+ All Categories
Home > Documents > 7_Basics_of_Distance_Protection_PPT.pdf

7_Basics_of_Distance_Protection_PPT.pdf

Date post: 05-Nov-2015
Category:
Upload: jonathan-lewis
View: 5 times
Download: 0 times
Share this document with a friend
Popular Tags:
71
Introduction to Distance Protection J. Gosalia
Transcript
  • Introduction to Distance Protection

    J. Gosalia

  • Protection Types

    Differential protection

    Tfr., Bus, Gen. & line diff. protection

    Pilot protection

    Transfer trip schemes

    Under/over reaching pilot protection

    Unit Protection

    Over Current protection

    Time over current or inst. protection

    3 Zones of distance protection

    Non-Unit protection

  • Unit Protection

    Protection

    In Zone fault protection

    No protection for fault outside the zones

  • Non-Unit Protection

    A B DC

    Distance

    Tim

    e

    Zone 1 Protection : line AB

    Zone 2 & 3 : Back up protection for line BC and CD

    Zone 2

    Zone 3

    Zone 1

  • Presentation Topics

    Distance Protection

    Application

    Basic Principle

    Theory of operation

    Design

    5

  • Distance Protection

    Impedance of the line

    Impedance istance

    Voltage & Current transformer inputs

    Current an operating force & Volt. a restraining force

  • Distance Protection: Principle

    Current Voltage

  • Fault condition

    Normal condition 69 Volts and 1 A load current

    Fault condition 20 Volts & 10 A fault current

    A B DC

  • Fault condition

    Quick isolation of the faulted section

    Damage reduction

    Stress reduction

    Continuity of energy

    Fast operation of the distance protection

    A B DC

  • Distance Protection: Basics

    Resistance : R

    Reactance : X Z

    RF

    A B DC

  • R-X Diagram

    11

    Basics of R-X Diagram

    Reach Representation

    Fault Resistance

    Voltage Diagram

  • R-X Diagram : Basics

    12

    R

    XZ

  • R-X Diagram : Relay Reach

    13

    R

    XZR

  • R-X Diagram : Fault Resistance

    14

    R

    XZR

    Rf

  • R-X Diagram : Voltage Diagram

    15

    I*R

    I*XI*ZR

    I*Rf

    I Ref

    Vf

    ZR

    Rf

    R

    X

  • Distance Protection

    IR

    IX IZ

    V

    V-IZ

    Angle = 900

    IX IZ

    ZI

    V

    IZ

    + OutputAngleComparator

    >= 900

  • Distance Protection

    IR

    IX IZ

    V

    V-IZ

    ZI

    V

    IZ

    + OutputAngleComparator

    >= 900

  • Principle

    Angle between the two cords drawn from the diameter

    Of a circle is always 90 degrees.

  • Internal Fault

    IR

    IX IZ

    V

    V-IZ

    Internal fault

    Angle >=900

    ZI

    V

    IZ

    + OutputAngleComparator

    >= 900

  • External Fault

    IR

    IX IZ

    V

    V-IZ

    External fault

    Angle < 900

    ZI

    V

    IZ

    + OutputAngleComparator

    >= 900

  • Distance Protection : Design

    Set line impedance Replica : Relay Reach

    Convert current I in to vector IZR

    Derive voltage of the system : V = Vpol

    Create Vpol IZR : Measure angle with Vpol

    Output if the angle = 900 or > : MHO Char.

    21

  • Distance Protection : Ph-G Fault

    For A-G fault

    IZR is IA*ZR Vpol is VA Vpol IZR is VA IAZR

    Polarizing voltage = Fault voltage

    Self polarized Relay

    B-G fault

    Polarized voltage = Fault voltage = VB

    Earlier designs self polarized

  • Self Polarized Protection

    Problem

    Breaker terminal Fault Fault voltage = 0

    Polarized voltage Vpol = 0

    No Vpol to compare with V-IZ

    No operation

    Solution

    Memory Voltage

  • Memory Polarized Protection

    ZI

    V

    IZ

    +Output

    Angle

    Comparator

    >= 900

    Memory

  • ZI

    V

    IZ

    +Output

    Angle

    Comparator

    >= 900

    Memory

    Memory Polarized Protection

    Memory Voltage Effect on MHO characteristic?

