoval,andwidespreaduseoftertiaryfiltersfordentrificationand

    chemicalphosphorusremovaltolowerlevels.Recenteffortstodevelopeconomicalmethodsforthe

    nutrientremovalinsiteswithlimitedspaceforexpansionhaveresultedintheemergenceoftwo

    innovativetechnologicalapproaches:

    1) Technologiessuchasmembranebioreactorsorballastedflocculationtoremovesuspended

    solidstoverylowconcentrationsandsimultaneouslyeliminateorgreatlyreducethesizeof

    secondarysettlingbasins.

    2) SidestreamprocessessuchasSHARON,ANAMMOX,INNITRIandotherstoeitherremove

    nitrogenfromammoniarichflowsfromsludgeprocessingorenhanceremovalinthemain

    streamprocess.

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    25/368

    NutrientControlDesignManual 13 August2010

    NitrogenremovalhasbeenwidelyimplementedalongtheConnecticutcoastofLongIsland

    Sound.Morestringenteffluentstandards,typically3.0milligramsperliter(mg/L)totalnitrogen(TN)and

    0.1orlowermg/Ltotalphosphorus(TP),inregionssuchastheChesapeakeBaywatershed,coastal

    areasofNorthCarolina,OkanaganLakeareaofBritishColumbia,Canada,midColoradoandKalispell,

    WY,haveadvancedtheartfromBNRtoenhancednutrientremoval(ENR).AcombinationofBNR,

    chemicaladditionsandeffluentfiltrationaretypicallyusedtoaccomplishENR.

    Acleartrendofthewastewatertreatmentindustryisagreateremphasisonincorporating

    elementsofrecycle,recovery,andreuseintoplantdesignandoperation.Sustainablenutrientrecovery

    andreuseisgainingnationalandinternationalattentionaswastewaterutilitieslookforwaysto

    decreaseenergycostsandgreenhousegasemissions,utilizeexcesscapacity,generatenewrevenue,

    andaddressevermorestringentregulatoryrequirements.Thisevolutioninthinkingismoving

    wastewatertreatmenttoenhancedenergyefficiencyandchangingtheroleofwastewatertreatment

    facilitiesfromwastegeneratorstoresourceproviders.

    1.2 PurposeandScopeofthisManualResearchandtechnologydevelopmentthroughthemid70swerethebasisforEPAsfirstdesign

    manualfornitrogencontroltechnologies.Thisdocument,ProcessDesignManualforNitrogen

    Control,(EPA,1975)waspublishedin1975.Thismanualcoveredabroadrangeofprocessesthatwere

    beingevaluatedandappliedatthetime.Theintentofthemanualwastopresentdesigninformationfor

    technologiesthatappearedtohaveaviable,practicalapplicationtonitrogencontrol.Twobroad

    categoriesoftreatmentprocesseswereaddressed.Thefirstgroupofprocessesprovidesforthe

    conversionoforganicandammoniumnitrogenbyoxidationtonitratenitrogen.Theseprocessesare

    biologicalandaregenerallyreferredtoasnitrification.Thesecondgroupofprocessesremovesnitrogen

    fromthewastewater.Theseprocessesarealsobiological,usingananoxicdenitrificationstepwith

    nitrification.Physical/chemicalprocesseswerealsopresentedfornitrogenremoval,includingion

    exchange,ammoniastripping,andbreakpointchlorination.Betweenthepublicationofthefirstnitrogencontrolmanualandtheupdateofthemanualin1993,thetrendinnitrogencontroltechnologywas

    almostexclusivelytowardsbiologicalprocesses.Biologicalprocessesbecameprovenandwell

    demonstratedandweremostefficientlyexpandedorupgradedforbiologicalnitrificationortotal

    nitrogenremoval.Thefocusofthe1993updateddocument,ManualNitrogenControl,(EPA,1993)

    wasonbiological/mechanicalprocessesthatwerefindingwidespreadapplicationfornitrificationand

    nitrogenremoval.

