+ All Categories
Home > Documents > A Data Intensive Approach to Mechanistic Elucidation ... · A Data Intensive Approach to...

A Data Intensive Approach to Mechanistic Elucidation ... · A Data Intensive Approach to...

Date post: 11-Apr-2018
Category:
Upload: buikien
View: 225 times
Download: 0 times
Share this document with a friend
1
A Data Intensive Approach to Mechanistic Elucidation Applied to Chiral Anion Catalysis Andrew J. Neel †,* , Anat Milo ‡,* , Matthew S. Sigman , F. Dean Toste Department of Chemistry, University of California, Berkeley, CA 94720 Department of Chemistry, University of Utah, Salt Lake City, UT 84112 Summary: An understanding of the catalyst-substrate interactions that underlie selectivity (e.g. enantio-, diasterio-, or regioselectivity) in a given reaction is essential for the rational design of superior catalytic systems. Frequently however, it is difficult to discern how molecular features work in concert to achieve a desired outcome. We reasoned that in such instances, the outcome of every catalyst-substrate combination contains valuable information regarding their transition state interaction. Herein we describe a methodology for extracting this information in a meaningful way. This technique involves correlating various molecular descriptors with experimental enantioselectivity outcomes using linear regression techniques, and subsequently using the resulting predictive models to develop a mechanistic proposal that can be evaluated experimentally. Two case studies are presented from the field of chiral anion catalysis in which catalyst-substrate association is particularly challenging to discern. In each case, this data-intensive approach has yielded non-intuitive insights that have led to a deeper mechanistic understanding, enabling in one instance the rational design of a catalyst that displays the highest enantioselectivity observed for its system. Asymmetric Fluorination (cont’d) 2. Asymmetric Fluorination Acknowledgements 1. Asymmetric CDC Design/prepare library Collect descriptors Obtain experimental data Develop hypothesis Experimentally validate N N N R R Big Small Electron Rich Electron Poor N N N Geometry IR Vibrations N N O R R ee 1 = XX ee n = YY P O O O O N R ? ? O O N N N N N N P O OH tailored catalysts B 1 : σ : Hammett Charge 1. 2. 3. 5. 6. Identify correlations -0.5 0 0.5 1 1.5 2 -0.5 0 0.5 1 1.5 2 Measured DDG HkcalêmolL Predicted DDG HkcalêmolL 4. Background - 0.5 0 0.5 1 1.5 2 - 0.5 0 0.5 1 1.5 2 Measured DDG Hkcal ê mol L Predicted DDG Hkcal ê mol L 3 6 4 5 8 7 2 1 y = 0.92x + 0.07 R 2 = 0.91 9 10 11 N N N Br i Pr i Pr N N N single i Pr group = torsion w/o clash displays torsion angle close to 90 o Data-Intensive Approach: Outline Ee determined for every catalyst-substrate combination (132 total) Ee of each substrate with all catalysts modeled using only catalyst descriptors 4 and vice versa (23 small models total) Enantioselectivity trends not intuitive, even small modification to substrates or catalysts drastically affects enantioselectivity Hypothesis : Every data point is meaningful: even low selectivity values contain valuable information regarding substrate-catalyst interaction in the transition state Goal : Develop method to extract this information Multiple models explored N O H N 2-OMe H 2-Me H 2-Br H 2- i Pr H 2-OMe Br 2-OMe i Pr 2-OMe Ph 85 (85) 88 (90) 95 (93) 93 (94) 93 (92) 93 (90) 91 (92) 92 (89) substrate % ee R 2 R 1 4-Me 78 (77) 4-OMe 78 (75) 4-NO 2 87 (79) H H H 1 2 3 4 5 6 7 8 entry 9 10 11 R 1 R 2 H H N N N i Pr i Pr Br N N N i Pr References 1. Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518. 2. Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681. 3. Neel, A. J.; Hehn, J. P.; Tripet, P. F.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14044. 4. Milo, A.; Bess, E. N.; Sigman, M. S. Nature, 2014, 507, 210. 5. Neel, A. J.; Milo, A.; Toste, F. D.; Sigman, M. S. Science 2015, 347, 737. 6. Zi, W.; Wang, Y-M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 12864. 7. Martínez-Aguirre, M. A.; Yatsimirsky, A. K. J. Org. Chem. 2015, 80, 4985. In 2014, Toste and coworkers disclosed a method for the enantioselective fluorination of allylic alcohols via chiral anion phase-transfer catalysis, using aryl boronic acids (BA) as transient directing groups (e.g. B). 6 Preliminary survey reveals ability to tune ee over 2.5 kcal/mol range (–78 - 65 % ee) by changing only BA Library of PAs and BAs prepared to cover large structural space then ee’s obtained for each combination Degree of asymmetric induction heavily dependent on BA and PA structure- better understanding of their interaction may facilitate improvement of scope. Dataset trends and model complexity suggest that different mechanisms may be operative depending on PA/BA structure. Catalyst-dependent nonlinear effect supports this notion. Catalyst speciation affected by PA/BA structure. Given propensity of phosphate anion to form –ate complex with boronic acids 7 , a plausible scenario may involve this species. B O O Ph OH P O O O * B O Ph P O O O * O O H R R N N Cl F X N N Cl F X -ate complex H-bonded complex Current efforts focused on modeling subsets of the data to identify structural features controlling selectivity within a given regime. M + chiral anion + X insoluble cationic reagent + soluble chiral ion pair enantioenriched product prochiral substrate + The Toste group has a long standing interest in the use of chiral anions for asymmetric catalysis. 1 Recently, this strategy has been applied in the realm of phase transfer catalysis. 2 In 2013, Toste and coworkers reported an enantioselective oxidative coupling reaction enabled by a novel class of triazolyl phosphoric acids (PAs, e.g. 3a). 3 N H N O R 1 N N N R R 1 R 2 R H H (4a) 4-Me 4-OMe 4-NO 2 2-OMe 2-Br 2- i Pr 2-Me 2-OMe 2-OMe 2-OMe 2,6-(OMe) 2 H (4b) H (4c) H (4d) H (4e) H (4f) H (4g) H (4h) H (4l) Ph (4i) Br (4j) i Pr (4k) CH(Ph) 2 (3b) 2,4,6-(Me) 3 Ph (3c) 2,4,6-( i Pr) 3 Ph (3d) 2,4,6-(Cy) 3 Ph (3e) 1-adamantyl (3a) Ph (3f) 4-OMe-Ph (3g) 4-(NEt 2 )-Ph (3h) 4-(SO 2 Me)-Ph (3i) 2,6-(OMe) 2 -Ph (3j) 2,6-(F) 2 -Ph (3k) R 2 Conclusion : Succeeded in rationally modifying noncovalent interactions to improve an enantioselective reaction 5 3,5-(OMe) 2 3,5-Me 2 3,5-(CF 3 ) 2 3- OMe 3- Me 3- CF 3 X X XX X 2,6-(CF 3 ) 2 2- OMe 2,6-Me 2 2-CF 3 2- Me 4- t Bu 4-NO 2 4-Ph 4- OMe 4-CF 3 4-Me 4- Bn 4- i Bu B(OH) 2 R 4-R' 2-R 3-R -1.3 (-80) 1.0 (70) kcal/mol (% ee) Ph OH F (S) (R) Ph Me OH (S)-TRIP ( 10 mol %) Selectfluor (1.3 eq.) Na 2 HPO 4 (4.0 eq.) boronic acid (1.0 eq.) MS 4A toluene (0.1 M) rt, 16 h, 500 rpm Ph OH F (S)-6 5 O O P O OH R R B HO OH R (7b) 2,4,6-(Me) 3 (7c) 2- i Pr (7d) H (7e) 2,6-( i Pr) 2 (7f) 4- i Pr (7g) 3,5-(Me) 2 (7h) 3,5- (CF 3 ) 2 R = 4-Me = 4-NO 2 = 2-Me = 2-OMe = 3,5-(OMe) 2 = 3,5-(Me) 2 = 3,5-(CF 3 ) 2 B OH HO B OH HO B OH HO B OH HO Me Me NO 2 MeO 7a 7b 7c 7d 7e 7f 7g 7h 66 91 29 47 -15 -8 72 11 24 55 70 33 19 -2 0 -8 -61 7 28 2 4 -15 -6 -57 -48 41 -2 8 B OH HO MeO OMe B OH HO Me Me -77 20 23 22 12 21 -23 -31 63 37 42 34 31 -16 36 38 18 13 -12 10 cat R = (7a) 2,4,6-( i Pr) 3 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 90 100 Product Ee (%) Catalyst Ee (%) (S)444iPr O O P O OH i Pr i Pr Ph OH F + o-tolylboronic acid 7f (S)-6 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 80 90 100 Product Ee (%) Catalyst Ee (%) (S)4TRIP Ph OH F O O P O OH i Pr i Pr i Pr i Pr i Pr i Pr + p-tolylboronic acid 7a (R)-6 Specific goals: accurately predict new PA/BA outcomes via understanding of underlying mechanism. Ph HO B OR HO B O O B HO OH Me Me (R)-Na-7f (1 equiv) (1.3 equiv) Ph OH P O O O * benzene-d 6 11 B NMR: δ = 28.7 ppm 11 B NMR: δ = 1.45 ppm 11 B NMR: δ = 30.4 ppm The authors acknowledge the University of California and the Lawrence Berkeley National Laboratory for funding. A.J.N. gratefully acknowledges an Amgen Fellowship in Organic Chemistry for funding and an ACS DOC grant for assistance with travel costs. A.M. would like to acknowledge the Center for High Performance Computing at the University of Utah. 18 examples up to 94 % ee up to 93% yield N H N O R 1 N N O R 1 triazole PA (5 mol%) N O AcHN BF 4 Na 3 PO 4 (2.4 equiv.) p-xylene, rt, 24 h R 2 R 2 N H N O R 1 R O P O O O * via chiral ion pair catalyst conversion (%) ee (%) 1 3a 86 91 8 -84 R 2 R 2 R 2 X N Y pyr-3a imid-3a 88 -41 93 -45 entry 1 3 4 5 Ar = O O Ar Ar C 8 H 17 C 8 H 17 pyr-3a: X=CH, Y=N imid-3a: X=N, Y=CH 3a: X=N, Y=N 1: R 2 = i Pr 2 95 16 2 2: R 2 = Cy PO 2 H R 1 = Bn R 2 = H A OMe 74 82 38 77 43 84 77 75 NO 2 Me 69 80 49 78 MeO 41 70 82 70 N N N N N N Cy Cy Cy N N N N N N CHPh2 2,4,6- MePh 2,4,6- iPrPh 2,4,6- CyPh 1- Ad Ph 4- OMe - Ph 2,6- OMe - Ph 4- H NEt2L Ph 2,6- F - Ph 4- SO2Me- Ph 0.5 1 1.5 2 0.5 1 1.5 2 Measured DDG Hkcal ê mol L Predicted DDG Hkcal ê mol L 2-Me-Bn * * * * * * * * * N N O Me cat 3h 3g 3f ee 1 3i 62 33 3a 3b 91 63 57 23 R 2 = 0.95 y = 0.95x + 0.05 3j 3k 53 63 Torsion Angle = –0.14 - 0.18νN=N + 1.39 νRingD + 0.33 νN=N:νRingD R 2 = 0.91 ΔΔG = 1.06 + 0.36 νN=N - 0.42tor R 2 = 0.96 ΔΔG = 1.18 + 0.67 νN=N – 0.61 νRingD – 0.18 νRingD:νN=N * * * * * * N N N νN=N νRing Deformation R torsion angle 4f 3d 3e 3c 88 93 92 * * * Ph Me OH (S)-AdDIP ( 10 mol %) Selectfluor (1.3 eq.) Na 2 HPO 4 (4.0 eq.) p-tolylboronic acid (1.0 eq.) MgSO 4 p-xylene/ethylcyclohexane (1:1) rt, 16 h Ph O B Ar O [F] H P O O O O * H n Ph OH n F 6, n =1, 72 % yield, 93 % ee n = 2, 48 % yield, 0 % ee 5, n =1 B n =2 up to 86 % yield up to 94 % ee O O P O OH Ad Ad i Pr i Pr i Pr i Pr (S)-AdDIP 15 examples B(OH) 2 B(OH) 2 B(OH) 2 B(OH) 2 F F F F F Me Me t-Bu B(OH) 2 Me with (S)-TRIP 35 0 –30 25 50 ee of (S)-6 4-Me 4-NO 2 2-Me 2-OMe –tor (cat) –B 1 (cat) B 5 (BA) 2,4,6 -Me (7b) 2,4,6- i Pr (7a) AdDIP 2- i Pr (7c) H (7d) 4- i Pr (7f) 2-BA with 2,4,6-cat
Transcript

