+ All Categories
Home > Documents > 67071_03.pdf

67071_03.pdf

Date post: 22-Feb-2018
Category:
Upload: gavin-kennedy
View: 215 times
Download: 0 times
Share this document with a friend

of 16

Transcript
  • 7/24/2019 67071_03.pdf

    1/16

    C H A P T E R

    3

    D Y N A M I C S T R E S S E S I N M A C H I N E

    E L E M E N T S 2

    S Y M B O L S 2 , 3

    A

    a, b

    b

    c

    L

    CT

    F~

    F~

    Fd

    Fi

    Fie

    Fir

    Fs

    g

    h

    J

    k

    K

    l

    m

    m = m / A

    M b

    a rea of c ross- sec t ion , m 2

    coeff ic ients

    w i d t h o f b a r o r b e a m , m

    d i s t a n c e f r o m n e u t r a l a x is t o e x t r e m e f i br e , m

    v e lo c i ty o f p r o p a g a t io n o f p l a n e w a v e a lo n g a t h in b a r , m / s

    v e lo c i ty o f p r o p a g a t io n o f p l a n e l o n g i tu d in a l w a v e s i n a n

    inf in ite p la te , m /s

    v e lo c it y o f p r o p a g a t io n o f p l a n e t r a n sv e r se w a v e s i n a n i n fin i te

    p la te , m/s

    d i a m e te r o f b a r , m

    m o d u lu s o f e l a s t i c i t y , G P a

    f o r c e o r l o a d , k N

    f o r c e a ct i n g o n p i s to n d u e t o s t e a m o r g a s p r e s su r e c o r r e c t e d f o r

    in e r t i a ef fe c ts o f t h e p i s to n a n d o th e r r e c ip r o c a t in g p a r t s , k N

    c e n t r i fu g a l f o r c e p e r u n i t v o lu m e , k N /m 3

    t h e c o m p o n e n t o f F a c t i n g a l o n g t h e a x is o f c o n n e c t in g r o d , k N

    d y n a m i c l o a d , k N

    g a s l o a d , k N

    in e r t i a f o rc e , k N

    in e r t i a f o r c e d u e t o c o n n e c t in g r o d , k N

    in e r t i a fo r c e d u e t o r e c ip r o c a t in g p a r t s o f p i s to n , k N

    s ta t i c l o a d , k N

    acce le ra t ion due to g ravi ty , 9 .8066 m/s 2

    d e p t h o f b a r o r b e a m , m

    he ight of f a l l o f we ight , m

    p o l a r m o m e n t o f i n er t ia ,

    m 4

    (cm 4)

    r a d iu s o f g y r a t i o n , m

    r a d iu s o f g y r a t i o n , p o l a r , m

    kine t ic ene rgy , N m

    length , m

    m a ss , k g

    m o v i n g m a s s , k g

    r a t i o o f m o v in g m a ss t o a r e a o f c r o s s - s e c ti o n o f b a r

    b e n d i n g m o m e n t , N m

  • 7/24/2019 67071_03.pdf

    2/16

    3 . 2 C H A P T E R T H R E E

    M t

    tl

    tl

    n ' = l / r

    p

    P

    r

    U , V , W

    u

    u , .

    Umax

    v

    v

    Vo

    w

    w

    z

    oz

    .y

    6

    5 i

    6,

    E

    C x , C y , C z

    " Yx y , 7 y z , 7 z x

    0

    O i

    A , #

    //

    p

    o

    (7

    o-o

    O'x, Oy, 0

    T

    Tl

    "ln

    T x y , r y z , r ~

    03

    t o rque , m N

    speed , rpm

    speed, rps

    ra t io o f l eng th o f connect ing rod to rad ius o f c rank

    pressure

    p o w e r , k W

    rad ius o f c rank , m

    r a d i us o f c u r v a t u re o f th e p a t h o f mo t i o n o f ma ss , m

    t h e mo me n t a r m o f t h e lo a d , m

    time, s

    d i sp lacement in x -d i rec t ion

    mo dulus o f res il ience , N m/m 3

    displacem ent com pon ents in x , y , and z-direct ions respectively, m

    resilience, N m

    internal elas t ic energy, N m

    work done in case o f sudden ly app l i ed load , N m

    maximum in terna l e l as t i c energy , N m

    poten t i a l energy , N m

    veloci ty , m/s

    veloci ty of art icle in the s t ressed zon e of the bar, m/s

    volum e, m 3p

    ini t ial veloci ty at the t ime of impact , m/s

    spec i fi c weigh t o f mater i a l , kN /m 3

    to ta l weigh t , kN

    sect ion modulus , m 3 ( cm 3)

    angle between the crank and the centre l ine of conne ct ing rod, deg

    un i t shear s t ra in , rad / rad

    weigh t dens i ty , k N/m 3

    def lec t ion /deformat ion , m (mm)

    deformat ion /def l ec t ion under impact ac t ion , m (mm)

    s ta ti c deformat ion /def l ec t ion und er the ac t ion o f weigh t , m (mm )

    uni t s t ra in a l so wi th subscr ip t s , gm/m

    strains in x , y , and z-direct ions, ~tm/m

    shear ing-s t ra ins in rec tangu lar coord ina tes , rad / rad

    ang le be tween the c rank and the cen t re l ine o f the cy linder

    measured f rom the head-end dead-cen t re pos i t ion , deg

    stat ic angular deflect ion, deg

    angle of twis t , deg

    angular def l ec t ion under impact load , deg

    L a m~ ' s c o n s t a n t s

    Po i s son ' s ra t io

    mass dens i ty , kg /m 3

    normal s t ress (a l so wi th subscr ip t s ) , MPa

    impact s t ress (also with subscripts) , MPa

    ini t ial s t ress at the t ime of impact and veloci ty V o , M P a

    normal s t ress componen t s para l l e l to x , y , and z -ax i s

    shear ing s t ress , MPa

    t ime o f load app l i ca t ion , s

    per iod o f na tu ra l f requen cy , s

    shear ing s t ress componen t s in rec tangu lar coord ina tes , MPa

    angular ve loc i ty , rad / s

    No te : a , a n d % wi th f ir s t su b sc r ip t s d e s ig n a t e s t r e n g th p r o p e r t i e s o f m a te r i a l u se d in th e d e s ig n wh ic h wi l l b e u se d a n d f o l lo we d th r o u g h o u

    b o o k . O th e r f a c to r s i n p e r f o r m a n c e o r i n sp e c i a l a sp e c t s wh ic h a r e i n c lu d e d f r o m t im e to t im e in t h i s b o o k a n d b e in g a p p l i c a b l e o n ly i n t

    im m e d ia t e c o n te x t a r e n o t g iv e n a t t h i s s t a g e .