    In1971,EPApublisheditsfirstphosphoruscontroldesignmanual.Thismanual,ProcessDesign

    ManualforPhosphorusRemoval,(EPA,1971)focusedonphosphorusremovalmethodsthatinvolve

    chemicalprecipitation.Primarily,themanualfocusedonthechemicalprecipitationofphosphorususing

    saltsofaluminumandiron,andlime.Thechemicalapplicationpointsaddressedinthemanualwere

    beforeprimarysettling,intheaerationtanks,beforefinalsettling,orinatertiaryprocess.In1976,

    ProcessDesignManualforPhosphorusRemoval(EPA,1976)wasupdated.Specifically,design

    guidanceforphosphorusremovalusingmineraladditionandlimeadditionbeforeprimarysettlingwas

    revised.Also,guidanceforchemicalstorage,chemicalfeedsystemsandresidualshandlinganddisposal

    wasupdated.In1987,EPApublishedtwotechnicaldocumentsthataddressedphosphoruscontrol.The

    firstwasanupdatetothe1976ProcessDesignManualforPhosphorusRemoval(EPA,1987a).The

    secondwasahandbooktitled,HandbookRetrofittingPOTWsforPhosphorusRemovalinthe

    ChesapeakeBayDrainageBasin.(EPA,1987b)Theupdateofthedesignmanualincludedamajor

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    26/368

    NutrientControlDesignManual 14 August2010

    additionofguidanceforbiologicalphosphorusremoval.Also,theuseoflimeadditionwasnotcovered

    inthisupdateduetoitslossofpopularityinthe80s.Thetechnicalguidanceprovidedinthe1987

    handbookwasfocusedontheuniquephosphorusremovalrequirementsbeingappliedtomunicipal

    wastewatertreatmentplantsintheChesapeakeBaywatershed.Becauseofthevaryinglevelsof

    phosphoruscontrolwithinthewatershed,thehandbookincludedanassessmentoftechnologiesfor

    meetingtotalphosphoruseffluentlimitsof0.2mg/L,0.5mg/L,1mg/L,and2mg/L.Becausesome

    treatmentplantsintheChesapeakeBaywatershedneedtocontrolbothnitrogenandphosphorus,the

    handbookincludedachaptertitled,CompatibilityofChemicalandBiologicalPhosphorusRemovalwith

    NitrogenControl.

    In2007,EPAinitiatedtheprocesstodevelopupdateddesignguidanceforbothnitrogenand

    phosphorusremovalatmunicipalWWTPs.Thefirststepwasanextensive,stateofthetechnology

    reviewofnitrogenandphosphoruscontroltechnologiesandtechniquescurrentlyappliedandemerging

    atmunicipalwastewatertreatmentplants.Thistechnologyreviewculminatedwiththepublicationof

    theNutrientControlDesignManual:StateoftheTechnologyReviewReport(USEPA2009)asan

    interimdocumentinthedevelopmentoftheupdateddesignmanuals.

    ThepurposeofthisEPAdesignmanualistoprovideupdated,stateofthetechnologydesign

    guidanceonnitrogenandphosphoruscontrolatmunicipalWWTPstowastewaterutilityownersand

    operators,stateandEPApermitwriters,andenvironmentalengineeringprofessionals.Similarto

    previousEPAmanuals,thismanualincludesextensiveinformationontheprinciplesofbiological

    nutrientremovalandchemicalphosphorusremovaltoserveasthebasisfordesign.Adetailed

    descriptionoftechnologies,bothconventionalandemerging,servesasaresourceforpreliminary

    technologyselection.Themanualpresentsnewinformationonemergingissuesintheindustrysuchas

    sustainabilityinwastewatertreatmentdesignandoperation,nutrientrecoveryandreuse,effluent

    dissolvedorganicnitrogen,andmeasurementoflowphosphorusconcentrations.Althoughthismanual

    providessomeexamplesofproprietaryandemergingtechnologies,EPArecognizesthattheindustryis

    continuallyevolvingandthatnewtechnologiesnotidentifiedinthismanualmayemergeinthefuture.

    BecausethemajorityofWWTPsintheUnitedStatesareequippedwithsecondarybiological

    treatment,thefocusofthisdesignmanualisonprocessandtechnologymodifications/additionsfor

    nutrientremovalatexistingWWTPsratherthanonnewtreatmentplantdesign,althoughguidanceforgreenfielddesignispresented. Alsonewfrompreviousversions,designguidancehereinisbasedonthe

    useofmathematicalmodelsandsimulators.Simulatorsallowdesignerstostudykinetic aswellastime

    basedsolutionswhiledeterminingthetotalmassbalancesofmanyconstituents.Theyhavebecome

    increasinglypowerful,easytouse,widelyaccepted,andrecommendedbyWEFandASCE(2010)forthe

    designofbiologicalnutrientremovalfacilities. EarlierversionsofEPAnutrientcontrolmanuals(USEPA

    1993;USEPA1987a;USEPA1987b)stillcontainveryusefulguidance(includingexamples)onprocess

    designusinghandcalculationsthatcanbeusedforverypreliminarysizingorchecksonsimulation

    results.

