+ All Categories
Home > Documents > 7. REFERENCES 1994, 1999 1995, 2005, 2004, 2005, 1992a...

7. REFERENCES 1994, 1999 1995, 2005, 2004, 2005, 1992a...

Date post: 02-Sep-2019
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
17
134 7. REFERENCES Ainsworth, S. J. Soap and detergents. Chemical and Engineering News 1994, 72, 34-59 Altintas, M. M.; Ulgen, K. O. Growth of Thermus aquaticus and its taqI Endonuclease Production, Acta Biotechnologica 1999, 19, 45-56. Antranikian, G.; Rudiger, A.; Canganella, F.; Klingeberg, M.; Sunna, A. Biodegradation of polymers at temperatures up to 130°C. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 1995, 32, 661- 669. Antranikian, G.; Vorgias, C. E.; Bertoldo, C. Extreme environments as a resource for microorganisms and novel biocatalysts. Advances in Biochemical Engineering 2005, 96, 22962. Aunstrup, K. Proteinases. In Economic Microbiology: Microbial Enzymes and Bioconversions; Rose, A. H., Ed.; Academic Press, New York, 1980; Vol. 5, pp. 50114. Azeredo, L. A. I. De.; Freire, D. M. G.; Soares, R. M. A.; Leite, S. G. F. Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil. Enzyme and Microbial Technology 2004, 34, 354358. Balint, B.; Bagi, Z.; Toth, A.; Rakhely, G.; Perei, K.; Kovacs, K. L. Utilization of keratin-containing biowaste to produce biohydrogen. Applied Microbiology and Biotechnology 2005, 69, 404-410. Banerjee, R.; Bhattacharyya, B. C. Evolutionary operation (EVOP) to optimize protease biosynthesis by Rhizopus oryzae. Bioprocess Engineering 1992a, 8,151-155. Banerjee, R.; Bhattacharyya, B. C. Purification and characterization of protease from a newly isolated Rhizopus oryzae. Bioprocess Engineering 1992b, 7, 369-374. Banerjee, V.; Saani, K.; Azmi, W.; Soni, R. Thermostable alkaline protease from Bacillus brevis and its characterization as a laundry additive. Process Biochemistry 1999, 35, 213-219. BCC report @Enzymes in Industrial Applications, Global Market, Published in March 2012, report code BIO030G;
Transcript

134

7. REFERENCES

Ainsworth, S. J. Soap and detergents. Chemical and Engineering News 1994,

72, 34-59

Altintas, M. M.; Ulgen, K. O. Growth of Thermus aquaticus and its taqI

Endonuclease Production, Acta Biotechnologica 1999, 19, 45-56.

Antranikian, G.; Rudiger, A.; Canganella, F.; Klingeberg, M.; Sunna, A.

Biodegradation of polymers at temperatures up to 130°C. Journal of

Macromolecular Science, Part A: Pure and Applied Chemistry 1995, 32, 661-

669.

Antranikian, G.; Vorgias, C. E.; Bertoldo, C. Extreme environments as a

resource for microorganisms and novel biocatalysts. Advances in Biochemical

Engineering 2005, 96, 229–62.

Aunstrup, K. Proteinases. In Economic Microbiology: Microbial Enzymes and

Bioconversions; Rose, A. H., Ed.; Academic Press, New York, 1980; Vol. 5,

pp. 50–114.

Azeredo, L. A. I. De.; Freire, D. M. G.; Soares, R. M. A.; Leite, S. G. F.

Production and partial characterization of thermophilic proteases from

Streptomyces sp. isolated from Brazilian cerrado soil. Enzyme and Microbial

Technology 2004, 34, 354–358.

Balint, B.; Bagi, Z.; Toth, A.; Rakhely, G.; Perei, K.; Kovacs, K. L. Utilization

of keratin-containing biowaste to produce biohydrogen. Applied Microbiology

and Biotechnology 2005, 69, 404-410.

Banerjee, R.; Bhattacharyya, B. C. Evolutionary operation (EVOP) to

optimize protease biosynthesis by Rhizopus oryzae. Bioprocess Engineering

1992a, 8,151-155.

Banerjee, R.; Bhattacharyya, B. C. Purification and characterization of

protease from a newly isolated Rhizopus oryzae. Bioprocess Engineering

1992b, 7, 369-374.

Banerjee, V.; Saani, K.; Azmi, W.; Soni, R. Thermostable alkaline protease

from Bacillus brevis and its characterization as a laundry additive. Process

Biochemistry 1999, 35, 213-219.

BCC report @Enzymes in Industrial Applications, Global Market, Published

in March 2012, report code BIO030G;

135

http://www.bccresearch.com/report/enzymes-industrial-applications-markets-

bio030g.html (accessed on March 20, 2009).

Box, G.E.P. and Behnken, D.W. Some new three level designs for the study of

quantitative variables. Technometrics 1960, 2, 455–475.

Box, G.E.P.; Behnken, D.W. Some new three level second-order designs for

surface fitting. Statistical Technical Research Group Technical Report No. 26.

1958, Princeton University, Princeton, NJ.

Box, G.E.P.; Wilson, K.B. On the experimental attainment of optimum

conditions. Journal of Royal Statistical Society 1951, 13, 1-45.

