+ All Categories
Home > Documents > 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS...

8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS...

Date post: 14-Mar-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
222
8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS INSTITUTE OF TECHNOLOGY Hour Exam I for Course 18.06: Linear Algebra Recitation Instructor: Recitation Time: Your Name: SOLUTIONS Lecturer: Grading 1. 40 2. 16 3. 16 4. 28 TOTAL: 100 Do all your work on these pages. No calculators or notes. Please work carefully, and check your intermediate results whenever possible. Point values (total of 100) are marked on the left margin.
Transcript
Page 1: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

8 October 1997 Profs. S. Lee and A. Kirillov

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Hour Exam I for Course 18.06: Linear Algebra

Recitation Instructor:

Recitation Time:

Your Name: SOLUTIONS

Lecturer:

Grading

1. 40

2. 16

3. 16

4. 28

TOTAL: 100

Do all your work on these pages.No calculators or notes.Please work carefully, and check your intermediate results whenever possible.Point values (total of 100) are marked on the left margin.

Page 2: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1. Let A =

1 2 3

2 4 7

3 6 10

3 6 10

.

1a. Give an LU-factorization of A.[16]

L =

1 0 0 0

2 1 0 0

3 1 1 0

3 1 0 1

; U =

1 2 3

0 0 1

0 0 0

0 0 0

.

A =

1 2 3

2 4 7

3 6 10

3 6 10

1 2 3

0 0 1

0 0 1

0 0 1

1 2 3

0 0 1

0 0 0

0 0 0

= U.

l21: row 2 −(2)× row 1

l31: row 3 −(3)× row 1

l41: row 4 −(3)× row 1

l32: row 3 −(1)× row 2

l42: row 4 −(1)× row 2

L =

1 0 0 0

2 1 0 0

3 1 1 0

3 1 0 1

.

Page 3: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1b. Give a basis for the column space of A.[8]

Pivot columns in A (column 1, column 3):

1

2

3

3

,

3

7

10

10

1c. Give a basis for the nullspace of A.[8]

Special solution(s) to Ux =

0

0

0

0

:

−2

1

0

.

Page 4: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1d. Give the complete solution to Ax =

3

4

7

7

. Recall that A =

1 2 3

2 4 7

3 6 10

3 6 10

.[8]

xcomplete =

9

0

−2

+ x2

−2

1

0

.

1 2 3 | 3

2 4 7 | 4

3 6 10 | 7

3 6 10 | 7

︸ ︷︷ ︸

Ax=b

1 2 3 | 3

0 0 1 | −2

0 0 1 | −2

0 0 1 | −2

1 2 3 | 3

0 0 1 | −2

0 0 0 | 0

0 0 0 | 0

1 2 0 | 9

0 0 1 | −2

0 0 0 | 0

0 0 0 | 0

︸ ︷︷ ︸

Rx=d

.

The pivot variables are x1 and x3; the free variable is x2.

x1

1

0

0

0

+ x3

0

1

0

0

=

9

−2

0

0

︸ ︷︷ ︸

d

gives xparticular =

9

0

−2

.

The complete solution is the particular solution plus all linear combinations

of the special solution(s).

Page 5: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2a. If possible, give a matrix A which has

1

2

1

as a basis for the column space,[8]

and

0

3

2

−1

as a basis for its row space. If not possible, give your reason.

A =

0 3 2 −1

0 6 4 −2

0 3 2 −1

, or any nonzero multiple of it.

A =

1

2

1

[

0 3 2 −1

]=

0 3 2 −1

0 6 4 −2

0 3 2 −1

.

2b. Are the vectors

0

1

1

,

1

1

1

and

1

3

2

a basis for the vector space R3?[8]

(More than ’yes’ or ’no’ is needed for full credit.)Show your work, then briefly explain your answer.

YES.0 1 1

1 1 3

1 1 2

︸ ︷︷ ︸

A

1 1 3

0 1 1

1 1 2

1 1 3

0 1 1

0 0 -1

︸ ︷︷ ︸r=3 pivot columns

.

The pivot columns in A are a basis for the column space of A.The column space of A is a r = 3-dimensional subspace of R3

(i.e., all of R3).

Page 6: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3. Given that

1 2 3

2 5 3

1 0 8

A =

0 1 0

0 0 1

1 0 0

︸ ︷︷ ︸

P

, find A−1.[16]

A−1 =

1 0 8

1 2 3

2 5 3

.

Premultiply both sides of the original equation by P−1 = P T.0 0 1

1 0 0

0 1 0

1 2 3

2 5 3

1 0 8

︸ ︷︷ ︸

A−1

A = I.

Page 7: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

4. Suppose x =

0

−1

0

is the only solution to Ax =

1

3

5

7

9

.

4a. Fill in each (blank) with a number.[12]The columns of A span a (blank) -dimensional subspace of the vector space R(blank).

The columns of A span a 3-dimensional subspace of the vector space R5.

A

0

−1

0

=

1

3

5

7

9

shows that A is a m = 5 by n = 3 matrix.

The nullspace of A has dimension (n− r)︸ ︷︷ ︸= 0 since x =

0

−1

0

is unique.

A has rank r = n = 3.The column space is a subspace of dimension r = 3 in R5.

4b. After applying elementary row operations to A, the reduced row echelon form will[16]be R = (give the matrix) .

R =

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

.

Each pivot column in the reduced row echelon form R has 1 as a pivot, with

zeros below and above it. From 4a, recall that R has r = 3 pivot columns.

Page 8: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

����� Professor Strang Quiz � February ��� ���

�� ���� � times � points A is a � by � matrix and b is a column vector in R�

A �

�������

� � � �

� � �

� � � �

�������

b �

�������

�������

�a Reduce Ax � b to echelon form Ux � c and �nd one solution xp �if a solution

exists�

�b Find all solutions to this system Ax � b �if solutions exist� Describe this set of

solutions geometrically� Is it a subspace�

�c What is the column space of this matrix A� Change the entry � in the lower

right corner to a di�erent number that gives a smaller column space for the new

matrix �call it M� The new entry is �

�d Give a right side b so that your new Mx � b has a solution and a right side b so

that Mx � b has no solution�

�� ���� � times � points Suppose A is a square invertible n by n matrix�

�a What is its column space and what is its nullspace�

�b Suppose A can be factored into A � LU

A �

�������

� � �

� � �

� � �

�������

�������

u�� u�� u��

� u�� u��

� � u��

��������

Describe the �rst elimination step in reducing A to U � How do you know that U

is also invertible�

�c Find a speci�c � by � invertible matrix A that can not be factored into this LU

form� What factorization is still possible for your example� �You don�t have to

�nd the factors� How do you know your A is invertible�

Page 9: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�� A is an m by n matrix of rank r� Suppose Ax � b has no solution for some right sides

b and in�nitely many solutions for some other right sides b�

�a �� Decide whether the nullspace of A contains only the zero vector and why�

�b �� points Decide whether the column space of A is all of Rm and why�

�c ��� For this A� �nd all true relations between the numbers r� m� and n�

�d �� points Can there be a right side b for which Ax � b has exactly one solution�

Why or why not�

Page 10: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ���������������������� �"! #%$�&(')� *%+-,���./��0��12�43535�6 �7$89!8�"� �:&(� �;�����<���:+�&( +����0=7��$8> ��+�&?,���,@&���!BACED FHG GJIKCELMC N�O�PKPRQTS8UVPKWJX�Y[Z \(PKWJX�Y[Z^]`_aOJbKc GJIdLeLef L�Ihg�ikjefGkD FHG GJIKCELeG lnmMQ"opQ�q ZrmMQ�stQ�qu]`_aOJbKc GJIvfkwkx L�Izy{CTjeGLeD F|L GJIKCELMC N�O�PKPRQTS8UVPKWJX�Y[Z \(PKWJX�Y[Z^]`_aOJbKc GJIdLeLef L�Ihg�ikjefy}D ~4CTj GJIKCELMC �rQTPR�eq�m8F�WePRWeqtOkS}m ��Q���Q�]`_aOJbKc GJIzy}iMC L�Izy}jkiMCfkD ~4CTj GJIKCELeG �4Ok�MPRqtQ�ststQ<�rbRWJZ ��bRWJZ^]`_aOJbRc GJIvGkLef L�Izy}ikw�yxeD ~4CkC GJIKCELMC �rQTPR�eq�m8F�WePRWeqtOkS}m ��Q���Q�]`_aOJbKc GJIzy}iMC L�Izy}jkiMCg�D ~4CkC GJIKCELeG �4Ok�MPRqtQ�ststQ<�rbRWJZ ��bRWJZ^]`_aOJbRc GJIvGkLef L�Izy}ikw�yweD ~4CEG GJIKCELeG ��S^YMO�N�QT�kQTPKO�bRm O�S{YMO}]`_aOJbKc GJIvGeG�i L�IKC�f�wkiieD ~4CEG GJIKCELMC �VY[X-OkPKY���Wks�YM��bRQ�qtS Q��eWks�Y{]`_aOJbKc GJIdjeieG L�Idx}GkG�wCTj}D ~4C GJIKCELMC ��S^YMO�N�QT�kQTPKO�bRm O�S{YMO}]`_aOJbKc GJIvGeG�i L�IKC�f�wkiCkC�D ~�G GJIKCELeG lnmMQ"opQ�q ZrmMQ�stQ�qu]`_aOJbKc GJIvfkwkx L�Izy{CTjeG���a�R���H���T�J��� q�S^Y�bKcMQ<PKWJX�PRQEY[m^\�QTY�QT\�cMQTs�WeS��uWePR_a����W��@O�sts�bRcMQ<_aO�bRPKqt\�QT�-�{QTs�WJX<��h� ��� ~¡cMQ<L�¢�ya_aO�bRPKq¤£�Wk��Oks�s�WeSMQT�T¥

�v¦-��� �§�kQTSMQ�P�O�s©¨ª¢�«¬_�O�bRPKq¤£�W�� O�sts�WkSMQE��¥

�h­^��� ~¡cMQ<L�¢�ya_�O�bRPKq¤£�X�q¤bKc8®r¯±°�²�³©´¬µ<¶·Ck¥

�h¸V���H¹ ²º»»»¼j½j½jj½j½LG¾y x

¿�ÀÀÀÁ ¥

Page 11: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�hÂ��Ã�|¹ ²

º»»»»»»»»»»»»»»»»»»»»»»»»¼

CÄj CÄj CÄj CÄj CÄjj CÅj CÆj CÆj CÆj CCÄj CÄj CÄj CÄj CÄjj CÅj CÆj CÆj CÆj CCÄj CÄj CÄj CÄj CÄjj CÅj CÆj CÆj CÆj CCÄj CÄj CÄj CÄj CÄjj CÅj CÆj CÆj CÆj CCÄj CÄj CÄj CÄj CÄjj CÅj CÆj CÆj CÆj C

¿�ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÁ

¥

Ç �a�KÇ^Ȭ���T�J� �rÉkQ�bK\�c�bRcMQ<qt_aO��kQ4Wk�pbRc^Q"�RÊ}m^OkPRQ`Ë^�km^PRQ�bRW�bKcMQ<stQ(�Ãb���Q�stWJXÌOJ�ÃbKQ�P�OkÍMÍMstZrq�SM�7bKcMQ<_aO�Í ¹ ² º¼ CÎC¶<CÆL¿Á ¥

lnWkm�_�O�Z�m^��Q4bKcMQ�Ï��ePKOkÍMc�Í^OkÍ{QTPKÐ�bKWaq¤b��¡PRqt�kc}bT¥nÑÒs�QEOk�RQ`s�O���Q�s©bKcMQ"OJ£[QE��\(stQTO�PKstZk¥

0 1

1

0

.5

.5

Page 12: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�p�a�R�{Ȭ���T�J� ÑnstQTOk�RQ��MPRqtQ(Ó{Z��Mm[b�\�s�QEO�PKs�Z�Q�£[ÍMstOkq�S�ZkWemMP�O�S^�RX-Q�P���¥�h� ��� ��PKQ�bRcMQ"�RQ(b�Wk��qtS}ÔeQ�PRbRqt�MstQ<G7¢�G�_aOJbRPKq�\(QT�¡qtS|ÕÖO��RmM�^�RÍ^Ok\�QE×

�v¦-��� ��PKQ4bRc^Q"��Q�b¡Wk�@�RqtSM�kmMs�O�P�G7¢�G�_�O�bRPKqt\�QT�¡qtS|ÕÖO���m^�^��Í{Ok\(Q�×

�h­^��� UVWkS{��q�Y[Q�P-bKcMQ<_aOJbRPKq�\(QT�¡qtS|ÕØX�cMW}��Q4SrmMstst�RÍ^Oe\(Q<\(WeSeb�O�qtS^� º¼ CC¿Á ¥

Ù �-bRcMq���O���m^�^��Í{Ok\(Q�×

Ú��a�(�[�H���T�J�¬� qtS^Y8ÛÜO�S^Y�ÝÞ�uWkP¡bKcMQ<SMWkS{��Zr_�_�Q(bRPKq�\`_aO�bRPKq¤£ ¹ ²º»»»»»»¼

® ß¾ßÎß® àÄá½á® àãâ ä® àãâÄå

¿ ÀÀÀÀÀÀÁ¥�æç���K��m^_7Q4SMWkbRcMqtSM�aq���Ok\T\(q�Y[Q�S}bKOks�stZ

è Q�PKW^¥éD

Page 13: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� ���� �������������������� �! �"$#&% '(�)�*�+,�.-/%10�0��24365.7!8.9�:&;=<?>1@A4BC;D9E>�;=FD<?7GFDBC;IH63�5.7J7G;DFD<$K�9)K�<C3�8L@MON PRQ QTSUMOVWQ P4XZY\[^]�_a`�b QOSCcedWd VfShg�MWMOi jlke`�_amonqp.jrntsvuQeN PwV QTSUMOVxM yzX�{�kW|vkW`�kT] QOSCQWQtg VfS$VqQe}W} ]WkW|~kW`�kO]�p.jrntsvuVWN ��MOi QTSUMOVWQ yzXZ����[o�ajlne` QOS?VWdWi VfS?�W�W�ei [o��[^�ajlne`Zp.jlnts�ugqN ��MTQ QTSUMOVWQ yzXZ����[o�ajlne` QOS?VWdWi VfS?�W�W�ei [o��[^�ajlne`Zp.jlnts�uceN ��MTQ QTSUMOVxM �)XZ���GnebvkT�~[^]�_am QOSUMOi�M VfShgWg��ei �okW|vne`Zp.jlnts�u�WN ��M QTSUMOVxM �)XZ���GnebvkT�~[^]�_am QOSUMOi�M VfShg��W�ei �okW|vne`Zp.jlnts�u�eN �\Q QTSUMOVWQ ��X�Pwn QOS?VWVWV VfS?�edqQe� �qne`q���Gne`Gp�jlntsvu�G� �x������kWbv[�svu�[�mokWj����a[�s�[�b~kW�a��sv_akW`�svk�svu�[�[o���Gntsv_akW`

�\�������Qg Q�����  _¡b �¢�

�����Qii����� ¤£¦¥

�����MMi����� ¤£¦§

�����ii M����� =¨

©�ª�«r©~¬�« ­ u�nts\_ab®s�u�[¯��_aj�[o`�b~_akW`¢ke°±s�u�[¯|~kO²³bv��nemo[¯ke° ��´© ��µ «r©~¶E« ­ u�nts\_ab®s�u�[¯jlntsv|v_¸· ��´©vª¹«�©vºx« » [^bvm^|v_a¼�[L[�·�nem�s��¸�½ne�¡�±svu�[�]W[^m^s�ke|vb¯¾¯°¿kW|�²Àu�_amUu ���4� ¾¯mÁne`¼�[�bvkW�¸]W[^�1XÄà » ke`1ÅÆs�~��b~s\b�nÁ�¢s�u�nts\¾�j���bCs\¼�[�_a`¢svu�[�mokW�¡��jl`¢b~�Gnem^[eXÇN

È¢ÉÂÊ�ËÍÌ.Î(Ï�Ì�Ð®Ñ¯Ë È¢ÉwÒÓÑ�ÉÕÔzÖ×Ì&É×Ì.ØÄÔÚÙ®È�Û¢Ì

Page 14: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

µ1� �x������kWbv[�svu�[�jrntsv|v_Ü· � _ab®svu�_abÝ��|vk�����m^s�Þ�ßàÿ`�kes\á¦sv_aj�[ob�âzãÇN�ä�å� Þ�ß �

�����Q i iV g iQ i M

� ��� �����Q Q g gi i i iQ Q � �

� ��� 

© � ª�«r©~¬�« æ _a`��ļGneb~[obÀ°¿kW|®s�u�[¯|~kO²³bv��nemo[zne`��¢s�u�[¯m^kW�a��jl`Äbv��nemo[�ke° � X©�ç�«r©~¶E« æ _a`��nL¼Gneb~_abÝ°¿kW|®s�u�[¯b~�Gnem^[zke°)ne�¡�¹bvke�a��sv_akW`�b®svk ���Ä� i�X©v繫�©vºx« y��a�Ds�u�[^bv[ène`�b~²�[o|vb�²À_¡�a�D¼�[/��_¡é�[o|~[o`qs�_¡°E�ekW�½moke|v|v[^m^sv�¡�×mUuGne`�êW[Lke`�[�[o`qsv|~�R_¡`ws�u�[ë |vb~sÀ°ìnem�s�kW|\ÞrXE�±[o�¡�íjl[.svu�[�`�[^²åjrnfs�|v_Ü·¢ÞlX

Q

Page 15: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

î1� © ��µ «�©~¬�« æ _¡`��ïs�u�[¢|vkO²®S$|~[o����m^[o��[omUu�[o�ake`�°¿ke|vjñðòke° � ne`���ne�¡bvkwsvu�[�_¡`�]e[o|~bv[¢jlnts�|~_¸·óLôGõ svuGnts\��|~kx����mo[ob �ö� óLôGõ ð�X�÷�

�����M i V VQ i � �M M V V

� ���  ¨ æ _a`��ðøne`�� ó ôGõ X

©�ù�«r©~¶E« ��[o�Gne|vnts�[ls�uGnts/j����¸s�_a���a_amonts�_¡kW` óèôGõ ðà_¡`qs�kwm^kW�a��jl`�bzke° óèôGõ s�_aj�[obz|vkO²Àb�ke°\ð�X�Ýu�_ab\ne�a�¡kO²Àb®�WkW�Äs�kè²À|v_¸s�[ � neb®s�u�[zb~��júke°�ûýü6þ�ÿ��������vþ������eûìÿ� �������X ­ uGnts�ne|~[svu�kWb~[¯s$²�kljlntsv|v_am^[ob ´

V

Page 16: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�D� © � ª�«�©~¬�« �x������kWb~[ � _abÝnt`��ͼq���½jrntsv|v_Ü·rkt°D|�ne`����xX » [^bvm^|v_a¼�[.[ ·�ntm^s��¸�rsvu�[.jlnts�|~_¸·��ÿ_¡svb�b~uGne��[/ne`��½ne�a�¹_¡s�b\[o`qsv|v_a[^bUN®s�uGnfs�m^kWjl[^b\°¿|~kWjús�|vne`�b~��kWb~_a`�ê�s�u�[¯|vkO² [^mUu�[o�¡kW`°¿ke|vjúke°)ð��)Ãì��|~_aj�[.j�[Áne`�bÝsv|�ne`�b~��kebv[ON ä� � |v|~[^°ÁÃì|v|~[^°Áà � N � N � ¨©� Z«r©~¶E« ! kejl�Gnt|v[��&_a`#"E|~kW¼��a[^j(gqnײÀ_¡svu4svu�[�jlnts�|~_¸·$�%� s�uGnts/mokWj�[ob¯°¿|vkWj(bCsUne|Cs�_a`�ê²À_¸s�uÄs�u�[�sv|�ne`�b~��kebv[�ke° � Ãìne`��Ä`�kesÀsv|�ne`�b~��kebv_a`�êlnfsÝs�u�[�[o`��ZN�ä�%� � |~|v[�°Oÿ|v|v[�°Oà �&� N � N ¨�)·x���ane_a`Ä_a`ÄkW`�[¯b~[o`qs�[^`�mo[¯²Àuq�'�%�³_abÝkW|Ý_¡b\`�kesÀ[o���Gne�1svk��¯X

g

Page 17: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ����������������������� �! �"$#&%'�(��)* ���"*����� +,�� -/.0�213%54�4��687:9<; =?>�@BADC�E/FGFIH*JK;MLNA�@K;MH2O�PRQ?ASCKH$PGTMC?U�7�>�@/AWVXANYZTMVXA3[�\^]`_aUb;cCKO�]`_d6879feg=?>�@BAihjVkH*lbL�T8FGEBQ?CmTcYonpLNT8QqArH2YZVXT8Qts�C/Tru(PRC/vwlX@/AxJK;rVXlyP�LNE/FI;cVzH*T8FRE/lXPRT8C57^>�@BA{TMlX@/AWVL�T8FGEBQ?CKH�L�T8Q?A2YZVyT8Q|s�C/Tru(PGCBv}lX@/A~l$u�TqH*JKArLNPI;cF�H*T8FRE/lXPRT8CKH(PGCxly@/A~C�E/FRF�H$JK;8LNA��

n�_ �� 6 \36 �U \�U �6 \36 �����

9<Lr=?>�@BAD� ArLNlyT8V��2Q�EjH*l�eKA3;}Q�E/FRlXPRJ/FGA(TrYm�� U� U�� 7

U�7:9<; ={��C/A~eK;MH*PIH�YZTMV(lX@/A~VXTru'H$JK;8L�A`PIH���� UU��

������� ���� UU������� �

9feg={��C/A~eK;MH*PIH�YZTMV(lX@/A3LNTMFGE/Q?CiH*JK;MLNA?9�H*PGCjLNA~LNTMFGE/Q?CjH263;cCKOx[}@K;S� A`JBPG� T8l�H�=�P�H� �� U�U

�� _ �� � �� �� ;rCKO � �� � �� �� _ ��'�6WU6������

9<Lr=?��FGF5;rCKH*u�ASVkH�;cVyA3O�P��gASVyASC�l~9ZeKArLS;cEjH*A~lX@/A~V�;cC/s?PIH2O�P��gASVXAWC�l�=�u(@/ASC��k�$� _¡���� _ �� U � �[ � �U � �

��[�7:9<; =?>�@BADVXTru�¢�VXArO�EKLNArO�YZT8VyQ|P�H £ _ �� 6 � [ [� 6 � �� � � �

�� �>�@BP�H YZTMVXQpu(;MH2VXAr;ML�@BArO{e�¤�;¥J/VyT�O�EKLNl�TcY�ASFGAWQ?ASC�lk;cVy¤�Qi;clXVyP�LNA¦HN§�PRCKLNFREKO�PGCBvb;�JKASVXQbE�¢l�;clyPGT8C��

¨ _ �� 6 � �� � 6� 6 ��� �� 6 � �� 6 �\D6 � 6

�� �� 6 � �\�U 6 �� � 6�� _ �� 6 � �\D6 � 6\�U 6 �

�� �>�@BADQx;rlXVXPR© ¨Dª/« lX@j;cl�VXArLNTr� ASV�H�n�YZVXTMQ £ PIH

¨ ª/« _ �� 6 � �U 6 �� � 6�� �� 6 � �� 6 �6 � 6

�� �� 6 � �� � 6� 6 ��� _ �� 6 � �U � 66 6 �

��¬�

Page 18: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

9feg=?>�@BAwlX@/PRVkO�VXTru:TcY £ PIH�­SASVyT/®°¯ T^lX@/A�l$u�T±LNT8FRE/Q?C�¢�VXTru|QbE/FRlXPGJBFGPRLS;clyPGTMCKH};cVyA²YZVXT8QL�T8FGEBQ?CKH263;cCjO²UDTcY ¨Dª/« ;cCKOxVXTru�H~6D;rCKOxU¥TrY £ ��� 6U 6

��¡³ 6 � [ [²´�µ¶�� �� 6��a³ � 6 � �·´�_ �� 6 � [ [U � � �6 � [ [

�� µ¶�� � � � �� � � �� 6 � ��� _¡n �

�/7:9<; =?>�@BADQx;rlXVXPR©?¸¹PIH(º»e�¤x¼½7��2FGF5PRlkH�ASC�lXVyPGArH�;cVyAD­SASVyT}AS©BLNASJ/l�YZT8V�]DT8C/ArH�;cl(ly@/A}H$lk;rVXl�TcYly@/A~Qx;cPRCxO�PI;cv8TMCK;cF�7�¾fY¿n¹P�H([}e�¤b��TrY�V�;cC/s�]`_¡U�§/lX@BASC¸�_ �� 6 � � �� 6 � �� � � �

��'�9feg=?>�@BA`Qi;clXVyPG©x¸�¸aP�H�lX@/A3HX;rQ?A~;MHo¸~§/eKArLW;cEKH$ADnd;cCKO�n2À�;cFGu�;S¤/H�@K;S� A�ly@/A3HX;rQ?A�Vk;rC/sg7

U

Page 19: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor Strang Quiz 1 March 10, 1999

Your name is:

Please circle your recitation:

1) Mon 2{3 2-131 S. Kleiman 5) Tues 12{1 2-131 S. Kleiman

2) Mon 3{4 2-131 S. Hollander 6) Tues 1{2 2-131 S. Kleiman

3) Tues 11{12 2-132 S. Howson 7) Tues 2{3 2-132 S. Howson

4) Tues 12{1 2-132 S. Howson

Grading 1

234

1 (32 pts.) The 3 by 3 matrix A is

A =

26664

c c 1

c c 2

3 6 9

37775 :

(a) Which values of c lead to each of these possibilities?

1. A = LU : three pivots without row exchanges

2. PA = LU : three pivots after row exchanges

3. A is singular: less than three pivots. (Continued)

Page 20: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(b) For each c, what is the rank of A?

(c) For each c, describe exactly the nullspace of A.

(d) For each c, give a basis for the column space of A.

2

Page 21: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (21 pts.) A is m by n. Suppose Ax = b has at least one solution for every b.

(a) The rank of A is .

(b) Describe all vectors in the nullspace of AT .

(c) The equation ATy = c has (0 or 1)(1 or 1)(0 or 1)(1) solution for

every c.

3

Page 22: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (16 pts.) Suppose u; v; w are a basis for a subspace of R4, and these are the columns

of a matrix A.

(a) How do you know that ATy = 0 has a solution y 6= 0?

(b) How do you know that Ax = 0 has only the solution x = 0?

4

Page 23: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

4 (31 pts.) (a) To �nd the �rst column of A�1 (3 by 3), what system Ax = b would

you solve?

(b) Find the �rst column of A�1 (if it exists) for

A =

26664

a 3 2

1 3 0

1 b 0

37775 :

(c) For each a and b, �nd the rank of this matrix A and say why.

(d) For each a and b, �nd a basis for the column space of A.

5

Page 24: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor Strang Quiz 1 Solutions March 10, 1999

1 (a) 1. (no c)

2. (all c 6= 0)

3. c = 0

(b) rank 3 c 6= 0

rank 2 c = 0

(c) N(A) = f0g if c 6= 0

N(A) = all multiples of

24�210

35 if c = 0.

(d) c 6= 0 Give any basis for R3

c = 0 one basis is

24

003

35 ;24

129

35

2 (a) m

(b) Only the zero vector.

(c) (0 or 1) solutions.

3 The matrix A is 4 by 3. AT is 3 by 4.

(a) Every system ATy = 0 with more unknowns than equations has a nonzero solu-

tion. (By the way, y will be a vector perpendicular to the 3-dimensional hyper-

plane.)