    Thismanualcomplimentsdetailedcostdataandindepthfacilitycasestudiespublishedinthe

    MunicipalNutrientRemovalTechnologiesReferenceDocument(USEPA2008a)andanalysisofemerging

    technologiesfornutrientremovalpresentedintheEmergingTechnologiesReportonWastewater

    Treatment(USEPA2008b). BothdocumentsareavailablefordownloadfromEPAswebsiteat

    http://www.epa.gov/OWM/mtb/publications.htm

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    27/368

    NutrientControlDesignManual 15 August2010

    1.3 ManualOrganizationThisdesignmanualhas14chaptersand3appendices.Itisgenerallyorganizedwiththetheory

    ofnutrientremovalpresentedfirstfollowedbyadescriptionofnutrientremovaltechnologies;guidance

    onestablishingdesignobjectivesandselectingcandidatetreatmentprocesses;anddesignapproaches

    forchemicalphosphorusremoval,biologicalnutrientremoval,andeffluentfiltration. Laterchapters

    describeoperationalimprovementsforenhancingtechnologyperformanceandguidanceon

    instrumentationandcontrols. Thelastchapter,Chapter14,discussessustainablerecoveryandreuse. A

    moredetaileddescriptionofeachchapterisprovidedbelow.

    Chapter2.NeedforandBenefitsofNitrogenandPhosphorusRemovalprovidesbackgroundinformationonsourcesofnitrogenandphosphorusinwastewater.Itreviewsthestatusof

    wastewatertreatmentintheU.S.,theimpairmentofwaterwaysbyexcessivenutrients,

    governmentandindustryinitiativestoreducenutrientpollution,andtheadditionalbenefitsand

    challengesofnutrientremoval.

    Chapter3.PrinciplesofPhosphorusRemovalbyChemicalAdditiondescribestheavailableformsofmetalsaltsandlimeandtheirreactionswithphosphorus.Itprovidesageneral

    descriptionofsolidsseparationprocessandtheeffectsofvarioustreatmentoptionsonsludge

    productionandhandling.

    Chapter4.PrinciplesofBiologicalNitrogenRemovalexaminesthefundamentalmicrobiologybehindnitrificationanddenitrificationincludingstoichiometricsandkinetics.Itdiscusses

    denitrificationkineticswithinternalandexternalcarbonsources.Simultaneousnitrification

    denitrificationandpotentialimpactsonsludgehandlingarealsodiscussed.

    Chapter5.PrinciplesofBiologicalPhosphorusRemovalprovidesadetaileddiscussionofthebiologicalphosphorusremovalprocessincludingkinetics,substraterequirements,

    environmentalconditions,designandoperationalconsiderations,andimpactsonsludge

    processingandhandling.

    Chapter6.OverviewofNitrogenandPhosphorusRemovalTechnologiesdescribesthetechnologiesavailableforremovingnitrogen,phosphorus,orbothfromwastewater.Diagrams

    areprovidedformosttechnologies.Itpresentsinformationontechnologyperformance

    includingdesignandoperationalfactorsaffectingaplantsabilitytoachieveloweffluent

    concentrations.

    Chapter7.EstablishingDesignObjectivessummarizesthiscriticalstepinupgradingorretrofittinganexistingWWTP.Itprovidesguidanceonestablishingdesignflowrates,

    characterizingflowandcontaminantsininfluentwastewaterincludingdetailedsampling

    methodologiesanddataverificationsteps,andsettinggoalsforprocessreliability,sustainability,

    andflexibility.Thechapteralsodescribessolidshandlingoptionsandsiteconstraints. Chapter8.SelectingCandidateTreatmentProcessesforPlantUpgradesdescribestechnology

    selectionfactorsincludingtreatmentgoals,availablefootprint,hydraulicconsiderations,

    chemicalneeds,solidsprocessingcapabilities,andenergyconsiderations.Itsummarizes

    advantagesanddisadvantagesofdifferenttechnologytypes.Italsoprovidesanoverviewofa

    recommendedapproachtotechnologyselectionanddiscussesuseofadvancedtools.