Bruins, M. E.; Janssen, A. E. M.; Boom, R. M. Thermozymes and their

applications. Appl. Biochem. Biotechnol. 2001, 90, 155-186.

Catara, G.; Ruggiero, G.; La Cara, F.; Digilio, F. A.; Capasso, A.; Rossi, M. A

novel extracellular subtilisin like protease from the hyperthermophile

Aeropyrum pernix K1: biochemical properties, cloning,and expression.

Extremophiles 2003, 7, 391–9.

Chaplin, M.; Bucke, C. The large-scale use of enzymes in solution. In Enzyme

Technology; Cambridge University Press, Great Britain, 1990; pp 138-166.

Chen, X. G.; Stabnikova, O.; Tay, J. H.; Wang, J. Y.; Tay, S. T. Thermoactive

extracellular proteases of Geobacillus caldoproteolyticus, sp. nov., from

sewage sludge. Extremophiles 2004, 8, 489–98.

Chu, .I.M.; Lee, C. and Li, T.S. Production and degradation of alkaline

protease in batch cultures of Bacillus subtilis ATCC 14416. Enzyme and

Microbial Technology 1992, 14, 755–61.

Coninck, De.; Bouquele, J. S.; Dumortier, V.; Duyme, F.; Verdier-Denantes, I.

Industrial media and fermentation processes for improved growth and protease

production by Tetrahymena thermophila BIII. Journal of Industrial

Microbiology & Biotechnology 2000, 24, 285-290.

Kunamneni, A.; Kumar, K. S., and Singh, S. Response surface methodology

approach to optimize the nutritional parameters for enhances α-amylase.

African Journal of Biotechnology 2005, 4, 708–716.

Cortezi, M.; Contiero, J.; De Lima, C. J. B.; Lovaglio, R. B.; Monti, R.

Characterization of a feather degrading by Bacillus amyloliquefaciens

136

protease: A new strain. World Journal of Agricultural Science 2008, 4, 648-

656.

Cowan, D. A. Thermophilic proteins: stability and function in aqueous and

organic solvents. Comparative Biochemistry and Physiology Part A:

Molecular & Integrative Physiology 1997, 118, 429-438.

Cowan, D. A.; Daniel, R. M.; Morgan, H. W. A comparison of extracellular

serine proteases from four strains of Thermus aquaticus. FEMS Microbiology

Letters 1987, 43, 155-159.

Cowan, D.; Daniel, R.; Morgan, H. Thermophilic proteases: Properties and

potential applications. Trends in Biotechnology 1985, 3, 68–72.

Cowan, D.A.; Daniel, R.M.; Purification and some properties of an

extracellular protease (caldolysin) from an extreme thermophile. Biochimica et

Biophysica Acta 1982,705, 293–305.

Cowan, W. D.; Animal Feed. In Industrial Enzymology: Godfrey, T. & S.

West Eds.; 2nd Edn., Macmillan Press, Nature Publishing Group, London,

1996; pp 360-371.

Dahlquist, F. W.; Long, J.W.; Bigbee, W. L. Role of calcium in the thermal

stability of thermolysin. Biochemistry 1976, 15, 1103–1111

Daniel R.M. The stability of proteins from extreme thermophiles. In Proteins

structure folding and design; Oxender, D. L., Ed.; Alan R Liss, Inc: New

York, 2004; pp 291-296.

Daniel, R. M.; Cowan, D. A.; Morgan, H. W.; Curran, M. P. A correlation

between protein thermostability and resistance to proteolysis. Biochemical

Journal 1982, 207, 641-644.

Daniel, R. M.; Morgan, H. W.; Martin, A. M. The industrial potential of

extreme thermophiles. Industrial biotechnology 1985, 6, 89-91.

Danson, M. J.; Hough, D. W.; Lunt, G. G. The archaebacteria: biochemistry

and biotechnology. Portland, London, 1992.

De Martin, L.; Ebert, C.; Gardossi, L.; Linda, P. High isolate yields in

thermolysin catalyzed synthesis of Z-L-aspartyl-L-phenylalanine methyl ester

in toluene at controlled water activity. Tetrahedron Letter 2001, 42, 3395-

3397.

137

Dennison, C.; Lovrien, R. Three-phase partitioning: Concentration and

purification of proteins. Protein Expression & Purification 1997, 11, 149-161

Donaghy, J. A.; McKay, A. M. Production and properties of an alkaline

protease by Aureobasidium pullulans. Journal of Applied Microbiology 1993,

74, 662-666.

Dozie, I. N. S.; Okeke, C. N.; Unaeze, N. C. A thermostable alkalineactive

keratinolytic proteinases from Chryzosporium keratinophilum. World Journal

of Microbiololgy and Biotechnology. 1994, 10, 563-567.

Dutta, J. R.; Dutta, P. K. and Banerjee, R. Optimization of culture parameters

for extracellular protease production from a newly isolated Pseudomonas sp.

using response surface and artificial neural network models, Process

Biochemistry 2004, 39,2193–2198

Eichler, J. Biotechnological uses of archaeal enzymes. Biotechnology

Advances 2001, 19, 261-278.

Eijsink, V. G.; Matthews, B. W.; Vriend, G. The role of calcium ions in the

stability and instability of a thermolysin-like protease. Protein Science 2011,

20, 1346-1355.