  • 7/24/2019 67071_03.pdf

    3/16

    Particular

    I N E R T I A F O R C E

    Formula

    P o w e r

    F / )

    P = 100-----0 S I (3 -

    V e l o c i t y

    C e n t r i f u g a l f o r c e p e r u n i t v o l u m e

    E N E R G Y M E T H O D

    T h e i n t e r n a l e l a s t i c e n e r g y o r w o r k d o n e w h e n a

    m a c h i n e m e m b e r i s s u b j e c t e d t o a g r a d u a l l y a p p l i e d

    load , F ig . 3 . 1 .

    T h e w o r k d o n e i n ca s e o f s u d d e n l y a p p l i e d l o a d o n a n

    e l a s t i c m a c h i n e m e m b e r ( F i g . 3 - 2 )

    w h e r e F i s i n n e w t o n s ( N ) , v i n m / s , a n d P i n k

    F v

    ~

    0

    ._I

    > ,

    r ~

    3 3 0 0 0

    U S Cus tomary Sys tem un i ts (3-

    w h e r e F i s i n l bf , v i n f t / m i n , a n d P i n h p .

    27rrn

    v = 1---~ U S

    Customary Sys tem un i ts

    ( 3 -

    w h e r e r i n i n , v i n f t / m i n , a n d n i n r p m .

    2 rrrn

    v = 6-----O S I (3 -

    w h e r e r i n m , v i n m / s , a n d n i n r p m .

    W732

    Fev =

    - -

    (3

    rg

    U p = F(5 (3

    vd = Fd~ (3

    LL

    O

    _.1

    1/2 F5

    Deflection, 8

    FIGURE

    3-1 Plot of force against deflection in case of elas-

    t ic machine member subject to gradual ly applied load.

    Deflection, 6

    D Y N A M I C S T R E SS E S I N M A C H I N E E L E M E N T S

    ~ 5

    FIGURE

    3-2 Plot of force against deflection in case of

    denly applied load on a machine member .

    T h e r e l a t i o n b e t w e e n s u d d e n l y a p p l i e d l o a d a n d g r a -

    d u a l l y a p p l i e d l o a d o n a n e l a s t i c m a c h i n e m e m b e r t o

    p r o d u c e t h e s a m e m a g n i t u d e o f d ef l e ct i o n .

    U p = U d ( 3 -

    F a = F ( 3-

  • 7/24/2019 67071_03.pdf

    4/16

    3 . 4 C H A P T E R T H R E E

    P a r t i c u l a r

    F o r m u l a

    T h e s t a t i c d e fo rm a t i o n o r d e f l e c t i o n

    I M P A C T S T R E S S E S

    Im p ac t f rom d i r ec t l oad

    K i n e t i c e n e rg y

    I m p a c t e n e rg y o f a b o d y f a l l in g f ro m a h e i g h t h

    T h e h e i g h t o f fa ll o f a b o d y t h a t w o u l d d e v e l o p t h e

    veloc i ty v .

    T h e m a x i m u m s t re s se s p ro d u c e d d u e t o f al l o f we i g h t

    W t h ro u g h t h e h e i g h t h f ro m re s t w i t h o u t t a k i n g i n t o

    a c c o u n t t h e w e i g h t o f s h a f t a n d c o l l a r (F i g . 3 -3 )

    1 / i l l , I / Z / 1 / / /

    t ar

    Load ,W

    h i

    T

    Rigid collar

    m h

    m i I

    L

    F I G U R E 3-3 Striking impact of an elastic machine

    mem ber by a body of weight W falling throug h a height h.

    T h e m a x i m u m d e f le c t io n o r d e f o r m a t i o n o f s ha f t d u e

    t o f a ll o f we i g h t W t h r o u g h t h e h e i g h t h f ro m re s t

    n e g l e c t i n g t h e we i g h t o f s h a f t a n d c o l l a r

    T h e s t r e s s p ro d u c e d d u e t o s u d d e n l y a p p l i e d l o a d

    T h e m a x i m u m d e f l e ct io n o r d e f o r m a t i o n p r o d u c e d b y

    s u d d e n l y a p p l i e d l o a d

    W

    6st = T

    (3

    wh e re k = s p r i n g c o n s t a n t o f th e e l as t ic m a c h

    m e m b e r , k N/ m ( l b f / i n ) .