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    28/368

    NutrientControlDesignManual 16 August2010

    Chapter9.DesignApproachforPhosphorusRemovalbyChemicalAdditionprovidesguidelinesonselectingachemicalprecipitant,choosingapplicationpoints,anddeterminingchemicaldose.Itprovidesdetailedguidanceondesigningachemicalfeedsystemandconsiderationsforrapid

    mix,flocculation,andsolidsseparationprocessestomaximizephosphorusremoval.

    Chapter10.DesignApproachforBiologicalNutrientRemovalpresentsastepbystepapproachfordesigningwastewatertreatmentupgradesfornutrientremovalusingmathematicalmodels.

    Itprovidespracticalrecommendationsfordatacollectionandevaluationandmodelcalibration.

    Itincludesdesignchecksfornitrogenandphosphorusremoval. Thischapteralsoprovidesan

    alternativedesignapproachusinghandorspreadsheetcalculationsthatdesignerscanuseto

    prepareroughestimatesand/ortocheckmodeloutputs.

    Chapter11.DesignApproachforEffluentFiltrationdiscussestheoptionsinfiltrationtechnologyforeffluentpolishingandnutrientremoval. Itprovidesdesignguidanceongranular

    mediafiltersandalternativetechnologiessuchasclothfilters,diskfilters,andmembranes.

    Informationonemergingfiltrationtechnologiesforremovalofphosphorustoloweffluent

    concentrationsisalsoprovided.

    Chapter12.OperationandOptimizationtoEnhanceNutrientRemovalincludesinformationonhowtooptimizetheperformanceofexistingoperationsbyincorporatingSCADAandother

    instrumentation.Thechapteralsodiscussescommonoperationalchangestoimprovesystem

    performanceandenhancethecosteffectivenessoftreatmentprocesses. Chapter13.InstrumentationandControlsdiscussesonlineinstrumentationfornutrientcontrol

    includingautomatedcontrolandoptimization,advancedautomatedcontrol,andSCADA

    equipment,allofwhichcanleadtobetterprocessoptimizationandmorestabletechnology

    performance.

    Chapter14.SustainableNutrientRecoveryandReuseexaminesthelatestadvancesinnutrientrecoveryincludingseparatingandtreatingwasteonsiteandhowtousewastewatertreatment

    byproductstodecreaseenergycostsandgreenhousegasemissions,takeadvantageofexcess

    capacity,andgeneratenewrevenue.

    The manual is supported by three technical appendices containing recommendations on

    methanolsafety(AppendixA),alistoforganiccompoundsandinhibitoryconcentrationstonitrification

    (Appendix B), and background information onmathematicalmodels for biological nutrient removal

    (AppendixC).

    1.4 ReferencesBarnard,J.L.1973.BiologicalDenitrification.JournalofWaterPollutionControl72(6):705720.

    Barnard,J.L.1975.NutrientRemovalinBiologicalSystems.JournalofWaterPollutionControl,143154.

    Barnard,J.L.1978.TheBardenphoProcess.In:AdvancesinWaterandWastewaterTreatmentBiological

    NutrientRemoval.M.P.WanielistaandW.W.Eckenfelder,Jr.(eds.),AnnArborScience,AnnArbor,MI.

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    29/368

    NutrientControlDesignManual 17 August2010

    Fuhs,G.W.andM.Chen. 1975.MicrobiologicalBasisofPhosphateRemovalintheActivatedSludge

    ProcessfortheTreatmentofWastewater.MicrobialEcology.2(2):11938

    Levin,G.V.andJ.Shapiro.1965.MetabolicUptakeofPhosphorusbyWastewaterOrganisms.Journalof

    theWaterPollutionControlFederation(JWPCF),37(6):800821.

    Ludzack,F.J.,andM.B.Ettinger.1961.ControllingOperationtoMinimizeActivatedSludgeEffluent

    Nitrogen.JournaloftheWaterPollutionControlFederation(JWPCF),34(9):920931,1961

    Wuhrman,K.1964.NitrogenRemovalinSewageTreatmentProcesses.Verhandlungenden

    InternationalenVereinLimnologie,15:580596,1964.

    USEPA.1971.ProcessDesignManualforPhosphorusRemoval.October1971.

    USEPA.1975.ProcessDesignManualforNitrogenControl.October1975.

    USEPA.1976.ProcessDesignManualforPhosphorusRemoval.EPA/625/176001a,April1976.