Farias, S. T.; Bonato, M. C. Preferred amino acids and thermostability.

Genetics and Molecular Research 2003, 2, 383-393.

Ferrero, M.; Castro, G.; Abate, M.; Baigori, M.; Sinerz, F. Thermostable

alkaline protease of Bacillus licheniformis MIR 29, isolation, production and

characterization. Applied Microbiology and Biotechnology 1996, 45, 327-332.

Fisher, S.H.; Sonenshein, A. L. Control of carbon and nitrogen metabolism in

Bacillus subtilis. Annual Review of Microbiology 1991, 45, 107-135.

Frankena, J.; Koningstein, G. M.; van Verseveld, H. W.; Stouthamer, A. H.

Effect of different limitations in chemostat cultures on growth and production

of exocellular protease by Bacillus licheniformis. Applied Microbiology &

Biotechnology 1986, 24,106-12.

Frankena, J.; van Verseveld, H. W.; Stouthamer, A. H. A continuous culture

study of the exocellular protease in Bacillus licheniformis. Applied

Microbiology & Biotechnology 1985, 22,169–76.

Fredrich, A.; Antrakian, G. Keratin degradation by Fervidobacterium

pennavorans, a novel thermophilic anaerobic species of the order

138

Thermatogales. Applied and Environmental Microbiology 1996, 62, 2875-

2882.

Fujii, M.; Takagi, M.; Imanaka, T.; Aiba, S. Molecular cloning of a

thermostable neutral protease gene from Bacillus stearothermophilus in a

vector plasmid and its expression in Bacillus stearothermophilus and Bacillus

subtilis. Journal of Bacteriology 1983, 154,831–837.

Fujiwara, N. And Yamamoto, K. Production of alkaline protease in a low-cost

medium by alkalophilic Bacillus sp. and properties of the enzyme. Journal of

Fermentation Technology 1987, 65, 345–48.

Fujiwara, N.; Masui, A. and Imanaka, T. Purification and properties of the

highly thermostable alkaline protease from an alkalophilic and thermophilic

Bacillus sp. Journal of Biotechnology 1993, 30, 245-56.

Fujiwara, N.; Yamamoto, K.; Masui, A. Utilization of thermostable alkaline

protease from an alkalophilic thermophile for the recovery of silver from used

X-ray film. Journal of Fermentation and Bioengineering 1991; 72, 306–308.

Fujiwara, S. Extremophiles: Developments of their special functions and

potential resources. Journal of Bioscience & Bioengineering 2002, 94, 518-

525.

Fukuchi, S.; Nishikawa, K. Protein surface amino acid compositions

distinctively differ between thermophilic and mesophilic bacteria. Journal of

Molecular Biology 2001, 309, 835-843.

Giesecke, U. E.; Bierbaum, G.; Rudde, H.; Spohn, U.; Wandrey, C. Production

of alkaline protease with Bacillus licheniformis in a controlled fed-batch

process. Applied Microbiology & Biotechnology 1991, 35, 720–24.

Glass, J. D. Enzymes as reagent in the synthesis of peptides. Enzyme &

Microbial Technology, 1981, 3, 2–8.

Gödde, C.; Sahm, K.; Brouns, S. J.; Kluskens, L. D.; van der Oost, J.; de Vos,

W. M.; Antranikian, G. Cloning and expression of islandisin, a new

thermostable subtilisin from Fervidobacterium islandicum, in Escherichia

coli. Applied and Environmental Microbiology 2005, 71, 3951–8.

Gousterova, A.; Braikova, D.; Goshev, I.; Christov, P.; Tishinov, K.; Vasileva-

Tonkova, E.; Haertle, T.; Nedkov, P. Degradation of keratin and collagen

139

containing wastes by newly isolated Thermoactinomycetes or by alkaline

hydrolysis. Letters in Applied Microbiology 2005, 40: 335-340.

Grazziotin, A.; Pimentel, F.A.; De Jong, E. V.; Brandelli, A. Nutritional

improvement of feather protein by treatment by microbial keratinase. Animal

Feed Science and Technology 2006, 126: 135-144.

Grütter, M. G.; Hawkes, R. B.; Matthews, B. W. Molecular basis of

thermostability in the lysozyme from bacteriophage T4. Nature 1979, 277,

667–669.

Gupta, A.; Khare, S. K. A protease stable in organic solvents from solvent

tolerant strain Pseudomonas aeruginosa. Bioresource Technology 2006, 97,

1788-1793.

Gupta, M. N. Thermostabilization of proteins. Biotechnology & Applied

Biochemistry 1991, 14, 1-11.

Gupta, R.; Beg, Q. K.; Khan, S.; Chauhan, B. An overview on fermentation,

downstream processing and properties of microbial alkaline proteases. Applied

Microbiology and Biotechnology 2002, 60, 381–395

Gupta, R.; Ramnani, P. Microbial keratinases and their prospective

applications: an overview. Applied Microbiology & Biotechnology 2006, 70,

21–33.

Gusek, T. W.; Wilson, D. B.; Kinsella, J. E. Influence of carbon source on

production of a heat stable protease from Thermomonospora fusca YX.

Applied Microbiology and Biotechnology 1988, 28, 80-84.

Haaki, G. D.; Rakshit, S. K. Developments in industrially important

thermostable enzymes. Bioresource Technology 2003, 89, 17-23.