    W~32

    K = ~ (3

    2g

    K = Wh

    (3

    V 2

    h = - - (3

    2g

    W [l + T i +,2hEA] (g - l

    O'i--- O'max -- ~ WL J

    [ 7 2hEAl

    (3-1

    = a ~ t 1 + 1 +

    WLJ

    : O ' st 1 + + ~ s t

    6rnax = ~i = ~ s t 1 + 1 + WL

    [

    -6st

    1 + 1 +

    ( r Y m a x ) s u d - - 2 ( O m a x ) s t a t

    (~ max)

    s u d - - 2 6 s t

    wh e re s u b s c r i p t

    stal

    = s t = s ta t i c an d

    sud

    = s u d d e n l y

    (3-1

    (3-

    (3-

  • 7/24/2019 67071_03.pdf

    5/16

    D Y N A MI C S TR E SS ES I N MA C H I N E E L E ME N T S

    P a r t i c u l a r

    F o r m u l a

    T h e k in e t i c e n e r g y t a k in g i n to a c c o u n t t h e w e ig h t o f

    sh a f t o r b a r a n d c o l l a r

    The re la t ion be tween c r , 6 , F and W

    T h e m a x im u m s t re s s d u e t o f a ll o f w e ig h t W th r o u g h

    th e h e ig h t h f r o m r e s t t a k in g i n to a c c o u n t t h e w e ig h t

    o f sh a f t / b a r a n d c o l l a r

    T h e m a x i m u m d e f l e c t io n d u e t o f al l o f w e ig h t W

    th r o u g h th e h e ig h t h f r o m r e s t t a k in g i n to c o n s id e r a -

    t i o n t h e w e ig h t o f sh a f t / b a r a n d c o l l a r

    In te rn a l e la s t ic ene rgy of we ight W whose ve loc i ty v i s

    h o r i z o n t a l

    I n t e r n a l e l a s t i c e n e rg y o f w e ig h t W w h o se v e lo c i t y h a s

    r a n d o m d i r ec t io n

    K= WV:c 5-~J

    2 g 1 + ( 3

    w h e r e

    Vc

    = v e lo c it y o f c o l l a r a n d w e ig h t W a

    the load s t r ik ing the co l la r , m/s .

    w h e r e

    W b

    = w e ig h t o f sh a f t o r b a r

    . a x m a x I

    -W = c rs --~ = 6st 1 + 1 + W L (3-1

    = 1 + 1 + ( 3- 1

    W 2 E A h 1

    O'i--O 'max--- - ~ 1 -+- -I- W L 1 + ( W b / 3 W )

    (3-1

    _ W 1 + 1 + (3-1

    - - - A " W L J

    [ j l

    Ost 1 + + - ~ t J ( 3- 1

    1 Wb

    where a = ~ and ~ =

    1 + ( ~ / 3 ) w

    6max = ~ 1 + 1 + W L I + ( W b / 3 W )

    (3-1

    W L

    2hAEa

    = 1 + 1 + (3-1

    A E W L J

    Wv 2

    U = 2----g- (3-

    Wv 2

    U = ~ + W 6 sin/3 (3-

    wh ere /3 = angle of ve loc i ty , v , to the hor iz on

    plane , deg .

  • 7/24/2019 67071_03.pdf

    6/16

    3 . 6 C H A P T E R T H R E E

    Particular

    Formula

    v=0

    Vmax

    8

    V

    =

    0

    h

    . . . . . . . . .

    0 0 Umax

    l / l / l / I I I l l l

    a ) b ) c )

    FIG UR E 3-4 Impact by a fall ing body

    Fig. Fig.

    Ene rgy 3-4a 3-4b

    Up m (h - '[ - ~) W ~

    Wv2

    K 0

    2g

    U 0 0

    Fig.

    3-4c

    Equat

    W h+~)

    (3-22a

    (3-22b

    (3-22c

    T h e e qu a t i o n fo r e n e rg y b a l a n c e fo r a n i m p a c t b y a

    fa l l ing body (F ig . 3 -4 )

    A n o t h e r f o r m o f e q u a t i o n f o r d e f o r m a t i o n o r d e fl ec -

    t i o n i n t e rm s o f v e l o c it y v a t i m p a c t

    E qu i v a l e n t s t a t i c fo r c e t h a t wo u l d p ro d u c e t h e s a m e

    m a x i m u m v a l u es o f d e f o r m a t i o n o r d e f l ec t io n d u e

    t o i m p a c t

    B E N D I N G S T R E S S I N B E A M S D U E T O

    I M P A C T

    I m p a c t s t r e s s d u e t o b e n d i n g

    #

    - - . f

    .~~

    ~I h

    FIG UR E 3-5 Impac t by a falling body on a cantilever beam

    D e f l e c t i o n o f th e e n d o f c a n t i l e v e r b e a m u n d e r i m p a c t

    (Fig. 3-5)

    T h e m a x i m u m b e n d i n g s t r e s s f o r a c a n t i l e v e r b e a m

    t a k i n g i n t o a c c o u n t t h e t o t a l we i g h t o f b e a m

    (Up + K + U)a = (Up + K + U)b

    ~max = ~st (

    1 +

    = ( U ~ + K + U ) c

    l + - ~ T t s

    F e q = W 1 + 1 + = W 1

    (3-

    (3

    / -t - v2 )

    (3

    W l c ~ / 6 h E l l

    ( O ' b ) m a x - -

    O b i - - 7 -

    1 + 1 + W l Y

    (3-

    [

    Wl c 1 + 1 +

    I

    = ~)s, l+ +E

    Wlc Mbc

    where (Ob)st = I I

    6rnax =

    (Sst 1 + +

    Mb

    Z b

    (3-2

    (3-

    (3

    (O'b)max -- (O'b)st[ 1- [- ~t ]

    (3

    mb

    w h e re ff . . . .

    m

    Wb an d o~ =

    W

    1 + (3 3 f f / 140 )

  • 7/24/2019 67071_03.pdf

    7/16

    D Y N A M I C S T R E SS E S I N M A C H I N E E L E M E N T S

    Particular

    Formula

    T h e m a x i m u m d e f le c t io n a t t h e e n d o f a c a n t il e v e r

    b e a m d u e t o f a ll o f we i g h t W t h ro u g h t h e h e i g h t h

    f ro m re s t t a k i n g i n t o c o n s i d e ra t i o n t h e we i g h t o f b e a m

    T h e m a x i m u m b e n d i n g s t re s s fo r a s i m p ly s u p p o r t e d

    b e a m d u e t o f a ll o f a l o a d / we i g h t W f ro m a h e i g h t h

    a t th e m i d s p a n o f th e b e a m t a k i n g i n t o a c c o u n t t h e

    t o t a l we i g h t o f t h e b e a m (F i g . 3 -6)

    IW

    Y h

    .1. ,1,

    . . . . ' . . . .

