+ All Categories
Home > Documents > 9. A comparison of nonlinear, second order cone and linear ...

9. A comparison of nonlinear, second order cone and linear ...

Date post: 19-Jan-2022
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
21
A comparison of nonlinear, second order cone and linear programming formulations for the optimal power flow problem Jose Nicolas Melchor Gutierrez – UNESP ‐ UniMelb [email protected] Rubén A. Romero Lazaro – UNESP Pierluigi Mancarella ‐ UniMelb
Transcript

A comparison of nonlinear, second order cone and linear programming formulations for the optimal power flow problem

Jose Nicolas Melchor Gutierrez – UNESP ‐ UniMelb

[email protected]

Rubén A. Romero Lazaro – UNESP

Pierluigi Mancarella ‐ UniMelb

2

Optimal Power Flow

What is the Optimal Power Flow?

3

Optimal Power Flow

The OPF defines a set of electrical power systems problems that are subjected to power flow constraints and other operational constraints.

Economical dispatch

Optimal reactive power dispatch

Unit Commitment

.

.

.

OPF

What is the importance of the economical dispatch?

4

Optimal Power Flow

• Exist many ways to dispatch the generation.

• Some could be very expensive.• The ED determine the lowest cost 

generation dispatch.

Why is it important to improve the OPF mathematical formulation?

5

Optimal Power Flow

[1] ‘Australian Energy Update’, Department of the Environment and Energy, Australia, 2017.[2] S. Letts, ‘Power prices are 'off the chart' and there's no relief in sight’, ABC News, July 7, 2017. [Online].

Available: http://www.abc.net.au/news/2017‐07‐07/power‐prices‐off‐the‐chart/8687480.[Accessed June 1, 2018].

= AUD$ 26728 Millions

AUD$ 1300 Millions

5%

257.000.000 MWh

[1] 104 AUD$/MWh

[2]

X

6

OPF formulations

Non ConvexMultimodal

Polar Power and Voltage - Nonlinear

7

OPF formulations

Objective function.

2 2 1 0min ( )( )g

g g g g gn n n n n

nC p C p C

2( , , )( , , )

( , , ) ( , , )l l

fromg to sh dn l n m n n nl n m

l n m l n mn m n m

p P P g v P

2( , , )( , , )

( , , ) ( , , )l l

fromg to sh dn l n m n n nl n m

l n m l n mn m n m

q Q Q b v Q

Power balance.

2 2( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )( , , ) cos( ) sin( )( ) froml n m n l n m l n m n m l n m n m l n m l n m n m l n ml n mP a v g a v v g b

2 2( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )( , , ) sin( ) cos( ) ( )( ) from shl n m n m l n m n m l n m l n m n m l n m l n m n l n m l n ml n mQ a v v g b a v b b

2( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )cos( ) sin( )( ) tol n m m l n m l n m n m l n m n m l n m l n m n m l n mP v g a v v g b

2( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )sin( ) cos( ) ( )( ) to shl n m l n m n m l n m n m l n m l n m n m l n m m l n m l n mQ a v v g b v b b

Power flow equations.

min maxn n nv v v 2 2 2

( , , )( , , ) ( , , )( ) ( ) ( )from from maxl n ml n m l n mP Q S

2 2 2( , , ) ( , , ) ( , , )( ) ( ) ( )to to maxl n m l n m l n mP Q S min g max

n n nP p Pmin g maxn n nQ q Q

Bounds.

Trigonometric functions.Product of variables.Equality constraints.

Convex quadratic constraints.

Squared variables.Equality constraints.

Convex constraints.

Polar Power and Voltage – Second Order Cone

8

OPF formulations

2

2n

nuv

( , , ( , , )) sin( ) n m n m ll m nn mv v

( , , ( , , )) cos( ) n m n m ll m nn mv v

2 2( , , ) ( , , )2 n m l n m l n mu u

Substitutions

Original Constraints

Power balance.

( , , )( , , )( , , ) ( , , )

2

l l

fromg to sh dn l n m n nl n m

l n m l mn

nn

m n m

p uP P g P

( , , )( , , )( , , ) ( , , )

2

l l

fromg to sh dn l n m n nl n m

l n m l mn

nn

m n m

q uQ Q b Q

Power flow equations.

2( , , ) ( ( ,, , ) ( , , ) ( , , ) ( , , ), ) ( , ,( , ), ) 2 ( ) froml n m l n m l n m l n m l nn l n ml m lm nn mP a g au g b

2( , , ) ( , , ) ( , ,( , , ) ( ,) ( , , ) ( , , ) ( , , )( , , ) , ) 2 ( )( ) l n m l n m

from shl n m l n m l n m l n m l n m l n ml n m nQ a g b a b bu

( , , ) ( , , ) ( , , ) ( , , ) ( ,( , , ) , ) ( , , ))2 ( ) m l n m l ntol n m l n m l n m l n m l mn mP g a g bu

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) (( , , ) ( )) ,, ,, ( )2( ) to shl n m l n m l n m ll n m ln m n l n m lm nm mQ b b bua g

2 2 2( , , )( , , ) ( , , )( ) ( ) ( )from from maxl n ml n m l n mP Q S

2 2 2( , , ) ( , , ) ( , , )( ) ( ) ( )to to maxl n m l n m l n mP Q S min g max

n n nP p Pmin g maxn n nQ q Q

Bounds. 2 2

2 2

min maxn n

n

v vu

AdditionalConstraints

2 2( , , ) ( , , )2 n m l n m l n mu u

( ,( , , ) , ) l n m n m l n m

1nv

( , , ) ( , , )sin( ) n m l n m n m l n m

Approximations

Polar Power and Voltage – Second Order Cone

9

OPF formulations

Power balance.