Haaland, P. D. Statistical problem solving. Experimental Design in

Biotechnology 1989,1–18.

Hanazawa, S.; Hoaki, T.; Jannasch, H.; Maruyama, T. An extremely

thermostable serine protease from hyperthermophilic archaeum

Desulfurococcus strain, isolated from deep sea hydrothermal vent. Journal of

Marine Biotechnology 1996, 4: 121-126.

Hanlon, G. W.; Hodges, N. A.; Russel, A. D. The influence of glucose,

ammonium and magnesium availability on the production of protease and

140

bacitracin by Bacillus licheniformis. Journal of General Microbiology 1982,

128, 845–51.

Hartley, B. S.; Payton, M. A. Industrial prospects for thermophiles and

thermophilic enzymes. Biochemical Society Symposium. 1983, 48, 133–146.

Heineken, F.G and O’Connor, R.G. Continuous culture studies on the

biosynthesis of alkaline protease and amylase by Bacillus subtilis NRRL-

B3411. Journal of General Microbiology 1972, 73, 35–43.

Heinen, U. J.; Heinen, W. Characteristics and properties of caldo-active

bacterium producing extracellular enzymes and two related strains. Archives

of Microbiology 1972, 82, 1–23.

Horikoshi, K; Akiba, T. Alkalophilic Microorganisms: A New Microbial

World. Japan Scientific Societies Press and Berlin 1982, Germany: Springer

Verlag.

Huang, J.; Zhao, R.; Wang, H.; Zhao, W.; Ding, L. Immobilization of glucose

oxidase on Fe3O4/SiO2 magnetic nanoparticles. Biotechnology Letters 2010,

32,817–821.

Huber, H.; Stetter, K. O. Hyperthermophiles and their possible potential in

biotechnology. Journal of Biotechnology 1998, 64, 39-52.

Hübner, U.; Bock, U.; Schügerl, K. Production of alkaline serine protease

subtilisin Carlsberg by Bacillus licheniformis on complex medium in a stirred

tank reactor. Applied Microbiology and Biotechnoogy 1993, 40, 182–88.

Hui, Z.; Doi, H.; Kanouchi, H.; Matsuura, Y.; Mohri, S.; Nonomura, Y.; Oka,

T. Alkaline serine protease produced by Streptomyces sp. degrades PrP(Sc).

Biochemical and Biophysical Research Communications 2004, 321, 45-50.

Ikeda, S.; Tobe, S.; Niwa, K. Production of alkaline protease from acetic acid.

Agricultural & Biological Chemistry 1974, 38, 2317-2322.

Jakubke, H. D. Enzymatic peptide synthesis. In The Peptides: Analysis,

Synthesis, Biology: Udenfriend, S. and Meienhofer, J. Eds.; Academic Press,

Inc., 1987; Vol. No. 9, pp. 103–165.

Janssen, P. H.; Morgan, H. W., Daniel, R. M. Effects of medium composition

on extracellular proteinase stability and yield in batch cultures of a Thermus

sp. Appl Microbiol Biotechnol 1991, 34,789-793

Johnson, R. T. Prion diseases. The Lancet Neurology 2005, 4, 635-642.

141

Jones, C.W.; Morgan, H.W.; Daniel, R. M. Aspects of protease production by

Thermus strain Ok6 and other New Zealand isolates. Journal of General

Microbiology 1988, 134,191-198

Kanasawud, P.; Hjtrleifsdottir, S.; Hoist, O.; Mattiasou, B. Studies on

immobilization of the thermophilic bacterium Thermus aquaticus YT-1 by

entrapment in various matrices. Applied Microbiology & Biotechnology 1989,

31, 228-233.

Keay, L.; Moseley, M. H.; Anderson, R. G.; O'Connor, R. J.; Wildi, B. S.

Production and isolation of microbial proteases.

Biotechnology & Bioengineering Symposium 1972, 3, 63–92.

Khan, A.R.; Nirasawa, S.; Kaneko, S.; Shimonishi, T.; Hayashi,

K.Characterization of a solvent resistant and thermostable aminopeptidase

from the hyperthermophillic bacterium, Aquifex aeolicus. Enzyme & Microbial

Technology 2000, 27, 83–88.

Khoo, T. C.; Cowan, D. A.; Daniel, R. M.; Morgan, H. W. Interactions of

calcium and other metal ions with caldolysin, the thermostable proteinase

from Thermus aquaticus strain T351. Biochemical Journal. 1984, 221, 407–

413.

Kilara, A.; Shahani, K. M. Preparation and properties of immobilized papain

and lipase. Biotechnology & Bioengineering 1977, 19, 1703-14

Kitada, M.; Horikoshi, K. Alkaline protease production from methyl acetate

by alkalophilic Bacillus sp. Journal of Fermentation Technology 1976,

54,383–392.

Klingberg, M.; Hashawa, F.; Antranikian, G. Properties of extremely

thermostable proteases from anaerobic hyperthermophilic bacteria. Applied

Microbiology & Biotechnology 1991, 34, 715-719.

Kluskens, L. D.; Voorhorst, W. G.; Siezen, R. J.; Schwerdtfeger, R.