(b) A has independent columns, since u; v; w form a basis.

4 (a) Solve Ax =

24

100

35 for the �rst column of A�1.

(b)

24 a 3 2

1 3 01 b 0

3524 x

35 =

24 1

00

35 gives x =

24 0

01=2

35 by inspection.

(c) If b = 3 then rank(A) = 2 (Two equal rows, regardless of a)

If b 6= 3 then rank(A) = 3 (Three independent rows, regardless of a)

(d) If b = 3 then one basis is

24

333

35 ;24

200

35

If b 6= 3 then choose any basis for R3.

Page 25: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Quiz 1 October 8, 1999 Closed Book

Your name is:

Please circle your recitation:

1) M 2 2-131 W. Fong 2) M 2 2-132 L. Nave

3) M 3 2-131 W. Fong 4) T 10 2-131 H. Matzinger

5) T 10 2-132 P. Cli�ord 6) T 11 2-131 H. Matzinger

7) T 11 2-132 P. Cli�ord 8) T 12 2-132 M. Skandera

9) T 12 2-131 V. Kac 10) T 1 2-131 H. Matzinger

11) T 2 2-132 M. Skandera

Grading 1234

1 (25 pts.) Suppose that row operations (elimination) reduce the matrices A and B to

the same row echelon form

R =

26664

1 2 0 7

0 0 1 5

0 0 0 0

37775 :

(a) Which of the four subspaces are sure to be the same for A and B? (

C(A) = C(B)? N(A) = N(B)? C(AT ) = C(BT )? N(AT ) = N(BT )?)

(b) Each time the subspaces in part (a) are the same for A and B, �nd a

basis for that subspace.

(c) True or False (A is any matrix and x; y are two vectors): If Ax and

Ay are linearly independent then x and y are linearly independent.

Page 26: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (25 pts.) Suppose

A =

26664

1 0 0

1 1 0

7 �1 2

37775

26664

1 0 1 4 5

0 1 2 2 1

0 0 0 1 1

37775

(a) Find a basis for the nullspace of A.

(b) Find a basis for the column space of A.

(c) Give the complete solution to

Ax =

26664

3

3

21

37775 :

2

Page 27: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (25 pts.) Suppose A is a 3 x 5 matrix and the solutions to ATy = 0 are spanned by

the vectors

y =

26664

1

1

0

37775 ;

26664

1

0

1

37775 ;

26664

0

1

�1

37775 :

(a) What is the rank of this A?

(b) For all A, why does the rank of A equal the rank of the block matrix

B =

24 A A

A A

35 ?

(c) If the rank of a matrix A equals the number of rows (r = m), what do

we know about the equation Ax = b?

3

Page 28: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

4 (25 pts.) Suppose A is a 4 by 3 matrix, and the complete solution to

Ax =

26666664

1

4

1

1

37777775

is x =

26664

0

1

1

37775+ c1

26664

0

2

1

37775 :

(a) What is the third column of A?

(b) What is the second column of A?

(c) Give all known information about the �rst column of A.

4

Page 29: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor Strang Quiz 1 Solutions October 8, 1999

1 (a) N(A) = N(B) and C(AT ) = C(BT )

(b)

2664

1

2

0

7

3775 ;

2664

0

0

1

5

3775 for the row space;

2664�2

1

0

0

3775 ;

2664�7

0

�5

1

3775 for the nullspace.

(c) True

Reason: Whenever a combination cx+ dy = 0, multiply by A to see that c(Ax)+

d(Ay) = 0.

2 (a)

266664

�1

�2

1

0

0

377775;

266664

�1

1

0

�1

1

377775(The �rst matrix is invertible so it has no e�ect on the nullspace)

(b) The pivot columns are 1; 2; 4 (and the �rst matrix has an e�ect!)

24

1

1

7

35 ;24

0

1

�1

35 ;24

4

6

28

35.

(c) x = xp + xn =

266664

3

0

0

0

0

377775+ c1

266664

�1

�2

1

0

0

377775+ c2

266664

�1

1

0

�1

1

377775

.

3 (a) Those vectors y are dependent, they span a space N(AT ) that has dimension 2.

So m� r = 2 and m = 3 and r = 1.

(b) The second block of rows copies the �rst so no increase in the rank. Same for the

second block of columns. So those extra blocks leave the rank unchanged.

(c) If r = m then Ax = b has a solution (one or more) for every right side b.

4 (a){(b) The particular solution says that column2 + column3 = right side b. The

nullspace solution says that 2(column2) + column3 = 0.

Therefore column2 = �b and column3 = 2b.

(c) Since the nullspace is one-dimensional, the 3 by 4 matrix A has rank 2. Therefore

we know that the �rst column of A is not a multiple of b.

Page 30: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ������� � ������� ����� ���� "!#� $&%'����()��+*-,.*/�����

02143.5&687/9;:=<?>�@

ACB?:D7�>E:=FG<H5'FGBH:JI�143.5K5L:MFG<ONP7QNL<?146R@

SUT VXW WUYZS\[�S ]-^`_ba WcYZS\dPS [UYO[fefehg ikjclLmonkpfihlWhT VXW WUYZS\[fW q�rLatsvuxwyszr WcYO[f[f[ [UY?{|dhW`e }h~fn��oiE�'�c~Lmonkpfihl[�T V�[ WUYZS\[�S ]-^`_ba WcYZS\dPS [UYO[fefehg ikjclLmonkpfihl� T ��S�� WUYZS\[fW ��wx��sv_�� WcYO[f[f[ [UY?{|dhW`e �Epf� }'���hp�monkpfi�lghT ��S�� WUYZS\[�S �4��� � WcYO[ � W [UY?{`gh{|d �|�h�E��monkp`i�le�T ��S`S WUYZS\[�S ���|r��\w WcYHWfW`� [UYZScg`df� �Lp|~L�h��mon'pfi�l{fT ��S`S WUYZS\[fW ��wx��sv_�� WcYO[f[f[ [UY?{|dhW`e �Epf� }'���hp�monkpfi�ld�T ��S\W WUYZS\[fW �4��� � WcYO[ � W [UY?{`gh{|d �|�h�E��monkp`i�l��T ��S\W WUYZS\[�S ���|r��\w WcYHWfW`� [UYZScg`df� �Lp|~L�h��mon'pfi�lS\��T ��S WUYZS\[fW �"�P�f��wxa��|� WcYO[�{`W [UY � [ �f� �U�E���h�`nkp|�LmonkpfihlSfSUT ��S WUYZS\[�S �.�\ f� WcYHWfg�S [UY � �f��{ �Lp`¡P� monkp`i�lScWhT �-W WUYZS\[fW �"�P�f��wxa��|� WcYO[�{`W [UY � [ �f� �U�E���h�`nkp|�LmonkpfihlS\[�T �-W S¢YZScg|� �.�\ f� WcYHWfg�S [UY � �f��{ �Lp`¡P� monkp`i�l

Page 31: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

£ ¤x¥k¦C§D¨c©|ª�« ¬ rP­�­k^h®y�¯ux°��)a±�|uywxs³²µ´¶°'�`®�wx�\��rL·¸�\�¹wy^oº��\·Z°P��_z^f�µ»�^fwxa½¼R¾´�¿

ÀÁÁÁÂS W S ÃW Ä S dÅ wy^oº [hT

ƳÇÇÇÈXÉ ¼¶¿

ÀÁÁÁÂS W � [� � S W� � � �

ƳÇÇÇÈ

Å �hTËÊ&°'�ou-·\�|�¹�f^`r�®Ì�c��sbatat�\��sb�|uy�\_v�Í�|Îk^`rPu�wy^oº¶[R^f»�´ÐÏÅ ÎÑTËÊ&°'�ou��|wy�¯uy°P��� rLaÒÎk��wÌ®�ÄÍ�o�L��Ã�ÏÅ ·UT�q��\®Ì·¸wyszÎk�¹Ó`Ô�Ô�Õ�Ö`ÔØ×PÙÛÚ"ÖoÜLÕÝ^f»Þ¼Ðß�¿à��á8�Þszwx·�_v�Òuy°P�R®y­'�`·¸�\®-ux°'�|u8�owx�Òuy°P�R®Ì�`aË�

»�^fw-´à�`®�»�^fw�¼R¾ Å wx^oºâ®y­'�|·��oT Å ·¸^f_vrLat�µ®y­'�`·¸�oT Å ��rP_z_G®y­'�`·¸�oT�á

W

Page 32: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

ã ¤x¥k¦C§D¨c©|ª�« Å ��T±äMsv�L�¹uy°P��� rLaÒÎk��w-å�ux°'�ou-a±�|æf�\®�ux°Psz®�a��ouxwxs³²ç®ysv�P�frP_b�|w Å �P^fuèsz�� f��wxuxsvÎP_v�oT�¾´â¿

ÀÁÁÁÂS W [S g eW e å

ƳÇÇÇÈ

Å ÎÑT��"»�åË¿éW|�çº�°'�ou)�|wy�tuy°P�t·¸^f_zrPat�C®y­'�`·¸��ê Å ´ÐT8�|�L�ëux°��t��rP_z_z®y­'�`·¸�Íì Å ´8TxÏq��\®Ì·¸wyszÎk�Rux°��caísv�ëux°�sb®8®y­k�\·�svîL·ï·\�`®y� Å �P^`u4ð?rL®yu8wx��­k�c�|u.uy°P��szwÐ�E�\î��Pszuysz^`�L®�T�á�-_b®y^±���\®x·¸wxsvÎk�Rê Å ´ÐñLòxT��|�P�óì Å ´�ñLòxT4»�^`wèux°P��sv�  f��wÌ®y�¯a±�|uywxs³²�ô

Å ·UTËÊ&svux°õåÒ¿öW|�Í»÷�`·¸ux^`w8ux°P�Ëa��ouxwxs³²�sz� uy^�´ö¿öøÝù Å _z^UºÝ��w8uxwys��o�P�frP_b�|w¯øâ�o�L�rP­�­k��w-uywxsb�|�P�fr�_��|w8ù¯TZá

[

Page 33: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

¥ ¤?ú�¦C§D¨c©|ª�« ¬ rP­�­k^h®y�Ò´¶sz®��|�µûüÎ �ÍýCa��ouxwxs³²Í^`»MwÌ�|�PæÍþEáÅ �hT��"».´.ßÿ¿üñ°'�`®Ë�X®x^`_zrPuysz^`� »�^`wï�� f��wx�2wxsv�f° uË®ysz����à � º�°L�|uïsb®Rux°P�µ·¸^f_zrPat�®y­'�`·¸��^f»Q´ÐÏÅ ÎÑT��"�X­'�|wxu Å ��T � ºè°'�|u��owx�Ë�|_v_Q����rL�|uxsv^f�L®.^`w8sz�����hr'�|_vszuysz�\®.ux°'�|u8aRrL®yu�°P^f_z��Îk�¸YuOºÝ�����¹uy°P��� rLaÒÎk��wÌ®�û � ý � �|�L�µþEáÅ ·UT��.sv f�C��®y­k�\·¸svîL·X��²��`at­�_z�X^f»Ò��[ Î �&W+a±�|uywxs³²&´ ^`»)wÌ�|�PæJS�º�svux°ÿîPwx®yu

wy^oº�� Wóg á�q��\®x·�wyszÎ'��ux°���·�^`_zrLaË� ®y­'�|·��çê Å ´8T��|�L�2ux°���� rP_v_z®x­L�`·¸�µì Å ´8T·¸^haË­P_v�\uy��_z�fá

Å �kT ¬ r�­P­k^h®y��uy°P�Ýwysz�f°�uQ®xsz���èÃ�sb®Muy°P��®Ì�`aË���`®Muy°P�Ýî�wÌ®yu�·¸^f_vrLaË�Òsv�R�f^frPwM�¸²P�|at­P_v�Å ­'�|wxu�·UT�á�äDsz�P�¹ux°P�¯·¸^haË­P_z��uy��®y^f_vrPuxsv^f�¹uy^�´.ßÍ¿ÿÃUá

Page 34: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

������������ ���������� ��������� ��!"�$#&%' (*),+.-�/103254 6�798;:=<?>17�@BAC<=D*E�FHGIEKJ�L�MNA 73OPORQS<?DCETASU�D*E�FVGIEKJ�W�XY@BACZ�[,<\7IOPM�]^<_7�D >SEKX`[aMP]�73ZCM�Eb]EKJ�D*E_FIA�cd73]Begf`EbJ hji�kmla<�Z*l^D*<S<dDCE�FIA\EKJ�Wn73D*<dOPM�]^<_7�D*OPope^<Sq,<S]Be^<S]RZSi6"[�8;hIJ5Z*<SDrEK]^<�ACZ*<SqsEKJ�<SO�M�XtM�]�7�Z*MPEK]uFm<dlB71vK<wx c f c yz {j|�} | c ~ | fby6�D*E�F G98

��� EREK�9M�]a��73Z�L�Fm<mAC<S<mZ*lB73Z�ZCla<\AC<?>�EK]BeY>�EKOP@BX�]jEKJ�WHM�A�]aEbZ�7IqaMPvKEKZ >�EKOP@BXt]$UACE {���} i=��EK]RZCM�]R@^M�]a�tFrMPZ*ls<SOPMNXtM�]B73Z*MPEK]$U^F=<d�K<SZ�Z*Ewx c f z ~ | yz z c f3y | ~z z z z

����ETX�qB73D*MP]a�tZClaM�ArZ*E�LnFm<�AC<S<dZCl�73Z�y ���6�>_8p�9<SZCZ*MP]a��ZCla<�J5DC<?<;v373D*MN73[aOP<?A��B��73]BeV�a�`Z*EHc�73]Be z U&7�]Be�v9MN>�<�vK<SD�A�7^U&7�]BeACEKOPvRMP]a��L�� ��z U^Fm<��K<SZrZCla<d]R@aOPONACq�7b>�<�ACEKOP@aZ*MPEK]

� ��� w��x | fczz������ �¡ w��x | Gz| fc

�����kmla<dD*E�F�ACq�7b>�<j73]BepZ*la<d]R@aOPO�A*qB7b>�<Y7�D*<j7�O�F\71oA\Z*l^<jA�7bXt<�J5EKDIW¢73]Be£L`i

Page 35: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

¤ (*),+.-�/103254 6�798�h�J5Z*<SD�<?OPM�X�MP]�73ZCM�EK]�U^Fm<��K<SZ wx c f Gz G Gz z �m| ~��

�9EtZ*laM�AIX;73Z*DCMP¥�FrMPO�O�]aEKZ�[,<�MP]RvK<SD*ZCM�[aOP<dF�la<S] �r� ~6"[�8t¦�la<S] � M�A�]aEKZ�<1§T@�73O�Z*E;~^U^Z*la<�X;73Z*DCMP¥�MNA�MP]RvK<SD*ZCM�[aOP<KUaMPZ�A�D�73]a��M�AIG^i=�9E�MPZ�A]R@^O�O�ACq�7b>�<�M�A�¨©@BACZ\ZCla<ªQS<SD*E`vb<1>�ZCEKD?U^73]ae�M�Z*A\>�EKO�@aX�]BACq�73>S<«M�A�73OPO�EKJ�¬\­bi�k\la<A�7bXt<�O�Eb�KMN>d73]Be£73]BACFm<SD*AI73qaq^O�o�ZCE�Wd®B¯°i6�>_8�±IA*MP]a��EK@aDrXY@aOPZ*MPqaO�MP<SD�A�J5D*EKX²<SO�M�XtM�]�7�Z*MPEK]$UW � wx c z zc c zf fK³3G c

��´wx c f Gz G Gz z c1f��

Page 36: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

) (©µ�+.-�/103254 6�798;k\la<SD*<`X`@BACZ«[,<t7�q^M�vKEbZªMP]¶<SvK<SDCosD*E�FdU�ACEp· �¢¸ 73]Be¹Z*la<`>SEbO�@BXt]�A*qB7b>�<EKJ WºMNAI73OPO�EKJ�¬=»6"[�8t¦¼<s73OPF�71oAYl�71vb<p·V½¿¾�i�ÀaDCETX 6�798dF=<p�R]aE�FÁ· �¿¸ i�ÀaDCETXÂZ*l^<1AC<pF=<e^<?e^@a>S<j73ONACEtZ*lB73Z ¸ ½Ã¾6�>_8�Äb@BACZr@BAC<j7�X`@aOPZ*MPqaOP<dEKJrÅÆfU ��Ç J5EKD�ZCla<dEKZ*l^<?D�D*E�FrAI73O�ACEBi�ÀaEbD�<S¥^7bX�q^O�<W � wx f �} c zz z

��kmla<t>�EKOP@BXt]¶ACq�7b>�<`FrMPOPO�[�<�Z*la<`O�MP]a<�MP]�¬\­�>�EK]BACM�ACZ*MP]a�pEKJ=7�O�O X`@aOPZ*MPqaOP<?AªEKJoKEb@aD=È^D�ACZm>�EKOP@BXt]$i�k\la<�]R@aOPONACq�73>S<�F�M�OPO,[,<�ZCla<�OPM�]a<�M�];¬ � >SEb]BACMNACZ*MP]a�jEKJ$73O�OXY@aOPZ*MPqaO�<?A\EKJ�ZCla<d]R@aOPONACq�73>S<�A*EbO�@aZCM�Eb]�É ®ÊÌË �¯ Í6�e,8;h�eae^MP]a�YZCla<Iq�73DCZ*M�>�@aOÎ7�D=ACEKO�@^Z*MPEK] É ¯Ï Í Z*E�Z*l^<I]R@aOPONACq�73>S<�ACEKOP@aZ*MPEK]�J5D*ETX¿6�>_8F=<d�K<SZrZCla<�>�ETX�q^O�<SZ*<�ACEKOP@aZ*MPEK]

ÐÒÑ É ¯Ï Í,ÓmÔ É ®ÊÕË �¯ Í

Page 37: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ��� � � ������� ����������� ����� �"!$# %�����&')(+*-,/.$021436587:9;=<83>0?7@3BAC5D,EAC<83GFH(+*-,I,J3"AC5LKM0NKJ58(+.�9OQP RTS SQUVOXWMO Y"Z\[�]_^a`\bdcfe SgP RhW SQU\OXWMO Y"ZV[�]_^a`\bdcfeWgP i6OdO SQUVOXWgS i$ZJe@j�Yk^_clb m@P i6OQS SQU\OXWgS inZJe@j�Yk^_clbodP i6O SQUVOXWMO i$ZEp�bdqJrtsvu wxP i6O SQU\OXWgS inZEYk^_j�yzcfsvqMb{ P i�S SQUVOXWgS i$ZEYk^_j�yzcfsvqMb |xP i�S SQU\OXWMO inZEp�bdqJrtsvu}~(2KM3+9)� 02�+3B7�*-,J3GFH(�*-,I3C��0?1 �$0?7I���n,J(���<D3>1�7V�

���\���V�Q��n���E�N���@� �?�\�X�����N���O S��S S��W S��m S��o S��� �J�Q�J� OX�d�

Page 38: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�  f¡E¢ �>�Q��£ ¤x¥M¦M¦ bd§zj¨yzq�j�W�©ªW�r«svylcz^­¬¯®~qEs�§°clb�±�O+²³czb�±GSµ´Iclb�±~W�Z¶ sgP«·k¬ ¦ ]¸sv^au¹±ºq¼»�®-½�´¿¾�ÀÁÁxÂ�à s�uMuMbdy°qEsXÄdjµs�§lbd] ¥ yl^_bduÅZ¶�Æ P�Ç/qM^ à qÈcl^_Édqxy$qEsvuJeȧl^_e�j�Ädj à yzbdc$ʨ´ ¾XË�ÌË�ÍË�Î Â r ^aÉdq¼y$sv]a]_b�±6s«§lbd] ¥ yz^abdu=®-½Ï´6Ê�жLÑ ^aÄdj�ylqMj Æ jX§ly-s�uJ§l±�j�c°»db ¥ à svuCÒ Æ s�§ljXe¯bdu¹ylqMj�^_u�Ó�bdcfrtsvyz^abdu ¦ czb�Äx^¸e�jXeÅZÔP¶ à P�Ç/q¼»Õ^_§�®~uMb�yº^au¼Ädj�czyl^ Æ ]aj�Ð

Page 39: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

¡  f¡E¢ �>�Q��£ Ö j�y®×´ ØÙÙÚ S S OS o �� W S

Û­ÜÜÝÈÞ¶ sgP«ßEs à yzb�c-®Bs�§�®~´Gà�á�ÒJ±ºqMj�clj�àâ^_§ã]_bä±�j�cºylcz^¸svuMÉ ¥ ]¸svc-s�uJe=áå^¸§ ¥M¦M¦ j�c�ylcz^¸svu�æÉ ¥ ]¸svcXZ¶�Æ P«ß"^auJe s Æ s�§l^_§°Ó�bdc°yzqMj à bd] ¥ r�u § ¦ s à jnbdÓN®µZ¶ à P�Ç/qEsvyº^_§°yzqMj�cfsvuMçÕbdÓN®nÐ

Page 40: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

è  f¡E¢ �>�Q��£ ¤x¥M¦M¦ bd§zj®é´ ØÙÙÚ O � �O O �{¨ê O S

Û­ÜÜÝ ØÙÙÚ O � Oëm o� O S S O� � � O OÛ­ÜÜÝÏÞ

¶ sgP�Ç/qEsvyº^_§°yzqMj�cfsvuMçÕbdÓN®nж�Æ P«ß"^auJe s Æ s�§l^_§°Ó�bdc°yzqMj�u ¥ ]_]_§ ¦ s à j�bdÓk®¨Z¶ à P«ß"^auJe¯yzqMj à bgr ¦ ]ajXylj�§lbd] ¥ yz^abdu¹yzb®�½�´ ØÙÙÚ OX�OQo|go

Û ÜÜÝÈÞ

Page 41: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

ì  f¡E¢ �>�Q��£ Ö j�y�í Æ j�yzqMj�Ädj à yzbdc°§ ¦ s à j�bdÓNsv]_]>S�©ÈS�rtsvyzcl^ à jX§ºsvuJe�]_j�y®×´ ØÚ O �� � ÛÝ svuJe î6´ ØÚ � �� ê O ÛÝ Þ

¶ sgP Ñ ^_Ä�jµs Æ sv§z^_§°Ó�bdc�íïZ¶�Æ P«ð-jX§ à cz^ Æ jµs�§ ¥ Æ § ¦ s à j¨b�Ó2í ±°qM^ à q à bduxy�sv^auJ§ã®åsvuMe¹e�b¼jX§°uMbdy à b�u¼y�sv^auªîtZ¶ à P«iñc ¥ j ¶ Éd^aÄdj�stczjQs�§lbduVP°bdcnßEs�]¸§lj ¶ Éd^_Ä�j�s à b ¥ u¼yzj�czjò¬Msvr ¦ ]aj�PôóãõöÓ+sÕ§ ¥ Æ § ¦ s à j�bdÓí à bdu¼yfsv^auJ§ã®åsvuJe îtÒM^_yºr ¥ §zy à bdu¼yfsv^_u¯yzqMj�^_e�j�u¼yz^ayD»Õrtsvyzcl^a¬�÷EZ¶ e\P«ð-jX§ à cz^ Æ j�sø§ ¥ Æ § ¦ s à jÕb�Ó�í ±ºqM^ à q à bdu¼yfsv^_uM§µuMbÈe@^ùsvÉ�bduEsv]+rtsvylcz^ à jX§¨jò¬ à j ¦ yÓ�bdc°yzqMj�ú�j�czb rtsvyzcl^a¬:Z

Page 42: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

û  f¡E¢ �>�Q��£ õöÓk®-üH´é��Ò�yzqMj�ú�j�czb r«s�yzcz^­¬:Ò@jò¬ ¦ ]¸sv^au¹±ºq¼»�®~^_§ºuMbdy°^au¼Ädj�czyl^ Æ ]_jdZ

Page 43: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ��� � ������� ��������� � ��� �"! �$#&%����$�')(+*-,/.1032 4�57698/:<;1=?>A@B;1CD@FE�GIHKJ�=?LK>M6ONPJ9E�>AHQ=?>�R�ES6O=?@FGUT�6OHVR�RPCDGIHKJW@FC+XY@F>�RPNVZ[=?G\CDH^]_=?LK>`=?LKG\@FR�@?C+Xa >�Z[C9E�>cbedgfhfhf iVjOkl]KXmLPGnZ�L Z[CD@?@F>�b?opCDHVRKbq=?C�=?LK>�>�r_N-6O=?G\CDH s�tvu�wx]Vb?C�=FLP>�@?>�GnbqHKCSb?CDyINK=?G\CDH^z5 a 8){|LK>�b}6xE�>�6O@FJxNVE�>AHQ=)b?LKC+Xmb�=?L-6O=)G\H~CD@}R3>�@);1CD@e�<��t��e=FC�L-6c�D>S6�b?CDyINK=FGICDH�]���E�NKbF=�b}6O=?Gnb?;1�����t�� j�� ����z5lZ�8|�7;���X|>A@?>�GIHQ�D>A@F=?G a yI>D]K=?LK>A@F>)X|CDNKy\R 6OyIXq6��3b a >�6�b?CDyINK=?G\CDH �M��t���z')(+*-,/.1032 �~576_8

��t��|��t ��� w s sw w ss w w

�U������� � ws �eu�ws s �

�U��~ 

5 a 8B¡K@FCDE¢��GIH£o-6O@?=¤5l6_8�X">Mb?>A><=FLV6O=">A�D>A@?��ZACxy\NVE�H£G\b|6WoPG\�DCx=|Z[CDyINVE�H�z�{�LP><oKG\�xCD=|Z[CDyINVE�HVbB;1@FC9E�¥6O@F>�6 a 6ObFG\b¤;1CD@¤=?LK>$ZACxy\NVE�H¦b?o-6xZ[>D§�5 �3¨��3¨ s_8�]�5 �3¨�©3¨ �_8�]�5Fw ¨ s ¨�� 8�z�ª_GIHVZ[>�=?LK>$@�6+HK« Gnb¤=?LK@F>A>D]¬=FLK>Z[CDyINVE�H�b?o-6xZ[>SGnb�6OyIy"Cx;`­ � ]�b?C¦6OHKCD=?LK>A@ a 6xb?G\b�X"CDNKy\R a >®=?LK>®b?=�6OHVRK6O@}R a 6xb?G\b®5Fw ¨ s ¨ s_8�]q57s ¨ w ¨ s_8�]57s ¨ s ¨ wc8�zB�7H¯;°6xZ[=�]V6OH_�®=?LK@F>A>�GIHVRP>Aop>AHVRP>AHQ=`�x>cZ[=?CD@}b�GIH±­� XmGIy\y�RPCVz5lZ�8|{|LK>W@�6+HK«£Gnbm=?LK@F>A> a >�Zc6+NVb?>W=?LK>A@F>e6O@?>�=FLP@F>A>�oKGI�DCD=FbAz')(+*-,/.1032 ²¦5l6_8 {|LKG\b|Gnb�6OH �"��;°6xZ[=?CD@FGI³c6O=FGICDH�z�{�LP>���G\b|=?LK>¤>�Z�LK>Ay\CDH£;1CD@}E�Cx;��e]Pb?C��DCDN�Z�6OH�b?>A>=FLV6O=m=?LK>A@F>e6+@F>�=?LK@F>A>�oKGI�DCD=Fb�]Kb?C�=FLK>�@�6+HK«®CD;/��Gnbq=FLP@F>A>Dz5 a 8 : a 6ObFG\b�;1Cx@~´µ57�)8¯Z[CDHVb?G\bF=Fb¶CD;�=?LK>·b?op>�ZAGn6Oy$b?CDyINK=?G\CDHKb�z¸{�LK>�b?>¹6O@?>�5ºu�w ¨ u �3¨ w ¨ s ¨ s_8±6+HVR5?u�w ¨ w ¨ s ¨ u�w ¨ wc8�z5lZ�8":»o-6O@?=FG\Z[NKy¼6+@mbFCxy\NK=?G\CxH G\bW5?uM�Ds ¨ u�w ©Q¨ s ¨ wAs ¨ s_8 b?C�=FLP>eZ[C9E�oKyI>A=F>�b?CDyINK=FGICDH¯G\b������

�uM�Dsu�w ©sw�ss

�U������ � �V�

������u�wu � wss

�U����� � �V½

�������u�wwsu�ww

�U������  

')(+*-,/.1032 ¾�576_8q¿MHP> a 6xb?GnbqX|CxNKynR a >®d j¬ffhf kl]hd f jfhf kl]hd fhfj¬f k7]V6OHVR�d fhff j klz5 a 8|{|LK>�b?N a b?o-6xZ[>�Z[CDHVb?G\bF=?G\HPJ�CD;h6OyIy^E�NKyI=FGIoKy\>�b|CD;h��Gnbm6�b?N a bFoV6xZ[>)XmLKG\Z�L¯Z[CDHQ=}6OG\HKbm� a NK=qHKCx=<ÀSz5lZ�8|{�@?NK>D§ �7;�6�b?N a b?o-6OZA>�Á¥Z[CDHQ=}6OG\HKb`�v6+HVR¶À�]K=?LK>AH GI=`Z[CDHQ=}6OGIHVb`�Âu¹ÀÃt�ÄVz5lR-8mª36xE�>W6OHVb?X">�@`6Obe5 a 8"XqG\yIy�X|Cx@F«Åz')(+*-,/.1032 Ʀ{�LK>A@F>�6O@F>�ES6OHQ�±R3G\Çp>A@F>AHQ=)oK@?CQCD;ÈbAz�¿MHP>�G\b)=FC¯b}6c� =FL-6O=)GI;|� � t¥s®=FLK>AH¦C a �QGICDNVb?yI�� � G\bqHKCD=qG\H_�D>A@F=FG a yI>DzB{�LK>A@F>A;1CD@?>W��G\b?H�ÉÊ=qG\H_�D>A@F=FG a yI>D] a >�Z�6ONVb?>)=FLK>)oK@FC3R3NVZ[=`Cx;�G\H_�D>A@F=FG a yI>WE£6O=?@FG\Z[>cbG\bmGIHQ�D>A@?=FG a y\>DzB�}zÊ>DzI]KGI;���X|>A@F>)GIHQ�D>A@F=?G a y\>D]P=FLK>AH±� � X|CDNKy\R a >�GIHQ�D>A@F=?G a y\>Dz

Page 44: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � � �����������������������! #"�$%&������� '("�)+*,� -/.& 0213�4�5����67�8���

9;:%<�=/>�?�@BADC�EGF

H;I�AJ?2EKADLMC�=NLMI�APO%:%<�=/=NAJLMCRQ ?�QNC�:�>SF

TVUXWZY\[^] [_Ya`�b�cd egfih�j kmlXlnh o+prqtsvuxw yzsvl{u |�}�yzj ~2�rlnprj �2h��{f������N�n�Z�

� j�y�s���� �������_� �����n�{� ����wr�Zs ��prj�p �_�+¡n¡Z¢ ¡£���{¤n�Z¢ �¦¥X�X� ��§r¨{§� j�y�s��%� �����/� ���+¡Z�{� ©ª�2«rj���h��{p �_�+¡n¬n� ¡£���n�n�{� ¨n­ ¨K®^�N��§kmjzy{��� ��� �_�v�^¡ � ¯°�&±K� j�²r²N��ux« �_�+¡{�¦� ¡£���n¢n�{¬ ³^�N¨�´¦´r�nµX­

� ��� �_�v�^¡Z� �;�&�mwr�Zs �{prjzp �_�+¡n¡Z¢ ¡£���{¤n�Z¢ �¦¥X�X� ��§r¨{§¡ �¶¡ �_�v�^¡ � ¯°�&±K� j�²r²N��ux« �_�+¡{�¦� ¡£���n¢n�{¬ ³^�N¨�´¦´r�nµX­� e·�^� �_�v�^¡Z� ©3� � �{y � l_¸�qº¹£� �_�v�^¬n� ¡£�R�Z¡Z¢{� ��§N¨ »^�X¼ �¢ e·�^� �_�v�^¡ � ±4�&½��ijzfih¾�{p �_���n�{¬ ¡£�R�Z¤n¤n¿ ¼N®Z¨rÀ��N��§¿ e·�n� �_�v�^¡ � �;�&�mlnprqxjzp �_�R�Z¤n� ¡£�R�Z�n¤{� �&Á£§�³{¨�§� e·�n� �_�v�^¡Z� ©3� � �{y � l_¸�qº¹£� �_�v�^¬n� ¡£�R�Z¡Z¢{� ��§N¨ »^�X¼ �¬ e·�_� �_�v�^¡ � �;�&�mlnprqxjzp �_�R�Z¤n� ¡£�R�Z�n¤{� �&Á£§�³{¨�§¤ e·� �_�v�^¡Z� ©3� � �{y � l_¸�qº¹£� �_�v�^¬n� ¡£�R�Z¡Z¢{� ��§N¨ »^�X¼ ��^� e·� �_�v�^¡ � ±4�&½��ijzfih¾�{p �_���n�{¬ ¡£�R�Z¤n¤n¿ ¼N®Z¨rÀ��N��§�n� eÂ� �_�v�^¡Z� ��� � ��sxlnwru �_�+�n¤n� ¡£�+¿Z�{¤n¡ Ãr®Z�{�NÁ_¥Kµ

Page 45: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

� ������� [^c�� ±Kwr² ²4lnqºj �Âf�q sv�rj�sxuxfi« f���nl{pN�{��h���sxuxf��

�����������

� � � � �� � � � � �� � � ¡ � �� � � � �

���������

� ����� �{uxu! lnw s�sx�rj¾uºl^¸ j���fih�fipN�£svfil{p�sxl#"Np « sx�rj wr²r²�j�u!svuxfi�{p$�nw ���{u&% �{yzsxlnu(' �� �^�)��+* �����N��s�h¾��svuºf,�.-/ Xfij���«rq0���1-2'43 � ¿)�� y5� ±Kln�76{j8�:9#�<;�¸�f�sx�

;0���������

� ��

����

���������>=

©��i��y�l{h¾²�lnprjzp¦sxq l%Msv� j�qxln��w svf�lnp?9��N�{² ²4jzp sxl * j��A@ q�lnu���@ q��7���N�£s��ifip j��{uy�lnh * fipN��sxfilnp�l%�sx�rj!y�ln��wrh�prqgl%B�ª² uxlX«rwry�jzqC;D3 � �^�)�

� «E�VoF%8 nlnw(y �r�{p$�nj sx�rj jzp¦sxuG /�:HJI HK� � fip sv�rj uºfL�n�Zs¾�il^¸%j�ut�Ry�lnuºprj�u�l%8� sxl�:HJI HM� sv� j h¾��sxuxf,� * j�y�l{h¾jzqmqºfip$�{wr���{uz� � �mfipZs5N2��lKl{¹V��s�²rf,6nl{sxqO� � ¿��

Page 46: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

� ������� [^c�� � �)� ±Kwr² ²4lnqºjC��� �5� �8±K� l_¸/sx�N��s ��� � �4���� � �� � � � ������� ������=� �^�)�

�+* �V©�qxqºwrh�j0���{pr«��P�{uxjgyzlnh¾h3w svf�p$��h¾��svuºfiy�jzq � sx�N��s2f�q��)� � ��� �8����oF%4sx�rj * l{sx���{uxj �{��qxlSprlnp qxfipA�nwr����u�� qº�rl^¸ sv�r��s&� �� �{pr«�� �� y�lnh�h°w sxj{� � ���)�� y5�����rfiy ���{uºj!sxuxwrj �{p «�¸��rf�y �#% ���iqxj�� ��� f76{j!� �{lKlX« uxj���qxlnp������ �

� j�s4� * jS��p ��� * Z�"! h¾��sxuxf,�4�meg�rj�p>�&9��ª���N�{q�����¸�� Xq��¾prlnpK�$#�j�uºlVqxl£��iw sxfilnpVf,%��% ��ux�{pr¹ � �4�'&(� � ¢����%�% � uv�{pr¹ � �8��&)! � ¢���%�%*% ��� �+! �{pr«#� � � � � ¿)�

¡

Page 47: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

� ������� [^c�� ±Kwr² ²4lnqºjS� %\sxj�umj��if�h¾f�pN��sxfilnpVl{p �¾h¾��svuºf,� �ª¸�j3uxj���y � f�sxq�uºl_¸Puºj�«rw y�j�« jzy �rj���lnp%alnuxh

� � �� � � �� � �

��=� ���V��fipr«Vsx�rj!p¦wr�i��qº²N�{y�j!h¾��svuºf,��l%B�3� � �^���

�+* �����N��s�fiq sx�rj!p¦wr�i��qº²N�{y�j!l%B��� 3 � ¿)�� y5�����N��s�fiq sx�rj!uv�{p ¹Vl%7�_� * Z��¤ * ��lKy ¹Vh¾��sxuxf,��� � � ��� 3 � ¿)�� «E� ��fipr« � y�l{h¾²r��jzsxj�qxln��w svf�lnpVsvl � 9 ���¾¸�f�sx�� � �

� ����=� ���)�

Page 48: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

6�ww 2ff�c "NW~ �

�+��w,��

d,1 %Dv zhoo dv srvvleoh% phdqv wkdw zh �qg d +wkh, yhfwru �{ vxfk wkdw wkh yhfwru

�h @ �e � D�{

kdv wkh ohdvw srvvleoh ohqjwk1e,1 Wkh idfw wkh �uvw +q0wk, hqwu| lq D

�h lv }hur phdqv wkdw h lv ruwkrjrqdo wr wkh �uvw +q0wk, urz ri D

�ru/ lq

rwkhu zrugv/ h lv ruwkrjrqdo wr wkh hdfk froxpq ri D1 Dqrwkhu zd| wr sxw lw lv wkdw h lv ruwkrjrqdo wr wkh froxpqvsdfh ri D1

�+��w,� 2

d, Zh kdyh

D � @

5

7

�4 4 3�4 3 43 4 �4

6

8 > D @

5

7

�4 4�4 3

3 4

6

8

N � @ D�� D � @

5

7

�4 �4 34 3 43 4 �4

6

8

5

7

�4 4 3�4 3 43 4 �4

6

8 @

5

7

5 �4 �4�4 5 �4�4 �4 5

6

8

N @ D�

D @

�4 �4 34 3 4

5

7

�4 4�4 3

3 4

6

8 @

5 �4�4 5

e,1

D�

e @

�4 �4 34 3 4

5

7

444

6

8 @

�55

Dqg vr

{ @�

D�

D� ���

D�

e @

5 �4�4 5

� ��� �

�55

@

����

f,1 Wkh htxdwlrqD�� D � �{ @ D

�� e

fdqqrw eh vroyhg ehfdxvh D � lv qrw ixoo udqn1 Vlqfh wkh wklug froxpq ri D � lv d olqhdu frpelqdwlrq ri wkh �uvw wzr+lw*v plqxv wkhlu vxp, lw grhvq*w %frqwulexwh% wr wkh froxpq vsdfh dqg/ wkhuhiruh/ wkh froxpq vsdfh lv wkh vdph1

Page 49: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Zkdw lv wkh ehvw �{B Zh fdq �qg lw e| %vroylqj% D�� D � �{ @ D

�� e/ iru lq ghulylqj wklv htxdwlrq zh qhyhu uholhg rq

D � *v ehlqj ixoo udqn1 Zkloh lw fdqqrw eh vroyhg xqltxho|/ lw fdq eh vroyhg wr %zlwklq% rqh ghjuhh ri iuhhgrp Qrwhwkdw

5

7

����

3

6

8

lv d vroxwlrq1 Doo rwkhu vroxwlrqv fdq eh irxqg e| dgglqj dq| yhfwru iurp wkh qxoo vsdfh ri D�� D � wr wklv rqh1 Wkh

qxoo vsdfh ri D�� D � lv fohduo|

;

?

=

5

7

444

6

8

<

@

>

dqg vr

�{ @

5

7

����

3

6

8 . F

5

7

444

6

8

g,1 Zulwh grzq J1 Iru wkh wuldqjoh/ doo qrghv duh lqwhufrqqhfwhg vr

J @

5

7

3 4 44 3 44 4 3

6

8

dqg

N � . J @

5

7

5 �4 �4�4 5 �4�4 �4 5

6

8 .

5

7

3 4 44 3 44 4 3

6

8 @

5

7

5 3 33 5 33 3 5

6

8

Iru wkh 70qrgh vwuxfwxuh/ doo qrghv duh frqqhfwhg h{fhsw 4 dqg 71 Vr

J @

5

9

9

7

3 4 4 34 3 4 44 4 3 43 4 4 3

6

:

:

8

Dovr/

D � @

5

9

9

9

9

7

�4 4 3 3�4 3 4 3

3 4 �4 33 �4 3 43 3 �4 4

6

:

:

:

:

8

dqg

D�� D � . J @

5

9

9

7

�4 �4 3 3 34 3 4 �4 33 4 �4 3 �43 3 3 4 4

6

:

:

8

5

9

9

9

9

7

�4 4 3 3�4 3 4 3

3 4 �4 33 �4 3 43 3 �4 4

6

:

:

:

:

8

.

5

9

9

7

3 4 4 34 3 4 44 4 3 43 4 4 3

6

:

:

8

@

5

9

9

7

5 3 3 33 6 3 33 3 6 33 3 3 5

6

:

:

8

Wkh uhvxowlqj pdwul{ vlpso| whoov xv krz pdq| hgjhv vkduh d jlyhq qrgh1

Page 50: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�+��w,� �

Wklv lv dfwxdoo| d yhu| vkruw sureohp1 Odeho wkh hgjhv 4/ 5/ dqg 6/ vwduwlqj zlwk wkh ohiw vodqwlqj rqh dqg jrlqjFZ1 Ohw wkh frruglqdwh v|vwhp eh wkh vwdqgdug uljkw0kdqghg Fduwhvldq v|vwhp1 Rughu ghjuhhv ri iuhhgrp dv lq +OhiwKrul}rqwdo/ Ohiw Yhuwlfdo/ Uljkw Krul}rqwdo/ Uljkw Yhuwlfdo,1

d,1 Lw lv fohdu wkdw wkh vwuxfwxuh fdq urwdwh zlwk uhvshfw wr wkh erwwrp slyrwv1 Wkh vlqjoh zrug %urwdwlrq% zrxogkdyh frppdqghg ixoo fuhglw rq sduw d,1 Lqvwdqwdqhrxvo|/ wkh prwlrq lv shushqglfxodu wr vodqwhg eduv zklfk fdq ehghvfulehg e| wkh iroorzlqj yhfwru

x @

5

9

9

7

vlq �

frv �

vlq �

frv �

6

:

:

8

e,1 Wkh lqflghqfh pdwul{ lv

D @

5

7

� frv � vlq � 3 3�4 3 �4 3

3 3 � frv � vlq �

6

8

Qrz/ frq�uplqj rxu lqwxlwlrq lq d, zh vwxg| Dx=

Dx @

5

7

� frv � vlq � 3 3�4 3 4 3

3 3 � frv � vlq �

6

8

5

9

9

7

vlq �

frv �

vlq �

frv �

6

:

:

8

@

5

7

333

6

8

Page 51: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� ��� ������ ������� ��� ������! �"��$#%�&�'�(&)+*-, .0/21�354762)+8�9�4;:2,<�,>=?3@1�)A1�3@476CBD6FEG1GH!I2=J1G4+H KL*M)+358�N&:2:2H�,>E�E<�,>=?3@1�)A1�3@476PO�35*-,O�Q235E0*R35:S1G,?HT*U3VE&=?8@47E�,>:XWY4;4+ZC)+62:X=?8@47E�,>:[6S4+1G,>E?\'(&4]=?)+85=?I285)A1G4+HTE?^_85)A/21G4+/FE?^�=J,>8V8`/aQS476S,>E&4+Hb4+1�QS,?Hb,>8@,>=dc1GH�476235=b:S,?ef35=J,>E�*M)>g$W�,�I2EG,>:]:2I2H!356Sh�1�QS,b,JiS)+*j\O�QS,?H�,�)AH�,�k�/2H�4+WF85,>*RE?\Ll04;4;:]8VI2=�ZY\m \�npoAqA/21�E>\sr-tu3562:$)-h+,>6S,?HT)+8�vw4+H!*�IF85)�vx4+H�1�Q2,'EG4785IS1�354762E%4+v`1�Q2,�vx478V8@4zy�3V6Sh-85356S,>)AH{EGgfEG1G,>*|4+v},>~;I2)A1�3@4762E?^

����� � k �Y� � o �F��� m� �a� � m o �Y��� o �Y� � � �F��� � ��0������� o m �Y��� o �Y��� m>� �a��� �o;\�nw�7qA/21�E>\sr-��,?1�� � �� m m �� ��� � �m m q

�� \n�)�rjtS4+H � � o-)+62: � � m ^S�Y62:$1�QS,�356�e+,?H!EG,b4+v���\nwWYr$tS4+H�y�QF35=!Q�e�)+8VIS,>E'4+v � )+62: � 35E�1�QS,$*R)A1GH!3�i��|624+1�356�e+,?H�1�3@Wa8@,+^}3 \¡,+\}3@1�Q2)+E�8@,>E�E�1�Q2)+6¢1�QSH�,?,/F35e+4+1�ET£n�=zrjtS4+H�y�QF)A1�eA)+85IS,>E&4+v � )+62: � 35E�1�Q2,'H!)+6SZj4+v¤�¥,>~�I2)+8`1G4jk¦£�tS4+H�y�Q2)A1&e�)+8VIS,>E&3VE�3@1&,>~�I2)+8`1G4o;^2,>~;I2)+8_1G4 m £n�:ar$tS4+H � � � � o;^F:S,>E�=JH!35WY,�1�QS,�6�I28V85EG/F)+=J,04+v�N'\

k;\�nw�7qA/21�E>\sr-��,?1�� � �� m q � m� m m qq � m m�� \

n�)�rjtS4+H&y�Q2)A1{e+,>=J1G4+H!E0§ � n � �>¨ � �A¨ � � r�©�:S4;,>E{1�QS,�85356S,>)AH�EGgfEG1G,>*|�&ª � §¢Q2)ze+,�)REG478VIS1�3@476a£nwWYr$«LH�4ze+,&1�Q2)A1�1�QS,�=J478VI2*R6REG/a)+=J,�4+v_�¬3VE�*R)+:S,�I2/R4+v�1�QS47EG,�e+,>=J1G4+H!E�n ��¨G­Y¨�® r�©¢¯]° � 1�Q2)A1LE!)A1�35EGvwg�-�¢­b�±®�� qf\n�=zrj«LH�4ze+,�1�Q2)A1�1�Q2,'e+,>=J1G4+H!ERn �`¨G­a¨�® r�©±¯X° � 1�QF)A1&E�)A1�35E�vxg �R�²­'�±®R�´³ vw4+H!*µ)¶E�ISWFE�/F)+=J,'4+v�° �3@v})+62:j476285g¶3@v ³�� qf\

m

Page 52: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS
Page 53: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS
Page 54: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS
Page 55: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS
Page 56: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor Strang/Ingerman Quiz 1 September 27, 2002

Your name is:

Please circle your recitation:

1) M2 2-131 P.-O. Persson 2-088 2-1194 persson

2) M2 2-132 I. Pavlovsky 2-487 3-4083 igorvp

3) M3 2-131 I. Pavlovsky 2-487 3-4083 igorvp

4) T10 2-132 W. Luo 2-492 3-4093 luowei

5) T10 2-131 C. Boulet 2-333 3-7826 cilanne

6) T11 2-131 C. Boulet 2-333 3-7826 cilanne

7) T11 2-132 X. Wang 2-244 8-8164 xwang

8) T12 2-132 P. Clifford 2-489 3-4086 peter

9) T1 2-132 X. Wang 2-244 8-8164 xwang

10) T1 2-131 P. Clifford 2-489 3-4086 peter

11) T2 2-132 X. Wang 2-244 8-8164 xwang

Page 57: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1 (30 pts.) Start with the vectors

u =

2

1

2

and v =

1

3

0

(a) Find two other vectors w and z whose linear combinations fill the

same plane P as the linear combinations of u and v .

(b) Find a 3 by 3 matrix M whose column space is that same plane P .

(c) Describe all vectors x in the nullspace (Mx = 0) of your matrix M .

2

Page 58: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3

Page 59: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (30 pts.) (a) By elimination put A into its upper triangular form U . Which are the

pivot columns and free columns?

A =

1 3 2 1

2 8 5 2

1 5 3 1

(b) Describe specifically the vectors in the nullspace of A. One way is to

find the “special solutions” (how many??) to Ax = 0 by setting the

free variables to 1 or 0.

(c) Does Ax = b have a solution for the right side b = (3, 8, 5)? If it

does, find one particular solution and then the complete solution to

this system Ax = b.

4

Page 60: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

5

Page 61: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (40 pts.) (a) Apply row elimination to A and find the pivots and the upper trian-

gular U . Factor this “Pascal matrix” into L times U .

A =

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

(b) How do L and U and the pivots confirm that A is invertible?

(c) If you change the entry “20” to what number (??) then A will become

singular.

(d) What permutation matrix P will multiply A so that the rows of PA

are in reverse order (rows 1, 2, 3, 4 of A become rows 4, 3, 2, 1 of PA)?

What matrix multiplication would put the columns in reverse order?

6

Page 62: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

7

Page 63: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Course 18.06, Fall 2002: Quiz 1, Solutions

1 (a) For example

w =

424

, z =

260

or w = u + v =

342

, z = 3u − v =

506

(b), (c) For example

M =

2 1 01 3 02 0 0

→2 1 0

0 52 0

0 −1 0

→2 1 0

0 52 0

0 0 0

x3 free variable. Let x3 = 1 then x1 = x2 = 0. Nullspace is all vectors

λ

001

2 (a)

A =

1 3 2 12 8 5 21 5 3 1

→1 3 2 1

0 2 1 00 2 1 0

→1 3 2 1

0 2 1 00 0 0 0

= U

Pivot columns 1 and 2, free columns 3 and 4.(b)

N(A) = linear combination of

−1

2−1

210

and

−1001

(c)

Particular xp =

0100

Complete x =

0100

+ c

−1

2−1

210

+ d

−1001

3 (a)

A =

11 11 2 11 3 3 1

1 1 1 11 2 3

1 31

(b) U has 4 nonzero entries on the diagonal⇒ A has 4 nonzero pivots⇒ Gauss-Jordan will work⇒ A−1 exists

(c) If the last diagonal entry of U was zero ⇒ A44 = 1 + 9 + 9 = 19.(d)

P =

1

11

1

⇒ PA has reversed rows & AP has reversed columns.

Page 64: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Exam 1 #1 Solutions

1 a)

~v · ~x = 0⇒ x1 + 2x2 + x3 = 0~w · ~x = 0⇒ 2x1 + 4x2 + 3x3 = 0

So the set to be found is the nullspace of the matrix A =[

1 2 12 4 3

]. The row echelon form

of A is[

1 2 10 0 1

]. The second variable, x2, is free and the vector (−2, 1, 0) is a basis of the

nullspace.b) Since the set in a) is the nullspace of the matrix A, it is a vector space. Generally to prove a

set satisfying some property, say P , is a vector space, one needs to show:(1) If ~x satisfies property P , then c~x also satisfies property P , for any c ∈ R.(2) If ~x, ~y satisfy property P , then ~x+ ~y also satisfies property P .

2 a)

A =

−2 0 3−4 3 −28 9 11

=

1 0 02 1 0−4 0 1

· −2 0 3

0 3 −80 9 23

=

1 0 0−2 1 04 0 1

· 1 0 0

0 1 00 3 1

· −2 0 3

0 3 −80 0 47

So

L =

1 0 02 1 0−4 0 1

· 1 0 0

0 1 00 3 1

=

1 0 02 1 0−4 3 1

U =

−2 0 30 3 −80 0 47

b) To solve A~x = LU~x = ~b, it is equivalent to solve the two equations L~y = ~b and U~x = ~y.

L~y = ~b ⇒

y1 = 32y1 + y2 = −1

−4y1 + 3y2 + y3 = 13⇒ ~y =

3−746

.U~x = ~y ⇒ ~y =

−39413474647

.3 a) Denote B =

1 2 43 1 75 2 6

, P =

0 0 11 0 00 1 0

, Then

BA = P ⇒ P−1BA = I ⇒ P−1B = A−1

1

Page 65: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2

Because P is a permutation matrix, P−1 = P T . So

A−1 =

0 1 00 0 11 0 0

· 1 2 4

3 1 75 2 6

=

3 1 75 2 61 2 4

.b) i B,D have full column rank, so the nullspace of each is the zero vector. Now

BD~x = 0⇒ D~x ∈ N(B) = {0} ⇒ D~x = 0⇒ ~x = 0.

Hence N(BD)=0.ii This time only B has full column rank, that is, N(B) = {0}.

BD~x = 0⇒ D~x ∈ N(B) = {0} ⇒ D~x = 0⇒ ~x ∈ N(D).

So N(BD) ⊆ N(D). On the other hand,

D~x = 0⇒ BD~x = B0 = 0⇒ x ∈ N(BD)⇒ N(D) ⊆ N(BD).

So N(D) = N(BD), which is all we can say about N(BD) without further assumptions onD.

iii r < n, implies B is not of full column rank and the nullspace of B contains an infinite numberof vectors. r < m implies the row echelon form of B has zero rows, so the equation B~x = ~b

has no solutions for some ~b. Furthermore, if there is a solution to B~x = ~b, say ~xp, then thereare infinitely many solutions since ~xp + ~xn is a solution for any ~xn in N(B). The answer tothe question is 0 or infinitely many.

4 a) Apply row operations on A and get the following matrix

R =

1 2 3 40 −1 c− 3 −30 0 2(c− 3) −80 0 0 d− 8

.– No values of c, d will make the rank of A equal to 2.– if c 6= 3, d 6= 8, R is the row echelon form of A and A has rank 4.– Any other combination of c, d will give rank 3, that is, the rank is 3 if c = 3 or d = 8.

b) substituting c = 3, d = 8 in the matrix R, one finds that the third column gives a free variable,and null space of A is spanned by (−3, 0, 1, 0). Use the augmented matrix

[A | ~b

](NOT[

R | ~b]) to find a particular solution of the equation A~x = ~b, which is (−1/2, 1/4, 0, 1/4). So

the complete solution of the equation is (−1/2, 1/4, 0, /1/4) + x3(−3, 0, 1, 0).

