+ All Categories
Home > Documents > 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

Date post: 27-Dec-2015
Category:
Upload: laura-stokes
View: 216 times
Download: 2 times
Share this document with a friend
Popular Tags:
22
06/23/22 by Vandana Bathla and Magda Constantinescu 1 Concept Presentation Coulomb’s Law
Transcript
Page 1: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 1

Concept Presentation

Coulomb’s Law

Page 2: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 2

Introduction

Welcome to our Concept Presentation!

Page 3: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 3

Introduction

We have an experiment to show you.Please form a pair for Think/Pair/Share.Materials: Flashlight, stick meter

Page 4: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 4

Introduction

I position the flashlight at 1 m distance the wall. Please observe the area of light projected on the wall.

If I move the flashlight at 2 m distance the wall.

How big the area of light is going to be?

Think/Pair/Share with your partner: Predictions!

Page 5: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 5

Introduction

What happens with the intensity of light, is it increasing or decreasing?

Whole group discussion!

Page 6: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 6

Introduction

Conclusion:

The intensity of light has an inverse-square dependence on distance between the source of light and the wall.

Page 7: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 7

Coulomb’s Law

Textbook definition: The force between two point charges is inversely proportional to

the square of the distance between the charges and directly proportional to the product of the charges. (Nelson, Grade 12)

k –proportionality constant

Q1 and Q2 – magnitudes of the charges

d – distance between them

Page 8: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 8

Coulomb’s Law

Coulomb’s Law applies when the charges on two spheres are very small and the two spheres are small

compared to the distance between them. Electric charge is measured in units called coulombs

(SI unit, C) (Nelson, Grade 12)

Page 9: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 9

Coulomb’s Law

The forces act along the line connecting the two point charges. (Nelson, Grade 12)

The charges will repel if the forces are alike and attract if unlike. (Nelson, Grade 12)

Page 10: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 10

Misconceptions/Difficulties

The students may do not understand that “all the matter around us contains charged particles, and it is the electric forces between these charged particles that determine the strength of the materials and the properties of the substance.”

(Nelson, Grade 12) The students may have difficulties in understanding Coulomb’s Law, so the

teacher is going to do a diagnostic activity. During the activity the teacher observes and takes anecdotal notes. This activity

has to be done at the beginning of the unit.

Page 11: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 11

Coulomb’s Law

Applications: Coulomb’s law is employed in meteorology to test models of

thunderstorm charge distributions.Atmospheric physics, planetary physics, astrophysics, and plasma physics are vast domains of application of coulomb’s law.

Another application of Coulomb's law is in the study of crystal structure. Crystals are made of charged particles called ions. Ions arrange themselves in any particular crystal (such as a crystal of sodium chloride, or table salt) so that electrical forces are balanced. By studying these forces, mineralogists can better understand the nature of specific crystal structures.

Page 12: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 12

Lesson Overview

Expectations D2.1 use appropriate terminology related to fields, including, but not limited to: forces, potential energies,

potential, and exchange particles [C] D2.5 conduct a laboratory inquiry or computer simulation to examine the behaviour of a particle in a field

(e.g., test Coulomb’s law; replicate Millikan’s experiment or Rutherford’s scattering experiment; use a bubble or cloud chamber) [PR]

D3.2 compare and contrast the corresponding properties of gravitational, electric, and magnetic fields (e.g., the strength of each field; the relationship between charge in electric fields and mass in gravitational fields)

A1.10 draw conclusions based on inquiry results and research findings, and justify their conclusions with reference to scientific knowledge

A1.11 communicate ideas, plans, procedures, results, and conclusions orally, in writing, and/or in electronic presentations, using appropriate language and a variety of formats (e.g., data tables, laboratory reports, presentations, debates, simulations, models)

UNIT 3: Electric, Gravitational, and Magnetic Fields; Electric Forces: Coulomb’s Law(Nelson, Physics 12)

Resources: http://phet.colorado.edu/, (Nelson, Physics 12) Learning/Teaching Strategies: demonstration, inquiry computer simulation, small groups, Venn

Diagram Safety Considerations: The teacher does the demonstration with the flashlight and the activity is a

computer simulation. The teacher has to use the flashlight carefully.