M.; Antranikian, G.; van der Oost, J.; de Vos, W. M. Molecular

characterization of fervidolysin, a subtilisin-like serine protease from the

thermophilic bacterium Fervidobacterium pennivorans. Extremophiles 2002,

6, 185-94.

142

Kole, M. M.; Draper, I.; Gerson, D. F. Production of protease by Bacillus

subtilis using simultaneous control of glucose and ammonium concentrations.

Journal of Chemical Technology & Biotechnology 1988, 41,197-206.

Konneckea, A.; Hansler, M.; Schellenberger,V; Jakubke, H. D. Peptide

Synthesis by Means of Immobilized Enzymes, Monatschrifts Fur Chemie

1981, 112, 469-81.

Kublanov, I. V.; Bidjeva, S. K.; Mardanov, A. V.; Bonch-Osmolovskaya, E.

A. Desulfurococcus kamchatkensis sp.nov. a novel hyperthermophilic protein-

degrading archaeon isolated from Kamchatka hot spring. International

Journal of Systematic and Evolutionary Microbiology 2009, 59, 1743-1747.

Kumakura, M.; Kaetsu, I.; Kobayashi, T. Properties of thermolysin

immobilized in polymer matrix by radiation polymerization. Enzyme and

Microbial Technology, 1984, 6, 23-26.

Kumar, C. G.; Takagi, H. Microbial alkaline protease from a bioindustrial

viewpoint, Biotechnology Advances 1999, 17, 561–594.

Kumar, C. G.; Tiwari, M. P.; Jany, K. D. Purification and characterization of

two alkaline proteases from an alkaliphilic Bacillus sp. Zeitschrift für

Ernährungs-Wissenschaft 1997, 36, 48-48.

Kumar, S.; Nussinov, R. How do thermophilic proteins deal with heat?

Cellular and Molecular Life Sciences 2001, 58, 1216-1233.

Kunitz, M. Crystalline soybean trypsin inhibitor. Journal of General

Physiology 1946, 30, 291-310.

Laemmli, U. K. Cleavage of structural proteins during the assembly of the

head of bacteriophage T4, Nature 1970, 227, 680-685.

Langeveld, J. P.; Wang, J. J.; Van De Wiel, D. F.; Shih, J. C. Enzymatic

degradation of prion protein in brain steam from infected cattle and sheep.

The Journal of Infectious Diseases 2003, 188: 1782-1789.

Lasa, I.; Berenguer, J. Thermophilic enzymes and their biotechnological

potential. Sociedad Española de Microbiología, 1993, 9, 77-89.

Lin, C. C.; Casida, L. E. Gelrite as a gelling agent in media for the growth of

thermophilic organisms Applied and Environmental Microbiology 1984, 47,

427-429.

143

Lowry, O. H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein

measurement with the folin phenol reagent, Journal of Biological Chemistry

1951, 193, 265-275.

Macedo, A. J.; da Silva, W. O. B.; Gava, R.; Driemeier, D.; Henriques, J. A.

P.; Termignoni, C. Novel keratinase from Bacillus subtilis S14 exhibiting

remarkable dehairing capabilities. Applied & Environmental Microbiology

2005, 71: 594-596.

Maneepun, S.; Klibanov, A. M. Stabilization of microbiol protease against

autolysis using acylation with dicarboxylic acid anhydrides. Biotechnology

and Bioengineering 1982, 24, 2, 483–486.

Mao, W.; Pan, R.; Freedman, D. High production of alkaline protease by

Bacillus licheniformis in a fed-batch fermentation using a synthetic medium.

Journal of Indian Microbiology 1992, 11, 1–6.

Matsui, T.; Yamada, Y.; Mitsuya, H.; Shigeri, Y.; Yoshida, Y.; Saito, Y.;

Matsui, H.; Watanabe, K. Sustainable and practical degradation of intact

chicken feathers by cultivating a newly isolated thermophilic Meiothermus

ruber H328. Applied Microbiology & Biotechnology 2009, 82, 941-950.

Matsuzawa, H.; Hamaoki, M.; Ohta, T. Production of thermophilic proteases

(aqualysins I and II) by Thermus aquaticus YT-1, an extreme thermophile.

Agricultural and Biological Chemistry 1983, 47, 25-28.

Matsuzawa, H.; Tokugawa, K.; Hamaoki, M.; Mizoguchi, M.; Taguchi,

H.; Terada, I.; Kwon, S. T.; Ohta, T. Purification and characterization of

aqualysin I (a thermophilic alkaline serine protease) produced by Thermus

aquaticus YT-1. European Journal of Biochemistry 1988, 171, 441-447.

Michalik, I.; Szabova, E.; Polakova, A. and Urminska, D. The selection of

Bacillus licheniformis strains for protease production: Characterization of

bacterial alkaline protease. Biologia 1995, 50, 249–52.

Miytake, R.; Shigeri, Y.; Tatsu, Y.; Yumoto, N.; Umekawa, M.; Tsujimoto,

Y.; Matsui, H.; Watanabe, K. Two oligopeptidase-like Pz peptidases produced

by a collagen-degrading thermophile Geobacillus collagenovorans MO-1.

Journal of Bacteriology 2005, 187, 4140-4148.

144

Mizusawa, K.; Yoshida, F.; Thermophilic Streptomyces alkaline proteinase II.