Page 66: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ����������� ��������� ���! #"%$'&)(*�%+,���%���

-/.10)243)57698;:�<>=?A@B8C5#<D8FEG:B2HEG@�8JI1.K0)2L2M8CEG:ONP5QNM:B.13�=

RTSVUXWZY[S]\Q^`_ba�cBdWeSVUXW!fKSegih]jTcB_lk)^`hmeSVUXmZY[S]\Q^`_ba�cBdn Spo7R�qZrQSsYutuvwvwxThyeSpo7R�q{zQS]oM^�du|}xT_~eSpo7RTR��!Ssz��]cBt]h]j

� S)o7RTR1�1Ss�#^`h�vwc�_�eS)o7R�W{�1Ss�#^`h�vwc�_�eS)o7R�W)Y[S]��_l^`h]�B�}�l�BxR�qeS)o7R��!Ssz��]cBt]h]jRTRTS)o7R�rQS]oPcBh]h]cB_R�WeS)oCWZ�!Ssz��]cBt]h]j

�'�D���!���K��������K�G����  ¡ ¢£ X�T¡%��� ¤¦¥{§¨��©ª��©

« ¥�©¬�®­ ¯��!° ±² ³ ±³ ² ±´ ±µ ´ ±± ² ±

¶ §��Q¯Q¥ª°!¯��K·¨�¸�p¹ º ²!»%¼½¿¾ÁÀ�Â'ÃCÄ ²Z» »

ÅAÆ�Ç �C�ÉÈ7ÊP�Ë%Ì'ÍPÎÏÎ#ÐPÌMÑGÒ Ó�ÌPÒ�Ô,ÌMÕÁÖ�×GØsÙ�Ø�ÚCÍÜÛPØsÙ�ÝÞ�Ì/ß�ÍPÎbß�Ñ�ÎÏÍÜÖTÌPÒ�Ù�ÌPÒ�ÕGÌPÖTØsÙ�Ýàâá�ã[ã ���1�/ä�å á ���1� ÇæÆ �C�K�ç� Æ>è � ã � ã �lå��£�1� ÇéÆ�è åC�D� Æ>èPãÉê ä£�lÊ�ë�åC� ãÉì£í�î å���� ã Ê Ýï ×GØðØ]ñGÍPòªóÏÙXÓ�ÌPÒ�Ö�×ôÍõÖTÌPÖ�ÍPÎ�ÌPö�÷�øPøõÚ#ÌMóÏÕùÖ�Ù�Ý

÷

Page 67: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

÷ÜÝ Í����`÷���Ú#ÌMóÏÕùÖ�Ù����ZóÏÕÁÍPÕ��� ���GØsß]ÌMò�Ú#ÌMÙ�óiÖ�óiÌMÕ,ÌPöZÖ�×GØ�������òõÍÜÖTÒ�óiñ��� �� ÷ ÷ ÷

÷�� �÷�� �

���

Page 68: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

� � �`÷�ø�Ú#ÌMóÏÕùÖ�Ù����>ÌMÎ��PØ ��� ��� Ó�×GØ�Ò�Ø� � �� ÷

øø���

Page 69: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�>Ý �`÷���Ú#ÌMóÏÕùÖ�Ù����1Ø�Ö � � Ø�ÍPÕôÑCÕGÔ>Õ�Ì[Ó�Õ � � ��òõÍÜÖTÒ�ó ñ���ÍPÕôÎiØ�Ö� � �� ø ÷ ø

÷ ø øø ø ÷

��

� ÌMÕCÙ�ó GØ�ÒðÖ�×GØ'ÍPÑGÛMò�ØsÕùÖTØ�æò/ÍÜÖTÒ�ó ñ�� ��� � ���Ý��ölÖTØ�Ò¨Ú#Ø�Ò�ölÌPÒ�òõóbÕGÛ,Ò�Ì[ÓÌPÚ#Ø�Ò�ÍÜÖ�óiÌMÕCÙ�ÌMÕ�� ÓVØ�ÛPØ�Ö%Ö�×GØðölÌMÎÏÎiÌ[Ó%óÏÕGÛ�òõÍÜÖTÒ�ó ñ

�� ÷ ø ÷ø ÷ øø ø �÷

� �� �� �÷ � �ø ø ÷

��

� ×�ÍÜÖ�óÏÙ ��� R��

Page 70: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�>Ý � ��Ú#ÌMóÏÕùÖ�Ù�� �ZóÏÕÁÍõò/ÍÜÖTÒ�ó ñ � Ù�ÑCß�×ÁÖ�×�ÍÜÖ

������ � ��� ��� ��� � �

��� � � � �

Page 71: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�GÝ �ÎÏÎ#ÌPö!Ö�×GØ��>ÑGØsÙTÖ�óiÌMÕ�Ù � ØsÎiÌÉÓ Ò�Ø�ölØ�Ò ÖTÌõÖ�×GØâöwÌMÎÏÎÏÌ[Ó�óÏÕ�Û�òõÍÜÖTÒuó ñ �� ��� ÷ � ø �÷

ø ø ÷ �

Í���� ��Ú#ÌMóÏÕùÖ�Ù�� � ×�ÍÜÖ�óÏÙXÖ�×�ØðÒ�ÍPÕGÔ'ÌPö � �

� � � ��Ú#ÌMóÏÕùÖ�Ù��VË�Ì/ÍPÎÏÎ#ÚCÍPóÏÒ�Ù�ÌPö{ß]ÌMÎÏÑ�òõÕ�Ù�ÙTÚ�ÍPÕÁÖ�×GØ�ß]ÌMÎÏÑ�ò/ÕÁÙTÚCÍPß]Ø ��� � � � �ÌPö � ��� öVÐPØsÙ �1Ø]ñ�ÚCÎÏÍPóbÕ7Ý � ö�Õ�Ì ��ÛMó �PØõÍ,ÚCÍPóiÒðÌPö�ß]ÌMÎÏÑ�ò/Õ�Ù�Ö�×�ÍÜÖ GÌôÕGÌPÖÙTÚ�ÍPÕ,Ö�×GØâß]ÌMÎÏÑ�ò/ÕÁÙTÚCÍPß]ØPÝ

Page 72: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

ß ���`÷�ø�Ú#ÌMóÏÕùÖ�Ù����ZóÏÕÁÍ � ÍPÙ�óÏÙXölÌPÒ Ö�×GØ�Õ>Ñ�ÎÏÎÏÙ�ÚCÍPß]Ø�� � � ��ÌPö � Ý

� � ��Ú#ÌMóÏÕùÖ�Ù��pË%Ì>ØsÙXÖ�×GØ�Ò�Ø�Ø]ñGóÏÙTÖXÍ �PØsß]ÖTÌPÒ ����� W Ù�ÑCß�×,Ö�×�ÍÜÖ � � � � ×�ÍPÙÕGÌõÙ�ÌMÎÏÑGÖ�óiÌMÕ �

Page 73: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Ø ���`÷�ø�Ú#ÌMóÏÕùÖ�Ù����ZóÏÕÁÍPÎbÎ7ÙTÌMÎÏÑGÖ�óiÌMÕCÙ�ÌPö��� ��� ø �

�)ñ>Ú�Ò�ØsÙ�Ù�ÐPÌMÑGÒ�ÙTÌMÎbÑGÖ�óiÌMÕÁóÏÕ,Ö�×GØâöwÌPÒ�ò

� ������������ ������� ��� R � R ��� W � WÓ�×�Ø�Ò�Ø � R�� � W ÍÜÒ�ØâÙTÚ#Øsß�óÏÍPÎ7ÙTÌMÎÏÑ�Ö�óiÌMÕ�Ù�Ý

Page 74: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�>Ý Í���� �'Ú#ÌMóÏÕùÖ�Ù�����ÌÉÓ òõÍPÕùÐ � � �'Ú#Ø�Ò�ò¨Ñ�Ö�ÍÜÖ�óiÌMÕ�òõÍÜÖTÒ�óÏß]ØsÙâÍÜÒ�Ø�Ö�×GØ�Ò�Ø���óÏÕ �ß�ÎÏÑ �óÏÕGÛ�� � �

� � ���¨Ú#ÌMóÏÕùÖ�Ù�� � Ù�Ö�×GØ�Ò�Ø�Í�� � ��ÚQØ�Òuò¨ÑGÖ�ÍÜÖ�óÏÌMÕ'ò/ÍÜÖTÒ�ó ñ � � � ØsÙ�ó GØsÙ � � � �Ù�ÑCß�×ÁÖ�×�ÍÜÖ � m � � � � öKÐPØsÙ �CÛMó �PØ�ÌMÕGØ�Ù�ÑCß�× ��Ý � öZÕGÌ ��Ø]ñ�ÚCÎÏÍPóÏÕ'Ó�×ùÐPÝ

Page 75: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

�>Ý����7ã �D���¨� Æ �Z� ã���� î å���� ã Ê � ï ×GØ�òõÍÜÖTÒ�ó ñ óÏÕ��ùÑ�ØsÙTÖ�óiÌMÕ�÷JóÏÙ,Í��ZÍPÙ�ß�ÍPÎòõÍÜÖTÒuó ñQÝ �ZóÏÕ ÁÍPÕ �� ���GØsß]ÌMò�Ú#ÌMÙ�óiÖ�óÏÌMÕ,ÌPö!Ö�×�Ø�� �����ZÍPÙ�ß�ÍPÎKòõÍÜÖTÒ�ó ñ

��������÷ ÷ ÷ ÷ ÷ ÷÷ � � � � �÷ � � ÷�ø ÷�� ��÷÷ � ÷�ø �Üø � � � �÷ � ÷�� � � �Dø ÷�� �÷ � ��÷�� � ÷�� � � � �

� �������

Þ%ÌPÖTØ��AÐPÌMÑ �ÌMÕ��}Ö�ÕGØ�Ø� ÖTÌ�Ó Ò�óiÖTØAÖ�×GØ,ØsÕHÖ�óiÒ�Ø,ò/ÍÜÖTÒ�ó ñæÍÜÛMÍPóÏÕ ���TÑCÙTÖ¨Ø]ñ�ÚCÎÏÍPóbÕ×GÌÉÓ ÖTÌõÛPØ�Ö%Ö�×GØ �� ���GØsß]ÌMò�Ú#ÌMÙ�óiÖ�óÏÌMÕ7Ý

÷�ø

Page 76: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

÷P÷

Page 77: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Fall 2003 Quiz 1 October 1, 2003

Your name is:

Please circle your recitation:

1. M2 S. Harvey

2. M2 D. Ingerman

3. M3 S. Harvey

4. T10 B. Sutton

5. T10 C. Taylor

6. T11 K. Cheung

7. T11 N. Ganter

8. T12 N. Ganter

9. T12 S. Francisco

10. T1 K. Cheung

11. T1 B. Tenner

12. T2 K. Cheung

Grading:

Question Points Maximum

Name + rec 5

1 25

2 15

3 5

4 35

5 15

Extra credit: (10)

Total: 100

Remarks:Do all your work on these pages.No calculators or notes.Putting your name and recitation name correctly is worth 5 points.The exam is worth a total of 100 points.

1

Page 78: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1. a) (15 points) Find an LU-decomposition of the 3 × 3 matrix

A =

1 1 11 2 31 3 6

.

Solution:

E31E21A =

1 1 10 1 20 2 5

U = E32E31E21A =

1 1 10 1 20 0 1

L = (E32E31E21)−1

=

1 0 01 1 00 0 1

1 0 00 1 01 0 1

1 0 00 1 00 2 1

=

1 0 01 1 01 2 1

Therefore we have,

A = LU =

1 0 01 1 01 2 1

1 1 10 1 20 0 1

.

2

Page 79: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

b) (10 points) Solve Ax = b where

b =

100

.

Solution:

From 1(a) we have A = LU . Let c = Ux and solve for Lc = b usingback substitution to get

c =

1−11

.

Now, solve for Ux = c using back substitution to get

x =

3−31

.

3

Page 80: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2. (15 points) Let A be an unknown 3 × 3 matrix, and let

P =

0 1 01 0 00 0 1

.

Consider the augmented matrix B = [A P ]. After performing rowoperations on B we get the following matrix

1 0 10 1 00 0 −1

2 −3 −4−1 2 20 0 1

.

What is A−1?

Solution:

By performing 2 more row operations on B we get the following aug-mented matrix

1 0 00 1 00 0 1

2 −3 −3−1 2 20 0 −1

=[

I A−1P]

.

Since P−1 = P , we have

A−1 =

2 −3 −3−1 2 20 0 −1

0 1 01 0 00 0 1

=

−3 2 −32 −1 20 0 1

4

Page 81: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3. (5 points) Find a matrix A such that

A

x

y

z

w

=

[

x − y

x + y + 2w

]

.

Solution:

A =

[

1 −1 0 01 1 0 2

]

5

Page 82: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

4. All of the questions below refer to the following matrix A

A =

[

1 2 0 −10 0 1 2

]

.

a) (5 points) What is the rank of A?

Solution:

The rank of A is equal to the number of pivots which is 2.

b) (5 points) Do all pairs of columns span the column space, C(A),of A? If yes, explain. If no, give a pair of columns that do notspan the column space.

Solution:

No! The column space of A is all of R2. However, the vectors

[

10

]

and

[

20

]

are linearly dependent and hence only span a

one-dimensional subspace of R2.

6

Page 83: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

c) (10 points) Find a basis for the nullspace N(A) of A.

Solution:

Let x2 = 1 and x4 = 0. We solve for the pivot variables: x1 = −2and x3 = 0.

Let x2 = 0 and x4 = 1. We solve for the pivot variables: x1 = −1and x3 = −2.

A basis for the nullspace is

−2100

,

−10−21

.

d) (5 points) Does there exist a vector b ∈ R2 such that Ax = b hasno solution?

Solution:

No! One possible solution to Ax = b is x =

b1

0b2

0

.

7

Page 84: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

e) (10 points) Find all solutions of

Ax =

[

02

]

.

Express your solution in the form

x = xparticular + c1x1 + c2x2

where x1, x2 are special solutions.

Solution:

x =

0020

+ c1

−2100

+ c2

−10−21

.

8

Page 85: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

5. a) (6 points) How many 3 × 3 permutation matrices are there (in-cluding I)?

Solution: 3!=6

b) (9 points) Is there a 3× 3 permutation matrix P , besides P = I,such that P 3 = I? If yes, give one such P . If no, explain why.

Solution: Yes,

P =

0 1 00 0 11 0 0

.

9

Page 86: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

6. Extra Credit (10 points) The matrix in question 1 is a Pascalmatrix. Find an LU-decomposition of the 6 × 6 Pascal matrix

1 1 1 1 1 11 2 3 4 5 61 3 6 10 15 211 4 10 20 35 561 5 15 35 70 1261 6 21 56 126 252

Note: you don’t need to write the entire matrix again, just explainhow to get the LU-decomposition.

Solution:

Let

U =

1 1 1 1 1 10 1 2 3 4 50 0 1 3 6 100 0 0 1 4 100 0 0 0 1 50 0 0 0 0 1

and L = UT then A = LU.

10

Page 87: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor A.J. de Jong Exam 1 March 3, 2003

Your name is:

Please circle your recitation:

Page 88: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1 (30 pts.)

(a) Compute the following matrix product

(1 2 3 4 5

−5 −4 −3 −2 −1

)

1 0

1 1

1 2

1 3

1 4

No explanation is necessary.

(b) Let U be the matrix below. Reduce U to a reduced row echelon matrix by row op-

erations (upward elimination). Find the “special solutions” to Ux = 0. Also give an

expression for the general solution to Ux = 0.

U =

1 1 1 −2 0

0 0 1 7 5

0 0 0 0 7

2

Page 89: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3

Page 90: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (35 pts.)

(a) Let A and b be as below. For any real number t, and any real number s: Find the

complete solution to the equation Ax = b using the algorithm described in class and

in the book. (It depends on t and s.)

A =

1 0 0 4

1 0 1 0

1 1 0 0

1 2 3 t

and b =

2

0

0

s

(b) First part: For which t are the columns of the matrix A linearly dependent? Second

part: Consider b and the first three columns of A. For which s are these linearly

dependent?

4

Page 91: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

5

Page 92: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (35 pts.) The elimination algorithm explained in the course (with “row swapping after

Gaussian elimination”) was applied to the matrix A. Suppose it yields the following equality:1 0 0 4

0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 11 1

1 0 0 0

0 1 0 0

0 10 1 0

0 0 0 1

A =

1 0 0 0 1

0 1 0 0 2

0 0 1 0 3

0 0 0 1 4

(a) Which row operations do the four elimination matrices in the product correspond to?

Please write them down in words in the order in which they were performed on A.

Why is the upper left hand corner of A zero? (This is the (1, 1) entry of A.)

(b) The equation implies that A factors as A = LPUR. Here R is the matrix on the right

hand side of the = sign. The matrices U , P , and L are invertible 4× 4 matrices. The

matrix U is upper triangular. The matrix P is a permutation matrix. And L is lower

triangular. Find U , P , and L, and explain how you got them.

6

Page 93: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

7

Page 94: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor A.J. de Jong Exam 1 Solutions March 3, 2003

1 (30 pts.)

(a) (10 pts)

(1 2 3 4 5

−5 −4 −3 −2 −1

)

1 0

1 1

1 2

1 3

1 4

=

(15 40

−15 −20

)

(b) (20 pts)

(10 pts) Computing R:

U =

1 1 1 −2 0

0 0 1 7 5

0 0 0 0 7

1 1 1 −2 0

0 0 1 7 0

0 0 0 0 7

1 1 0 −9 0

0 0 1 7 0

0 0 0 0 7

1 1 0 −9 0

0 0 1 7 0

0 0 0 0 1

= R

(8 pts) Special solutions to Ux = 0:

x1 =

−1

1

0

0

0

, x2 =

9

0

−7

1

0

(2 pts) General solutions to Ux = 0:

x = a

−1

1

0

0

0

+ b

9

0

−7

1

0

, a, b ∈ R

Page 95: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (35 pts.)

(a) (25 pts) Find the complete solution to the equation Ax = b using the algorithm de-

scribed in class and in the book.

(A | b) =

1 0 0 4 | 2

1 0 1 0 | 0

1 1 0 0 | 0

1 2 3 t | s

1 0 0 4 | 2

0 0 1 −4 | −2

0 1 0 −4 | −2

0 2 3 t− 4 | s− 2

1 0 0 4 | 2

0 1 0 −4 | −2

0 0 1 −4 | −2

0 0 3 t + 4 | s + 2

1 0 0 4 | 2

0 1 0 −4 | −2

0 0 1 −4 | −2

0 0 0 t + 16 | s + 8

Therefore, when t = −16 and s 6= −8 there are no solutions.

When t 6= −16 there is a unique solution:

x =

2− 4 s+8

t+16

−2 + 4 s+8t+16

−2 + 4 s+8t+16

s+8t+16

.

When t = −16 and s = −8, there are infinitely many solutions:

x =

2− 4a

−2 + 4a

−2 + 4a

a

, for all a ∈ R.

2

Page 96: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(b) First part (5 pts)

From the previous computation, column vectors of A are linearly independent when

t 6= −16 (all pivots are nonzero).

When t = −16, column vectors are linearly dependent:

4 ·

1

1

1

1

− 4 ·

0

0

1

2

− 4 ·

0

1

0

3

− 1 ·

4

0

0

s

=

0

0

0

0

Second part (5 pts)

When s 6= −8 column vectors are linearly independent. Indeed, after swapping the

last column of A with b, in the computation in (a) all pivots are nonzero.

When s = −8, column vectors are linearly dependent:

2 ·

1

1

1

1

− 2 ·

0

0

1

2

− 2 ·

0

1

0

3

− 1 ·

4

0

0

−8

=

0

0

0

0

3

Page 97: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (35 pts.)

(a) Row operations (15 pts) :

• add 10 times row 2 to row 3

• add 11 times row 3 to row 4

• swap rows 1 and 2

• add 4 times row 4 to row 1

”Why the upper left corner of A is zero” question. (5 pts)

Answer: The upper right corner is zero since otherwise we would never have needed to

swap rows 1 and 2.

(b) (15 pts):

The matrix U corresponds to the upward elimination. So we get

U =

1 0 0 4

0 1 0 0

0 0 1 0

0 0 0 1

−1

=

1 0 0 −4

0 1 0 0

0 0 1 0

0 0 0 1

.

The matrix P corresponds to the permutation of the first two rows. So we have

P =

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

−1

=

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

T

=

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

.

The matrix L corresponds the first two elimination steps. So we have

L =

1 0 0 0

0 1 0 0

0 10 1 0

0 110 11 1

−1

=

1 0 0 0

0 1 0 0

0 −10 1 0

0 0 −11 1

.

4

Page 98: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Fall 2004 Quiz 1 October 13, 2004

Your name is:

Please circle your recitation:

1. M2 A. Brooke-Taylor

2. M2 F. Liu

3. M3 A. Brooke-Taylor

4. T10 K. Cheung

5. T10 Y. Rubinstein

6. T11 K. Cheung

7. T11 V. Angeltveit

8. T12 V. Angeltveit

9. T12 F. Rochon

10. T1 L. Williams

11. T1 K. Cheung

12. T2 T. Gerhardt

Grading:

Question Points Maximum

Name + rec 5

1 15

2 55

3 25

Total: 100

Remarks:Do all your work on these pages.No calculators or notes.Putting your name and recitation section correctly is worth 5 points.The exam is worth a total of 100 points.

1

Page 99: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1. Let

A =

2 2 24 3 1−2 −1 4

.

(a) Compute an LDU factorization of A if one exists.

2

Page 100: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(b) Give all solutions to Ax = b where b =

2−311

.

3

Page 101: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2. One of the entries of A has been modified as there was a mistake. (Many of the subquestionsare independent and can be answered in any order.) By performing row eliminations (and possiblypermutations) on the following 4 × 8 matrix A

1 2 0 3 -1 1 1 -2-3 -6 2 -7 7 0 -6 31 2 2 5 3 3 -1 02 4 0 6 -2 1 3 0

we got the following matrix B:

1 2 0 3 -1 0 2 00 0 1 1 2 0 0 00 0 0 0 0 1 -1 00 0 0 0 0 0 0 1

(a) What is the rank of A?

(b) What are the dimensions of the 4 fundamental subspaces?

4

Page 102: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(c) How many solutions does Ax = b have? Does it depend on b? Justify

(d) Are the rows of A linearly independent? Why?

(e) Do columns 4, 5, 6 and 7 of A form a basis of R4? Why?

5

Page 103: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(f) Give a basis of N(A).

(g) Give a basis of N(AT ).

6

Page 104: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(h) (You do not need to do any calculations to answer this question.) What is the reduced rowechelon form for AT ? Explain.

(i) (Again calculations are not necessary for this part.) Let B = EA. Is E invertible? If so, whatis the inverse of E?

7

Page 105: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3. For each of these statements, say whether the claim is true or false and give a brief justification.

(a) True/False: The set of 3 × 3 non-invertible matrices forms a subspace of the set of all 3 × 3matrices.

(b) True/False: If the system Ax = b has no solution then A does not have full row rank.

8

Page 106: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(c) True/False: There exist n × n matrices A and B such that B is not invertible but AB isinvertible.

(d) True/False: For any permutation matrix P , we have that P 2 = I.

9

Page 107: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Fall 2004 Quiz 1 October 13, 2004

Your name is:

Please circle your recitation:

1. M2 A. Brooke-Taylor

2. M2 F. Liu

3. M3 A. Brooke-Taylor

4. T10 K. Cheung

5. T10 Y. Rubinstein

6. T11 K. Cheung

7. T11 V. Angeltveit

8. T12 V. Angeltveit

9. T12 F. Rochon

10. T1 L. Williams

11. T1 K. Cheung

12. T2 T. Gerhardt

Grading:

Question Points Maximum

Name + rec 5

1 15

2 55

3 25

Total: 100

Remarks:Do all your work on these pages.No calculators or notes.Putting your name and recitation section correctly is worth 5 points.The exam is worth a total of 100 points.

1

Page 108: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1. Let

A =

2 2 24 3 1−2 −1 4

.

(a) Compute an LDU factorization of A if one exists.

Solution:

1 0 00 1 01 0 1

1 0 0−2 1 00 0 1

2 2 24 3 1−2 −1 4

=

2 2 20 −1 −30 1 6

E31 E21 A

1 0 00 1 00 1 1

2 2 20 −1 −30 1 6

=

2 2 20 −1 −30 0 3

E32

So for A = LU decomposition, we have from this that

L =

1 0 02 1 0−1 −1 1

and U =

2 2 20 −1 −30 0 3

But this is not the U we want for A = LDU decomposition; for that, we factor out the pivotvalues of the old U and put them in D. In this way we get

2 2 24 3 1−2 −1 4

=

1 0 02 1 0−1 −1 1

2 0 00 −1 00 0 3

1 1 10 1 30 0 1

.

A = L D U

2

Page 109: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(b) Give all solutions to Ax = b where b =

2−311

.

Solution:The quick way to do this is by forward and backward substitution, using the resultof the previous part. We want Ax = b, that is, LDUx = b. Setting DUx = c, we have to firstsolve Lc = b for c, and then DUx = c for x.

Now, Lc = b is

1 0 02 1 0−1 −1 1

c1

c2

c3

=

2−311

so clearly we must have c1 = 2, so c2 = −7, and so c3 = 6. With that, DUx = c becomes

2 2 20 −1 −30 0 3

x1

x2

x3

=

2−76

,

and hence we get that x3 = 2, so x2 = 1, so finally x1 = −2. Hence, the one and only solution

to Ax = b is x =

−212

.

3

Page 110: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2. One of the entries of A was modified as there was a mistake. (Many of the subquestionsare independent and can be answered in any order.) By performing row eliminations (and possiblypermutations) on the following 4 × 8 matrix A

1 2 0 3 -1 1 1 -2-3 -6 2 -7 7 0 -6 31 2 2 5 3 3 -1 02 4 0 6 -2 1 3 0

we got the following matrix B:

1 2 0 3 -1 0 2 00 0 1 1 2 0 0 00 0 0 0 0 1 -1 00 0 0 0 0 0 0 1

(a) What is the rank of A?

Solution:

4. There are 4 pivots in the reduced row echelon form of A.

(b) What are the dimensions of the 4 fundamental subspaces?

Solution:

dim(C(A)) = dim(R(A)) = rank(A) = 4

dim(N(A)) = n − rank(A) = 8 − 4 = 4

dim(N(AT )) = m − rank(A) = 4 − 4 = 0

4

Page 111: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(c) How many solutions does Ax = b have? Does it depend on b? Justify

Solution:

Ax = b will have infinitely many solutions for any b. There is no row of 0’s in the reduced rowechelon form to cause there to be no solutions for the “wrong” b. There are infinitely manysolutions since the nullspace, being 4-dimensional, has infinitely many elements.

(d) Are the rows of A linearly independent? Why?

Solution:

Yes. The reduced row echelon form of A has linearly independent rows, and row operationspreserve the row space.

(e) Do columns 4, 5, 6 and 7 of A form a basis of R4? Why?

Solution:

No. Columns 4, 5, 6 and 7 in B are dependent, and row operations preserve linear dependenceand independence of columns. Hence, columns 4, 5, 6 and 7 of A are dependent.

5

Page 112: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(f) Give a basis of N(A).

Solution:We get it as usual from the reduced row echelon form, B.

1 2 0 3 -1 0 2 00 0 1 1 2 0 0 00 0 0 0 0 1 -1 00 0 0 0 0 0 0 1

x1

x2

x3

x4

x5

x6

x7

x8

=

00000000

gives the four equations

x1 = −2x2 − 3x4 + x5 − 2x7

x3 = −x4 − 2x5

x6 = x7

x8 = 0

From these we get the 4 special solutions corresponding to the 4 free variables x2, x4, x5 andx7. The special solutions are a basis for the nullspace. Hence, our basis is

−21000000

,

−30−110000

,

10−201000

,

−20000110

.

(g) Give a basis of N(AT ).

Solution:

We saw that dim(N(AT )) = 0. Hence, a basis for N(AT ) must contain no vectors, that is, itmust be the empty set { }, often denoted by ∅.

6

Page 113: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(h) (You do not need to do any calculations to answer this question.) What is the reduced rowechelon form for AT ? Explain.