    B -~x

    / ~? ~st /

    t

    ~max = ~s, 1 + 1 + 8~t J

    (3-2

    (f ib )max-- (Ob)s t 1 + 1 +&~t 1 + (17 ( /35 )

    (3-2

    (3-2

    1 Wb

    wh ere c~ = an d

    (

    =

    1 + ( 1 7 ( / 3 5 ) W

    FIGU RE 3-6 Simply supported beam

    T h e m a x i m u m d e f le c ti o n f o r a si m p ly s u p p o r t e d b e a m

    d u e t o f a l l o f a we i g h t W f ro m a h e i g h t h a t t h e m i d -

    s p a n o f t h e b e a m t a k i n g i n t o a c c o u n t t h e we i g h t o f

    beam. (F ig . 3 -6 )

    ~max --(~st

    1 J r - 1 - n t - - ~ s t j

    (3-

    T O R S I O N O F B E A M / B A R D U E T O I M P A C T

    (Fig. 3-7)

    T h e e q u a t i o n f o r m a x i m u m s h e a r s tr e ss i n th e b a r d u e

    t o i m p a c t l o a d a t a r a d i u s r o f a f al l in g we i g h t W f ro m

    a h e i g h t h n e g l e c t in g t h e we i g h t o f b a r

    /-max -- 7 - s t

    1 + 1 +

    (3-

    . . . . . R - . ,

    s u ; 0 o / i r - L e v e r

    .Bar W b

    FIGU RE 3-7 Twist of a beam /bar

    Y

    J L ~ Ou

    u ~ F

    AE~-.~ a-~+~(~)dx ]

    . . . . . .

    ,x- t I

    FIG U R E 3-8 Displacements due to forces acting on an

    me nt o f an elastic media.

  • 7/24/2019 67071_03.pdf

    8/16

    3 . 8 C H A P T E R T H R E E

    Particular

    Formula

    The equa t ion for angula r de f lec t ion or angula r twis t

    of ba r due to imp ac t load W a t radius r and fa l l ing

    throug h a he ight h neglec t ing the we ight of ba r

    O m a x - - O s t 1 + +

    (3-

    L O N G I T U D I N A L S T R E S S - W A V E I N

    E L A S T I C M E D I A

    ( F i g . 3 - 8 )

    One-dimens iona l s t re ss -wave equa t ion in e la s t ic

    media (Fig. 3-8)

    For ve loci ty of prop aga t ion of longi tudina l s t re ss-

    wave in e last ic media

    The solut ion of stress-wave Eq. (3-33a)

    The va lue of c i rcula r f requency p

    The f requency

    L O N G I T U D I N A L I M P A C T O N A L O N G

    B A R

    The ve loc ity of pa r t ic le in the com press ion zone

    The uniform ini t ia l compressive stress on the free end

    of a bar (Fig. 3-9)

    The va r ia t ion of s t re ss a t the end of ba r a t any t ime t

    0 2 U - - C 0 2U

    (3-3

    O t 2 - - O X 2

    where c = ~ / ~ = ~--Ep (3-3

    --- veloci ty of pr opa gatio n of stress

    waves, m/s.

    Refer to Table 3-1.

    x = ( A

    s i n e x + B c o s P x ']

    ( c s inp t + D c o s p t ) (3 -

    \

    c c

    J

    where A, B , C and D a re a rb i t ra ry cons tants

    which can be found f rom in i t i a l or boundary

    condi t ion of the problem.

    n T r c _ n T r v ~ n T r ~

    (3-3

    P= t -T =T

    where n is an integer = 1,2, 3, . . .

    f = P - - - = n V ~ - C 2 7 r1 - A (3-3

    where A = wave length =

    2 1 / n ,

    c -- speed of

    sound or stress wave veloci ty, m/s.

    V = a~/~-~7 = V /~a (3-

    a 0 = V0 ~ / -~ = V 0X / ~ (3-

    whe re V0 = ini t ia l veloci ty of the moving w eig

    mass a t the t ime of impac t , m/s .

    o = ao exp - --M-- t 0 < t < -- (3-

  • 7/24/2019 67071_03.pdf

    9/16

    DYNA MIC S T RE S SE S IN MACH INE E LE ME NT S

    Particular

    Formula

    The equa t ions of mot ion in te rms of three d i splace -

    ment components a ssuming tha t the re a re no body

    forces.

    w I w

    i l l i l l l. . . .

    rrrlrtr

    t ]..-i-.L Con stant x'~'o

    ~rL ~ cross

    s e c t i o n

    1 / 1 / 1 / 1 / H / / / / / / / / /

    FIG UR E 3-9 Prismatic bar subject to suddenly applied

    uniform compressive stress

    (A + G )

    0e 0 2 u

    -+- G V 2 u = p Ot 2

    (3-3

    0e 02v (3-3

    (A + G ) -~ y + G ~ 7 2v = p Ot 2

    O c 0 2 w

    (3-3

    (A + G ) O z + G ~ 7 2 w = p O t 2

    where

    - - C x + Cy -Jr-C

    0 2 0 2 0 2

    V = ~ + ~ + ~ z2 = the Laplac ian op era tor

    u E

    A = a nd

    (1 + u)(1 - 2u)