The role of a sulfhydryl group and the conformational stability. The Journal of

Biological Chemistry 1973, 248, 4417–4423.

Moon, S.H and Parulekar, S J. A parametric study of protease production in

batch and fed-batch cultures of Bacillus firmus. Biotechnology and

Bioengineering 1991, 37, 467–83.

Moon, S.H and Parulekar, S.J. Some observations on protease production in

continuous suspension cultures of Bacillus firmus. Biotechnology and

Bioengineering 1993, 41, 43–54.

Mozhaev, V. Mechanism-based strategies for protein thermostabilization.

Trends of Biotechnology 1993, 11, 88-95.

Mozhaev, V.V.; Martinek, K. Structure-stability relationships in proteins: new

approaches to stabilizing enzymes. Enzyme and Microbial Technology, 1984,

6, 50-59.

Nakao, Y.; Suzuki, M.; Kuno, M. and Maejima, K. Production of alkaline

protease from n-paraffins by a kabacidin resistant mutant strain of Fusarium

sp. Agricultural Biology and Chemistry 1973, 37, 1223–24

Nakiboglu, N.; Toscali, D.; Nisli, G. Novel silver recovery method from waste

photographic films with NaOH stripping. Turkish Journal of Chemistry 2003,

27,127-133.

Nam, G.W.; Lee, D. W.; Lee, H. S.; Lee, N. J.; Kim, B. C.; Choe, E. A.;

Hwang, J. K.; Suhartono, M. T.; Pyun, Y. R. Native feather-degradation by

Fervidobacterium islandicum AW-1, a newly isolated keratinase producing

thermophilic anaerobe. Archives of Microbiology 2002, 178, 538-547.

Nehete, P. N.; Shah, V. D.; Kothari, R. M. Isolation of a high yielding alkaline

protease variant of Bacillus licheniformis. Enzyme & Microbial Technology

1986, 8,370–72.

Nelson, D.; Cox,M. Lehninger Principles of Biochemistry 4th ed.; W. H.

Freeman: New York, 2004

Nguyen, N. K.; Borkowski, J.J. New 3-Level Response Surface Designs

Constructed from Incomplete Block Designs. Journal of Statistical Planning

and Inference 2008, 138, 294-305.

145

Niehaus, F.; Bertoldo, C.; Kahler, M.; Antranikian, G. Extremophiles as a

source of novel enzymes for industrial applications. Applied Microbiology &

Biotechnol. 1999, 51,711-729.

Nishi, N.; Matsushita, O.; Yuube, K.; Miyanaka, H.; Okabe, A.; Wada, F.

Collagen-binding growth factors: production and characterization of

functional fusion proteins having a collagen-binding domain. Proceedings of

the National Academy of Sciences USA 1998, 95: 7018-7023.

Norouzian, D. Enzyme immobilization: the state of art in biotechnology.

Iranian Journal of Biotechnology 2003, 1,197-206.

O'brien, R. T.; Campbell, L.L. Purification and properties of a proteolytic

enzyme from Bacillus stearothermophilus. Archives of Biochemistry

Biophysics 1957, 70, 432–441.

Ohta, Y. Thermostable Protease from Thermophilic Bacteria II. Studies on the

stability of the protease. The Journal of Biologcal Chemistry. 1967, 242, 509-

515.

Okamoto, M.; Yonejima, Y.; Tsujimoto, Y.; Suzuki, Y.; Watanabe, K. A

thermostable collagenolytic protease with a very large molecular mass

produced by thermophilic Bacillus sp. strain MO-1. Applied Microbiology &

Biotechnology. 2001, 57, 103-108.

Owusu, R. K.; Cowan, D.A. Correlation between microbial protein

thermostability and resistance to denaturation in aqueous: organic solvent two

phase systems. Enzyme and Microbial Technology 1989, 11, 568-574.

Öztürk, B. Immobilization of lipase from Candida rugosa on hydrophobic and

hydrophilic supports. M.S. Thesis [Online], İzmir Institute of Technology,

2001. http://library.iyte.edu.tr/tezler/master/biyoteknoloji/T000031.pdf

(accessed Dec 20, 2009)

Pal, A.; Khanum, F. Characterizing and improving the thermostability of

purified xylanase from Aspergillus niger DFR-5 grown on solid-state-medium.

Journal of Biochemical Technology 2010, 2, 203-209.

Pantazaki, A. A.; Prista, A. A.; Kyriakidis, D. A. Biotechnologically relevant

enzymes from Thermus thermophilus. Applied Microbiology & Biotechnology

2002, 58: 1-12.

146

Parry, D. A. D.; North, A. C.T. Hard alpha-keratin intermediate filament

chains: substructure of the N- and C-terminal domains and the predicted

structure and function of the C-terminal domains of type I and type II chains.

Journal of Structural Biology 1998, 122, 279-290.

Peek, K.; Janssen, P. H.; Morgan, H. W.; Daniel, R. M. Enhancement of in

vitro stability and recovery of a proteinase produced by an extreme

thermophile. In Fermentation technologies: industrial applications; Yu, P. L.,

Ed.; Elsevier Applied Science, London and New York, 1990; pp 97-102.

Peek, K.; Daniel, R. M,; Monk, C.; Parker, L.; Coolbear, T. Purification and

characterization of a thermostable proteinase isolated from Thermus sp.

strain Rt41A. European Journal of Biochemistry 1992, 207, 1035-44.