Solution:

1 0 0 00 1 0 00 0 1 00 0 0 10 0 0 00 0 0 00 0 0 00 0 0 0

AT is a 8×4 matrix with 4 independent columns (since A has 4 independent rows). Thus, everycolumn in the reduced row echelon form must contain a pivot. Hence, the given matrix is theonly possible reduced row echelon form of AT .

(i) (Again calculations are not necessary for this part.) Let B = EA. Is E invertible? If so, whatis the inverse of E?

Solution:

Yes; E is just the product of the elimination matrices (including possibly permutation matrices)which are applied to A to get B. Consider columns 1, 3, 6 and 8 of A - those which become thepivot columns of B. The matrix E is what performs this change on the columns. Hence,

E

1 0 1 −2−3 2 0 31 2 3 02 0 1 0

=

1 0 0 00 1 0 00 0 1 00 0 0 1

which of course means that this matrix is E−1.

7

Page 114: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3. For each of these statements, say whether the claim is true or false and give a brief justification.

(a) True/False: The set of 3 × 3 non-invertible matrices forms a subspace of the set of all 3 × 3matrices.

Solution:

False. Consider for example

1 0 00 1 00 0 0

+

0 0 00 0 00 0 1

=

1 0 00 1 00 0 1

.

The matrix on the right hand side is invertible, but the two on the left hand side are not.

(b) True/False: If the system Ax = b has no solution then A does not have full row rank.

Solution:

True. For Ax = b to have no solution we must have a row of 0’s in the reduced row echelonform. Hence, the number of pivots will be less than the number of rows, and so the matrix A

does not have full rank.

8

Page 115: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(c) True/False: There exist n × n matrices A and B such that B is not invertible but AB isinvertible.

Solution:

False. Suppose AB is invertible, and consider C = (AB)−1A. Then

CB = (AB)−1AB = I,

so C is an inverse for B.

(d) True/False: For any permutation matrix P , we have that P 2 = I.

Solution:

False. Consider the permutation matrix

P =

0 0 11 0 00 1 0

Then

P2 =

0 0 11 0 00 1 0

0 0 11 0 00 1 0

=

0 1 00 0 11 0 0

6= I.

9

Page 116: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ����������������������� "!$#&%'� (*)+���-,.��0/2143-���5/

687:9<;>=@?>ABCD

EGF-HJILKNMLOQPSRNTVU WJX�Y[ZS\&]_^

KN`&Z�X-]aZSb_\cI�b_`&Zed-F�H2ILI�Z�b_\gf X�f�\&F-Wh^

i:j kml l:noiqp�i rtsvu�wxw l:ncyQz|{ l:noiQiq}Qp ~Q���lQj kml l:noiqp|l ��svu>�������Q� ��noiqz|l z�nc�QzQ}|� �<~Q�Q�v�|�:���j ��i�y l:noiqp|l rts�n��hs<rtw��������Q� l:ncpQ�Qp�� p�ng�|}QzQ} ���Q�v���|�:��Qj ��i�i l:noiqp�i rts�n��hs<rtw��������Q� l:ncpQ�Qp�� p�ng�|}QzQ} ���Q�v���|�:��|j ��i�i l:noiqp|l rtsvr��a ¡�|��¢a��£|��� l:ncpQpQp p�n&{�z|l�� �����:¤��{Qj ��iql l:noiqp|l ��svu>�������Q� ��noiqz|l z�nc�QzQ}|� �<~Q�Q�v�|�:�z|j ��iql l:noiqp�i rtsvr��a ¡�|��¢a��£|��� l:ncpQpQp p�n&{�z|l�� �����:¤��}|j �¥i l:noiqp|l �4s§¦5¨<��� l:n&��zQz p�ng��iQiqy � ~ ©�ª���ªiqy|j �¥i l:noiqp�i «4s§¦5¨�wx¬�­®£�­®� l:ncpQpQp p�n&{�z|l�� ªq¤���¯+©q°§©��iQi:j �±l l:noiqp|l �4s§¦5¨<��� l:n&��zQz p�ng��iQiqy � ~ ©�ª���ªi:lQj �Sp l:noiqp|l ��svu>�������Q� ��noiqz|l z�nc�QzQ}|� �<~Q�Q�v�|�:�

Page 117: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

B ��D���������� ������ �Q��wA­®�

m¬|�

n��­���¨�� =@?���9�7 ��� ;�� � � ?>;�� ? ����� � �"! ? � s�¦5��# �  ®w$��wJ��­%�o¨

���&# ��' ¨��o� � w ­¡��(��Q�)# �*��­®�Q� ��� � ������­¡¬� ®w*+

, �Qj ��¨�w �o����£ �(A­¡�

s

, ¬vj ��¨�w � �  ® ®� � � ' w��(A

' �Q�-� ��­¡���

s

, ' j , # �Q��w$���Q�/.�����wxw$.�w0.vj2��¨�w4w$1 � �*�o­¡�Q�ATy = b

¨<������� ����  � ��­®�Q��(��Q�2����# w��­�2Q¨-��¨<����.V��­�.�wx�

b¬§w ' � � ��w

s

l

Page 118: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

C ��� ��������� ������ �Q��wA­¡� �o¨�­¡��p.¬�� � # �*�o��­�� +

A =

1 2 3 4

2 3 4 5

3 4 5 6

, �Qj � � � w ' ­�� ' ¬<����­®� (��Q� �o¨�w ' �Q  � # �8� � � ' w �(A­®� s

, ¬vj��<�Q�.��¨�­ ' ¨ ¢Qw ' �o�����b =

b1

b2

b3

.�� w��Ax = b

¨<��¢Qw � ���Q  � ��­®�Q����­¡¢�w

' �Q��.�­���­®�Q�������b1, b2, b3

s, ' j ��¨�wx��w4­¡����� � ¬|�Vp # �*����­��

B(��Q� ��¨�­ ' ¨

AB = I, p.¬��VpQj s�$­ ¢Qw$� 2Q� � .

��wx�����Q� , ­¡� �o¨�­¡��¬+w ' � � ��wA­¡����w ' � ����2 �  ®��� �:j s

, .vj�� ­®��.���¨�w ' ��# �  ¡w$�ow����Q  � �o­®��� �o�Ax =

1

0

−1

s

p

Page 119: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

���

Page 120: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

D ��D���������� , �|j � ­¡��. � ¬<����­®� (��Q� ��¨�w�¢Qw ' �o�Q�5� � � ' w��(��� ® <��w��� §p ¬|� p ��� # # w$����­ ' # �*�o��­ ' w��xs, ¬vj ������ �Q��w

A­®� � �)1 � ����w ­®�|¢�wx�)��­®¬� ¡w # �*����­��_s���� ��� w��/# � �ow ­��o�$���:��� ¬|� �

� w��/# � � �*��­®�Q�P

�o� 2Qw �4� ��w � # � �o��­��Bs��J�q� .��V��� � £����q� ��¨<�*�

B­¡�

�� ®��� ­®�|¢Qw��)�o­¡¬� ®w �, ' j���� (�l # �*����­ ' wx��¨<��¢�w ��¨�w$�o�# w���¨<� � w ����. �o¨�w ���# w�� �  ¡ ®� � � ' w���o¨�w�� ��¨�w��

¨<��¢Qw ��¨�wh�o�*# w ' �Q  � # ��� � � ' w�s� ��� ��� = � = � � 7 � � � 2Q­ ¢Qw.� ��w������Q�G��¨|�Qs������� = � = � ? � � � 7 � � � �<��.Gl # �*�o��­ ' w�� �o� ��¨��:�±­���� � (@�� ¡��w�s

Page 121: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��� �

Page 122: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ����������������������� "!$#&%'� (*)+���-,.��0/2143-���5/

687:9<;>=@?>ABCD

EGF-HJILKNMLOQPSRNTVU WJX�Y[ZS\&]_^ `Vacbedgfih>acjk`

KNl&Z�X-]mZSn_\oI�n_l&Zqp-F�H2ILI�Z�n_\sr X�r�\&F-Wt^

u:v wyx x:z{u}|�u ~�������� x:zo�Q��� x:z{uQu}�Q| �Q���xQv wyx x:z{u}|�x �����>�������Q� ��z{u}��x ��zo�Q�Q��� �<�Q�Q�����: ��v �¡u�� x:z{u}|�x ~��¢z¤£t�<~���¥¦���¦�Q� x:zo|Q�Q|¨§ |�zs���Q�Q� ©��Qª������: �Qv �¡u¨u x:z{u}|�u ~��¢z¤£t�<~���¥¦���¦�Q� x:zo|Q�Q|¨§ |�zs���Q�Q� ©��Qª������: ��v �¡u¨u x:z{u}|�x ~���~�«m¬­«���®m�¦¯�«�« x:zo|Q|Q| |�z&�¨��x¨� ©����:°���Qv �¡u}x x:z{u}|�x �����>�������Q� ��z{u}��x ��zo�Q�Q��� �<�Q�Q�����: ��v �¡u}x x:z{u}|�u ~���~�«m¬­«���®m�¦¯�«�« x:zo|Q|Q| |�z&�¨��x¨� ©����:°����v �±u x:z{u}|�x §4�³²5´<�¨� x:z&�¨�Q� |�zs��uQu}� � � µ�¶¨��¶u}��v �±u x:z{u}|�u ·4�³²5´���¸�¹º¯�¹º� x:zo|Q|Q| |�z&�¨��x¨� ¶}°��¨»+µ}¼³µ� uQu:v �½x x:z{u}|�x §4�³²5´<�¨� x:z&�¨�Q� |�zs��uQu}� � � µ�¶¨��¶u:xQv �S| x:z{u}|�x �����>�������Q� ��z{u}��x ��zo�Q�Q��� �<�Q�Q�����: 

Page 123: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

B �¦D���������� ������ �Q���A¹º�

m¸�«

n��¹��¦´�� =@?���9�7 ��� ;�� � � ?>;�� ? ����� � �"! ? � ��²5��# � ¬º�$�¦�J��¹%�{´

�¨�&# ��' ´��{¥ � � ¹­��(��Q¥)# �*�¦¹º�Q� �¨� � �¨�¦�¦¹­¸�¬º�*+

, �Qv ��´�� ¥{�¨��¯ �(A¹­�$�����

�*�-# �Q�)�n − 1

, �¨��. �*�-# �Q�/�m 0 ��´�¹ ' ´N¹º��� �)�{¥��Q��1Q��¥ �)�{�*�{�$# ���2�$¹�(

m <

n − 1v �

, ¸�v ��´�� � � ¬º¬º� � � ' ���(A

' �Q�2� �¨¹­���$�����

�*� ¬­���¨�/� �Q���G���Q� z43���¥¦�e®¨� ' �¦�Q¥�� , ��´��5.�¹�# �����¦¹­�Q� �*(-�{´��G� � ¬­¬º� � � ' � ¹º�n

# ¹­� � �6�{´�� ' �Q¬ � # � ¥{�¨��¯ �(A 0 ¹ � ��� 0 �*��¬­���¨�/�

1� v

, ' v , # �Q¥¦�$���Q¥7.��������$.��8.�v2��´��4�$9 � �*�{¹­�Q�ATy = b

´<�¨����� �¦�¨¬ � �¦¹º�Q��(��Q¥2�¦��# �¥¦¹�1Q´2��´<�¨��.V�¦¹�.����

b¸³� ' � � �¦� �����

�{´�� ¥��:���$�(:�¦´��;# �*�¦¥¦¹=<AT 0 ��´�¹ ' ´ �¨¥��>�{´��.�¦�# � ���?�¦´�� ' �¨¬ � # ��� �(

A 0�¨¥¦�4¬º¹º�����¨¥�¬­«�.�� � ����.����2� 0 ��� AT

¹º������@( � ¬­¬�¥��}� zo¥{����¯�� ��´ � �@�¦´��t¥��8. ��' �8.¥¦�}� � ' ´���¬­�Q�;(��Q¥7#±�(

AT' �Q�2� �¨¹­���-��¥¦�}� �(_�¨¬­¬�3���¥¦�m��� 0 ���A�¦´�� ' ��# � �Q�����2�¦�

�(b

# � �/���{�*�¦¹º�)( « � ' ��¥/� �¨¹­�8¬º¹­�����¨¥5¥¦��¬º�*�{¹­�Q� ¹­�8�Q¥7.���¥6(��Q¥ATy = b

�¦� ´<��®Q�� ���Q¬ � �{¹º�¨���

x

Page 124: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

C ��� ��������� ������ �Q���A¹­�6�{´�¹­��|.¸�« �;# �*�{¥�¹%< +

A =

1 2 3 4

2 3 4 5

3 4 5 6

, �Qv §i� � � ' ¹�� ' ¸<�¨��¹º� (��Q¥6�{´�� ' �Q¬ � # �8� � � ' � �(A¹º� �

, ¸�v��<�Q¥.��´�¹ ' ´ ®Q� ' �{�¨¥¦�b =

b1

b2

b3

.�� ���Ax = b

´<��®Q� � ���Q¬ � �¦¹º�Q�����¹­®¨�

' �Q��.�¹��¦¹º�Q�����¨�b1, b2, b3

�, ' v ��´���¥��4¹­����� � ¸�«V| # �*�¦¥¦¹=<

B(��Q¥ ��´�¹ ' ´

AB = I, |.¸�«V|Qv ��$¹ ®Q�$�;1Q� � .

¥¦���¨�¦�Q� , ¹­�6�{´�¹­��¸+� ' � � ���A¹­��¥¦� ' � ����1 � ¬º�¨¥��:v �

, .�v�� ¹º��.��¦´�� ' ��# � ¬­�$�{�����Q¬ � �{¹º�¨� �{�Ax =

1

0

−1

� � � � � = � ?

, �Qv

1

2

3

0

2

3

4

¹º��� ¸<�¨��¹º�6(��Q¥6�¦´�� ' �Q¬ � # �8� � � ' � �*(A� � ¹­�

1

2

3

0

1

1

1

, ¸<v� ��}�½¥¦�$. ��' ¹º��1 �{´�� � � 1�# ���2�{�$. # �*�{¥�¹%<[ A b ] 0 �5�?1Q� �

1 2 3 4 b1

0 −1 −2 −3 b2 − 2b1

0 0 0 0 b3 − 2b2 + b1

.

��´���¬º¹º�����¨¥ �89 � � �{¹º�¨��� ' �Q¥¦¥���� � �Q��.�¹º��1��{� �¦´�� �¦� � �o��� ¥¦�}��� ' �¨� ¸³���{� �{¹º���<�8. ¥¦�81Q�¨¥7.�¬­������( �{´�� ®��¨¬ � ��� �(

b1

�¨��.b2 0 �¨��. �{´��V¸+�*�7�{�#k¥¦�}� �(��¨¬­¬ 3���¥�� ��� ¹�# � �Q����� �{´�� ' �Q��.�¹%�{¹º�¨�

b3 − 2b2 + b1 = 0���J��� ' �

Ax = b´<���J� �¦�¨¬ � �¦¹º�Q�8¹%( ����. �¨��¬­« ¹�(

b3 − 2b2 + b1 = 0�

|

Page 125: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

, ' v ��´�¹­��¹º� ¸³� ' � � ���A¹­������ ( � ¬­¬_¥��:� zs¥{�¨��¯ 0 �¨���¦´��}���V¹º� � ��¥)� , ¸<v ���4(

AB = I�{´����V��� ' � � ¬ .

���Q¬­®¨�Ab1 =

¥¦�}�½u��(I 0 Ab2 =

¥¦�}��x �(I 0 Ab3 =

¥¦�}�0|��(I 0 �¨��. ��®¨��¥¤« �$9 � �*�{¹­�Q�

Ax = b�

§ ' � � �¨¬­¬­« �{´��.���Q¬ � �{¹º�¨���5� � ¬ .N¸³�x = Bb

��� � �$¹º� � �¨¥/� , ¸<vJ�5�.�¦�}� �{´<� �Ax = b

´<�¨��������Q¬ � �¦¹º�Q� (��¨¥��¦��# �

b�

, .<v�� � � ��¥)(��Q¥)# �{´�� ¥��}�½¥¦�$. ��' �{¹º�¨�

1 2 3 4 1

2 3 4 5 0

3 4 5 6 −1

−→

1 2 3 4 1

0 −1 −2 −3 −2

0 0 0 0 0

−→

1 0 −1 −2 −3

0 1 2 3 2

0 0 0 0 0

��´����xp =

−3

2

0

0

¹­�J� � ��¥)�{¹ '8� ¬º�¨¥ ���Q¬ � �¦¹º�Q� 0 �¨��.s3 =

1

−2

1

0

�¨��.s4 =

2

−3

0

1

�¨¥¦�

�8� � � =�9 � �8� � � � = � ? � (��Q¥7# ¹º��14� ¸<�¨�¦¹­�5�( �¦´���� � ¬­¬º� � � ' �J�(A���J��� ' � �¦´��@1Q������¥¦�¨¬³�¦�Q¬ � �{¹­�Q� ¹­�

x = xp + xn = xp + cs3 + ds4 .

Page 126: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

D �¦D���������� , ��v � ¹­��. � ¸<�¨��¹º�:(��Q¥ �¦´���®Q� ' �{�Q¥5� � � ' ���(��¨¬º¬<¥����¨¬³| ¸�« | �¤« # # �$�¦¥¦¹ ' # �*�{¥�¹ ' �����, ¸�v ������ �Q���

A¹º� � �)9 � �¨¥¦� ¹º��®¨��¥)�¦¹º¸�¬­�;# �*�¦¥¦¹=<_����� ��� ��¥7# � �{� ¹��{�$¥��:��� ¸�« �

� ��¥7# � � �*�¦¹º�Q�P

�{� 1Q� �4� ��� � # � �{¥¦¹=<B���J�}� .��V«¨� � ¯����}� �¦´<�*�

B¹­�

�¨¬º��� ¹º��®Q��¥)�{¹­¸�¬º� �, ' v�� �4(�x # �*�¦¥¦¹ ' ����´<��®¨�A�¦´��$�{�# ���¦´<� � � �¨��. �{´�� �¦�# ��� � ¬­¬º� � � ' � 0 �{´���� �¦´���«

´<��®Q�>�¦´��t�{�*# � ' �Q¬ � # ��� � � ' �¨������ �� = � = � � 7 � � 0 1Q¹ ®Q�.� ¥����¨���Q�G��´�«Q������ = � = � ? � �;� 7 � � 0 �<��.Gx># �*�{¥�¹ ' ���6�{� �¦´��:�½¹��� �6(@�¨¬­�¦�¨�

� � � � � = � ?, �Qv ��´��?# �Q�)�����*� � ¥¦�¨¬�¸<�¨��¹º��¹­�

1 0 0

0 0 0

0 0 0

,

0 0 0

0 1 0

0 0 0

,

0 0 0

0 0 0

0 0 1

,

0 1 0

1 0 0

0 0 0

,

0 0 1

0 0 0

1 0 0

,

0 0 0

0 0 1

0 1 0

.

, ¸<vA¸³��¹º��1V¹­��®Q��¥/�{¹­¸�¬º� # ���¨���?�¦´<�*�

A´<�¨�?( � ¬­¬�¥{�¨��¯³� ~���¥7# � �{¹º��1 �¦´�� ¥¦�}��� ´��¨�$��� ��_� ' � �Q�

�¦´�� ¥{�¨��¯ 0 �¦� B´<�¨�-( � ¬­¬ ¥{����¯N�¨������¬º¬ 0 �¨��. ¹º�@�¦´ � � ¹º��®Q��¥)�{¹­¸�¬º��� , §J����¦´���¥ �¨¥)1 � # ���2� +@�¦´��

� ��¥)# � � � �{¹º�¨� # �*�¦¥¦¹=<P¹­��¹º��®Q��¥)�¦¹º¸�¬­� 0 �¨��.V���

B−1 = (PA)−1 = A−1P−1� v

, ' v ��´��$�/� �*�¦�8# ���2�2¹º�6(@�¨¬­�¦�¨��� <��# � ¬º�*+A =

1 1

1 1

�¨��.B =

1 1

2 2

´��}®¨�A�¦´��$�{�# �

� � ¬­¬º� � � ' � , �¦´�� ¬­¹º���$� � �¨�����$.G¸�«��{´��$®Q� ' �{�¨¥(1,−1)

v 0 ¸ � � �{´���¹º¥ ' �Q¬ � # �V� � � ' ��� .�¹��_��¥ , (��Q¥A 0 ¹��� �-�¦´�� ¬­¹º��� � � �¨�����$. ¸�« �{´�� ®Q� ' �{�¨¥

(1, 1) 0 �¨��. (��¨¥B 0 ¹��� �?�{´�� ¬­¹º��� � � �¨�����$. ¸�«��¦´��

®¨� ' �¦�Q¥(1, 2)

v �

Page 127: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

� � ! 9�7�� , ���:�S�Q���{´�������¸ � �1Q��v��´�� ¥¦���¨¬�|N¸�« | # �*�¦¥¦¹ ' ��� (��Q¥7# �N®¨� ' �{�Q¥ � � � ' �

M� ��´�� ��« # # � �{¥¦¹ ' # �*�{¥�¹ ' ���.¹º�

M(��Q¥)#k�

� � ¸�� � � ' �S� �4(�«Q� � �.�. �o���8��« # # � �{¥¦¹ ' # �*�{¥�¹ ' ��� 0 �Q¥ # � ¬��¦¹ � ¬ «8¸�«�¥����¨¬�� � #t¸³��¥¦� 0 �¦´��t¥¦��� � ¬%� ¹­�

�)�¦¹º¬­¬��.��« # # � �{¥¦¹ ' # � �{¥¦¹=<+��� 7 ��� � � !�� =@?>; 9 � 9 � = � � � 7S

��´����������¦¯¨�$. �{´�¹­� 9 � ���/�{¹­�Q�8�Q� �¨� � <��# 0 �-¥¦����¬º¹ 3��8. �{´<�*���4¯¨� « � �Q¹º�2� �����8.��6�{�t¸³� �8# � ´<���¦¹ 3��8. +� � � 9 � = � ��� � ���� 7 ��� � � 7

S! � � � � = �"= ? �� � � � � �8� 9 � � ��´���«0��¥¦�G| ¸�« |e�¤« # # �$�¦¥¦¹ '

# �*�{¥�¹ ' ��������´���� �¦´���¥��4�¨¥��@�o�5� ¥¦�$9 � ¹º¥��8# ���2�{�$+uQ����´��$¸<���¦¹º��®¨� ' �¦�Q¥¦� # � �/�2¸+��¬­¹º�����¨¥¦¬ « ¹­��.�� � ����.����2���x ����´���¹º¥ ' ��#t¸�¹­�<�*�{¹­�Q���6# � �)� � ¥���. ��' �$��®¨��¥�«8®¨� ' �{�Q¥ , # �*�{¥�¹%<�v�¹­�

S�

�J��¥¦�$¹º���¨��� � �Q���¦¹­¸�¬º��¸<���¦¹º� , �¨¬º¬_��« # # �$�¦¥¦¹ ' v (��Q¥6�¦´�¹º��� <��*# � ¬­�+

S1 =

1 0 0

0 0 0

0 0 0

S2 =

0 0 0

0 1 0

0 0 0

S3 =

0 0 0

0 0 0

0 0 1

S4 =

0 1 0

1 0 0

0 0 0

S5 =

0 0 1

0 0 0

1 0 0

S6 =

0 0 0

0 0 1

0 1 0

¹­� ' �-�{´�¹º��¸<�¨��¹º� ' �Q�2� �¨¹­���2�.®¨� ' �{�Q¥�� 0 �{´�� ;>= ! � ? � = � ? � �S= ���

Page 128: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor Strang Quiz 1 October 4, 2006

Grading

1

2

3

4

Your PRINTED name is:

Please circle your recitation:

1) T 10 2-131 K. Meszaros 2-333 3-7826 karola

2) T 10 2-132 A. Barakat 2-172 3-4470 barakat

3) T 11 2-132 A. Barakat 2-172 3-4470 barakat

4) T 11 2-131 A. Osorno 2-229 3-1589 aosorno

5) T 12 2-132 A. Edelman 2-343 3-7770 edelman

6) T 12 2-131 K. Meszaros 2-333 3-7826 karola

7) T 1 2-132 A. Edelman 2-343 3-7770 edelman

8) T 2 2-132 J. Burns 2-333 3-7826 burns

9) T 3 2-132 A. Osorno 2-229 3-1589 aosorno

Page 129: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1 (24 pts.) This question is about an m by n matrix A for which

Ax =

1

1

1

has no solutions and Ax =

0

1

0

has exactly one solution.

(a) Give all possible information about m and n and the rank r of A.

(b) Find all solutions to Ax = 0 and explain your answer.

(c) Write down an example of a matrix A that fits the description in

part (a).

2

Page 130: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

This page intentionally blank.

3

Page 131: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (24 pts.) The 3 by 3 matrix A reduces to the identity matrix I by the following three

row operations (in order):

E21 : Subtract 4 (row 1) from row 2.

E31 : Subtract 3 (row 1) from row 3.

E23 : Subtract row 3 from row 2.

(a) Write the inverse matrix A−1 in terms of the E’s. Then compute A−1.

(b) What is the original matrix A ?

(c) What is the lower triangular factor L in A = LU ?

4

Page 132: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

This page intentionally blank.

5

Page 133: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (28 pts.) This 3 by 4 matrix depends on c:

A =

1 1 2 4

3 c 2 8

0 0 2 2

(a) For each c find a basis for the column space of A.

(b) For each c find a basis for the nullspace of A.

(c) For each c find the complete solution x to Ax =

1

c

0

.

6

Page 134: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

This page intentionally blank.

7

Page 135: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

4 (24 pts.) (a) If A is a 3 by 5 matrix, what information do you have about the

nullspace of A ?

(b) Suppose row operations on A lead to this matrix R = rref(A):

R =

1 4 0 0 0

0 0 0 1 0

0 0 0 0 1

Write all known information about the columns of A.

(c) In the vector space M of all 3 by 3 matrices (you could call this a

matrix space), what subspace S is spanned by all possible row reduced

echelon forms R ?

8

Page 136: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

This page intentionally blank.