( , , )( , , )( , , ) ( , , )

2

l l

fromg to sh dn l n m n nl n m

l n m l mn

nn

m n m

p uP P g P

( , , )( , , )( , , ) ( , , )

2

l l

fromg to sh dn l n m n nl n m

l n m l mn

nn

m n m

q uQ Q b Q

Power flow equations.

2( , , ) ( ( ,, , ) ( , , ) ( , , ) ( , , ), ) ( , ,( , ), ) 2 ( ) froml n m l n m l n m l n m l nn l n ml m lm nn mP a g au g b

2( , , ) ( , , ) ( , ,( , , ) ( ,) ( , , ) ( , , ) ( , , )( , , ) , ) 2 ( )( ) l n m l n m

from shl n m l n m l n m l n m l n m l n ml n m nQ a g b a b bu

( , , ) ( , , ) ( , , ) ( , , ) ( ,( , , ) , ) ( , , ))2 ( ) m l n m l ntol n m l n m l n m l n m l mn mP g a g bu

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) (( , , ) ( )) ,, ,, ( )2( ) to shl n m l n m l n m ll n m ln m n l n m lm nm mQ b b bua g

2 2 2( , , )( , , ) ( , , )( ) ( ) ( )from from maxl n ml n m l n mP Q S

2 2 2( , , ) ( , , ) ( , , )( ) ( ) ( )to to maxl n m l n m l n mP Q S min g max

n n nP p Pmin g maxn n nQ q Q

Bounds. 2 2

2 2

min maxn n

n

v vu

AdditionalConstraints

2 2( , , ) ( , , )2 n m l n m l n mu u

( ,( , , ) , ) l n m n m l n m

Linear Constraints.

Linear Constraints.Conic Constraints.

ConvexGlobal Optima

DC Power Flow- Linear

10

OPF formulations

Objective function.

2 2 1 0min ( )( )L

g

g g g g gn n n n n

nC p C p C Piecewise linear function

Power balance.

( , , ) ( , , )( , , ) ( , , )

l l

g dn l n m l m n n

l n m l m np P P P

Power flow equations. ( , , ) ( , , ) ( , , ) l n m l n m n m l n mP b

min g maxn n nP p PBounds.( , , ) ( , , ) ( , , ) max maxl n m l n m l n mP P P

1nv

( , , ) ( , , )sin( ) n m l n m n m l n m

Approximations

( , , ) ( , , )l n m l n mr x

( , , )l n mQX

( , , )cos( ) 1 n m l n m

11

Simulations and Results

Test system and optimisation tools

12

Simulations and Results

The mathematical formulations were implemented in AMPL.

The nonlinear formulation was solved using KNITRO.

The SOC and linear formulations were solved with CPLEX.

IEEE 300

Active Power Generation and Cost

13

Simulations and Results

0

400

800

1200

1600

2000

MW

Generation

Nonlinear Conic Linear

Cost US$/hrNonlinear 722670,42Conic 721707,75Linear 709066,95

Generation (MW)Nonlinear 23690,15Conic 23681,31Linear 23391,01

Active Power Generation and Cost

14

Simulations and Results

Cost US$/hrNonlinear 722670,42Conic 721707,75Linear 709066,95

Generation (MW)Nonlinear 23690,15Conic 23681,31Linear 23391,01

Full AC PF

Generation Dispatch

Solution Load SheddingLosses

DC or SOC

Testing the feasibility of the 

solutions

Active Power Generation and Cost

15

Simulations and Results

0

400

800

1200

1600

2000

MW

Generation

Nonlinear Conic Linear

Load Shedding (MW)SOC 37,32Linear 1005,76

Infeasible!

Voltage Angle Difference

16

Simulations and Results

‐5

0

5

10

15

20

230 144 80 143 129 327 140 195 78 369

Degree

s

Bus number

Maximum Angular Difference

Nonlinear Conic Linear

‐20

‐15

‐10

‐5

0

5

10

15

20

1(3) 2(7) 3(29) 4(28) 5(82) 6(5) 7(19) 8(91) 9(61) 10(48)

Degree

s

Cluster

K‐means Clustered Angular Difference

Nonlinear Conic Linear

Voltage Angle Difference

17

Simulations and Results

‐5

0

5

10

15

20

230 144 80 143 129 327 140 195 78 369

Degree

s

Bus number

Maximum Angular Difference

Nonlinear Conic Linear

Conic Constraints Approximation Error

18

Simulations and Results

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

1 31 61 91 121 151 181 211 241 271 301 331 361

Absolute error

Circuit number

Conic Constraints error

19

Conclusions

Preliminary Conclusions

20

Conclusions

In this preliminary research the solution obtained with the DC OPF and the second order coneapproximations are infeasible for the full AC OPF representing the IEEE‐300 test system withpower limit for the transmission lines and transformers. However, further studies need to bedone in order to determine if these results are particular for this test system or if a fundamentalproblem has been detected.

Thank you

Jose Nicolas Melchor Gutierrez

[email protected]


Recommended