  • Memory Polarization

    A B

    G LZs

    E21

    E

    Load Current

    Pre-Fault voltage = E

  • Memory Polarization

    A B

    G LZs

    E21

    VF

    Fault Current : IF

    Pre-Fault voltage = E

    Fault Voltage E = IFZs + VF

  • Memory Polarization

    IR

    IX IZR

    VF

    V-IZ

    Angle > 900

    IFZs

    Vpol = V pre fault= E

    E = VF + IFZs

  • Mho Ch. : Memory Polarization

    IR

    IX IZR

    VF

    V-IZ

    IZs

    Vpol = V pre fault

  • Memory Polarization Effect

    IR

    IX

    IZR

    VF

    V-IZ

    IZsVpol = V pre fault More fault resistance

    Coverage due to

    memory Polarization

  • Memory Polarization Effect

  • Memory Polarization: Summary

    Reference voltage (Vpol) under all faults

    Char. expands : More Fault coverage

    Memory, Self & Cross polarizations

  • Cross Polarization

    Healthy phase voltage Polarizing volts for a zero voltage Fault

    For A-G fault: Polarizing Voltage is -(VB+VC) Cross polarizing

    Memory Polarization effect

    VA

    VC

    VB

    -(VB+VC)

  • Distance Protection: Architecture

    ZRI

    V

    IZ

    +Output

    Timer = 0.25

    Cycles

    Memory

  • Distance Protection: Architecture

    ZRI

    V

    IZ

    +Output

    Memory

    Phase

    Shift

    - 900

    Phase

    Detector

    V-IZ in phase

    Or lag

    Vpol

  • Distance Protection: Architecture

    ZR

    V-IZ

    Zs

    Vpol

    ZRI

    V

    IZ

    +Output

    Memory

    Phase

    Shift

    - 900

    Phase

    Detector

    V-IZ in phase

    Or lag

    Vpol

  • Distance Protection: Architecture

    ZR

    V-IZ

    Zs

    Vpol

    ZR

    V-IZ

    Zs

    Vpol

    ZRI

    V

    IZ

    +Output

    Memory

    Phase

    Shift

    - 900

    Phase

    Detector

    V-IZ in phase

    Or lag

    Vpol

  • Memory Polarization : Questions

    How protection works for

    3 phase zero voltage faults?

    permanent 3 phase zero voltage faults during

    reclosing?

    Looks like that protection can trip for a reverse faults

    True?

    IR

    IX IZR

    IZs

  • 3 phase zero voltage Fault

    ZR

    V-IZ

    Zs

    Vpol

    Protection memory of 16-20

    Cycles of pre Fault Voltage

  • Permanent 3 ph. zero voltage

    Faults during breaker reclosing

    Breaker is closed with grounding chains on the breaker

    Protection has no voltage in the memory

    Fault voltage = 0

    Protection sees only fault current.

    Switch On To Fault - SOTF feature trips the breaker

    Protection sees the current but no voltage following breaker close

    A B

    G Zs

    21

  • Review Question - 3

    Looks like that protection can trip for a reverse faults. True?

    Characteristic is true only for forward faults for reverse fault protection will not operate

    Zs

    ZR

    V-IZ

    Vpol

  • Memory Polarization : FactsA B

    G

    21

    ZsZL

    Char. diameter : Zs - ZR Reverse Fault : ZS = Zs + ZR Substitute the value for Zs Char. diameter : Zs

    ZR

    V-IZ

    Zs

    Vpol

  • Memory Polarization : FactsA B

    G

    21

    ZsZL

    ZR

    Zs

    Char. diameter : Zs - ZR Reverse Fault : ZS = Zs + ZR Substitute the value for Zs Char. diameter : Zs

  • Memory Polarization : ConclusionA B

    G

    21

    ZsZL

    Memory polarized MHO :