    # = G = ~

    2 ( 1 + u )

    a re Lam6's cons tants

    D i l a t a t io n a l a n d d is t o r t io n a l w a v e s i n

    i s o t r o p i c e l a s t i c m e d i a

    From the c lass ica l theory of e la s t ic i ty equa t ions for

    i r ro ta t iona l or d i la ta t iona l waves

    Equa t ions for d i s tor t iona l waves

    Equations (3-40) to (3-41) are one-dimensional stress

    wa ve e q ua t i ons o f t he fo rm

    The ve loc i ty of s t re ss wave propaga t io n for the case of

    no ro t a t i on

    0 2 U __ /~ + 2 G V 2 u

    O t 2 p

    02 v /~ --I- 2 G V2 v

    Ot 2 p

    0 2 w _ _ /~ n - 2 G v 2 w

    Ot 2 p

    0 2 u = G ~ 2 u

    O t 2 p

    02 V = E ~72 v

    O t 2 p

    0 2 W - - E ~ ' 2 w

    O t 2 p

    020

    = a 2 V 2 0

    Ot 2

    )~+ 2G ~, E(1 - u)

    a = c l = =

    p (1 + u)(1 - 2u) p

    (3-4

    { , ' ~

    A

    to-,+

    (3-4

    (3-4

    (3-4

    (3-4

    (3

    (3

  • 7/24/2019 67071_03.pdf

    10/16

    3 . 1 0 C H A P T E R T H R E E

    Particular

    Formula

    T h e v e l o c it y o f s t re s s w a v e p r o p a g a t i o n f o r t h e c as e o f

    z e r o v o l u m e c h a n g e

    Th e r a t i o o f c l t o c 2

    T h e v e l o c it y o f s t re s s w a v e p r o p a g a t i o n f o r a t r a n s -

    ver se s t r ess wave , i . e . d i s t o r t i ona l wave i n an i n f i n i t e

    p l a t e

    T h e v e l o c i t y o f s t r e s s w a v e p r o p a g a t i o n f o r p l a n e

    l o n g i t u d i n a l s t r e ss w a v e i n c a se o f a n i n f i n it e p l a t e

    T O R S I O N A L I M P A C T O N A B A R

    E q u a t i o n o f m o t i o n f o r t o r s io n a l i m p a c t o n a b a r

    (F i g . 3 -10 )

    T o r s i o n a l w a v e p r o p a g a t i o n i n a b a r s u b j e c t e d t o

    t o r s i o n .

    F o r v e l o c it y o f p r o p a g a t i o n o f t o rs i o n a l s t r e s s- w a v e

    i n a n e l a s t i c b a r

    y,

    / - I / -

    \ J ~~ J . / ' Y. YM, , _

    ~ 4 I c = c t t ~ .

    ~F x , . . . ~ d x - - ~

    I

    _}

    I

    FIGURE

    3-10 Torsional impact on a uni form bar showing

    torque on two faces of an element

    a

    = c 2 - - -

    2(1 - u ) p

    (3-

    C 1 / 2 (1 - u )

    fo r Po i sso n ' s r a t i o o f u = 0 .25 (3 -

    CT

    = = (1 +

    u ) p

    (3-

    / 4 a ( a + a ) ~ / E

    CL

    = V )-() ~ ~- }.~--~ = p(1 -- u 2) (3-

    0 2 0 - c 2 0 20

    (3-

    O t 2 - - O x 2

    3

    R e f e r t o T a b l e 3 - 1 .

    A a rg eo tating o dy

    - ~ ~ l l lp s itivec lu tc hb ] ~ . ; . _ . f 2 x

    L I . ~ ~ ~ I L [ I A large

    FIGURE 3-11 Torsional s t r ik ing impact

    T h e a n g u l a r v e l o c i t y o f t h e e n d o f a b a r s u b j e c t t o t o r -

    s i o n r e l a t i v e t o t h e u n s t r e s s e d r e g i o n

    T h e s h e a r s t r e s s f r o m E q . ( 3 - 5 0 )

    T h e i n i t i a l s h e a r s t r es s , i f t h e r o t a t i n g b o d y s t r ik e s t h e

    e n d o f t h e b a r w i t h a n a n g u l a r v e l o c i t y coo

    ( 2rt '~

    c o = 0 = \ d ~ , ] t = 2 r t

    (3

    t t dv / -pG

    cod

    r = - ~ - x / ~ ( 3 -

    w o d

    r 0 = - - ~ X / ~ ( 3 -5

  • 7/24/2019 67071_03.pdf

    11/16

    D Y N A M I C ST R E SS E S I N M A C H I N E E L E M E N T S 3

    Part i cu lar Formula

    T h e m a x i m u m s h e a r s t r es s f o r t h e c as e o f a s h a ft f i xe d

    o r a t t a c h e d t o a v e r y la r g e m a s s / w e i g h t a t o n e e n d a n d

    s u d d e n l y a p p l i e d r o t a t i o n a l l o a d a t t h e o t h e r e n d b y

    m e a n s o f s o m e m e c h a n i c a l d e v i ce s u c h a s a j a w

    c lu tch ( F ig . 3 - 11)

    ~ ,, I S tr i ki n g r o t a t i n g w e i g h t

    i . . . . . . . . . . . . - - - ~ x

    o l l a r

    I

    F I G U R E

    3-12 A s tr iking rota t ing weight with mass-

    mo men t of iner t ia I rota t ing a t a~0 engages with one end of

    shaf t and the other end of shaf t f ixed to a mass-moment of

    iner t ia I f

    "/-m ax - - 7-0 ~ 1 + = T

    ( 3 -

    w h e r e = - ~ .

    I

    I b = m a s s m o m e n t o f i n e r t i a o f b a r = m b ~ - )

    I = m a s s m o m e n t o f i n e r ti a o f s t ri k i n g r o t a t i n g w e i

    Ib a n d I c o r r e s p o n d t o W b a n d W o f t h e w e i g h t o f

    b a r a n d t h e r o t a t i n g m a s s o r w e i g h t r e s p e c t i v e l y .