Phadatare, S.U.; Deshpande, V.V. and Srinivasan, M.C. High activity alkaline

protease from Conidiobolus coronatus (NCL 86.8.20): Enzyme production

and compatibility with commercial detergents. Enzyme and Microbial

Technology 1993, 15, 72–76.

Prakash, P.; Jayalakshmi, S. K.; Sreeramulu, K. Purification and

characterization of extreme alkaline, thermostable keratinase, and keratin

disulfide reductase produced by Bacillus halodurans PPKS-2. Applied

Microbiology & Biotechnology 2010, 87,625-633.

Prakasham, R.S. Nickel-impregnated silica nanoparticle synthesis and their

evaluat ion for biocatalyst immobilizat ion. Applied Biochemistry &

Biotechnology 2010, 160, 1888-95.

Priola, S. A. Prion protein diversity and disease in the transmissible

spongiform encephalopathies. Advances in Protein Chemistry 2001, 57,1-27.

Protein Purification Techniques Vol. 1. Ionic Precipitation, Technical Bulletin,

www.safcbiosciences.com; (accessed on March 20, 2009).

Rahman, R.; Razak, C.; Ampon, K.; Basri, M.; Yunus, W.; Salleh, A.

Purification and characterization of a heat stable protease from Bacillus

stearothermophilus F-1. Applied Microbiology & Biotechnology 1994, 40:

822-827.

Rao, M. B.; Tanksale, A. M.; Ghatge, M. S.; Deshpande, V. V. Molecular and

biotechnological aspects of microbial proteases. Microbiology and Molecular

Biology Reviews 1998, 62, 597-635.

147

Ray, P. H.; White, D. C; Brock, T. D. Effect of growth temperature on the

lipid composition of Thermus aquaticus. Journal of Bacteriology 1971,

108,227–235.

Riessen, S.; Antranikian, G. Isolation of Thermoanaerobacter keratinophilus

sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity.

Extremophile 2001, 5, 399-408.

Riffel, A.; Brandelli, A.; Bellato, C. M.; Souza, H. M. F.; Eberlin, M. N.;

Tavares, F. C. A. Purification and characterization of a keratinolytic

metalloprotease from Chryseobacterium sp. Kr6. Journal of Biotechnology

2007,128, 693-703.

Roche, R.S.; Voordouw, G. The structural and functional roles of metal ions in

thermolysin. CRC Critical Reviews Biochemistry. 1978, 5, 1–23.

Rossi, L. M.; Quach, A. D.; Rosenzweig, Z. Glucose oxidase–magnetite

nanoparticle bioconjugate for glucose sensing. Analytical &

Bioanalytical Chemistry 2004 380: 606–613.

Rothschild, L.; Manicineli, R. Life in extreme environments. Nature 2001,

409, 1092-1101.

Saravani, G. A.; Cowan, D. A.; Daniel, R. M.; Morgan, H. W. Caldolase, a

chelator-insensitive extracellular serine proteinase from a Thermus sp.

Biochemical Journal 1989, 262,409-416.

Schneider, D.; Liu, Y.; Gerstein, M.; Engelmann, D. M. Thermostability of

membrane protein helix-helix interaction elucidated by statistical analysis.

FEBS Letters 2002, 532, 231-236.

Sellek, G. A.; Chaudhuri, J. B. Biocatalysis in organic media using enzymes

from extremophiles. Enzymes & Microbial Technology 1998, 25, 471-482.

Sen, S.; Satyanarayana, T. Optimization of alkaline protease production by

thermophilic Bacillus licheniformis S-40. Indian Journal of Microbiology

1993, 33, 43–47.

Shankar, S.; More, S.; Seeta laxman, R. Recovery of silver from waste X-ray

film by alkaline protease from Conidiobolus coronatus. Kathmandu University

Journal of Science, Engineering &Technology 2010, 6, 60-69.

148

Shiraki, K.; Fujiwara, S.; Imanaka, T.; Takagi, M. Conformational stability of

hyperthermophilic proteins in various conditions for denaturation.

Electrochemistry 2001, 69, 949-952.

Shiraki, K.; Nishikori, S.; Fujiwara, S.; Hashimoto, H.; Kai, Y.; Takagi, M.;

Imanaka, T. Comparative analyses of the conformational stability of a

hyperthermophilic protein and its mesophilic counterparts. European Journal

of Biochemistry 2001, 268, 4144-4150.

Sidler, W.; Zuber, H. Isolation procedures for thermostable neutral

proteinases produced by Bacillus stearothermophilus. European journal of

applied microbiology and biotechnology 1980, 10, 197-209.

Stetter, K. Extremophiles and their adaptation to hot environments. FEBS

Letters 1999, 452, 22-25.

Suzuki, Y.; Tsujimoto, Y.; Matsui, H.; Watanabe, K. Decomposition of

extremely hard-to-degrade animal proteins by thermophilic bacteria. Journal

of Bioscience & Bioengineering 2006,102, 73-81.

Synowiecki, J. Thermostable enzymes in food processing, In Recent Research

Developments in Food Biotechnology. Enzymes as Additives or Processing

Aids, Research Signpost, Kerala, 2008.