    Very secure & no operation

    for reverse faults

    ZR

    Zs

  • Fault Res.: Memory Vs. Self Polarized

    A B

    G

    21

    ZsZLZs

    RF

    ZR

    Zs

    ZR

    Zs

  • Fault Res.: Strong Vs. Weak Source

    A B

    G

    21

    ZsZLZs

    RF

    ZR

    Zs

    ZR

    ZsStrong SourceWeak Source

  • Fault Res.: Short Vs. Long Line

    G

    21

    ZsZLZs

    RF

    ZR

    Zs

    ZR

    ZsStrong Source/Short line Weak Source/long line

  • Fault Resistance Coverage

    Strong source & short line reduced fault resistance coverage

    Quadrilateral char. Improves fault resistance coverage

    Weak Source & long line increases fault resistance coverage

    Memory polarization : more secure all fault conditions

    Self polarization : limited fault resistance coverage

    Memory polarization increases fault resistance coverage

    Cross polarization : same effect as memory polarization

  • Quadrilateral Characteristics

    Four comparators used for detection of fault conditions

    If all four comparators produces output: protection trips

    Quad characteristic :good fault resistance coverage

    ZR

    ZL

    R

    X

    Dir

    Reach

    Load Blinder

    KR

  • How Directional line works?

    ZR

    ZL

    R

    X

    Dir

    Reach

    Load Blinder

    KR

  • Directional line : Forward Fault

    IR

    IZ = Signal B

    VF

    VF

  • Directional line : Reverse Fault

    IR

    IZ = Signal B

    VF

    VF

  • Reach line : Ext. Fault

    IR

    IZ

    VF

    I*Kr = Signal B

    IX

    If A lags B

    By 00 1800

    VF - IZ = Signal A

  • Reach line : Int. Fault

    IR

    IZ

    VF

    I*Kr = Signal B

    IX

    If A lags B

    By 00 1800

    VF - IZ = Signal A

  • Reach line

    IR

    IZ

    VF

    I*Kr = Signal B

    IX

    If A lags B

    By 00 1800

    VF - IZ = Signal A

  • Quadrilateral Char. : Facts

    Quad char. better : short line and/or strong source

    Good for Ph-G fault : Fault Res. Coverage

    Reactance & Resistance Reach set independently

  • Quad Char. : Reactance Line

    Reactance line : not a straight line parallel to R axis.

    Top line has a tilt of approx 30

    The tilt for security against external fault

    Without tilt : protection can operate for an external fault due to load on the line

    How?

  • Effect of Load : Quad Ch.

    G G

    21

    ZsZLZs

    Vx

  • Impedance Seen at Protection X

    (Ix+Iy)*R

    (Ix)*ZL

    Tilt of the reactance line

    Prevents tripping for the

    External faults

    Ix

    IyIx + Iy

    G G

    21

    ZsZLZs

    Vx

  • Effect of Load : Quad Ch.

    G G

    21

    ZsZLZs

    Vx

  • Impedance Seen at Protection X

    G G

    21

    ZsZLZs

    Vx

  • Quad Characteristics : Ext. Fault

  • Quad Characteristics : Int. Fault

  • Quad Characteristics : Int. Fault

    By polarizing the top line with Ve or Zero sequence current, it will adapt to load Condition

  • MHO Characteristics : Zone 3

    Zone 3 provides the back up protection

    Zone 3 is typically time delayed zone

    Used in blocking scheme to determine fault direction

    Zone 3 is mostly offset characteristic

    It can trip for a reverse fault

    Lens shape used to avoid load encroachment

  • Zones of Protection

    Load profile

    Zone 3 : Offset MHO

  • OFFSET MHOIZ

    -IZ

    V-IZ

    V-IZ

    Z = Forward Reach

    Z = Reverse Reach

  • OFFSET MHOIZ

    -IZ

    Load profile

    Two Comparators are phase shifted by

    same angle in opposite direction

  • OFFSET MHOIZ

    -IZ

    Load profile

    Major axis to minor axis ratio is equal to tan (180 - )/2Each comparator is shifted by an angle

  • MHO or Quad : Pros and Cons

    Simple and directional

    Less sensitive to power swings Reach does not extend

    as far along R-Axis

    Limited fault resistance coverage for short lines

    Good fault resistance coverage as char. can be set along R- Axis Good for short line and

    strong source

    Sensitive to power swing Characteristic extends on

    R-Axis