    T h e m o r e a c c u r a t e e q u a t i o n f o r t h e /'m ax w h i c h i s

    b a s e d o n s t r e s s w a v e p r o p a g a t i o n

    T h e i n i t i a l / m a x i m u m ( ~ - i

    = 7 - m a x )

    s h e a r s t r e s s f o r t h e

    c a s e o f a s y s t e m s h o w n i n F i g . 3 -1 2

    A s i m i l a r e q u a t i o n t o E q . ( 3 - 54 ) fo r m a x i m u m s t re s s

    f o r l o n g i t u d i n a l i m p a c t

    A c c u r a t e m a x i m u m s t r e s s f o r l o n g i t u d i n a l i m p a c t

    s t r e s s b a s e d o n s t r e s s w a v e p r o p a g a t i o n a s s u g g e s t e d

    b y P ro f . B u r r

    A c c u r a t e m a x i m u m s t r e s s f o r t o r s i o n a l i m p a c t s h e a r

    s t r e s s b a s e d o n s t r e s s - w a v e p r o p a g a t i o n a s s u g g e s t e d

    b y P r o f . B u r r

    / ~(1 + )

    7 -i = 7 - m a x - - T o V ( i _ ~_ _ .~ _ ,~

    /b I

    w h e r e = I ' A = ~ f a n d I b = p J1.

    ( 3 -

    (3-

    ~ ~( 1+) (3

    ' i : O'm ax - - - O'0 ( 1 -~ - -4- , ~ )

    w h e r e = Wb = m___b_b n d A = m

    W m m f

    O i = C r m a x = O ' 0 I 1 i _4_ V / / ~ ( 1 , - l - - if )

    ( 1 + + A ) J

    T i - - - T m a x = 7 0 1.1 + (1 + + A )

    ( 3-

    ( 3-

  • 7/24/2019 67071_03.pdf

    12/16

    3 . 1 2 C H A P T E R T H R E E

    P a r t i c u l a r

    F o r m u l a

    I N E R T I A I N C O L L I S I O N O F E L A S T IC

    B O D I E S

    Wh e n a b o d y h a v in g w e ig h t W s t r i k e s a n o th e r b o d y

    th a t h a s a w e ig h t W ' , im p a c t e n e r g y

    W h

    i s r educed

    to

    n W h ,

    according to law of co l l i s ion of two pe r fec t ly

    ine las t ic bodies , the formu la for the va lue of n

    R E S I L I E N C E

    The express ion for r e s i l ience in compress ion or

    t e n s io n

    T h e m o d u lu s o f r es i li e n ce

    The a rea under the s t r e ss- s t r a in curve up to y ie ld ing

    poin t r ep resents the mod ulus of r es i l ience (F ig . 1 .1)

    The res i l ience in bending

    T h e m o d u lu s o f r es i li e n ce in b e n d in g

    Resi l ience in d i rec t shea r

    The modulus of r e s i l ience in d i rec t shea r

    Res i l ience in tor s ion

    T h e m o d u lu s o f r es i li e n ce i n t o r s io n

    T h e e q u a t io n f o r s t ra in e n e r g y d u e t o sh e a r in b e n d in g

    T h e m o d u lu s o f re s il i en c e d u e t o sh e a r i n b e n d in g

    t / - -

    1 + a m

    (1 +

    b m ) 2

    (3-

    W '

    where m = - -~- ; a and b a re taken f ro m T able

    0 - 2 V 1 0 - 2 A L

    U = 2 E = 2 ~ (3-

    0 - 2

    u - 2---E (3 -

    u = 0-e (3-

    U b = ( k ) 20-2AL6E (3-

    ( k ) 2 0-~ (3-

    uh = 6---E

    w h e r e ( k / c ) 2 = i for r ec tangula r c ross- sec t i

    for c i r cu la r sec t ion

    c = d is tance f rom ext reme f ibre

    neut ra l ax is

    ~ V

    UT = 2---G- (3 -

    (3-

    uT = 2G

    = 2----G-- - - (3-

    w h e r e k o = - v / D 2 - D 2 / 8 a n d c - 1 D o f o r h o l

    shaf t .

    uT = ~-~ - - (3-

    j

    2

    U-~b = k~ -F ~-

    o ~ d x (3-

    k~-e

    (3-

    u"-b = 2G

  • 7/24/2019 67071_03.pdf

    13/16

    D Y N A M I C S T RE S SE S I N M A C H I N E E L E M E N T S 3

    Part i cu lar

    F o r m u l a

    T h e e q u a t i o n f o r s h e a r o r d i s t o r t i o n a l s t r a i n e n e r g y

    p e r u n i t v o l u m e a s s o c i a t e d w i t h d i s t o r t io n , w i t h o u t

    c h a n g e i n v o l u m e

    T h e e q u a t i o n f o r d i l a t a t i o n a l o r v o l u m e t r i c s t r a i n

    e n e r g y p e r u n i t v o l u m e w i t h o u t d i s t o r t i o n , o n l y a

    c h a n g e i n v o l u m e

    F o r m a x i m u m r e s il i en c e p e r u n i t v o l u m e ( i. e. , f o r

    m o d u l u s o f r e s i l ie n c e ) , r e s i li e n c e in t e n s i o n f o r v a r -

    i o u s e n g i n e e r i n g m a t e r i a l s a n d c o e f fi c i e n t s a a n d b ;

    v e l o c i ty o f p r o p a g a t i o n c a n d

    c t .

    1

    [0 2 + 0-2 _nt_0-2 _ (0 10 n - 0 20 nt- 0-30- 1)

    u,=g-d

    ( 3 - 7

    1

    -- 12-----~ (o 1 - 0-2)2 --I- (0-2 - 0-3)2 + (o-3 - o-1)2]

    ( 3 - 7

    Uv = (1 - 2u)

    6- - - f f~ [ (cr l + o2 + 03) 2 ] (3-

    R e f e r t o T a b l e s 3 - 1 t o 3 - 4 .

