+ All Categories
Home > Documents > › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date...

› ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date...

Date post: 06-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
14
Harold’s Calculus 3 Multi-Cordinate System “Cheat Sheet” 15 October 2017 Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix Point 2-D f ( x )=y ( x,y ) ( a,b) 3-D f ( x,y ) =z ( x,y,z ) 4-D f ( x,y,z) = w ( x,y,z,w ) ( r,θ) or r∠θ x=r cos θ y=r sin θ z=z r 2 =x 2 + y 2 r=± x 2 +y 2 tan θ= ( y x ) θ=tan 1 ( y x ) ( ρ,θ,ϕ) x=ρ sin ϕ cos θ y=ρ sin ϕ sin θ z=ρ cos ϕ ρ 2 =r 2 +z 2 ρ 2 =x 2 +y 2 + z 2 tan θ= ( y x ) ϕ=cos 1 ( z x 2 + y 2 +z 2 ) ϕ=cos 1 ( z ρ ) Point (a,b) in Rectangular : x ( t) =a y ( t) =b t=3 rd variable ,usually time, with 1 degree of freedom (df) r= x 0 ,y 0 ,z 0 [ a ] [ x ]= [ b] Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 1
Transcript
Page 1: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Harold’s Calculus 3Multi-Cordinate System

“Cheat Sheet”15 October 2017

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Point

2-Df ( x )= y

( x , y )(a ,b )

3-Df ( x , y )=z

( x , y , z )

4-Df ( x , y , z )=w

( x , y , z ,w )

(r , θ) or r∠θx=r cosθy=r sinθ z=z

r2=x2+ y2

r=±√x2+ y2

tanθ=( yx )

θ=tan−1( yx )

(ρ ,θ ,ϕ)

x=ρ sinϕ cosθy= ρsin ϕsin θz=ρ cos ϕ

ρ2=r2+z2

ρ2=x2+ y2+z2

tanθ=( yx )ϕ=cos−1( z

√ x2+ y2+z2 )ϕ=cos−1( zρ )

Point (a,b) in Rectangular  :x (t )=ay ( t )=b

t=3rd variable ,usually time,with 1 degree of freedom (df)

r⃗=⟨x0 , y0 , z0 ⟩ [a ] [x ]=[b ]

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 1

Page 2: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Line

Slope-Intercept Form:y=mx+b

Point-Slope Form:y− y0=m(x−x0)

General Form:Ax+By+C=0where A∧B≠0

Calculus Form:f ( x )=f ' (a ) x+ f (0)where m=f ’(a)

3-D:x−x0a

=y− y0b

=z−z0c

¿ x , y>¿< x0 , y0>+t<a ,b>¿¿ x , y>¿< x0+at , y0+bt>¿

where¿a ,b>¿<x2−x1 , y2− y1>¿

x (t)=x0+tay (t )= y0+tb

m=∆ y∆ x

=y2− y1x2−x1

= ba

r⃗=r⃗0+t v⃗¿ ⟨ x0, y0 , z0 ⟩+t ⟨a ,b , c ⟩

[a b ] [ xy ]= [c ]

[a bc d ][ xy ]=[ef ]

Plane

a (x−x0 )+b ( y− y0 )

+c ( z−z0 )=0

ax+by+cz=dwhere d=ax0+b y 0+c z0

f ( x , y )=Ax+By+C

( variable , constant , constant )where ρ takesonallvalues∈the domain

(0≤ ρ<∞)

r=r0+s v+t w

where: s and t range over all real

numbers v and w are given vectors

defining the plane r0 is the vector representing the

position of an arbitrary (but fixed) point on the plane

n ∙ (r−r 0 )=0

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 2

Page 3: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Conics

General Equation for All Conics:

A x2+Bxy+C y2+Dx+Ey+F=0

whereLine : A=B=C=0:̊ A=C∧B=0Ellipse : AC>0¿B2−4 AC<0Parabola : AC=0 or B2−4 AC=0Hyperbola : AC<0¿B2−4 AC>0Note: If A+C=0, square hyperbola

Rotation:If B ≠ 0, then rotate coordinate

system:

cot 2θ= A−CB

x=x ' cosθ− y ' sin θy= y ' cosθ+x ' sinθ

New = (x’, y’), Old = (x, y)rotates through angle θ from x-axis

General Equation for All Conics:

Vertical Axis of Symmetry:

r= p1−ecosθ

Horizontal Axis of Symmetry:

r= p1−esin θ

where p={a (1−e2 )2d

a (e2−1 )for {0≤e<1e=1

e>1

p = semi-latus rectumor the line segment running from the

focus to the curve in a direction parallel to the directrix

Eccentricity:e̊=0

Ellipse0≤e<1Parabolae=1Hyperbolae>1

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 3

Page 4: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Circle

x2+ y2=r2

(x−h)2+( y−k )2=r2

General Form:A x2+Bxy+C y2+Dx+Ey+F=0

where A=C∧B=0

Focus and Center:(h , k )

(h , k )

Centered at Origin:r = a (constant)

θ=θ [0 ,2 π ]∨[0 ,360 ° ]

Centered at (r0 , ϕ ):r2+r0

2−2 rr 0cos (θ−ϕ)=R2

Hint: Law of Cosinesor

r=r0 cos (θ−ϕ )+√a2−r 02 sin2(θ−ϕ)

ρ=constantθ=θ[0 ,2π ]

ϕ=constant=0

x (t)=r cos(t )+hy (t )=r sin(t)+k

[ tmin , tmax ]=¿

(h , k )=center of ¿̊

Sphere

x2+ y2+z2=r2

(x−h)2+( y−k )2+(z−l)2=r2

Focus∧center :(h , k , l)

General Form:A x2+B y2+C z2

+D xy+E yz+Fxz+G x+Hy+ Iz+J=0where A=B=C > 0

Cylindrical to Rectangular:x=r cos (θ)y=rsin (θ)

z=z

Spherical to Rectangular:x=r sin θ cos ϕy=rsin θ sin ϕz=r cosθ

Rectangular to Cylindrical:

r=√x2+ y2

Spherical to Cylindrical:ρ=r sin (θ)

ϕ=ϕz=r cos (θ)

ρ=constantθ=θ[0 ,2π ]ϕ=ϕ [0 ,2 π ]

Rectangular to Spherical:

r=√x2+ y2+z2

θ=arccos( zr )ϕ=arctan( yx )

Cylindrical to Spherical:

r=√ ρ2+z2

θ=arctan( ρz )=arccos( zr )ϕ=ϕ

Rectangular:

r ≡[ xyz ]Cylindrical:

r ≡ [rcos (θ)r sin (θ)z ]

Spherical:

r ≡[r sin θ cos ϕr sinθ sin ϕr cosθ ]

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 4

Page 5: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Ellipse

(x−h)2

a2+

( y−k)2

b2=1

General Form:A x2+Bxy+C y2+Dx+Ey

+F=0where B2−4 AC<0∨AC>0

Center: (h , k )Vertices: (h±a , k )∧ (h , k±b )

Foci: (h±c ,k )

Focus length, c, from center:

c=√a2−b2

Eccentricity:

e= ca=√a2−b2

a

If B ≠ 0, then rotate coordinate system:

cot 2θ= A−CB

x=x ' cosθ− y ' sinθy= y ' cosθ+x ' sin θ

New = (x’, y’), Old = (x, y)rotates through angle θ from x-

axis

Vertical Axis of Symmetry:

r= a(1−e2)1±ecosθ

Horizontal Axis of Symmetry:

r= a (1−e2)1±e sin θ

Eccentricity : 0<e<1

r (θ )= ab

√(bcosθ)2+(a sin θ)2

relative to center (h,k)

Interesting Note:The sum of the distances from each

focus to a point on the curve is constant.

|d1+d2|=k

x (t)=acos( t)+hy (t )=b sin(t ¿)+k ¿[ tmin , tmax ]=[0 ,2 π ]

(h , k )=center of ellipse

Rotated Ellipse:x (t )=acos t cosθ−b sin t sin θ+hy ( t )=acos t sinθ+b sin t cosθ+k