9

Page 137: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ����������������������� "!$#&%'� (*)+���-,.��0/�132-�����

46587:9<;>=@?ABCD

EGF-HJILKNMLOQPSRNTVU WJX�Y[ZS\&]_^ `badcfehgji@adkl`

KNm&Z�X-]nZSo_\pI�o_m&Zrq-F�HsILI�Z�o_\ut X�t�\&F-Wv^

w8x yzw|{ }8~�w���w �.���b�����������Q� }8~&�Q��� ��~&����}�� ���Q�:���Q�}Qx yzw|{ }8~�w���} ���������������¡  }8~�w8��} ��~u¢Q¢���{ £��Q��������¤��x yzwQw }8~�w���} ���������������¡  }8~�w8��} ��~u¢Q¢���{ £��Q��������¤¢�x yzwQw }8~�w���w ����¥¦���Q�¨§�� }8~©}Q}¡ª ��~«w8¬��Qª � �n­��¡�Q®��¬Qx yzw8} }8~�w���} ����¯�°���±³²´��§ }8~&��¢Q� ��~&�Q�Q��{ µQ¶ µ��|·:�¡®��x yzw8} }8~�w���w �.���b�����������Q� }8~&�Q��� ��~&����}�� ���Q�:���Q��Qx y¸w }8~�w���} ����¯�°���±³²´��§ }8~&��¢Q� ��~&�Q�Q��{ µQ¶ µ��|·:�¡®��x y¹} }8~�w���} º�����»���§�� }8~&�Q��� ��~&����}�� £�¼ ��®�­ª�x yS� }8~�w���} ����¥¦���Q�¨§�� }8~©}Q}¡ª ��~«w8¬��Qª � �n­��¡�Q®��

Page 138: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

A ��B:D�������� y��� ³���n»����¨ � �Q§� �s�����Q»� s�¡§m���

n²´�¡ ��� ��

A � �Q������ ����

Ax =

1

1

1

�:��� = � � �"!$# � ;%��= � �¡§�°Ax =

0

1

0

�:����&�' 7)( � !+*,��= & � �-!$# � ;$��= �

. �Qx0/1 32Q� ��±³±54��Q���6 ���±³�7 § � �Q�¨²´�� 8 ��§ �����Q»�  m��§�°

n��§�°  8���$�«�¡§��

r� � A

�. ��x09: §�°b�¡± ±_�¨�Q± »  8 ��§��� «�

Ax = 0��§�°;&�' � ! 7�;>=<*"�"#@5´7:= �>= & 5 �

. ��x@? �6 ³ �� °��A� §S��§S�B����²@4�± � � � �L² �¡ «�6 3� A ��:�¡ DC� «�  8���f°��������� �4  8 ��§E ³§

4:���©  . ��x �

FHGJILKNMPOQGJR"S

. �QxAx =

0

1

0

�:��� GJR5T �¨�Q± »� � �Q§=⇒ N(A) = {0}

�¨�r = n

� . �J± �¨��Um = 3

�� ³§����Ax ∈ R

3� x

Ax =

1

1

1

�:��� §�� ����± »� � �Q§=⇒ C(A) 6= R

3U:�¨�

r < m�

y��������������¦ V���W4+�Q�¨�� X�� ±X ³ 8 ³���>Y m = 3

r = n = 1

�¡§�° m = 3

r = n = 2

. �:x;Z[ ³§����N(A) = {0}

. �+�>����»����Ax =

0

1

0

�:���1�¨�Q± »� � �Q§:x\U: 8�������] ³�¦� »�§� ���»��3���Q±³»� 8 ³�Q§V ��

Ax = 0U"���� X���^ ³�_��± ������±3�

x = 0� .Q` ��§;�+���a ³ ������

x =[

0

] �Q�x =

[

0

0

] °��a4���§�°� §�b �Q§^ �n = 1

�Q�n = 2

� x

. ��xA����»�± °D���

0

1

0

�Q�

1 0

0 1

0 0

. ²´�¡§c�´² �����74��Q���6 ��� ³±� ³ � ����x �

}

Page 139: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

B ��B:D�������� y����3�c�

3²´�� «�� ��

A����°�»������� ��  ���� °���§� � ³ V�.² �¡ ��� 3�

I���. 8��� � �Q±³± ���� §�b� 8���¨���

�����¹� 4������¡ 8 ³�Q§�� . § �Q�¨°����«x\Y

E21

Y Z »��� ��«���  4 (�����¸w

) � ���Q² �����r}n�E31

Y Z »��� ��«���  3 (�����¸w

) � ���Q² �����¹� �E23

Y Z »��� ��«���  J�¨���r� � ���Q² ����� }n�. �QxW? �6 ³ ��  8��� ³§c2����¨���-²´�� «�� ��

A−1 §¦ �����² ��� �  8��� E

� ������� & =;( ��� � # � &A

−1�

. ��x@? �:�¡  �� ����$�Q�� Xb §���±+² �¡ ��� 3�A �

. ��x@? �:�¡  �� ����$± �������� «�6 ��§�b�»�± ��� � ���� ��Q� L ³§

A = LU �

FHGJILKNMPOQGJR"S

. �Qx �_4�4�±X�  8���� ���������� 4������¡ 8 ³�Q§��  ��IU) >� �¡�

A−1 = E23E31E21

Y

1 0 0

0 1 0

0 0 1

−→

1 0 0

−4 1 0

0 0 1

−→

1 0 0

−4 1 0

−3 0 1

−→

1 0 0

−1 1 −1

−3 0 1

= A−1

. �:x �_4�4�±X�  8���1 ³§c2����¨��� � 4+���«�¡ � �Q§��� § ���\2Q���¨��� �Q��°����� «�IU) � ���

A = E−1

21E−1

31E−1

23

Y

1 0 0

0 1 0

0 0 1

−→

1 0 0

0 1 1

0 0 1

−→

1 0 0

0 1 1

3 0 1

−→

1 0 0

4 1 1

3 0 1

= A

` ���a���

1 0 0

4 1 1

3 0 1

1 0 0

−1 1 −1

−3 0 1

=

1 0 0

0 1 0

0 0 1

. ��xL =

1

4 1

1

1

1

3 1

=

1 0 0

4 1 0

3 0 1

Page 140: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

C ��B�� ������� y��� ³�3���

4² �¡ «�6 3� °��a4���§�°����Q§

cY

A =

1 1 2 4

3 c 2 8

0 0 2 2

. �Qx�� G�� T����cC:§�°b� ������ ³� � ���� 8���1����± »�² §6��4:� ��� � � A

�. ��x�� G�� T����

cC:§�°b� ������ ³� � ���� 8���$§�»�± ±³��4:� ����� � A

. ��x�� G�� T����cC:§�°  8���1����²@4�±³�� ������Q±³»� 8 ³�Q§

x ��

Ax =

1

c

0

FHGJILKNMPOQGJR"S

. �QxV¯�±� ³²@ ³§:�¡ � �Q§Wb X2����

1 1 2 4

0 c − 3 −4 −4

0 0 2 2

�¨�  ������¨� ������ V���@���������aY

� c 6= 3Uc− 3

��� 4� 32Q�� ���§�°U =

1 1 2 4

0 c − 3 −4 −4

0 0 2 2

−→ R =

1 0 0 2

0 1 0 0

0 0 1 1

�¨�´� �:���6 � � �Q� C(A) �� ����7C:���© s ��������1���Q±³»�² §���� � A

Y

1

3

0

,

1

c

0

,

2

2

2

� c = 3Uc − 3 = 0

��§�°U =

1 1 2 4

0 0 −4 −4

0 0 0 0

−→ R =

1 1 0 2

0 0 1 1

0 0 0 0

�¨�  «������ 8���1C����¨ J��§�°V ��� �¨° ���Q±³»�² §���� � A���s� �:���6 � � �Q� C(A)

Y

1

3

0

,

2

2

2

¢

Page 141: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

. �:x � c 6= 3U  8���$��4��a�> ��±_���Q±³»� 8 ³�Q§���b 32Q�

N(A) =

x4

−2

0

−1

1

� c = 3U  8���$��4��a�> ��±_���Q±³»� 8 ³�Q§���b 32Q�

N(A) =

x2

−1

1

0

0

+ x4

−2

0

−1

1

. ��xV� �0 §��64+�>�� 8 ³�Q§HUxp =

0

1

0

0

� �Q§��74����¨ � ���»�± �����¨�Q± »  8 ��§ . �� ����������������>�� J��§�� � �����«x

� �Q� c 6= 3U� ����1���Q²W4�±³�� «���¨�Q± »  8 ��§ �

0

1

0

0

+ x4

−2

0

−1

1

� �Q� c = 3U� ����1���Q²W4�±³�� «���¨�Q± »  8 ��§ �

0

1

0

0

+ x2

−1

1

0

0

+ x4

−2

0

−1

1

¬

Page 142: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

D ��B:D�������� . ��x � A ³� �

3���

5² �¡ «�6 3�-U����:�¡ � § � ����² �¡ 8 ³�Q§ °�� �Q��»E�:� 2�� �����Q»�   ����

§�»�± ±³��4:�����$� � A �. ��x Z »�4�4��Q�¨���¨�A�S� 4����«�� 8 ��§����Q§

A± ���¡°  «�  8�� ³��²´�¡ ��� ��

R =��� µ��

(A)Y

R =

1 4 0 0 0

0 0 0 1 0

0 0 0 0 1

? �6 ³ ��$��± ±���§���� §; § � �Q�¨²´�� 8 ��§ �����Q»� � ����1���Q±³»�² §���� � A�

. ��x §L ���� 2Q�a�  «�Q� ��4������M

� � ��± ± 3���

3²´�� «�� X����� . �Q��» ����»�± °,���¡± ±� 8�� � �

²´�� «�� ��.�64:������x\U����:�¡ ��¨»�����4������S ���64:��§�§���° ��� ��±³±�4��Q���6 ���±³������� �¨��°�»�����°

�a������± �Q§ � �Q�¨² � R �

FHGJILKNMPOQGJR"S

. �QxN(A)

�:��� °� ² ��§��� ��§ ��M I�T����\M2. ��§�°b�¡  ² ���¨ 

5x �

. �:x .�� � �A� x ` �Q± »�² §���w�U�¢�U�¬.� � A � �Q��² � �:�¡�� � � ��� C(A)�

.≈A���� x ` �Q±³»�² §�}] ³�

4 × (` �Q±³»�² §Nw

) �` ��± »�² §V� ³�

0

0

0

. ��xA =

a b c

0 d e

0 0 f

U� ����$���  J� � »�4�4+���  ��� ��§�bQ»�± ��� ² �¡ ��� ��������

. � �:���� ³� � � �6 3� �>������±³�Q§ � �Q��² �� �

1

1

1

,

1

1

,

1

1

,

1

,

1 1

,

1 1

� x

Page 143: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor Strang Quiz 1 February 28, 2005

Grading

1

2

3

4

Your PRINTED name is:

Please circle your recitation:

1) M 2 2-131 A. Chan 2-588 3-4110 alicec

2) M 3 2-131 A. Chan 2-588 3-4110 alicec

3) M 3 2-132 D. Testa 2-586 3-4102 damiano

4) T 10 2-132 C.I. Kim 2-273 3-4380 ikim

5) T 11 2-132 C.I. Kim 2-273 3-4380 ikim

6) T 12 2-132 W.L. Gan 2-101 3-3299 wlgan

7) T 1 2-131 C.I. Kim 2-273 3-4380 ikim

8) T 1 2-132 W.L. Gan 2-101 3-3299 wlgan

9) T 2 2-132 W.L. Gan 2-101 3-3299 wlgan

Page 144: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1 (26 pts.) Suppose A is reduced by the usual row operations to

R =

1 4 0 2

0 0 1 2

0 0 0 0

.

Find the complete solution (if a solution exists) to this system involving the

original A:

Ax = sum of the columns of A.

2

Page 145: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (18 pts.) Suppose the 4 by 4 matrices A and B have the same column space. They

may not have the same columns !

(a) Are they sure to have the same number of pivots ? YES NO WHY?

(b) Are they sure to have the same nullspace ? YES NO WHY?

(c) If A is invertible, are you sure that B is invertible ? YES NO WHY?

3

Page 146: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (40 pts.) (a) Reduce A to an upper triangular matrix U and carry out the same

elimination steps on the right side b:

[

A b]

=

3 3 1 b1

3 5 1 b2

−3 3 2 b3

−→[

U c]

Factor the 3 by 3 matrix A into LU = (lower triangular)(upper triangular).

(b) If you change the last entry in A from 2 to (what number gives Anew?) then

Anew becomes singular. Describe its column space exactly.

(c) In that singular case from part (b), what condition(s) on b1, b2, b3 allow the system

Anewx = b to be solved ?

(d) Write down the complete solution to Anewx =

3

3

−3

(the first column).

4

Page 147: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

5

Page 148: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

4 (16 pts.) Suppose the columns of a 7 by 4 matrix A are linearly independent.

(a) After row operations reduce A to U or R, how many rows will be all

zero (or is it impossible to tell) ?

(b) What is the row space of A ? Explain why this equation will surely be

solvable:

ATy =

1

0

0

0

.

6

Page 149: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor Strang Quiz 1 February 28, 2005

Grading

1

2

3

4

Your PRINTED name is: SOLUTIONS

1 (26 pts.) Suppose A is reduced by the usual row operations to

R =

1 4 0 2

0 0 1 2

0 0 0 0

.

Find the complete solution (if a solution exists) to this system involving the

original A:

Ax = sum of the columns of A.

Solution

The complete solution x = xparticular + xnullspace has

xparticular =

1

1

1

1

xnullspace = x2

−4

1

0

0

+ x4

−2

0

−2

1

.

The free variables x2 and x4 can take any values.

The two special solutions came from the nullspace of R = nullspace of A.

The particular solution of 1’s gives Ax = sum of the columns of A.

Note: This also gives Rx = sum of columns of R.

1

Page 150: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (18 pts.) Suppose the 4 by 4 matrices A and B have the same column space. They

may not have the same columns !

(a) Are they sure to have the same number of pivots ? YES NO WHY?

(b) Are they sure to have the same nullspace ? YES NO WHY?

(c) If A is invertible, are you sure that B is invertible ? YES NO WHY?

Solution

(a) YES. Number of pivots = rank = dimension of the column space.

This is the same for A and B.

(b) NO. The nullspace is not determined by the column space (unless we know that the

matrix is symmetric.) Example with same column spaces but different nullspaces:

A =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

and B =

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

.

(c) YES. If A is invertible, its column space is the whole space R4. Since B has the same

column space, B is also invertible.

2

Page 151: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (40 pts.) (a) Reduce A to an upper triangular matrix U and carry out the same

elimination steps on the right side b:

[

A b

]

=

3 3 1 b1

3 5 1 b2

−3 3 2 b3

−→

[

U c

]

Factor the 3 by 3 matrix A into LU = (lower triangular)(upper triangular).

(b) If you change the last entry in A from 2 to (what number gives Anew?) then

Anew becomes singular. Describe its column space exactly.

(c) In that singular case from part (b), what condition(s) on b1, b2, b3 allow the system

Anewx = b to be solved ?

(d) Write down the complete solution to Anewx =

3

3

−3

(the first column).

Solution

(a)[

A b

]

=

3 3 1 b1

3 5 1 b2

−3 3 2 b3

−→

[

U c

]

=

3 3 1 b1

0 2 0 b2 − b1

0 0 3 b3 − 3b2 + 4b1

Here A =

3 3 1

3 5 1

−3 3 2

= L U =

1 0 0

1 1 0

−1 3 1

3 3 1

0 2 0

0 0 3

(b) If you change A33 from 2 to −1, the third pivot is reduced by 3 and Anew becomes

singular. Its column space is the plane in R3 containing all combinations of the first

columns (3, 3,−3) and (3, 5, 3).

(c) We need b3 − 3b2 + 4b1 = 0 on the right side (since the left side is now a row of zeros).

3

Page 152: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(d) Anew gives

3 3 1 3

3 5 1 3

−3 3 −1 −3

−→

3 3 1 3

0 2 0 0

0 0 0 0

.

Certainly xparticular =

1

0

0

. Also xnullspace = x3

−3

0

1

.

The complete solution is xparticular+ any vector in the nullspace.

4 (16 pts.) Suppose the columns of a 7 by 4 matrix A are linearly independent.

(a) After row operations reduce A to U or R, how many rows will be all

zero (or is it impossible to tell) ?

(b) What is the row space of A ? Explain why this equation will surely be

solvable:

ATy =

1

0

0

0

.

Solution

(a) The rank is 4, so there will be 7 − 4 = 3 rows of zeros in U and R.

(b) The row space of A will be all of R4 (since the rank is 4). Then every vector c in R4 is

a combination of the rows of A, which means that ATy = c is solvable for every right

side c.

4

Page 153: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 QUIZ 1 March 05, 2007

Grading

1

2

3

4

5

Total:

Your PRINTED name is: SOLUTIONS

Please circle your recitation:

(1) M 2 2-131 A. Osorno(2) M 3 2-131 A. Osorno(3) M 3 2-132 A. Pissarra Pires(4) T 11 2-132 K. Meszaros(5) T 12 2-132 K. Meszaros(6) T 1 2-132 Jerin Gu(7) T 2 2-132 Jerin Gu

Page 154: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Problem 1 (20 points)

Are the following sets of vectors in R3 vector subspaces? Explain your answer.

(a) vectors (x, y, z)T such that 2x− 2y + z = 0 YES NO

It is given by a linear equation equal to 0. You can also think about it as the nullspace ofthe matrix

(2 −2 1

).

(b) vectors (x, y, z)T such that x2 − y2 + z = 0 YES NO

The vector

1

0

−1

is in the set, but if you multiply by −1,

−1

0

1

is not.

(c) vectors (x, y, z)T such that 2x− 2y + z = 1 YES NO

It is given by a linear equation not set equal to 0. In particular, it doesn't contain the 0 vector.

(d) vectors (x, y, z)T such that x = y AND x = 2z YES NO

It is the intersection of two planes! We can think about this set as the nullspace of the

matrix

1 −1 0

1 0 −2

.

(e) vectors (x, y, z)T such that x = y OR x = 2z YES NO

It is the union of two planes! Take for example

1

1

0

+

2

0

1

=

3

1

1

which is not in the set.

Page 155: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Problem 2 (20 points)

Let A be a 4× 3 matrix with linearly independent columns.

(a) What are the dimensions of the four fundamental subspaces C(A), N(A), C(AT ), N(AT )?

(b) Describe explicitly the nullspace N(A) and the row space C(AT ) of A.

(c) Suppose that B is a 4× 3 matrix such that the matrices A and B have exactly the samecolumn spaces C(A) = C(B) and the same nullspaces N(A) = N(B).

Are you sure that in this case A = B? YES NOProve that A = B or give a counterexample where A 6= B.

Solution 2

(a) The columns are linearly independent, so the rank of the matrix is 3. Then dimC(A) = 3,dimC(AT ) = 3, dimN(A) = 0, dimN(AT ) = 3.

(b) Since C(AT ) is a 3-dimensional subspace of R3, it is all of R3.

(c) The answer is NO, for example

1 0 0

0 1 0

0 0 1

0 0 0

and

2 0 0

0 2 0

0 0 2

0 0 0

.

Page 156: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Problem 3 (20 points)

Consider the matrix

A =

1 1 1 1

1 2 3 5

1 3 5 9

(a) What is the rank of A?

(b) Find a matrix B such that the column space C(A) of A equals the nullspace N(B) of B.

(c) Which of the following vectors belong(s) to the column space C(A):

1

−2

1

,

2

0

−2

,

0

2

4

8

,

1

−1

1

−1

?

Solution 3

We will eliminate the augmented matrix

1 1 1 1 b1

1 2 3 5 b2

1 3 5 9 b3

Ã

1 1 1 1 b1

0 1 2 4 b2 − b1

0 2 4 8 b3 − b1

Ã

1 1 1 1 b1

0 1 2 4 b2 − b1

0 0 0 0 b3 − 2b2 + b1

(a) The rank is 2.(b) We see from the last row of the reduced matrix that the condition for a vector to be inthe column space is b1 − 2b− 2 + b3 = 0. Thus C(A) is N(B) for

B =(1 −2 1

).

(c) The last two vectors can't belong to the column space because they are in R4. From the

condition mentioned in part (b), we see that

2

0

−2

is in the column space, but

1

−2

1

is

not.

Page 157: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Problem 4 (20 points)

Consider the matrix

A =

1 1 1

1 2 3

3 4 k

(a) For which values of k will the system Ax = (2, 3, 7)T have a unique solution?

(b) For which values of k will it have an in�nite number of solutions?

(c) For k = 4, �nd the LU-decomposition of A.

(d) For all values of k, �nd the complete solution to the system Ax = (2, 3, 7)T .(You might need to consider several cases.)

Solution 4

We will eliminate the augmented matrix:

1 1 1 2

1 2 3 3

3 4 k 7

Ã

1 1 1 2

0 1 2 1

0 1 k − 3 1

Ã

1 1 1 2

0 1 2 1

0 0 k − 5 0

(a) and (b) We see from this that no matter what k is there is always at least one so-lution (there is only a potentially 0 row in the eliminated matrix, and we get a 0 in theaugmented vector). We could have seen that by inspection from the original matrix, since

1

1

3

+

1

2

4

=

2

3

7

.

For k 6= 5, the matrix has rank 3, so there is a unique solution. For k = 5 the matrix hasrank 2, so there are in�nitely many solutions.

Page 158: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(c) L=

1 0 0

1 1 0

3 1 1

using the multipliers, and U=

1 1 1

0 1 2

0 0 −1

from the elimination above.

(d) As noted above, for k 6= 5 there is a unique solution, given by

1

1

0

. We can get this

from the eliminated matrix, or as mentioned above, by inspection.

For k = 5,

1

1

0

is a particular solution; the general soltuion is given by adding vectors in

the nullspace:

1

1

0

+ c

1

−2

1

.

Page 159: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Problem 5 (20 points)

Consider the matrix

A =

1 2 −1 0 0

1 2 0 2 2

1 2 −1 0 0

2 4 0 4 4

(a) Find a basis of the column space C(A).

(b) Find a basis of the nullspace N(A).

(c) Find linear conditions on b1, b2, b3, b4 that guarantee that the system Ax = (b1, b2, b3, b4)T

has a solution.

(d) Find the complete solution for the system Ax = (0, 1, 0, 2)T .

Solution 5

You could �nd the following answers by eliminating, but also, by inspection.

(a){

1

1

1

2

,

−1

0

−1

0

}

(b){

−2

1

0

0

0

,

−2

0

−2

1

0

,

−2

0

−2

0

1

}

(c) b3 − b1 = 0 and b4 − 2b2 = 0.

Page 160: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(d) The general solution is:

1

0

1

0

0

+ x2

−2

1

0

0

0

+ x4

−2

0

−2

1

0

+ x5

−2

0

−2

0

1

.

Page 161: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ������������������������ � !#"%$'&(� )*�+-,/.*�1032����4�

57698/:<;>=<?@AB

C�D�E1FHGJIHKMLONJPRQ S1T4UWVOX�Y[Z

GJ\�V�T�Y VO][X^F�][\�V`_�D4EaFHF�V�][Xcb-T+b�X�D�SdZ

e9f g*h h9ijelk�e monqp%rtsvuxwzy|{ h9i^kMkM} k~ije9� e9� ����� �����~�hMf g�k h9ijelk�e monqp%rtsvuxwzy|{ h9i^kMkM} k~ije9� e9� ����� �����~�k�f g�k h9ijelk�h �%nq������wzrt� h9i�hM�-e k~i'�M���M� �/���M�����/���� f ��e|� h9ijelk�h ��nq� ux¡ h9i^kMkMk k~i'�t¢Mht� £M¤q�-�l¤�Mf ��eMe h9ijelk�h ¥<n§¦-��yM¨ h9i^kM�M} k~i � kt��h �|�q�����f ��e9h h9ijelk�h ¥<n§¦-��yM¨ h9i^kM�M} k~i � kt��h �|�q����Mf �©e h9ijelk�e ��nq� ux¡ h9i^kMkMk k~i'�t¢Mht� £M¤q�-�l¤¢�f �©e h9ijelk�h mon§ª«svyM¨¬��y h9i�hMht} k~ije9��¢M} �-� �������q�}�f �­h h9ijelk�h mon§ª«svyM¨¬��y h9i�hMht} k~ije9��¢M} �-� �������q�

Page 162: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

@ �vB���������� ����

A =

1 1 1

2 2 2

3 2 4

� rMf����R���xu w u �/r� vu ��������¨¬y|{M�� v�/r� � ��� ��y!�x¡�w � s"�/r���#��yM��svu s$ s1y%& ��yMsv�%{M���� yt¨vs(x, y, z)T ' u( � 2x − y = 0

n�*) f+���#���xu w u �/r� vu ��������¨vy|{M�, v�/r� - ��� ¨vy ' s"�/r���.��yM��svu s$ s y%/ ��yMsv� {M���� yt¨vs

(x, y, z)T ' u( � y + z = 2xn

h

Page 163: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

������������ ������� ������������������������!

k

Page 164: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

A ��� ��������� �/yM¨4�lr�j�7y% v���«��u �M� ��lrts¬��s ) ��� y ' �-���-��u ) u r 3× 3wzr� ¨¬u��

A ' u � ¨ rt��� rrt���

���%s �§����u�/�� ��yM����u( uxyM�7yM¨ rt¨"�M¡�� ��yM��{ u ����u ���!� � �/r� u( u s uxw �§yMsvs¬u ) �x�tn

� rMfr = 0

�col(A) = row(A)

� �lfr = 0

�col(A) 6= row(A)

�*) fr = 1

�col(A) = row(A)

� % fr = 1

�col(A) 6= row(A)

� �lfr = 2

�col(A) = row(A)

� ��fr = 2

�col(A) 6= row(A)

� �qfr = 3

�col(A) = row(A)

� �qfr = 3

�col(A) 6= row(A)

Page 165: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

������������ ������� ������������������������!

Page 166: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

B �vB���������� ����

A =

1 a 0 d 0 g

0 b 1 e 0 h

0 c 0 f 1 i

0 0 0 0 0 0

r����v =

p

q

r

s

� rMf � u � � v��� ��yMw ���x�� ��s¬y!� ¡� u yt�+ yAx = v

��u %s = 1

n�*) f � u � � v��� ��yMw ���x�� ��s¬y!� ¡� u yt�+ y

Ax = v��u %

s = 0n

� �������� ����s" au(%��tyM¡ ��yM�� ' yM¨ �+ y y �/rt¨ ��� f

Page 167: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

������������ ������� ������������������������!

