+ All Categories
Home > Documents > 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧...

6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧...

Date post: 02-Oct-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
13
MIT OpenCourseWare http://ocw.mit.edu 6.641 Electromagnetic Fields, Forces, and Motion Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms .
Transcript
Page 1: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

MIT OpenCourseWarehttp://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and MotionSpring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Page 2: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

6.641, Electromagnetic Fields, Forces, and Motion Prof. Markus Zahn

Lecture 3: Electroquasistatic and Magnetoquasistatic Fields and Boundary Conditions

I. Conditions for Electroquasistatic Fields

A. Order of Magnitude Estimate [Characteristic Length L, Characteristic time τ ]

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

∇ i E = ρ ε ⇒ E = ρ ε ⇒ E =

ρL L ε

∂E H εE εEL L2ρ∇ ×H = ε ⇒ = ⇒ H = =

∂t L τ τ τ

∂H Eerror µH µρ L2 µρ L3

∇ ×E = −µ ⇒ = = ⇒ E = error ∂t L τ τ2 τ

E 3 2 2error =

µρL ε = µεL =

L ; c =

1E τρL τ2 ( )2 ε µcτ

E Lerror 1 ⇒ 1E cτ

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 1 of 12

Page 3: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

_ _

B. Estimate of Error introduced by EQS approximation

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

VE =

d i z = E0 i z

σ = ⎨⎪⎧−εE0 z = d

su ⎪+εE0 z = 0⎩

K 2 b π + π b2 dσsu = 0 ⇒ K = − b dσsu = −

b ε dE 0r rdt 2 dt 2 dt

H ds = ∂ ( E) i da ⇒ H 2 r r ε dE

⇒ H r dE

∫ i ∫ ∂t ε φ π = π 2

dt 0

φ = 2 ε

dt 0

C S

E ds = − µ i da ∫ i ∫ ∂∂

Ht

C S

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 2 of 12

Page 4: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

b 2

⎡E b( ) − ( ) d = + µε

r 'dr 'd E0E r ⎤ d⎣ z z ⎦ 2 ∫ dt2

r

2

=µεd (b2 − r2 ) d E0

4 dt2

2

( ) = E0 +εµ d E0 (r2 − b2 )E r z 4 dt2

If 0 ( ) = A cos E t ωt

2Eerror = εµ d E

20 (b2 − r2 ) =

1 ω2εµ (b2 − r2 )E0 4E 0 dt 4

2ε 2ω µbEerror 1 ⇒ 1 E0 4

1fλ = c =

εµ

ω π 2ε 2 22 c ω µ b π 2 λλ = c ⇒ ω = ⇒ = b 1 ⇒ b

2π λ 4 λ2 π

3 10 8×f=1 MHz in free space ⇒ λ =

6 = 300m

10

If b 100m EQS approximation is valid.

II. Conditions for Magnetoquasistatic Fields

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 3 of 12

Page 5: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

H∇ H J = ⇒J H× = ⇒ = JL

L

∇ ×E = −µ∂H

⇒ E =µH

⇒ E =µHL

=µJL 2

∂t L τ τ τ

∇ ×H = ε ∂E ⇒

Herror =

εE ⇒ H =

εEL = εµJL 3

error error 2 2∂t L τ τ τ

Herror = εµJL3

= εµL2

= L2

1 ⇒ L cτ H τ2JL τ2 ( )2

Courtesy of Hermann A. Haus and James R. Melcher. Used with permission.

τem = L = L εµ

c

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 4 of 12

Page 6: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

III. Boundary Conditions

1. Gauss’ Continuity Condition

∫ ε0E i da = ∫ σ sdS ⇒ ε0 (E2n - E1n ) dS = σ sdS S S

⎡ ⎤ε (E - E ) = σ ⇒ n i ε (E - E ) = σ0 2n 1n s ⎣ 0 2 1 ⎦ s

2. Continuity of Tangential E

∫ E i ds = (E1t - E2t ) dl = 0 ⇒ E1t - E2t = 0 C

n× E 1 - E2 = 0

Equivalent to Φ1 = Φ2 along boundary

( )