θ = the angle between the x-axis and the major axis of the ellipse

Ellipsoid(x−h)2

a2+

( y−k)2

b2+

(z−l)2

c2=1 r2cos2θ

a2+ r2 sin2θ

b2+ z2

c2=1

r2cos2θ sin2ϕa2

+r2sin 2θ sin2ϕb2

+r2 cos2ϕc2

=1

x (t , u)=acos(t)cos (u)+hy (t ,u)=bcos ( t )sin (u¿)+k ¿

z (t , u )=c sin(t )+l

[ tmin , tmax ]=[−π2

, π2 ]

[umin ,umax ]=[−π , π ]

(h , k , l )=center of ellipsoid

( x−v )T A−1 ( x−v )=1Centered at vector v

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 5

Page 6: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Parabola

Vertical Axis of Symmetry:x2=4 py

( x−h )2=4 p ( y−k )Vertex: (h , k )

Focus: (h , k+ p )Directrix: y=k−p

Horizontal Axis of Symmetry:y2=4 px

( y−k )2=4 p(x−h)Vertex: (h , k )

Focus: (h+ p , k )Directrix: x=h−p

General Form:A x2+Bxy+C y2+Dx+Ey+F=0

where B2−4 AC=0or AC=0

If B ≠ 0, then rotate coordinate system:

cot 2θ= A−CB

x=x ' cosθ− y ' sinθy= y ' cosθ+x ' sin θ

New = (x’, y’), Old = (x, y)rotates through angle θ from x-axis

Vertical Axis of Symmetry:

r= ed1±ecosθ

Horizontal Axis of Symmetry:

r= ed1±e sin θ

Eccentricity : e=1where d=2 p

Vertical axis of symmetry:x (t )=2 pt+h

y ( t )=p t 2+k (opens upwards) or

y ( t )=−p t2+k (opens downwards)

[ tmin , tmax ]=[−c , c ](h, k) = vertex of parabola

Horizontal axis of symmetry:x (t)=p t 2+h

y (t )=2 pt+k (opens right) ory (t )=−2 pt+k (opens left)

[ tmin , tmax ]=[−c , c ]

Projectile Motion:x (t )=x0+vx t

y (t )= y0+v y t−16 t2 feet

y ( t )= y0+v y t−4.9 t2 meters

vx=vcosθv y=v sin θ

General Form:x=A t 2+Bt+Cy=L t 2+Mt+N

where A and L have the same sign

Nose Cone(x−h)2

a2+

( y−k)2

b2=

(z−l)2

c2

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 6

Page 7: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Hyperbola

( x−h )2

a2− ( y−k )2

b2=1

General Form:A x2+Bxy+C y2+Dx+Ey+F=0

where B2−4 AC>0∨AC<0

If A+C=0, square hyperbola

Center: (h , k )Vertices: (h±a ,k )

Foci: (h±c ,k )

Focus length, c, from center:

c=√a2+b2

Eccentricity:

e= ca=√a2+b2

a=sec θ

3-D( x−h )2

a2+

( y−k )2

b2−

(z−l )2

c2=1

−( x−h )2

a2− ( y−k )2

b2+ (z−l )2

c2=1

If B ≠ 0, then rotate coordinate system:

cot 2θ= A−CB

x=x ' cosθ− y ' sinθy= y ' cosθ+x ' sin θ

New = (x’, y’), Old = (x, y)rotates through angle θ from x-

axis

Vertical Axis of Symmetry:

r= a(e2−1)1±ecosθ

Horizontal Axis of Symmetry:

r= a (e2−1)1±e sin θ

Eccentricity : e>1

where e= ca=√a2+b2

a=secθ>1

relative to center (h,k)

−cos−1(−1e )<θ<cos−1(−1e )

p = semi-latus rectum or the line segment running from the

focus to the curve in the directions

θ=± π2

Interesting Note:The difference between the distances

from each focus to a point on the curve is constant.

|d1−d2|=k

Left-Right Opening Hyperbola:x (t)=asec(t )+hy (t )=b tan(t)+k

[ tmin , tmax ]=[−c , c ](h, k) = vertex of hyperbola

Alternate Form:x (t)=±acosh ( t)+hy (t )=b sinh(t )+k

Up-Down Opening Hyperbola:x (t)=a tan( t)+hy (t )=bsec (t)+k

Alternate Form:x (t)=a sinh(t)+hy (t )=±b cosh (t)+k

General Form:x (t)=A t 2+Bt +Cy (t )=D t2+Et+F

where A and D have different signs

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 7

Page 8: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Limit limx→c

f (x )=L

1st

Derivative

f ' ( x )= limh→0

f ( x+h )−f (x)h

f ' (c )=limx→c

f ( x )−f (c )x−c

f ' ( x )=dydx

= y '=D x

dydx

=

dydθdxdθ

=

drdθsin θ+rcos θ

drdθcosθ−r sin θ

Hint: Use Product Rule fory=rsinθx=r cosθ

dydx

=

dydtdxdt

, provided dxdt

≠0

ddt

( r⃗ )=r⃗ '