Page 168: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

��������� � ������������������������ � !#"%$'&(� )*�+-,/.*�1032����4�

57698/:<;>=<?@AB

C�D�E1FHGJIHKMLONJPRQ S1T4UWVOX�Y[Z \R]_^a`cbedf]hgi\

GJj�V�T�Y VOk[XlF�k[j�Vnm�D4EoFHF�V�k[Xqp-T+p�X�D�SrZ

s9t u*v v9wxszy�s {}|�~%����������� v9wlyMyM� y�wxs9� s9� ����� �������vMt u�y v9wxszy�s {}|�~%����������� v9wlyMyM� y�wxs9� s9� ����� �������y�t u�y v9wxszy�v �%|������������ v9w�vM�-s y�w'�M�¡ M  ¢/£�¤M¥¡¦§�/�¡¨© t ª«s�¬ v9wxszy�v ­�|��f��® v9wlyMyMy y�w'��¯Mv�  °M±�¤-�z±�Mt ª«sMs v9wxszy�v ²<|´³-���Mµ v9wlyM M� y�w © y� �v ��¦��¡¢ �t ª«s9v v9wxszy�v ²<|´³-���Mµ v9wlyM M� y�w © y� �v ��¦��¡¢�Mt ª¶s v9wxszy�s ­�|��f��® v9wlyMyMy y�w'��¯Mv�  °M±�¤-�z±¯�t ª¶s v9wxszy�v {}|´·¸���Mµ¹��� v9w�vMv�� y�wxs9�¡¯M� �-� ���¡¢�¨����t ªºv v9wxszy�v {}|´·¸���Mµ¹��� v9w�vMv�� y�wxs9�¡¯M� �-� ���¡¢�¨��

Page 169: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

@ ��B���������� ����

A =

1 1 1

2 2 2

3 2 4

� �Mt����R����� � � �/�� �� ��������µ¹���M�� ��/�� � ��� ���!��®�� � �"�/����#���M����� �$ �1�%& ���M���%�M���� ��µ��(x, y, z)T ' �( � 2x − y = 0

|�*) t+���#����� � � �/�� �� ��������µ����M�, ��/�� - ��� µ�� ' �"�/����.���M����� �$ � �%/ ���M��� �M���� ��µ��

(x, y, z)T ' �( � y + z = 2x|

021436587:9;14<>=

� �Mt

1 1 1 x

2 2 2 y

3 2 4 z

−→

1 1 1 x

0 0 0 y − 2x

0 −1 1 z − 3x

=⇒ y − 2x = 0 ⇐⇒ 2x − y = 0|

�?) tCS(AT) = RS(A)

1 2 3 x

1 2 2 y

1 2 4 z

−→

1 2 3 x

0 0 −1 y − x

0 0 1 z − x

−→

1 2 3 x

0 0 −1 y − x

0 0 0 z − x + y − x

=⇒ z + y − 2x = 0 ⇐⇒ z + y = 2x|

v

Page 170: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

A ��� ��������� ­/�Mµ4�z��x�7�% ����¸��� �M� ��z���¹��� ) ��� � ' �-���-��� ) � � 3× 3���� µ¹���

A ' � � µ ����� r�����

���%� �´������/�� ���M�����( ���M�7�Mµ ��µ"�M®�� ���M��� � ����� ���!� � �/�� �( � � ��� �´�M���¹� ) ����|

� �Mtr = 0

�col(A) = row(A)

� �ztr = 0

�col(A) 6= row(A)

�*) tr = 1

�col(A) = row(A)

� % tr = 1

�col(A) 6= row(A)

� �ztr = 2

�col(A) = row(A)

� �§tr = 2

�col(A) 6= row(A)

� ��tr = 3

�col(A) = row(A)

� ��tr = 3

�col(A) 6= row(A)

021436587:9;14<>=

� �Mt3 × 3

¬ � �4 µ���� � ��t �o� ��������� ) � �¡|r = 0 =⇒ CS(A) = 0 = RS(A)

�?) t

1 0 0

0 0 0

0 0 0

� % t

0 1 0

0 0 0

0 0 0

� �zt

1 0 0

0 1 0

0 0 0

� �§t

0 1 0

0 0 1

0 0 0

� �/t3 × 3

������ �( �7���� µ¹��� � ��t �o� ��������� ) � �¡|r = 3 =⇒ CS(A) = R

3 = RS(A)|

y

Page 171: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

B ��B���������� ����

A =

1 a 0 d 0 g

0 b 1 e 0 h

0 c 0 f 1 i

0 0 0 0 0 0

�¡���v =

p

q

r

s

� �Mt ­ � � � ���� ���M� ������ ���¹�!� ®� � ���+ �Ax = v

��� %s = 1

|�*) t ­ � � � ���� ���M� ������ ���¹�!� ®� � ���+ �

Ax = v��� %

s = 0|

� � 9 < 7�� �����" o�(%����M® ���M��� ' �Mµ �+ � � �/��µ ��� t

021436587:9;14<>=

� �Mt �o� �¹�!� ®� � ����|ª ��� � ���" µ¹� ' �%

A��� �� ������µ��M��| %

s = 1� ' � ���� 0 = 1

|�?) tR����

x = (x1, x2, x3, x4, x5, x6)�����-� �

x2, x4, x6

) � %�µ¹�����¡��µ�� � ) � ����|

xparticular =

p

0

q

0

r

0

©

Page 172: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

ª<� �/� �- ����%� �´����� ����¹�!� ®� �� �M������ �

x2 =−1

x4 = 0

x6 = 0

a

−1

b

0

c

0

,

x2 = 0

x4 =−1

x6 = 0

d

0

e

−1

f

0

,

x2 = 0

x4 = 0

x6 =−1

g

0

h

0

i

−1

ª ��� ����� ������ ������!��®� ���M���

x =

p

0

q

0

r

0

+ x2

a

−1

b

0

c

0

+ x4

d

0

e

−1

f

0

+ x6

g

0

h

0

i

−1

Page 173: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor Johnson Quiz 1 October 3, 2007

SOLUTIONS

1 (20 pts.) Find all solutions to the linear system

x + 2y + z − 2w = 5

2x + 4y + z + w = 9

3x + 6y + 2z − w = 14

Solution:

We perform elimination on the augmented matrix:1 2 1 −2 5

2 4 1 1 9

3 6 2 −1 14

1 2 1 −2 5

0 0 −1 5 −1

0 0 −1 5 −1

1 2 1 −2 5

0 0 −1 5 −1

0 0 0 0 0

,

So y and w are free variables. Thus special solutions to Ax = 0 are given by setting

y = 1, w = 0 and y = 0, w = 1 respectively, i.e.

s1 =

−2

1

0

0

, s2 =

−3

0

5

1

.

Moreover, a particular solution to the system is given by setting y = w = 0, i.e.

xp =

4

0

1

0

.

We could have read these special and particular solutions off even more easily by performing

one more elimination step to get the row-reduced echelon matrix:

Page 174: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1 2 0 3 4

0 0 1 −5 1

0 0 0 0 0

= R.

Notice that the last column gives the values of the pivot variables for the particular solution,

and the free columns give the values of the pivot variables in the special solutions (multiplied

by −1), as was shown in class.

We conclude that the general solutions to this system are given by

x = xp + c1s1 + c2s2 =

−2c1 − 3c2 + 4

c1

5c2 + 1

c2

,

where c1 and c2 are arbitrary constants.

2

Page 175: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (30 pts.) In class, we learned how to do “downwards” elimination to put a matrix

A in upper-triangular (or echelon) form U : not counting row swaps, we

subtracted multiples of pivot rows from subsequent rows to put zeros below

the pivots, corresponding to multiplying A by elimination matrices.

Instead, we could do elimination “leftwards” by subtracting multiples of

pivot columns from leftwards columns, again to get an upper-triangular

matrix U . For example, let:

A =

7 6 4

6 3 12

2 0 1

We could subtract twice the third column from the first column to eliminate

the 2, so that we get zeros to the left of the “pivot” 1 at the lower right.

(i) Continue this “leftwards” elimination to obtain an upper-triangular

matrix U from the A above, and write U in terms of A multiplied by a

sequence of matrices corresponding to each leftwards-elimination step.

(ii) Suppose we followed this process for an arbitrary A (not necessarily

square or invertible) to get an echelon matrix U . Which of the column

space and null space, if any, are the same between A and U , and why?

(iii) Is the U that we get by leftwards elimination always the same as the

U we get from ordinary downwards elimination? Why or why not?

Solution:

(i) The “leftwards” elimination procedure is

A =

7 6 4

6 3 12

2 0 1

−1 6 4

−18 3 12

0 0 1

35 6 4

0 3 12

0 0 1

= U,

3

Page 176: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

where the first step sent (col1) → (col1)−2(col3) and the second step sent (col1) → (col1)+

6(col2). Since these operations are linear combinations of the columns, they correspond to

multiplying on the right by elimination matrices:

U =

35 6 4

0 3 12

0 0 1

= A

1 0 0

0 1 0

−2 0 1

1 0 0

6 1 0

0 0 1

(One way to get these elimination matrices, as usual, is to do the corresponding operation

on the 3× 3 identity matrix.)

(ii) As above, U = AE (the elimination matrices multiply on the right). It follows that the

column space of A is the same as the column space of U , but the null spaces are different.

Informally, by multiplying E on the right, we modify the input vectors of A (changing the

null space), but the output vectors are still made of columns of A (preserving the column

space). To be more careful, we need the fact that E is invertible (as elimination always is);

otherwise, C(AE) could be a smaller subspace of C(A).

More precisely, since U = AE above, where E are the elimination matrices, any x = Uy =

A(Ey), so any x in C(U) is in C(A). Also vice-versa, since A = UE−1. So C(U) = C(A).

However, if x is in the null space N(U) (i.e. Ux = 0 = AEx), this only means Ex is in

N(A), not x. So the null spaces are different in general (but have the same dimension).

[Compare to the case of ordinary elimination, which preserves N(A) but changes C(A). Left

elimination is equivalent to “upwards” elimination on AT —this preserves the row space of

AT , meaning that the column space of A is preserved etc.]

(iii) The are not the same U in general (although of course there are special cases where

they are the same, such as when A is upper-triangular to start with). There are several ways

to see this.

The simplest way is to give any counterexample: e.g., apply downwards elimination to

A above and you will get a different result. For example, downward elimination never

4

Page 177: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

changes the upper-left corner (7), but the upper-left corner was changed (to 35) by leftwards

elimination above.

Abstractly, we know from class that downwards elimination always preserves the null space,

whereas we just saw that upwards elimination does not. So, they cannot be the same.

It is not sufficient to simply say that left-elimination does different sorts of operations than

down-elimination—there are lots of problems where you can do a different sequence of oper-

ations and still get the same result. (For example, we could use left elimination to find A−1,

and of course there is only one possible A−1 if it exists at all.)

5

Page 178: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (20 pts.) Determine whether the following statements are true or false, and explain

your reasoning.

(♣) If A2 = A, then A = 0 or A = I.

(♦) Ignoring row swaps, any invertible matrix A has a “UL” factorization

(as an alternative to LU factorization): A can be written as A =

UL where U and L are some upper and lower triangular matrices,

respectively.

(♠) All the 2 × 2 matrices that commute with A =

1 3

2 0

(i.e. all

2× 2 matrices B with AB = BA) form a vector space (with the usual

formulas for addition of matrices and multiplication of matrices by

numbers).

(♥) There is no 3× 3 matrix whose column space equals its nullspace.

Solution

(♣) False.

Counterexample: if A =

1 0

0 0

, then A2 = A but A 6= I and A 6= 0.

Another counterexample was given in Pset 2 Problem 8 (a). Note that if we assume A is

invertible, then the only solution is A = I (multiply both sides of A2 = A by A−1), but this

assumption is not warranted here.

(♦) True.

Instead of “downwards” elimination we can also do “upwards” elimination to put A into

lower-triangular form L (possibly with row swaps). In this procedure the corresponding

elimination matrices are upper-triangular, but still multiply on the left (since they are still

row operations), so we get a UL factorization.

Alternatively, the “leftwards” elimination of problem 2 also leads to a UL factorization,

because the (lower-triangular!) elimination matrices multiply on the right to give U = AL−1.

6

Page 179: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Technically, however, this process may require column swaps if zeros are encountered in pivot

positions.

(♠) True.

We need to know that linear combinations of vectors stay in the vectors space. If B is a

matrix where AB = BA, then clearly A(cB) = c(AB) = c(BA) = (cB)A for any c. If B′ is

another matrix where AB′ = B′A, then A(B + B′) = AB + AB′ = BA + B′A = (B + B′)A.

(The other properties of a vector space, associativity etcetera, need not be shown since they

are automatic for the usual addition and multiplication operations.)

(♥) True.

Suppose the rank of A is r, then the dimension of column space is r, and the dimension of

null space is 3−r. Obviously no matter r = 0, 1, 2, 3, we always have r 6= 3−r. (Equivalently,

r = 3 − r would imply a fractional rank r = 3/2!) This shows that the two spaces are not

the same, since they must have different dimensions.

7

Page 180: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

4 (30 pts.) The following information is known about an m× n matrix A:

A

1

−2

0

1

=

2

4

, A

0

2

1

3

=

0

0

, A

2

0

0

1

=

5

10

, A

3

2

0

0

=

1

2

.

(α) Show that the vectors

1

−2

0

1

,

0

2

1

3

,

2

0

0

1

,

3

2

0

0

form a basis of R4.

(β) Give a matrix C and an invertible matrix B such that A = CB−1.

(You don’t have to evaluate B−1 or find A explicitly. Just say what B

and C are and use them to reason about A in the subsequent parts.)

(γ) Find a basis for the null space of AT .

(δ) What are m, n, and the rank r of A?

Solution:

(α) We are in R4, which is four-dimensional, so any four linearly independent vectors forms

a basis as shown in class. Thus, we just need to show that these four vectors are linearly

independent, which is equivalent to showing that the 4× 4 matrix whose columns are these

vectors has full column rank (null space = {0}). Proceeding by elimination:

B =

1 0 2 3

−2 2 0 2

0 1 0 0

1 3 1 0

1 0 2 3

0 2 4 8

0 1 0 0

0 3 −1 −3

1 0 2 3

0 2 4 8

0 0 −2 −4

0 0 −7 −15

1 0 2 3

0 2 4 8

0 0 −2 −4

0 0 0 −1

= U.

Thus, there are four pivots, and hence it has full column rank as desired.

8

Page 181: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(β) The provided equations multiply A by four vectors to get four vectors, which by definition

of matrix multiplication (recall the column picture) can be combined into a single equation

where A is multiplied by a matrix with four columns to yield a matrix with four columns:

A

1 0 2 3

−2 2 0 2

0 1 0 0

1 3 1 0

=

2 0 5 1

4 0 10 2

.

Thus if we take

C =

2 0 5 1

4 0 10 2

and

B =

1 0 2 3

−2 2 0 2

0 1 0 0

1 3 1 0

we have A = CB−1. Since B is precisely the matrix of the basis vectors from part (α), its

invertibility follows from above (it is 4× 4 and has 4 pivots).

(γ) Since A = CB−1, we have

AT = (B−1)T CT = (BT )−1CT .

(As in class, because B is invertible, BT is too.) Just as for elimination (multiplying on the

left by an invertible elimination matrix), the null space is preserved when CT → (BT )−1CT .

[You need not prove this, because the proof is the same as in class. Recall that if CTx = 0

then ATx = 0 from above, and vice versa if we multiply both sides by BT .] That means we

just need to find the null space of CT by elimination:

9

Page 182: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 4

0 0

5 10

1 2

2 4

0 0

0 0

0 0

,

in which there is only one free variable, so there is one special solution (the basis of the null

space)

s1 =

−2

1

,

or any multiple thereof. (You can also find this special solution by inspection, without

elimination.)

(δ) Since A times a 4-vector is a 2-vector, we must have m = 2 and n = 4. Equivalently,

from part (β) we saw that A was a 2× 4 matrix multiplied by a 4× 4 matrix, giving a 2× 4

matrix. Moreover, from above the dimension of N(AT ) is 1, but this must equal m − r, so

we obtain r = 1.

10

Page 183: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor Edelman Quiz 1 September 29, 2008

Grading

1

2

3

4

Your PRINTED name is:

Please circle your recitation:

1) T 10 2-131 J.Yu 2-348 4-2597 jyu

2) T 10 2-132 J. Aristo� 2-492 3-4093 jeffa

3) T 10 2-255 Su Ho Oh 2-333 3-7826 suho

4) T 11 2-131 J. Yu 2-348 4-2597 jyu

5) T 11 2-132 J. Pascale� 2-492 3-4093 jpascale

6) T 12 2-132 J. Pascale� 2-492 3-4093 jpascale

7) T 12 2-131 K. Jung 2-331 3-5029 kmjung

8) T 1 2-131 K. Jung 2-331 3-5029 kmjung

9) T 1 2-136 V. Sohinger 2-310 4-1231 vedran

10) T 1 2-147 M Frankland 2-090 3-6293 franklan

11) T 2 2-131 J. French 2-489 3-4086 jfrench

12) T 2 2-147 M. Frankland 2-090 3-6293 franklan

13) T 2 4-159 C. Dodd 2-492 3-4093 cdodd

14) T 3 2-131 J. French 2-489 3-4086 jfrench

15) T 3 4-159 C. Dodd 2-492 3-4093 cdodd

Page 184: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1 (18 pts.) Consider the equation Ax = b:1 0

4 1

2 −1

x1

x2

=

b1

b2

b3

.

(a) Put the equation into echelon form Rx = d.

(b) For which b are there solutions?

2

Page 185: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

This page intentionally blank.

3

Page 186: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (24 pts.) The matrix A has two special solutions:

x1 =

c

1

0

and x2 =

d

0

1

.

(a) Describe all the possibilities for the number of columns of A.

(b) Describe all the possibilities for the number of rows of A.

(c) Describe all the possibilities for the rank of A.

Brie�y explain your answers.

4

Page 187: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

This page intentionally blank.

5

Page 188: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (30 pts.) Let A be any matrix and R its row reduced echelon form. Answer True

or False to the statements below and brie�y explain. (Note, if there are

any counterexamples to a statement below you must choose false for that

statement.)

(a) If x is a solution to Ax = b then x must be a solution to Rx = b.

(b) If x is a solution to Ax = 0 then x must be a solution to Rx = 0.

6

Page 189: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

This page intentionally blank.

7

Page 190: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

4 (28 pts.) A Sudoko puzzle solution such as the example on the last page is a 9x9

matrix A that among other properties has the numbers 1 through 9 once in

every row and in every column.

Hint 1: There is no need to compute at all to solve this problem, and

familiarty with Sudoko puzzles are unlikely to help or hurt.

Hint 2: 1+2+3+...+9=45.

(a) All such matrices A can be written as

A = P1 + 2P2 + 3P3 + . . . + 8P8 + 9P9,

where the matrices P1, . . . , P9 are what kind of matrices? (Looking for

what we consider the best possible one word answer. Square would be

correct, but would not be acceptable.)

(b) Let e be the 9×1 vector of nine 1's. What is the rank of the 9x3 matrix

whose columns are e, Ae, and AT e for any such matrix A. Explain your

answer.

8

Page 191: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

This page intentionally blank.

9

Page 192: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

QUIZ 1 ANSWERS

1.

1 04 12 −1

(x1x2

)=

b1b2b3

.

a). (12 points) We reduce:

1 0 b14 1 b22 −1 b3

→1 0 b1

0 1 b2−4b10 −1 b3−2b1

→1 0 b1

0 1 b2−4b10 0 b3 +b2−6b1

.

So the equation becomes:1 00 10 0

(x1x2

)=

b1b2−4b1

b3 +b2−6b1

.

b) (6 points) Only when b3 +b2−6b1 = 0.2. a) (8 points) Solutions to A are length 3 column vectors, so A has three columns.b) (8 points) Any number. In fact consider

(1 −c −d

). This kills both of the given

vectors. Then, feel free to add any number of rows of zero’s below it.c) (8 points) We assume that the matrix is not zero as we are given that these are the

only special solutions. To find the rank, we note that each row of A must be in the subspaceof R3 which is orthogonal to

(c 1 0

)and

(d 0 1

), but since these guys span a plane,

this subspace is a line. Thus the rows are all linearly dependant, and so the rank is one.3. a) (20 points) False. To get A to its reduced form, you need to multiply on the left by

some elimination matrix E; so Rx = Eb is correct, but there is no reason for Eb−b to bein the nullspace of A(you can use your favorite non-triangular invertible 2 by 2 matrix tofind a counterexample).

b) (10 points) True. It is certainly the case that E0 = 0.4. a) (10 points) Permutation.b) (18 points) Well, Pe = e for any permutation matrix, because each row has eight

zero’s and one one. So by part a), Ae = e+2e+ ...+9e = 45e. But since the transpose of apermutation matrix is also a permutation matrix, Ate = 45e also. But rank

(e 45e 45e

)=

1.

1

Page 193: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Professor Strang Quiz 1 March 3, 2008

Grading

1

2

3

4

Your PRINTED name is:

Please circle your recitation:

1) M 2 2-131 A. Ritter 2-085 2-1192 afr

2) M 2 4-149 A. Tievsky 2-492 3-4093 tievsky

3) M 3 2-131 A. Ritter 2-085 2-1192 afr

4) M 3 2-132 A. Tievsky 2-492 3-4093 tievsky

5) T 11 2-132 J. Yin 2-333 3-7826 jbyin

6) T 11 8-205 A. Pires 2-251 3-7566 arita

7) T 12 2-132 J. Yin 2-333 3-7826 jbyin

8) T 12 8-205 A. Pires 2-251 3-7566 arita

9) T 12 26-142 P. Buchak 2-093 3-1198 pmb

10) T 1 2-132 B. Lehmann 2-089 3-1195 lehmann

11) T 1 26-142 P. Buchak 2-093 3-1198 pmb

12) T 1 26-168 P. McNamara 2-314 4-1459 petermc

13) T 2 2-132 B. Lehmann 2-089 2-1195 lehmann

14) T 2 26-168 P. McNamara 2-314 4-1459 petermc

Page 194: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1 (18 pts.) Start with an invertible 3 by 3 matrix A. Construct B by subtracting 4

times row 1 of A from row 3. How do you �nd B−1 from A−1 ? You

can answer in matrix notation, but you must also answer in words�what

happens to the columns and rows ?

Solution (18 points)

We can �nd B by multiplying A on the left by an appropriate matrix E31 (remember,

row operations correspond to multiplication on the left, column operations correspond to

multiplication on the right). Here, we need

E31 =

1 0 0

0 1 0

−4 0 1

(1)

Since B = E31A, we know B−1 = (E31A)−1 = A−1E−131 . Thus, B−1 can be found by doing

some column operations on A−1.

What operations speci�cally? We know

E−131 =

1 0 0

0 1 0

4 0 1

(2)

(this is the standard pattern for an E matrix). This represents adding 4 times column 3 to

column 1.

2

Page 195: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2 (24 pts.) Elimination on A leads to U :

Ax =

1 1 1

1 3 3

1 3 7

x1

x2

x3

=

0

0

1

leads to Ux =

1 1 1

0 2 2

0 0 4

x1

x2

x3

=

0

0

1

.

(a) Factor the �rst matrix A into A = LU and also into A = LDLT.

(b) Find the inverse of A by Gauss-Jordan elimination on AA−1 = I or by

inverting L and D and LT.

(c) If D is diagonal, show that LDLT is a symmetric matrix for every

matrix L (square or rectangular).

Solution (9+9+6 points)

a) Since A is symmetric, we have an LDLT decomposition, and we �nd this �rst. Since

U =

1 1 1

0 2 2

0 0 4

(3)

we must have

D =

1 0 0

0 2 0

0 0 4

(4)

and so

LT = D−1U =

1 1 1

0 1 1

0 0 1

(5)

Of course, this means that

L =

1 0 0

1 1 0

1 1 1

(6)

which we could have calculated directly.

3

Page 196: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

b) If we did it using Gauss-Jordan elimination:1 1 1 1 0 0

1 3 3 0 1 0

1 3 7 0 0 1

1 1 1 1 0 0

0 2 2 −1 1 0

0 2 6 −1 0 1

1 1 1 1 0 0

0 2 2 −1 1 0

0 0 4 0 −1 1

(This is L−1 on the right hand side, so we can multiply and solve. We may also continue.)

1 1 1 1 0 0

0 2 2 −1 1 0

0 0 4 0 −1 1

1 1 1 1 0 0

0 1 1 −1/2 1/2 0

0 0 1 0 −1/4 1/4

1 1 0 1 1/4 −1/4

0 1 0 −1/2 3/4 −1/4

0 0 1 0 −1/4 1/4

1 0 0 3/2 −1/2 0

0 1 0 −1/2 3/4 −1/4

0 0 1 0 −1/4 1/4

c) We show a matrix is symmetric by showing that it is equal to its transpose. If D is

diagonal, then of course D = DT . Thus:

(LDLT )T = (LT )T DT LT

= LDLT

4

Page 197: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3 (30 pts.) Suppose the nonzero vectors a1, a2, a3 point in di�erent directions in R3 but

3a1 + 2a2 + a3 = zero vector .

The matrix A has those vectors a1, a2, a3 in its columns.

(a) Describe the nullspace of A (all x with Ax = 0).

(b) Which are the pivot columns of A ?

(c) I want to show that all 3 by 3 matrices with

(*) 3(column 1) + 2(column 2) + (column 3) = zero vector

form a subspace S of the space M of 3 by 3 matrices. Now the zero

matrix is certainly included.

Suppose B and C are matrices whose columns have this property (*).

To show that we have a subspace, we have to prove that every linear

combination of B and C (�nish sentence) .

Go ahead and prove that.

Solution (10+10+10 points)

a) First, the problem gives us one vector in the nullspace: the equation

3a1 + 2a2 + a3 = zero vector (7)

is the same as saying that Ax = 0, where

x =

3

2

1

(8)

Thus, the nullspace N(A) contains all scalar multiples of this vector (3, 2, 1). Technically,

we need to argue that there is nothing else in the nullspace. You must recognize that the

matrix has rank 2 either here or in part b to get full credit.

5

Page 198: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

b) Since we have a linear relationship between the columns, column 3 can not be a pivot

column, so the rank is at most 2. The problem also tell us that the three ai vectors point in

di�erent directions. This means that they can't all be on the same line; that is, the column

space must be at least a plane. Thus the the rank is exactly 2.

Having rank 2 means that there are 2 pivot columns and one free column. Since column 3

is a linear combination of columns before it, it must be a free column. So columns 1 and 2

are pivots, and column 3 is free.

c) To show that we have a subspace, we have to prove that every linear combination of B

and C also has property (*) .

Suppose that B and C have property (*). Consider the matrix D = t1B + t2C for any two

numbers t1, t2. For ease of notation, I'll denote the ith column of a matrix A by coli(A). We

have

coli(D) = t1coli(B) + t2coli(C) (9)

We can now check that D also satis�es (*):

3col1(D) + 2col2(D) + col3(D) = 3 (t1col1(B) + t2col1(C))

+2 (t1col2(B) + t2col2(C))

+ (t1col3(B) + t2col3(C))

= t1 (3col1(B) + 2col2(B) + col3(B))

+t2 (3col1(C) + 2col2(C) + col3(C))

= 0

6

Page 199: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

4 (28 pts.) Start with this 2 by 4 matrix:

A =

2 3 1 −1

6 9 3 −2

(a) Find all special solutions to Ax = 0 and describe the nullspace of A.

(b) Find the complete solution�meaning all solutions (x1, x2, x3, x4)�to

Ax =

2x1 + 3x2 + x3 − x4

6x1 + 9x2 + 3x3 − 2x4

=

1

2

.

(c) When an m by n matrix A has rank r = m , the system Ax = b can

be solved for which b (best answer) ? How many special solutions to

Ax = 0 ?

Solution (10+8+10 points)

a) We �nd the special solutions by reducing A. I'll go all the way to row reduced echelon

form: 2 3 1 −1

6 9 3 −2

2 3 1 −1

0 0 0 1

1 3/2 1/2 0

0 0 0 1

Now, in turn we set each free variable to 1 and the rest to 0, and solve Ux = 0. The special

solutions are

s1 =

−3/2

1

0

0

(10)

s2 =

−1/2

0

1

0

(11)

7

Page 200: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

The nullspace is all linear combinations of these two vectors; it will be a plane in R4.

b) One way to solve for a particular solution is just to look at the set-up: our b is the negative

of the 4th column, so (0, 0, 0,−1) will work.

We could also solve for a particular solution using an augmented matrix: 2 3 1 −1 1

6 9 3 −2 2

2 3 1 −1 1

0 0 0 1 −1

We can now back substitute and solve. We can pick the free variables to be whatever we

like; we may as well set them to be 0. Then the bottom equation gives us x4 = −1, and the

top then gives x1 = 0. This is the same vector as above.

The complete solution is particular solution plus the nullspace:

xc =

0

0

0

−1

+ c1

−3/2

1

0

0

+ c2

−1/2

0

1

0

(12)

c) When an m by n matrix has rank m, the dimension of the column space (= rank) is the

same as the dimension of the ambient space. Thus, every vector is in the column space;

the equation Ax = b can be solved for every b. The number of special solutions will be the

number of rows minus the rank (note that n ≥ m since the rank is no greater than n). Thus,

we �nd that there are n−m special solutions.