    USEPA.1987a.DesignManualPhosphorusRemoval.EPA/625/187/001,September1987.

    USEPA.1987b.HandbookRetrofittingPOTWsforPhosphorusRemovalintheChesapeakeBayDrainage

    Basin.EPA/625/687/017,September1987.

    USEPA.1993.ManualNitrogenControl.EPA/625/R93/010,September1993.

    USEPAb.2008a.MunicipalNutrientRemovalTechnologiesReferenceDocument. OfficeofWastewater

    Management,MunicipalSupportDivision. EPA832R08006. Availableonline:

    http://www.epa.gov/OWM/mtb/publications.htm

    USEPA.2008b.EmergingTechnologiesforWastewaterTreatmentandInPlantWetWeather

    Management. EPA832R06006. Availableonline:http://www.epa.gov/OW

    OWM.html/mtb/emerging_technologies.pdf

    USEPA.2009.NutrientControlDesignManual:StateofTechnologyReviewReport.OfficeofResearch

    andDevelopment.EPA/600/R09/012.January2009.Availableonlineat

    http://www.epa.gov/nrmrl/pubs/600r09012/600r09012.pdf#22

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    30/368

    Thispageleftintentionallyblank

    NutrientControlDesignManual 18 August2010

  • 8/7/2019 600R10100 (Nutrient Control Design Manual)

    31/368

    2.NeedforandBenefitsofNitrogenandPhosphorusRemoval

    Chapter2covers:

    2.1 Introduction

    2.2 SourcesofNitrogenandPhosphorusinWastewater

    2.3 StatusofWastewaterTreatmentintheUnitedStates

    2.4 NutrientImpairmentofU.S.Waterways

    2.5 ClimateChangeImpacts

    2.6 FederalandStateRegulationsandInitiativestoReduceNutrient

    Pollution

    2.7 IndustryInitiativestheWERFRemovalChallenge

    2.8 BenefitsofNutrientRemoval

    2.9 ChallengesofNutrientRemoval

    2.10 References

    2.1 Introduction

    Theharmfuleffectsofeutrophicationduetoexcessivenitrogenandphosphorusconcentrations

    intheaquaticenvironmenthavebeenwelldocumented. Algaeandphytoplanktongrowthcanbe

    acceleratedbyhigherconcentrationsofnutrients,leadingtoharmfulalgalblooms,hypoxia,andlossof

    submergedaquaticvegetation(SAV).Dependingonthespecificwaterbodycharacteristics,either

    nitrogenorphosphoruscanbelimiting(i.e.,presentinthesmallestamountcomparedtogrowth

    requirements).Inadditiontostimulatingeutrophication,nitrogenintheformofammoniacanexerta

    direct

    demand

    on

    dissolved

    oxygen

    (DO)

    and

    can

    be

    toxic

    to

    aquatic

    life.

    Even

    if

    a

    wastewater

    treatmentplant(WWTP)convertsammoniatonitratebyabiologicalnitrificationprocess,theresultant

    nitratecanstimulatealgaeandphytoplanktongrowth.

    Fromapublichealthperspective,eutrophicationmayalsocauseriskstohumanhealth,resulting

    fromconsumptionofshellfishcontaminatedwithalgaltoxinsordirectexposuretowaterbornetoxins.

    Eutrophication,inparticular,cancreateproblemsifthewaterisusedasasourceofdrinkingwater.

    Chemicalsusedtodisinfectdrinkingwaterwillreactwithorganiccompoundsinthesourcewaterto

    formdisinfectionbyproducts,whicharepotentialcarcinogensandareregulatedbytheUSEPA. Excess

    levelsofnitratesabovethemaximumcontaminantlevel(MCL)indrinkingwater(10ppm)cancause

    numerousnegativehealtheffectsduetothebodysconversionofnitratetonitrite,includingserious

    illnessandsometimesdeath.Infantsinparticulararesusceptibletotheseeffects,whichcaninterfere

    withtheoxygencarryingcapacityoftheblood.Thisinterferencecanleadtoanacuteconditioninwhich

    healthdeterioratesrapidlyoveraperiodofdays.Symptomsincludeshortnessofbreathandbluenessof

    theskin(methemoglobinemia;alsoknownasBluebabySyndrome).

    Forthesereasons,itisimportanttolimitnitrogenandphosphoruscontaminationofsurfaceand

    groundwater. Onewaytominimizethiscontaminationistoreducelevelsofnitrogenandp


Recommended