    T A B L E 3 -1

    L o n g i t u d i n a l v e l o c i t y o f l o n g i t u d i n a l w a v e c an d t o r s i o n a l w a v e c t p r o p a g a t i o n i n e l a s t i c m e d i a

    D e n s i t y

    p ),

    M o d u l u s o f M o d u l u s o f c = = c t = =

    e last i c i t y , E r ig id i t y , G

    Mate r ia l g / cm 3 Ibm/ in3 k N / m 3 G P a M p s i G P a M p s i m / s f t / s m / s f t / s

    A lum in um a l loy 2 .71 0 .098 26 .6 71 .0 10 .3 26 .2 3.8 5116 16785 3110 1046

    Brass 8 .55 0 .309 83 .9 106 .2 15 .4 40 .1 5 .82 3523 11560 2165 7106

    C arb on s tee l 7 .81 0 .282 76 .6 206 .8 30 .0 79 .3 11 .5 5145 16887 3200 1048

    Ca s t i ron , g ra y 7 .20 0 .260 70 .6 100 .0 14 .5 41 .4 6 .0 3727 12223 2407 7865

    Co pp er 8 .91 0 .320 87.4 118 .6 17.7 44 .7 6 .49 3648 12176 2240 7373

    Glas s 2 .60 0 .094 25 .5 46 .2 6 .7 18 .6 2 .7 4214 13823 2675 8775

    Le ad 11 .38 0 .411 111 .6 36 .5 5 .3 i3 . i i .9 1796 5879 1073 3520

    Inc one l 8 .42 0 .307 83 .3 213 .7 31 .0 75 .8 11 .0 5016 16452 2987 9800

    Sta in less s tee l 7 .75 0 .280 76 .0 190 .3 27.6 73 .1 10 .6 4955 15972 3071 10074

    Tu ngs ten 18 .82 0 .680 184 .6 344 .7 50 .0 137.9 20 .0 4279 14039 2707 8880

    #No te: p = Mass density, g/cm 3 (Ibm/in3), 7 = weight density (specific weight), kN /m 3 (lbf/in3), g = 9.8066 m/s 2 in SI units, g = 980 in/s 2 = 32.2 f

    in fps units.

  • 7/24/2019 67071_03.pdf

    14/16

    3 . 1 4 C H A P T E R T H R E E

    T A B L E 3 - 2

    M a x i m u m r e s i li e n c e p e r u n i t v o l u m e ( 2 , 1 )

    ,

    Type of loading Modulus of resi l ience, J ( in l

    T e n s i o n o r c o mp r e s s i o n

    Shear , s imple t r ansverse

    Be n d i n g i n b e a ms

    W i t h s i mp l y s u p p o r t e d e n d s :

    C o n c e n t r a t e d c e n t e r l o a d a n d r e c t a n g u l a r c r o s s - s e c t i o n

    C o n c e n t r a t e d c e n t e r l o a d a n d c i r c u la r c r o ss - s e c ti o n

    C o n c e n t r a t e d c e n t e r l o a d a n d I - b e a m s e c t i o n

    U n i f o r m l o a d a n d r e c t a n g u l a r s e c t i o n

    U n i f o r m- s t r e n g t h b e a m, c o n c e n t r a t e d l o a d , a n d r e c t a n g u l a r s e c t i o n

    F i x e d a t b o t h e n d s :

    C o n c e n t r a t e d l o a d a n d r e c t a n g u l a r c r o s s - s e c t i o n

    U n i f o r m l o a d a n d r e c t a n g u l a r c r o s s - s e c t i o n

    C a n t i l e v e r b e a m:

    E n d l o a d a n d r e c t a n g u l a r c r o s s - s e c t i o n

    U n i f o r m l o a d a n d r e c t a n g u l a r c r o s s - s e c t i o n

    So l i d r o u n d b a r

    T o r s i o n

    H o l l o w r o u n d b a r wi t h D o g r e a t e r t h a n D i

    La m i n a t e d wi t h f l at l e av e s o f u n i fo r m s t r e n g t h

    Spr ings

    Fla t sp i ra l wi th rec tangular sec t ion

    Hel ica l wi th round sec t ion and axia l load

    Hel ica l wi th round sec t ion and axia l twis t

    Hel i ca l wi th rec tangular sec t ion and axia l twis t

    2

    O

    2 E

    2G

    2

    O

    1 8 E

    2

    O

    2 4 E

    3 2 E

    4O-e

    4 5 E

    d

    6 E

    1 8 E

    2

    O

    3 0 E

    2

    ( 7 e

    1 8 E

    ,)

    3 0 E

    4 G

    D i

    l + 2

    4G

    2

    7 e

    6 E

    2

    7 e

    2 4 E

    4G

    2

    O

    8 E

    2

    ( 7 e

    6 E

    Sources :

    K. Lingaiah and B. R. Narayana Iyengar,

    Mac hine Des ign Da t a Handbook ,

    Vol I

    (S I a nd Customary M et r ic Un i t s ) ,

    Sum a Publish

    Bangalore, India, 1986; K. Linga iah, Mac hine Design Da t a Ha ndbook , Vol II (S l a nd Customary Met r i c Un i t s) , Sum a Publishers, Bangalore, In

    1986; V. L. M aleev and J. B. H artman,

    Machine Design,

    International Textbook C ompany, S cranton, Pennsylvania, 1954.

  • 7/24/2019 67071_03.pdf

    15/16

    D Y N A M I C S T R E SS E S I N M A C H I N E E L E M E N T S 3

    T A B L E

    3 - 3

    C o e f f i c i e n t s i n E q . ( 3 - 5 8 ) ( 1 )

    Ty p e o f im p ac t

    L o n g i t u d i n a l i m p a c t o n b a r

    C e n t e r i m p a c t o n s i n g le b e a m

    C e n t e r i m p a c t o n b e a m w i t h f ix e d e n d s

    E n d i m p a c t o n c a n t i l e v e r b e a m

    1 1

    3 2

    17 5

    3 5 8

    13 1

    3 5 2

    4 3

    n _

    17 8

    T A B L E 3 - 4

    R e s i l i e n c e i n t e n s i o n

    Elast ic l im it , cr

    M at e r ia l M P a k p s i G Pa

    Modu lus o f e las t ic i ty , E Modu lus o f res i l ience , u Impac t

    s trength

    Mps i J in lbf ( Izod no

    C a s t i r o n :