8

Page 201: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Spring 2009 Exam 1 Practice

General commentsExam 1 covers the first 8 lectures of 18.06:

1. The Geometry of Linear Equations

2. Elimination and Matrix Operations (elimination, pivots, etcetera; different viewpoints of AB and Ax and xT A,e.g. as linear combinations of rows or columns)

3. Elimination Matrices and Matrix Inverses (row operations = multiplying on left by elimination matrices, Gauss-Jordan elimination and what happens when you repeat the elimination steps on I)

4. A = LU Factorization (for example, the relationship between L and the elimination steps, and solving problemswith A in terms of the triangular matrices L and U)

5. Permutations, Dot Products, and Transposes (relationship between dot products and transposes, (AB)T = BT AT ,permutation matrices, etcetera)

6. Vector Spaces and Subspaces (for example, the column space and nullspace, what is and isn’t a subspace ingeneral, and other vector spaces/subspaces e.g. using matrices and functions)

7. Solving Ax = 0 (the nullspace), echelon form U , row-reduced echelon form R (rank, free variables, pivot vari-ables, special solutions, etcetera)

8. Solving Ax = 0 for nonsquare A (particular solutions, relationship of rank/nullspace/columnspace to existenceand uniqueness of solutions)

If there is one central technique in all of these lectures, it is elimination. You should know elimination forwards andbackwards. Literally: we might give you the final steps and ask you to work backwards, or ask you what propertiesof A you can infer from certain results in elimination. Know how elimination relates to nullspaces and column spaces:elimination doesn’t change the nullspace, which is why we can solve Rx = 0 to get the nullspace, while it does changethe column space...but you can check that b is in the column space of A by elimination (if elimination produces a zerorow from A, the same steps should produce a zero row from b if b is in the column space). Understand why eliminationworks, not just how. Know how/why elimination corresponds to matrix operations (elimination matrices and L).

One common mistake that I’ve warned you about before is: never compute the inverse of a matrix, unless you arespecifically asked to. If you find yourself calculating A−1 in order to compute x = A−1b, you should instead solveAx = b for x by elimination & backsubstitution. Computing the inverse matrix explicitly is a lot more work, and moreerror prone...and fails completely if A is singular or nonsquare.

1

Page 202: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Some practice problemsThe 18.06 web site has exams from previous terms that you can download, with solutions. I’ve listed a few practiceexam problems that I like below, but there are plenty more to choose from. Note, however that there will be noquestions asking explicitly about linear independence, basis, dimension, or the row space or left nullspace. Reviewingthe homework and solutions is always a good idea, too. The exam will consist of 3 or 4 questions (perhaps with severalparts each), and you will have one hour.

1. A is a 4×4 matrix with rank 2, and Ax = b for some b has three solutions x =

1034

,

2−122

, and

5214

.

Give the nullspace N(A).

2. If we do a sequence of column operations (adding multiples of one column to another column) on a squarematrix A and obtain the identity matrix I, then what do we get if we do the same sequence of column operationson A−1? (Express your answer in terms of A and/or A−1.)

3. If A is 5×3, B is 4×5, and C(A) = N(B), then what is BA?

4. If A and B are matrices of the same size and C(A) =C(B), does C(A+B) =C(A)? If not, give a counter-example.

5. (From spring 2007, exam 1 problem 1.) Are the following sets of vectors in R3 subspaces? Explain youranswers.

(a) vectors (x,y,z)T such that 2x−2y+ z = 0

(b) vectors (x,y,z)T such that x2− y2 + z = 0

(c) vectors (x,y,z)T such that 2x−2y+ z = 1

(d) vectors (x,y,z)T such that x = y and x = 2z

(e) vectors (x,y,z)T such that x = y or x = 2z

6. (From spring 2007, exam 1 problem 3.) Consider the matrix A =

1 1 1 11 2 3 51 3 5 9

.

(a) What is the rank of A?

(b) Find a matrix B such that the column space C(A) of A equals the nullspace N(B) of B.

(c) Which of the following vectors belong to the column space C(A)?

1−21

,

20−2

,

0248

,

1−11−1

.

7. (From spring 2007, exam 1 problem 4.) Consider the matrix A =

1 1 11 2 33 4 k

.

(a) For which values of k will the system Ax =

237

have a unique solution?

(b) For which values of k will the system from (a) have an infinite number of solutions?

(c) For k = 4, find the LU decomposition of A.

(d) For all values of k, find the complete solution to Ax =

237

. (You might have to consider several cases.)

2

Page 203: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

8. (From fall 2006 exam 1, problem 4.)

(a) If A is a 3-by-5 matrix, what information do you have about the nullspace of A?

(b) In the vector space M of all 3×3 matrices, what subspace is spanned by all possible row-reduced echelonforms R?

9. (From spring 2006 exam 1, problem 3.) [Hint: best if you don’t work too hard on this problem!] Let

A =

1 a 0 d 0 g0 b 1 e 0 h0 c 0 f 1 i0 0 0 0 0 0

and v =

pqrs

.

(a) Find the complete solution to Ax = v if s = 1.

(b) Find the complete solution to Ax = v if s = 0.

10. (From spring 2005 exam 1, problem 1.) Suppose A is reduced by the usual row operations to

R =

1 4 0 20 0 1 20 0 0 0

.

Find the complete solution (if any exists) to this system involving the original A:

Ax = sum of the columns of A.

11. (From spring 2005 exam 1, problem 2.) Suppose the 4×4 matrices A and B have the same column space. Theymay not have the same columns!

(a) Are they certain to have the same number of pivots? YES or NO. Explain.

(b) Are they certain to have the same nullspace? YES or NO. Explain.

(c) If A is invertible, are you sure that B is invertible? YES or NO. Explain.

12. (From spring 2005 exam 1, problem 3.)

(a) Reduce A to an upper-triangular matrix U and carry out the same elimination steps on the right side b:

(Ab) =

3 3 1 b13 5 1 b2−3 3 2 b3

→ (U c).

Factor the 3×3 matrix A into LU (lower triangular times upper triangular).

(b) If you change the last (lower-right) entry in A from 2 to _____ to get a new matrix Anew, then Anewbecomes singular. Fill in the blank, and describe its column space exactly.

(c) In that singular case from (b), what conditions on b1, b2, and b3 allow Anewx = b to be solved?

(d) Write down the complete solution to Anewx =

33−3

(the first column of Anew).

3

Page 204: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

SolutionsThe solutions for all problems from previous exams are posted on the 18.06 web page. Solutions to the first fourproblems are:

1. The differences between the solutions must be in the nullspace. We have three solutions, hence two differences:2−122

1034

=

1−1−1−2

and

5214

1034

=

42−20

. The rank of A is 2 and it has 4 columns,

so we only need two independent nullspace vectors to span the nullspace. Hence the nullspace is the span ofthese two difference vectors (which clearly aren’t multiples of one another).

2. A sequence of column operations corresponds to multiplying A on the right by some matrix E, like in theproblem sets. But if AE = I, then E must be A−1. Doing the same operations on A−1 gives A−1E = A−1A−1 =A−2.

3. BA is a 4×3 matrix. Since C(A) = N(B), then BAx for any x gives B multiplied by something in N(B), which

gives zero. Since BAx = 0 for any x, we must have BA =

0 0 00 0 00 0 00 0 0

.

4. No. A simple example is B =−A for any nonzero A. C(−A) = C(A) (it’s the same columns, just multiplied by−1), but A+(−A) = 0 and the column space of the zero matrix is just {0} 6= C(A).

4

Page 205: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Quiz 1 SolutionHold on Monday, 2 March 2009 at 11am in Walker Gym.

Total: 60 points.

Problem 1: Your classmate, Nyarlathotep, performed the usual elimination stepsto convert A to echelon form U , obtaining:

U =

1 4 −1 30 2 2 −60 0 0 0

.

(a) Find a set of vectors spanning the nullspace N(A).

(b) If U~y =

9−12

0

, find the complete solution ~y (i.e. describe all possible

solutions ~y).

(c) Nyarla gave you a matrix

L =

1 0 02 1 0−1 3 1

and told you that A = LU . Describe the complete sequence of elimina-tion steps that Nyarla performed, assuming that she did elimination in theusual way starting with the first column and eliminating downwards. Thatis, Nyarla first subtracted times the first row from the second row,then subtracted times the first row from the third row, then subtracted

. (Be careful about signs: addinga multiple of a row is the same as subtracting a negative multiple of that row.)

(d) If A~x =

026

, then U~x = .

Solution (20 points = 5+5+5+5)(a) The pivots are in the first two columns of U , so x3 and x4 are the free

variables. Setting x3 = 1, x4 = 0, we get (from the second row of U~x = 0) x2 = −1

1

Page 206: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

and (from the first row) x1 = 1− 4x2 = 5; setting x3 = 0, x4 = 1, we get (from thesecond row) x2 = 3 and (from the first row)x1 = −3− 4x2 = −15. Hence, N(A) isspanned by two special solutions as follows.

N(A) = x3

5−110

+ x4

−15

301

for all x3, x4 ∈ R.

(b) First, we need to find a particular solution. For this, we may set the freevariables to y3 = y4 = 0. Thus, (from the second row of U~y = b) y2 = −6 and(from the first row) y1 = 9 − 4y2 = 33. Hence, all the solution to the equationsare given by the sum of the particular solution and any vector in the nullspace (alllinear combinations of the special solutions):

~y = y3

5−110

+ y4

−15

301

+

33−600

for all y3, y4 ∈ R

(c) Nyarla first subtracted 2 times the first row from the second row, thensubtracted −1 time s the first row from the third row, then subtracted 3 times thesecond row from the third row.

There are a couple of ways to solve this problem. The easiest is to rememberthat the L matrix, the product of the inverses of the elimination matrices, is simplycomposed of the multipliers for each of the elimination steps below each column.Under the first column of L we have 2 and −1, and these are thus the multiples ofthe first row that get subtracted from rows 2 and 3. Under the second column of Lwe have a 3, and this is the multiple of the second row that gets subtracted fromthe third row.

The other way to solve it is to just multiply L by U to get A = LU , and re-dothe elimination process. Obviously, this is a bit more work, but is not too bad.

(d) Applying the same elimination operations in (c) to A~x should give U~x. So,we have 0

26

;

026

;

020

2

Page 207: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Alternatively, we can just solve U~x from A~x as follows. Let ~v = U~x. Then

L~v = UL~x = A~x =

026

. Thus, we can solve from the top as follows. v1 = 0,

v2 = 2− 2v1 = 2, and v3 = 6− 3v2 + v1 = 0. Hence, U~x = ~v =

020

.

REMARK: Some students realized that U~x = L−1(A~x). But several of these

students did not get L−1 =

1 0 0−2 1 01 −3 1

correctly. Be careful that the inverse

of

1 0 0l21 1 0l31 l32 1

is not

1 0 0−l21 1 0−l31 −l32 1

; the lower left entry should be l21l32 −

l31. (Only for elimination matrices, which have nonzero entries below only a singlediagonal, can you always invert just by flipping signs.) More generally, if you findyourself inverting a matrix, you should realize that there is probably an easier wayto do it: to multiply ~v = L−1(A~x), it is easier to solve L~v = A~x for ~v by elimination(especially since L is triangular, so you can just do forward substitution as above).

3

Page 208: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Problem 2: Which of the following (if any) are subspaces? For any that are not asubspace, give an example of how they violate a property of subspaces.

(I) Given some 3 × 5 matrix A with full row rank, the set of all solutions to

A~x =

111

.

(II) All vectors ~x with ~xT~y = 0 and ~xT~z = 0 for some given vectors ~y and ~z.

(III) All 3× 5 matrices with

123

in their column space.

(IV) All 5× 3 matrices with

123

in their nullspace.

(V) All vectors ~x with ‖~x− ~y‖ = ‖~y‖ for some given fixed vector ~y 6= 0.

Solution (20 points = 4+4+4+4+4)(I) No. This is not a vector space because ~x = 0 is not in this subspace.

(II) Yes. (This is actually just the left nullspace of the matrix whose columnsare ~y and ~z.)

(III) No. For example, the zero matrix is not in this subset.

(IV) Yes. If the nullspaces of A1 and A2 contain

123

, then any linear combi-

nation of these matrices does too:

(α1A1 + α2A2)

123

= α1A1

123

+ α2A2

123

= 0; for all α1, α2.

(V) No. For example, 2~y satisfies the condition (because ‖2~y− ~y‖ = ‖~y‖) but ~ydoes not satisfies the condition (because ‖~y − ~y‖ = 0 6= ‖~y‖). This violates the factthat a subspace is preserved under multiplication by scalars.

4

Page 209: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

REMARK: A common problem we saw in the grading is that some students donot know how to express a counterexample. A counterexample is simply a singlespecific element of the set that violates a specific property of subspaces, or a specificelement that should be in the set but isn’t (as in the case of the sets missing ~0above). One such example is all that is needed to disqualify a set as a subspace; nofurther abstract argument is necessary. If you were asked to find an “example” andyou find yourself writing a long, abstract essay, you are probably making a mistake!

5

Page 210: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

Problem 3: A is a matrix with a nullspace N(A) spanned by the following threevectors:

12−13

,

0114

,

−1−131

.

(α) Give a matrix B such that its column space C(B) is the same as N(A). (Thereis more than one correct answer.) [Thus, any vector ~y in the nullspace of Asatisfies B~u = ~y for some ~u.]

(β) Give a different possible answer to (α): another B with C(B) = N(A).

(γ) For some vector ~b, you are told that a particular solution to A~x = ~b is

~xp =

1234

.

Now, your classmate Zarkon tells you that a second solution is:

~xZ =

1130

,

while your other classmate Hastur tells you “No, Zarkon’s solution can’t beright, but here’s a second solution that is correct:”

~xH =

1131

.

Is Zarkon’s solution correct, or Hastur’s solution, or are both correct? (Hint:what should be true of ~x− ~xp if ~x is a valid solution?)

Solution (20 points = 5+5+10) (α) Since the nullspace is spanned by the giventhree vectors, we may simply take B to consist of the three vectors as columns, i.e.,

B =

1 0 −12 1 −1−1 1 33 4 1

.

6

Page 211: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

B need not be square (many students insisted on square solutions).

(β) For example, we may simply add a zero column to B:

B =

1 0 −1 02 1 −1 0−1 1 3 03 4 1 0

.

Or, we could interchange two columns. Or we could multiply one of the columns by−1. For example:

B =

1 0 12 1 1−1 1 −33 4 −1

.

Or we could replace one of the columns by a linear combination of that column withthe other two columns (any invertible column operation). Or we could replace B by−B or 2B. There are many possible solutions. In any case, the solution shouldn’trequire any significant calculation!

(γ) Since any solution ~x to the equation A~x = ~b is of the form ~xp + ~n for somevector ~n in the nullspace, the vector ~x − ~xp must lie in the nullspace N(A). Thus,we want to look at:

~xZ − ~xp =

0−10−4

, ~xH − ~xp =

0−10−3

.

To determine whether a vector ~y lies in the nullspace N(A), we can just checkwhether it is in the column space of B, i.e. check whether B~z = ~y has a solution.As we learned in class, we can check this just by doing elimination: if eliminationproduces a zero row in B, it should produce a zero row in the right-hand side. Interms of B from part (α) augmented by the right-hand side, this gives:

1 0 −1 02 1 −1 −1−1 1 3 03 4 1 a

;

1 0 −1 00 1 1 −10 1 2 00 4 4 a

;

1 0 −1 00 1 1 −10 0 1 10 0 0 a+ 4

We can get a solution if and only if a = −4. So Zarkon is correct.

7

Page 212: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

REMARK: Several students apparently just stared at the nullspace vectors andfound a linear combination that gave ~xZ − ~xp:

~xZ − ~xp =

0−10−4

= 1

12−13

− 2

0114

+ 1

−1−131

.

Then they stared at Hastur’s solution, couldn’t find such a combination, and con-cluded that it was not a solution. This conclusion is correct in this case, and wasawarded full marks because you were not asked to justify your solution. However,doing elimination is much more systematic and reliable, and ensures that there isn’ta linear combination that you simply missed. Use elimination next time!

REMARK: Some students saw the zero components of ~xZ − ~xp, didn’t see anycorresponding zero components in the given nullspace vectors, and concluded that~xZ − ~xp was not in the nullspace. This is wrong: the key point is that ~xZ − ~xp

can be any vector in the nullspace, which means any linear combination of the givennullspace vectors. There are plenty of ways to combine nonzero vectors to get vectorswith zero components!

8

Page 213: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Quiz 1 Solutions October 5, 2009

Problem 1. Consider the matrix A =

1 2 3

1 1 1

0 1 3

.

(a) Find the factorization A = LU .

(b) Find the inverse of A.

(c) For which values of c is the matrix

1 2 3

1 1 1

0 1 c

invertible?

Solution

(a) We row reduce A by subtracting row 1 from row 2 (E12) and then add row 2 to row 3

(E23) to find the upper triangular matrix

U =

1 2 3

0 −1 −2

0 0 1

.

Since we can reverse this process and subtract row 2 from row 3 in U , followed by adding

row 1 to row 2 to obtain A, we see that the lower triangular matrix is the product:1 0 0

1 1 0

0 0 1

1 0 0

0 1 0

0 −1 1

=

1 0 0

1 1 0

0 −1 1

.

Hence we find

A =

1 0 0

1 1 0

0 −1 1

1 2 3

0 −1 −2

0 0 1

.

Page 214: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(b) Note that A−1 = (LU)−1 = U−1L−1. We explicitly compute U−1 and find:1 2 3 | 1 0 0

0 −1 −2 | 0 1 0

0 0 1 | 0 0 1

1 2 0 | 1 0 −3

0 −1 0 | 0 1 2

0 0 1 | 0 0 1

1 0 0 | 1 2 1

0 1 0 | 0 −1 −2

0 0 1 | 0 0 1

.

Similary, we compute

L−1 =

1 0 0

−1 1 0

−1 1 1

.

Therefore

A−1 =

1 2 1

0 −1 −2

0 0 1

1 0 0

−1 1 0

−1 1 1

=

−2 3 1

3 −3 −2

−1 1 1

.

(c) We row reduce to find : 1 2 3

1 1 1

0 1 c

1 2 3

0 −1 −2

0 0 c− 2

.

Note that A is invertible if and only if it has 3 nonzero pivots. Thus A is invertible when

c 6= 2.

Problem 2. Which of the following are subspaces? Explain why.

(a) All vectors x in R3 such that xT

1

2

3

= 0.

2

Page 215: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(b) All vectors (x, y)T in R2 such that x2 − y2 = 0.

(c) All vectors (x, y)T in R2 such that x + y = 2.

(d) All vectors x in R3 which are in the column space AND in the nullspace of the matrix1 −2 1

1 −2 1

1 −2 1

.

(e) All vectors x in R3 which are in the column space OR in the nullspace (or in both) of

the matrix

1 −2 1

1 −2 1

1 −2 1

.

Solution

(a) Yes. This equation describes the left nullspace of the matrix

1

2

3

. Since the left nullspace

is a vector space, we are done.

(b) No. Consider the vectors (1, 1)T and (1,−1)T , both of which satisfy this equation.

The sum (1, 1)T + (1,−1)T = (2, 0)T does not satisfy the equation since 22 − 0 = 4.

(c) No. This set does not contain (0, 0)T .

(d) Yes. Note that this column space of this matrix is the span of the vector

1

1

1

. The

nullspace is spanned by the vectors:

−1

0

1

and

2

1

0

. Since the sum of the two nullspace

basis vectors is the vector

1

1

1

, the intersection is the column space, which is a vector space.

3

Page 216: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(e)Yes. We have already seen in part (d) that the column space is a subspace of the nullspace.

Thus the vectors that are in the column space or the nullspace are just the columns in the

nullspace, which is a vector space.

Problem 3. Consider the matrix

A =

1 2 1 2 2

−1 −2 0 0 −1

1 2 0 0 1

(a) Find the complete solution of the equation Ax = 0.

(b) Find the complete solution of the equation Ax =

2

1

−1

.

(c) Find all vectors b such that the equation Ax = b has a solution.

(d) Find a matrix B such that N(A) = C(B).

(e) Find bases of the four fundamental subspaces for the matrix A.

Solution

In preparation for the next problems, lets first row reduce this matrix with an arbitrary

vector augmented.1 2 1 2 2 b1

−1 −2 0 0 −1 b2

1 2 0 0 1 b3

1 2 1 2 2 b1

0 0 1 2 1 b1 + b2

0 0 −1 −2 −1 b3 − b1

1 2 1 2 2 b1

0 0 1 2 1 b1 + b2

0 0 0 0 0 b2 + b3

4

Page 217: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

(a) We are finding the nullspace, or the solution when b1 = b2 = b3 = 0. Since this matrix

has 2 pivots and 3 free columns, so a general solution is just any linear combination of the

nullspace basis vectors:

c1

−2

1

0

0

0

+ c2

0

0

−2

1

0

+ c3

−1

0

−1

0

1

.

(b) To find a general solution, we set b1 = 2, b2 = 1 and b3 = −1 in our augmented matrix

row reduction performed above. We find a particular solution to1 2 1 2 2

0 0 1 2 1

0 0 0 0 0

x =

2

3

0

,

which is a vector with zeros in the free variables, so we solve directly and find our particular

solution:

xp =

−1

0

3

0

0

.

Thus a general solution is just this particular solution plus the general solution for a nullspace

vector given in part (a):

−1

0

3

0

0

+ c1

−2

1

0

0

0

+ c2

0

0

−2

1

0

+ c3

−1

0

−1

0

1

.

(c) Finding all vectors b such that Ax = b has a solution is asking for condition on b so

that it is in the column space. From our original computation, we see that we must have

5

Page 218: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

b2 + b3 = 0, so an arbitrary vector in the column space looks like

b1

b2

−b2

, where b1 and b2

are any real numbers. In otherwords, the column space is spanned by vectors of the form:

b1

1

0

0

+ b2

0

1

−1

.

(d) To find a matrix B such that N(A) = C(B), we can simply take a matrix whose column

vectors are a basis for the nullspace of A. In otherwords, the matrix:

B =

−2 0 −1

1 0 0

0 −2 −1

0 1 0

0 0 1

.

(e) Observe that the three vectors in part (a) form a basis for the nullspace of A, the two

vectors in part (c) form a basis for the column space of (a). Thus all that is left is to find

basis vectors for the row space, which we can take to be the two independent row vectors

corresponding to the pivot rows of A:(1 2 1 2 2

)T

and(0 0 1 2 1

)T

. A basis for

the left null space is given by the vector that is in the nullspace of the matrix whose rows

are the basis vectors for the column space of A:1 0 0

0 1 −1

.

Thus a basis for the left nullspace is given by the vector

0

1

1

.

Problem 4. Let A be an m by n matrix. Let B be an n by m matrix. Suppose that

AB = Im is the m by m identity matrix.

6

Page 219: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

1. Let r = rank(A) denote the rank of the matrix A. Choose one answer and be sure to

justify it.

(a) r ≥ m

(b) r ≤ m

(c) r = m

(d) r > n

2. Is m ≤ n or is n ≤ m? Why?

Solution

1. The rank of A is equal to the dimension of the column space C(A). Now the column space

of A is the subspace of Rm that can be written as Ax, where x is a vector in Rn. I claim that

C(A) = Rm. This follows because the column space AB is the column space of the identity

matrix is all of Rm. So in particular, any vector v in Rm can be written as ABv = Imv = v.

Thus any vector v in Rm is in the column space of A because it can be written as v = Ax

by simply setting x = Bv. Therefore we have seen that the dimension of the column space

is m, and thus the answer is (c).

2. We know that the rank of A must be less than or equal to the smallest dimension of A.

Since r = m, it must be the case that m ≤ n.

7

Page 220: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

18.06 Fall 2010 Exam 1 solutions1 (30 pts.)Start with the 3 by 4 matrix:

A =

0 0 0 00 1 2 30 2 4 6

.

(a) (10 pts.) What are all the special solutions to Ax = 0, and describe the nullspace of A.

Solution: We can do row operations to get the matrix

0 1 2 30 0 0 00 0 0 0

. The free

columns are 1, 3, and 4. We get each special solution by setting one of x1, x3, x4 to1 and the other two to 0. The answers are

1000

,

0−210

,

0−301

,

and the nullspace of A is the span of these three vectors.(b) (10 pts.) What is the rank of A, and describe the column space of A.

Solution: A has 1 pivot, so it has rank 1. Each column is a multiple of the second

column, so the column space is spanned by

012

.

(c) (5 pts.) Find all solutions to Ax =

0612

.

Solution: A particular solution to this problem is xp =

0600

. We can add any

vector in the nullspace of A to get another solution, and this gives all solutions, sothe general form is

0600

+ c1

1000

+ c2

0−210

+ c3

0−301

,

where c1, c2, c3 are some numbers.(d) (5 pts.) Can A be written as A = uvT for some vectors u and v? If so what are these vectors,

or if not, why not?Solution: Yes, we know that a matrix can be written as uvT if and only if it has

rank 1 (or 0). Since the second column spans the column space, we take it to be u.Then the entries of v say which multiples the other columns are of u. So the answer

1

Page 221: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

2

is

u =

012

, vT = (0, 1, 2, 3).

2 (30 pts.)Consider the matrix

A =

[

p qr s

]

,

where ps = rq and pr 6= 0.

(a) (5 pts.) Describe simply and clearly the column space of A.Solution: The first column is nonzero since p 6= 0 and r 6= 0. The second column

is a multiple of the first column. To see this, multiply the first column by q/p and

use the assumption that ps = rq. So the column space is spanned by

[

pr

]

.

(b) (10 pts.) Write as simply as possible the special solution(s) to Ax = 0, if any.Solution: Subtract r/p times the first row from the second row to transform A

into the matrix

[

p q0 0

]

, where again we used that ps = rq to simplify. So column

2 is the only free column because p 6= 0. Setting x2 = 1 gives the special solution[

−q/p1

]

.

(c) (5 pts.) What are all the solutions to Ax = 0?

Solution: All multiples of the vector

[

−q/p1

]

.

(d) (10 pts.) Write A as simply as possible in row reduced echelon form.Solution: We did one row operation in (b). To finish, divide the first column by

p to get[

1 q/p0 0

]

.

3 (20 pts.)(In the questions below, you can choose any n that works for an example, or prove that

for all n, there is no example.)

(a) (10 pts.) Can you find independent vectors v, w, x and y in some space Rn and where A =vwT + xyT is invertible? or prove that no such example exists?Solution: No. Matrices of the form vwT always have rank ≤ 1. The sum of two

matrices of rank ≤ 1 has rank ≤ 2. So if A is invertible we need n ≤ 2. But we alsohave the requirement that v, w, x, y are independent vectors, which forces n ≥ 4. Sowe can’t pick any n to make both inequalities happen.

(b) (10 pts.) Can you find vectors v, w, x and y that span some space Rn and where A = vwT+xyT

is invertible? or prove that no such example exists?Solution: Yes. There are many possibilities. The easiest is to take n = 1. Then

v, w, x, y are just numbers and A being invertible means it is nonzero. So we couldtake v = w = 1 and x = y = 0 for example.

4 (20 pts.)

Page 222: 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS …math.mit.edu/~gs/linearalgebra/exam1_1.pdf · 2016-07-20 · 8 October 1997 Profs. S. Lee and A. Kirillov MASSACHUSETTS

3

Write an informal computer program to calculate xxTx, for any n × 1 column vector x.The program should only use about 2n operations and no more than about 2n numbersin memory. You can write the program in MATLAB or your favorite language. It is notimportant that you remember exact syntax, but it is important that your operations areclear and unambiguous.

Solution: The naive way to do this is to first multiply xxT and then multiply by x. ButxxT is a n × n matrix so doesn’t meet the requirement of having roughly 2n numbers inmemory (or the 2n operations requirement).

The point is that matrix multiplication is associative, so we can instead do x(xTx), i.e.,calculate xTx which is a single number, and then multiply x by this number. If the entriesof x are x1, . . . , xn, then the final answer would be

cx1

cx2

...cxn

, where c = x2

1+ x2

2+ · · ·+ x2

n.

So a program that does this should roughly look like this:

c := 0;

for i from 1 to n do c := c + x[i]*x[i];

for i from 1 to n do answer[i] := x[i]*c;

return answer;


Recommended