Unit tangent vector

T⃗ ( t )= r⃗ ' (t)‖r⃗ ' (t)‖

where r⃗ ' (t )≠ 0⃗

2nd

Derivativef ' ' ( x )= d

dx ( dydx )=d2 yd x2

= y ' ' d2 yd x2

= ddx ( dydx )=

ddθ ( dydx )

dxdθ

d2 yd x2

= ddx ( dydx )=

ddt ( dydx )dxdt

Unit normal vector

N⃗ (t )= T⃗ ' (t)‖T⃗ ' (t)‖

whereT⃗ ' (t )≠ 0⃗

Integral F ( x )=∫a

b

f ( x )dx=F (b )−F (a)

Riemann Sum:

S=∑i−1

n

f ( y i)(x i−x i−1)

Left Sum:

S=( 1n ) [f (a )+ f (a+ 1n )+¿ f (a+ 2n )+…+ f (b−1n)]

Middle Sum:

S=( 1n ) [ f (a+ 12n )+ f (a+ 32n )+…+ f (b− 1

2n)]

Right Sum:

S=( 1n ) [f (a+ 1n )+f (a+ 2n )+…+ f (b)]

∫a

b

r⃗ (t )dt=⟨∫ab

f (t )dt ,∫a

b

g (t )dt ,∫a

b

h (t )dt ⟩

Double Integral ∫

a

b

∫c( y)

d ( y)

f ( x , y )dx dySame asrectangular , but

f ( x , y )⟶ f (ρ cosϕ , ρsin ϕ)

Triple Integral ∫

a

b

∫c(z )

d ( z)

∫e( y, z )

g( y , z)

f ( x , y , z )dx dy dz Same asrectangular , butf ( x , y , z )⟶ f (ρ cos ϕ, ρ sin ϕ, z )

Same asrectangular ,butf ( x , y , z )⟶ f ¿

ρ sin θ sinϕ ,ρ cos ϕ¿NA NA NA

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 8

Page 9: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Inverse Functions

If f ( x )= y , then f−1( y )=x

Inverse Function Theorem:

f−1 (b )= 1f ' (a )

where b=f ' (a )

if y=sinθif y=cosθif y=tan θ

if y=cscθif y=sec θif y=cot θ

thenθ=sin−1 ythen θ=cos−1 ythenθ= tan−1 y

thenθ=csc−1 ythenθ=sec−1 ythenθ=cot−1 y

θ=arcsin yθ=arccos yθ=arctan y

θ=arccsc yθ=arcsec yθ=arccot y

NA NA NA

Arc Length

L=∫a

b

√1+[ f ' ( x )]2dx

Proof:

∆ s=√ (x−x0 )2+ ( y− y0 )2

∆ s=√(∆x )2+¿¿ds=√dx2+d y2

ds=√dx2+d y2( d x2d x2 )ds=√dx2+( dydx )

2

d x2

ds=√dx2(1+( dydx )2)

ds=√1+( dydx )2

dx

L=∫ ds

Polar:

L=∫√r2+( drdθ )2

Where r=f (θ)

Circle:L=s=r θ

Proof:L=( fraction of circumference ) ∙

π ∙ (diameter)

L=( θ2π ) π (2 r)=r θ

C = πd = 2πr

Rectangular 2D:

L=∫α

β

√( dxdt )2+( dydt )2

dt

Rectangular 3D:

L=∫α

β

√( dxdt )2+( dydt )2

+(dzdt )2

dt

Cylindrical:

L=∫t1

t2 √( drdt )2+r2( dθdt )2+( dzdt )2

dt

Spherical:L=¿

∫t1

t2 √( dρdt )2+ ρ2sin2φ ( dθdt )2

+ρ2( dφdt )2

dt

L=∫a

b

‖r⃗ ' (t)‖dt

s(t)¿∫0

t

‖r⃗ ' (u)‖du

NA

Curvatureκ=

|y ' '|

(1+ y ' 2)32

κ (θ)=|r2+2 r ' 2−r r ' '|

(r2+r '2)32

for r(θ)

NA

κ=√ ( z ' ' y '− y ' ' z' )2+¿ (x ' ' z '−z ' ' x ' )2+¿( y' ' x−x ' ' y ' )2

(x ' 2+ y' 2+z '2)32

where f(t) = (x(t), y(t), z(t))

κ=|d T⃗ds |κ=

‖T⃗ ' (t)‖‖r⃗ ' (t )‖

κ=‖r⃗ ' ( t )× r⃗ ' ' (t)‖

‖r⃗ ' (t)‖3

(See Wikipedia  : Curvature)

PerimeterSquare: P = 4s

Rectangle: P = 2l + 2wTriangle  : P = a + b + c

Circle: C = πd = 2πrEllipse: C≈ π (a+b )

Ellipse: C=4 a∫0

π2

√1−( ca )2

sin 2θd θ

Circle: C = 2πr NA NA NA

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 9

Page 10: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Area

Square: A = s²Rectangle: A = lw

Rhombus: A = ½ abParallelogram: A = bh

Trapezoid: A=(b1+b2 )2

h

Kite: A=d1d22

Triangle: A = ½ bhTriangle: A = ½ ab sin(C)

Triangle:

A=√s ( s−a ) (s−b )(s−c) ,where s=a+b+c2

Equilateral Triangle: A=¼√3 s2

Frustum: A=13 ( b1+b22 )h

Circle: A = πr²Circular Sector: A = ½ r²θ

Ellipse: A = πab

A=∫α

β 12[ f (θ)]2dθ

where r=f (θ)

Proof:Area of a sector:

A=∫ s dr=¿∫r ∆θdr=12r2∆θ ¿

where arc length s=r ∆θ NA

A=∫α

β

g ( t ) f ' ( t ) dt

where f (t )=x and g (t )= yor

x(t) = f(t) and y(t) = g(t)

Simplified:

A=∫α

β

y (t ) dx (t )dt

dt

Proof:

∫a

b

f ( x )dx

y = f(x) = g(t)

dx=df ( t )dt

dt=f ’ (t )dt

A=∬D

|∂r∂u × ∂r∂ v|dudv NA

Lateral Surface

Area

Cylinder: S = 2 rhπCone: S = rlπ

S=2π∫a

b

f ( x ) √1+[ f ' ( x )]2dx

For rotation about the x-axis:S=∫ 2πy ds

For rotation about the y-axis:S=∫ 2πx ds

ds=√r2+( drdθ )2

r=f (θ ) , α ≤ θ≤β

Sphere: S = 4πr²

For rotation about the x-axis:S=∫ 2πy ds

For rotation about the y-axis:S=∫2πx ds

ds=√( dxdt )2

+( dydt )2

dt

if x=f (t ) , y=g (t ) , α ≤ t ≤ β

Total Surface

Area

Cube: S = 6s²Rectangular Box: S = 2lw + 2wh +

2hlRegular Tetrahedron: S = 2bh

Cylinder: S = 2πr (r + h)Cone: S = πr² + πrl = πr (r + l)

Sphere: S = 4πr²

Ellipsoid: S ≈

4 π ( apbp+a pc p+b p cp

3 )1p

Where p ≈1.6075 ,|E|≤1.061%(Knud Thomsen’s Formula)

Ellipsoid: S =

where

Surface of Revolution

For revolution about the x-axis:

A=2π∫a

b

f (x)√1+( dydx )2

dx

For revolution about the y-axis:

A=2π∫a

b

x√1+( dxdy )2

dy

For revolution about the x-axis:

A=2π∫α

β

r cosθ√r2+( drdθ )2

d θ

For revolution about the y-axis:

A=2π∫α

β

r sin θ√r2+( drdθ )2

Sphere: S = 4πr²

For revolution about the x-axis:

Ax=2π∫a

b

y ( t ) √( dxdt )2

+( dydt )2

dt

For revolution about the y-axis:

A y=2π∫a

b

x (t ) √( dxdt )2

+( dydt )2

dt

NA NA

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 10

Page 11: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Volume

Cube: V = s³Rectangular Prism: V = lwh

Cylinder: V = πr²hTriangular Prism: V= Bh

Tetrahedron: V= ⅓ bhPyramid: V = ⅓ Bh

Sphere: V= 43π r3

Ellipsoid: V = 43πabc

Cone: V = ⅓ bh = ⅓ πr²h

∫∫∫ f (x , y , z )dx dydz

∫∫∫ f (r cosθ , rsin θ , z ) rdz dr dθ

∫∫∫ f (ρ sinφ cosθ ,ρsinφ sin θ ,ρcos φ )

…ρ2 sinφdρ dφdθ

Ellipsoid:

V= 43π √det ( A−1 )

Volume of Revolution

Disc Method - Rotation about the x-axis:

V=∫a

b

π [ f ( x ) ]2dx

Washer Method - Rotation about the x-axis:

V=∫a

b

π ¿¿¿

Cylinder Method - Rotation about the y-axis:

V=∫a

b

2 πx f (x ) dx

¿∫a

b

(circumference) (hight )dx

Disc Method:Cylindrical Shell Method:

Moments of Inertia

I=∑i=1

N

mi r i2=∫

0

a

mr2dr NA NA I=∭V

ρ (r )d (r )2dV (r) (see Wikipedia)

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 11

Page 12: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Center of Mass

R= 1M ∑

i=1

N

mi ri

where M=∑i=1

N

mi

1-D for Discrete:

xcm=m1 x1+m2 x2m1+m2

2-D for Discrete:

M y=∑i=1

N

mi xi

M x=∑i=1

N

mi y i

x=M y

M, y=

M x

M

3-D for Discrete:

xcm=x= 1M ∑

i=1

N

mi x i

ycm= y= 1M ∑

i=1

N

mi yi

zcm=z= 1M ∑

i=1

N

mi zi

3-D for Continuous:

x= 1M∫

0

M

xdm

y= 1M∫

0

M

y dm

z= 1M∫

0

M

zdm

where M=∫0

M

dm

and dm=ρdz dy dx

R= 1M∫r dm

R= 1M∭

Vρ (r ) r dV

Where r is distance from the axis of

rotation, not origin.

Gradient ∇ƒ= ∂ f∂ x

i+ ∂ f∂ y

j+ ∂ f∂ z

k ∇ƒ (ρ ,ϕ , z )= ∂ f∂ ρ

eρ+1ρ∂ f∂ϕ

eϕ+∂ f∂ z

ez

∇ƒ (r , θ ,ϕ )=¿

∂ f∂ r

er+1r∂ f∂θ

eθ+1

r sinθ∂ f∂ϕ

(∇ƒ (x ) ) • v=Dv f (x)

∇ƒ=∂ f i

∂ x je i e j

where ƒ=(ƒ1 , ƒ2 , ƒ3)

Line Integral ∫

Cf ds=∫

a

b

f (r ( t ) )|r ' (t)|dt NA NA ∫CF (r )• dr=∫

a

b

F (r ( t ) ) •r ' (t )dt

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 12

Page 13: › ... › Harolds_Calculus_3_Cheat_Shee… · Web viewAuthor Harold Toomey Created Date 10/15/2017 21:13:00 Last modified by Harold Toomey Company McAfee

Rectangular Polar/Cylindrical Spherical Parametric Vector Matrix

Surface Integral

∫Sf dS=¿

∬Tf ( x (s ,t ) )|∂x∂ s × ∂ x

∂ t |ds dtwhere

x (s , t )=¿(x (s ,t ) , y (s , t ) , z ( s , t ) )

and

( ∂ x∂ s × ∂x∂ t )=¿

( ∂( y , z)∂(s ,t ), ∂(z , x )∂(s , t)

, ∂(x , y )∂(s , t) )

NA NA

∫Sv • d S=¿

∫S

( v • n )d S=¿

∬Tv (x ( s , t ) )•( ∂ x∂ s × ∂x

∂ t )ds dt

Copyright © 2011-2017 by Harold Toomey, WyzAnt Tutor 13


Recommended