    C lass 20 (ord inary ) 42 .8 a 62 68 .9 10 0 .22 1 .9

    Cla ss 25 68.9 a 10.0 89.2 13 0.43 3.8 7 .9

    Nicke l , G rad e I I 117.2 a 17.0 24 .5 18 0 .90 8 .0

    Ma l leab le 137.9 20 .0 172 .6 25 0 .90 8 .0 2 .7

    A l u m i n u m a l l o y , S A F 3 3 4 8 .3 7 .0 6 6 .7 9 .7 0 .2 8 2 .5

    Brass , SA E 40 or SA E 41 68 .9 10 .0 82 .4 12 0 .45 4 .0

    Bronz e , SA E 43 193 .0 28 .0 110 .8 16 2 .77 24 .5

    M o n e l m e t a l :

    H ot - r o l le d 206 .9 30 .0 176 .5 25 .5 1 .96 17.6 120

    C o l d - r o l l e d , n o r m a l i ze d 4 8 2 .6 70 .0 1 76 .5 2 5 .5 1 0 .79 9 6 1 0 0

    Steel:

    SA E 1010 206 .9 30 .0 30 .3 1 .69 15

    SA E 1030 248 .2 36 .5 206 .9 30 2 .45 22 20

    S A E 1 0 5 0, a n n e a l e d 3 3 0 .9 4 8 .5 2 0 4 .8 2 9 .7 4 .2 7 3 8

    S A E 1 0 95 , a n n e a l e d 4 1 3 .7 6 0 .0 2 0 4 .8 2 9 .7 6 .77 6 0

    SA E 1095 , t em per ed 517.1 75 .0 204 .8 29 .7 16 .08 94

    S A E 2 3 2 0 , a n n e a l e d 3 1 0 .3 4 5 .0 2 0 4 .8 2 9 .7 3 .8 2 3 4 5 2

    SA E 2320, t em per ed 689 .5 100 .0 204 .8 29 .7 18 .83 167 40

    S A E 3 2 5 0 , a n n e a l e d 5 5 1 .6 8 0 .0 2 1 3 .7 3 1 2 1 .5 8 1 93

    S A E 3 2 5 0 , t e m p e r e d 1 3 79 .0 2 0 0 .0 2 1 3 .7 3 1 .0 72 .5 7 6 4 5 3 0

    S A E 6 1 5 0 , a n n e a l e d 4 2 7 .6 6 2 .0 2 1 3 .7 3 1 6 .9 6 6 2

    SA E 6150, t em per ed 1102.3 160 .0 213 .7 31 52 .47 466

    R ub be r 2 .1 0 .3 1034 x 10 -9 150 x 10 -6 33 .89 300

    a Cast iron has no well-defined elastic limit, but the values may be safely used anyway for all practical purposes.

    Source: Reproduced courtesy of V. L. Maleev and J. B. Hartm an, Machine Design, International Tex tbook C o., Scranton, Pennsylvania, 1

  • 7/24/2019 67071_03.pdf

    16/16

    3 .1 6 C H A P T E R T H R E E

    R E F E R E N C E S

    1. Maleev, V. L. , and J. B. Hartman, Ma ch ine Des ign , International Textbook Co., Scranton, Pennsylvan

    1954.

    2. Lingaiah, K., and B. R. Nar aya na Iyengar, Ma ch ine Des ign Da ta H a ndbook , Vol I ( S I a nd C us tom a r y M e

    Units) , Suma Publishers, Bangalore, India, 1986.

    3. Lingaiah, K., M a c h i n e D e s ig n D a t a H a n d b o o k , Vol II ( S I a nd C us tom a r y Metr i c Un i t s ) , Sum a Publish

    Bangalore, India, 1986.

    4. Lingaiah, K.,

    M a c h i n e D e s ig n D a t a H a n d b o o k ,

    McGraw-Hi l l Book Company, New York , 1994 .

    5 . Burr , A rthur H . , and John B. Cheatham ,

    Mecha n i ca l Ana ly s is a nd Des ign ,

    2nd edition, Prentice Hall, Eng

    wood Cliffs, NJ, 1995.

    6. Spotts, Merhyle F. , Im pac t Stress in Elast ic Bodies Calculated by the Energy Meth od ,

    Eng ineer ing Da ta

    Pr oduc t D es ign ,

    edi ted by Douglas C. Greenwood, McG raw-H i l l Book Com pany, New York , 1961.

    7 . Burr , A. H. , L ongi tud ina l and Tors ional Imp act in Uni form Bar wi th a Rig id Body a t One End ,

    J. Ap

    Mech . ,

    Vol. 17, No . 2 (June 1950), pp. 209-217 ;

    T r a n s . A S M E ,

    Vol. 72 (1950).

    8. Timoshenko, S. , and J. N. Goodier,

    Theory o f Elas t ic i ty ,

    3rd ed i t ion , McGraw-Hi l l Book Company, N

    York, pp. 485-513, 1970.

    9. Kolsky, H.,

    S tress W a ves in Elas t ic So l ids ,

    Dover Publicat ions, New York, 1963.

    10. D urellli, A. J., and W . F. Riley,

    In troduct ion to Photomecha nics ,

    Prentice Hall Inc, Englewood Cliffs, NJ, 19

    11, A rnold, Im pac t Stresses in a Simply Supp orted Beam ,

    P r o c . I . M . E . ,

    Vol. 137, p. 217.

    12. Dohrenw end and Mehaffy , D ynam ic Loading ,

    Ma ch ine Des ign ,

    Vol. 15 (1943), p. 99.

    B I B L I O G R A P H Y

    Lingaiah , K. , and B. R. Narayana Iyengar , M a c h i n e D e s i gn D a t a H a n d b o o k , Engineering C ollege C o-opera

    Society, Bangalore, India, 1962.

    Norman, C. A., E. S. Ault , and E. F. Zarobsky, Funda m en ta l s o f Ma c h ine Des ign , The M acmil lan Com pany, N

    York, 1951.


Recommended