Taguchi, H.; Hamaoki, M.; Matsuzawa, H.; Ohta, T. Heat-stable extracellular

proteolytic enzyme produced by Thermus caldophilus strain GK24, an

extremely thermophilic bacterium. Journal of Biochemistry 1983, 93, 7-13

Takami, H.; Nakamura, S.; Aono, R.; Horikoshi, K. Degradation of human

hair by a thermostable alkaline protease from alkaliphilic Bacillus sp. No. AH-

101. Bioscience, Biotechnology, and Biochemistry 1992, 56, 1667-1669.

Takii, Y.; Kuriyama, N.; Suzuki, Y. Alkaline serine protease produced from

citric acid by Bacillus alcalophilus subsp. halodurans KP 1239. Applied

Microbiology & Biotechnology 1990, 34,57-62.

Tanaka, T.; Kawano, N.; Oshima, T. Cloning of 3-isopropylmalate

dehydrogenase gene of an extreme thermophile and partial purification of the

gene product. Journal of Biochemistry 1981, 89, 677–682.

Thompson, M. J.; Eisenberg, D. Transproteomic evidence of a loop deletion

mechanism for enhancing protein thermostability. Journal Molecular Biology

1999, 290, 595-604.

149

Trivedi, S.; Gehlot, H. S.; Rao, S. R. Protein thermostability in archaea and

eubacteria. Genetics & Molecular Research 2006, 5, 816-827.

Tsiroulnikow, K.; Rezai, H.; Bonch-Osmolovskaya, E.; Nedkov, P.;

Gousterova, A.; Cueff, V.; Godfroy, A.; Barbier, G.; Metro, F.; Chobert, J.M.;

Clayette, P.; Dormont, D.; Grosclaude, J.; Haertle, T. Hydrolysis ofthe

amyloid prion protein and nonpathogenic meat and bone meal by anaerobic

thermophilic prokaryotes and Streptomyces subspecies. Journal of

Agricultural and Food Chemistry 2004, 52, 6353-6360.

Tsuruoka, N.; Nakayama, T.; Ashida, M.; Hemmi, H.; Nakao, M.; Minakata,

H.; Oyama, H.; Oda, K.; Nishino, T. Collagenolytic serine-carboxyl proteinase

from Alicyclobacillus sendaiensis strain NTAP-1: purification,

characterization, gene cloning, and heterologous expression.

Applied and Environmental Microbiology 2003, 69, 162–9.

Veltman, O. R.; Vriend, G.; Berendsen, H. J.; Van den Burg, B.; Venema,

G.; Eijsink, V. G. A Single Calcium Binding Site Is Crucial for the Calcium-

Dependent Thermal Stability of Thermolysin-like Proteases. Biochemistry

1998, 37, 5312-5319

Vieille, C.; Zeikus, G. J. Hyperthermophilic enzymes: sources, uses, and

molecular mechanisms for thermostability. Microbiology and Molecular

Biology Reviews 2001, 65, 1-43.

Voght, G.; Woell, S.; Argos, P. Protein thermal stability, hydrogen bonds, and

ion-pairs. Journal of Molecular Biology 1997, 269, 631-643.

Wang, S.I.; Yeh, P.Y. Production of a surfactans and solvent-stable

alkaliphilic protease by bioconversion of shrimp shell wastes fermented by

Bacillus subtilis. Process Biochemistry 2006, 41, 1545-1552.

Ward, D. E.; Shockley, K. R.; Chang, L. S.; Levy, R. D.; Michel, J. K.;

Conners,S. B.; Kelly, R. M. Proteolysis in hyperthermophilic microorganisms.

Archaea 2002, 1, 63–74.

Ward, O. P. Proteases. In Microbial Enzymes and Biotechnology: Fogarty, W.

M. Ed.; Elsevier Applied Science, London, UK, 1983; pp 251–317.

Watanabe, K. Collagenolytic proteases from bacteria. Applied Microbiology &

Biotechnology 2004, 63, 520-526.

150

Xu, B.; Zhong, Q.; Tang, X.; Yang, Y.; Huang, Z. Isolation and

characterization of a new keratinolytic bacterium that exhibits significant

feather-degrading capability. African Journal of Biotechnology 2009, 8, 4590-

4596.

Yiu, H. H. P.; Keane, M. A. Enzyme–magnetic nanoparticle hybrids: new

effective catalysts for the production of high value chemicals. Journal of

Chemical Technology & Biotechnology 2012, 87,583–594.

Zamost, B. L.; Brantley, Q. I.; Elm, D. D.; Beck, C. M. Production and

characterization of a thermostable protease produced by an asporogenous

mutant of Bacillus stearothermophilus. Journal of Industrial Microbiology

1990, 5,303–12.

Zeikus, G. J.; Vieille, C.; Savchenko, A. Thermozymes: biotechnology and

structure-function relationships. Extremophiles 1998, 2, 179-183.

Zeikus, J. G. Thermophilic bacteria: ecology, physiology, and technology.

Enzyme & Microbial Technology 1979, 1, 243-251.

Zhang, B.; Sun, Z.; Jiang, D. D.; Niu, T. G. Isolation and purification of

alkaline keratinase from Bacillus sp. 50-3. African Journal of Biotechnology

2009, 8, 2598-2603.


Recommended