Page 13: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 13

Lesson Overview

Resources: http://phet.colorado.edu/, (Nelson, Physics 12) The resources have be reliable and teacher and students have access to

them. Learning/Teaching Strategies: demonstration, inquiry computer

simulation, small groups, Venn Diagram Safety Considerations: The teacher does the demonstration with the

flashlight and the activity is a computer simulation. The teacher has to use the flashlight carefully.

Materials: Flashlight, meter stick, manipulative (planets), visual adds, handouts

Page 14: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 14

Lesson Overview

A. Introduction –The Hook (10 min)

I will do the same demonstration as we did at the beginning. Students will make comments like: the intensity is decreasing and has an inverse-

square dependence on distance between the source and wall. If the students are not coming with this conclusion as a facilitator I will highlight

the conclusion. At this point I will mention to students that today we are going to learn about

Coulomb’s Law. I will make a parallel connections with Coulomb’s Law. I will write on the board the conclusion from the introduction and I will draw a

diagram where on the wall is a charge #1 and on the flashlight is a charge #2, and the distance between the wall and flashlight is r.

Then I will present the Coulomb’s Law

Page 15: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 15

Lesson Overview B. Activity:

Part one (30 min)

I will tell them that we are going to do a simulation on the computer and they are going to work in pairs and use the handout to record all the data.

I pair the students, so that the student who knows the most is with the student who knows the least.

After every group is ready to start the simulation I will demonstrate to the whole class the first steps:

1. Click on the URL. http://phet.colorado.edu/en/simulation/charges-and-fields from the word document Simulation.doc located on the desktop.

2. Click on the Run Now!

Page 16: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 16

Lesson Overview

Part one (30 min) 3. An interactive simulation window will pop up and I present them the elements they are

going to use for the simulation. 4. I ask them to follow my instructions to get familiar with the simulation window. 5. I show them an example and I ask them if they have any questions before starts the

simulation. 6. I invite students to follow the instruction in the Handout and to record the data.

Before they start I remind them that with this activity we are going to answer the following questions:

How does the electric force field caused by two red charges vary with distance? What happens to the pattern of the force field when two charges are present?

Note: In the simulation the sensor measure the Force Field, no really the Force. To get the force you just multiply the force field times the charge.

Page 17: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 17

Lesson Overview

Part one (30 min)

7. After completing the handouts I ask students to come with an answer to the question posted on the board.

8. As a class we have a discussion about the law and write the formula on the board. I invite students to write the definition and formula in their science notebook.

9. As an application of the law I will model a practice sample from the textbook and then in groups of two they have to practice another one. Homework will be assigned from the textbook.

Page 18: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 18

Lesson Overview

Part two : (20 min) I will show students two planets and I ask them about the force between

them. I will expect to answer Law of Universal Gravitation. I will write the

definition and the formula on the board. I will write the following question on the board and I ask them to work in

groups. Knowing the two laws please use a Venn Diagram to answer the

questions: How are they different? How are they similar? I will collect the Venn Diagrams to assess their understanding of the

concept.

Page 19: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 19

Lesson Overview

C. Homework: Students have to research real life applications of the Coulomb Law and show their knowledge in the form of a graphic organizer or essay.

D. Accommodations/ Modifications/Differentiated learning: I will pair the students, so that the student who knows the most is with the student

who knows the least. The handout is design to help students with learning disability to follow the

instruction. ELL –students: I will design the handout using pictures with the windows from the

simulation. Venn Diagram: I group students using Tiered Assessment and Flexible grouping

strategies.E. Assessment: Handouts, anecdotal notes, Venn Diagram, problem-solving,

differentiated assessment (essay or graphic organizer)F. Credits: http://phet.colorado.edu/en/simulation/charges-and-fields,

(Nelson textbook, Grade 12)

Page 20: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 20

Coulomb’s Law

Time for a 5 min break!

Page 21: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 21

Computer Simulation

We are going to do the same simulation that we mentioned in the lesson. (10 min)

What do you need: Handout, computer and a partner Questions for Discussion: How did you find this simulation? Are you going to use this simulation in the classroom?

Page 22: 9/10/2015 by Vandana Bathla and Magda Constantinescu1 Concept Presentation Coulomb’s Law.

04/19/23by Vandana Bathla and Magda

Constantinescu 22

Coulomb’s Law

Thank you for your participation!


Recommended