A Data Intensive Approach to Mechanistic Elucidation Applied to Chiral Anion Catalysis

Andrew J. Neel†,*, Anat Milo‡,*, Matthew S. Sigman‡, F. Dean Toste† †Department of Chemistry, University of California, Berkeley, CA 94720 ‡Department of Chemistry, University of Utah, Salt Lake City, UT 84112

Summary: An understanding of the catalyst-substrate interactions that underlie selectivity (e.g. enantio-, diasterio-, or regioselectivity) in a

given reaction is essential for the rational design of superior catalytic systems. Frequently however, it is difficult to discern how molecular features work in concert to achieve a desired outcome. We reasoned that in such instances, the outcome of every catalyst-substrate combination contains valuable information regarding their transition state interaction. Herein we describe a methodology for extracting this information in a meaningful way. This technique involves correlating various molecular descriptors with experimental enantioselectivity outcomes using linear regression techniques, and subsequently using the resulting predictive models to develop a mechanistic proposal that can be evaluated experimentally. Two case studies are presented from the field of chiral anion catalysis in which catalyst-substrate association is particularly challenging to discern. In each case, this data-intensive approach has yielded non-intuitive insights that have led to a deeper mechanistic understanding, enabling in one instance the rational design of a catalyst that displays the highest enantioselectivity observed for its system.

Asymmetric Fluorination (cont’d)

2. Asymmetric Fluorination

Acknowledgements

1. Asymmetric CDC

Design/prepare library Collect descriptors

Obtain experimental data

Develop hypothesis Experimentally validate

NNN

R

R

Big Small

ElectronRich

ElectronPoor

N NN

GeometryIR Vibrations

N

N

O

R

R

ee1 = XX

een = YY

P

O

O

OO

N R

??

OO

NNN

N NN

P OOH

tailored catalysts

B1:

σ :

HammettCharge

1. 2.

3.

5. 6.

Identify correlations

-0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

Measured DDG‡ HkcalêmolL

PredictedDDG‡Hkca

lêmolL

4.

Background

-0.5 0 0.5 1 1.5 2

-0.5

0

0.5

1

1.5

2

Measured DDG‡ HkcalêmolL

PredictedDDG‡Hkca

lêmolL 3

6

4

5

8

72

1

y = 0.92x + 0.07R2 = 0.91

9

10

11

N NN Br

iPr

iPr

N NNsingle iPr group= torsion w/o clash

displays torsion angleclose to 90 o

Data-Intensive Approach: Outline

Ø  Ee determined for every catalyst-substrate combination (132 total)

Ø  Ee of each substrate with all catalysts modeled using only catalyst descriptors4 and vice versa (23 small models total)

Ø  Enantioselectivity trends not intuitive, even small modification to substrates or catalysts drastically affects enantioselectivity