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 5 of 12

Page 7: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

3. Normal H

∫ µ0 H da = 0 i S

µ0 (Han - Hbn ) A = 0

Han = H bn

n i ⎡⎣Ha - Hb ⎤⎦ = 0

4. Tangential H

∫ H ds = ∫ i + d ∫ ε0Ei J da i da

dtC S S

H ds - H at ds = Kds bt

H - H = K bt at

n × ⎡⎣Ha - H b ⎤⎦ = K

5. Conservation of Charge Boundary Condition

d ∫ J da +

dt ∫ ρdV = 0i S V

n i ⎡Ja - Jb ⎤ +

∂ σ s = 0 ⎣ ⎦ ∂t

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 6 of 12

Page 8: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

6. Electric Field from a Sheet of Surface Charge

a. Electric Field from a Line Charge

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3Prof. Markus Zahn Page 7 of 12

Page 9: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

3 2

dq λ0rdzdE = cos θ = r 2 24πε0 (r + z ) 4πε0 (r2 + z2 )

+∞ +∞

E = dE = r ∫ r 4 λπ 0

ε r ∫

dz

z=−∞ 0 z=−∞ (r2 + z2 )3 2

+∞

λ0r z =

4πε0 2 ( 2 2 )r z + r z=−∞

λ0= 2πε0r

Another way: Gauss’ Law

1 2

∫ 0E da = ε0 r π λ0 Lε i E 2 rL = S

E =λ0

r 2πε0r

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 8 of 12

Page 10: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

b. Electric Field from a Sheet Charge

dE = dλ

cos θ = σ0ydx

y

2πε0 (x2 + y2 )12 2πε0 (x2 + y2 )

+∞ +∞

E = dE =σ0y dx

y y∫ 2πε0 ∫ x2 + y2

x=−∞ x=−∞

+∞

=σ0y 1

tan−1 x 2πε0 y y −∞

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 9 of 12

Page 11: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

_ _

⎧ σ0⎪ y > 0 ⎪2ε0= ⎨ ⎪−

σ0 y < 0⎪ 2ε⎩ 0

Checking Boundary condition at y=0

( = 0 ) − E (y = 0 ) = σ0E yy + y − ε0

σ0 ⎛ σ0 ⎞ σ0− −⎜ ⎟⎜ ⎟ = 2ε0 ⎝ 2ε0 ⎠ ε0

c. Two sheets of Surface Charge (Capacitor)

⎧ σ ⎧ σ ⎪

0 _i y y > −a ⎪− 0

_i y y > a

⎪2ε0 ⎪ 2ε0E1 = ⎨ , E

2 = ⎨

⎪ σ0 ⎪ σ0⎪− i y y < −a ⎪ i y y < a ⎩ 2ε0 ⎩2ε0

σ0 _i yE E + E= = y < a

1 2 ε0

0 y > a

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 10 of 12

Page 12: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

_ _ _

7. Magnetic Field from a Sheet of Surface Current

From a line current I

IHφ =

π2 r

i = − sin φ i + cos φ iφ x y

Thus from 2 symmetrically located line currents

dIdH = (− sin φ)x

2 x2 + y2π ( )1 2

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 11 of 12

Page 13: 6.641 Electromagnetic Fields, Forces, and Motion · Ky1 x +∞ =− 0 tan −1 2π y y x=−∞ ⎧ K ⎪− 0 y > 0 ⎪ 2 =⎨ ⎪+ K 0 y < 0 ⎪⎩ 2 Check boundary condition

K dx y= − 0

2π x2 + y2

K0 +∞

dxH = − yx 2π ∫ x2 + y2

x=−∞

+∞K y 1 x

= − 0 tan −1

2π y yx=−∞

⎧ K ⎪− 0 y > 0⎪ 2= ⎨⎪+

K0 y < 0⎪⎩ 2

Check boundary condition at y=0:

Hx (y = 0+ ) − Hx (y = 0− ) = − K0

− K20 −

⎛⎜⎝

K20 ⎞⎟⎠= − K0

6.641, Electromagnetic Fields, Forces, and Motion Lecture 3 Prof. Markus Zahn Page 12 of 12


Recommended