Ø  Hypothesis: Every data point is meaningful: even low selectivity values contain valuable information regarding substrate-catalyst interaction in the transition state

Ø  Goal: Develop method to extract this information

Ø  Multiple models explored

N

O

HN

2-OMe H2-Me H2-Br H2- iPr H2-OMe Br2-OMe iPr2-OMe Ph

85 (85)88 (90)95 (93)93 (94)93 (92)93 (90)91 (92)92 (89)

substrate % ee

R2

R1

4-Me 78 (77)4-OMe 78 (75)4-NO2 87 (79)

HHH

12345678

entry

91011

R1 R2

H H

NNN

iPr

iPrBr

NNN

iPr

References 1.  Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518.

2.  Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D. Science 2011, 334, 1681.

3.  Neel, A. J.; Hehn, J. P.; Tripet, P. F.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 14044.

4.  Milo, A.; Bess, E. N.; Sigman, M. S. Nature, 2014, 507, 210. 5.  Neel, A. J.; Milo, A.; Toste, F. D.; Sigman, M. S. Science 2015,

347, 737. 6.  Zi, W.; Wang, Y-M.; Toste, F. D. J. Am. Chem. Soc. 2014, 136,

12864. 7.  Martínez-Aguirre, M. A.; Yatsimirsky, A. K. J. Org. Chem.

2015, 80, 4985.

Ø  In 2014, Toste and coworkers disclosed a method for the enantioselective fluorination of allylic alcohols via chiral anion phase-transfer catalysis, using aryl boronic acids (BA) as transient directing groups (e.g. B).6

Ø  Preliminary survey reveals ability to tune ee over 2.5 kcal/mol range (–78 - 65 % ee) by changing only BA

Ø  Library of PAs and BAs prepared to cover large structural space then ee’s obtained for each combination

Ø  Degree of asymmetric induction heavily dependent on BA and PA structure- better understanding of their interaction may facilitate improvement of scope.

Ø  Dataset trends and model complexity suggest that different mechanisms may be operative depending on PA/BA structure.

Ø  Catalyst-dependent nonlinear effect supports this notion.

Ø  Catalyst speciation affected by PA/BA structure. Given propensity of phosphate anion to form –ate complex with boronic acids7, a plausible scenario may involve this species.

B OO

Ph

OHPO

OO*

B O

PhPOO

O*O

OH

R

RNN

Cl

FX

NN

Cl

FX

-ate complexH-bonded complex

Ø  Current efforts focused on modeling subsets of the data to identify structural features controlling selectivity within a given regime.

M+ –chiral anion

+ X–insoluble cationic

reagent

–+soluble chiral

ion pair

enantioenriched product

prochiralsubstrate+

Ø  The Toste group has a long standing interest in the use of chiral anions for asymmetric catalysis.1 Recently, this strategy has been applied in the realm of phase transfer catalysis.2

Ø  In 2013, Toste and coworkers reported an enantioselective oxidative coupling reaction enabled by a novel class of triazolyl phosphoric acids (PAs, e.g. 3a).3

NHN

OR1

NNN

R

R1 R2RH H (4a)4-Me4-OMe4-NO22-OMe

2-Br2-iPr

2-Me

2-OMe2-OMe2-OMe2,6-(OMe)2

H (4b)H (4c)H (4d)H (4e)H (4f)H (4g)H (4h)

H (4l)

Ph (4i)Br (4j)iPr (4k)

CH(Ph)2 (3b)2,4,6-(Me)3Ph (3c)2,4,6-(iPr)3Ph (3d)2,4,6-(Cy)3Ph (3e)

1-adamantyl (3a)

Ph (3f)4-OMe-Ph (3g)4-(NEt2)-Ph (3h)4-(SO2Me)-Ph (3i)2,6-(OMe)2-Ph (3j)2,6-(F)2-Ph (3k)

R2

Ø  Conclusion: Succeeded in rationally modifying noncovalent interactions to improve an enantioselective reaction5

3,5-(OM

e)2

3,5-Me

2

3,5-(CF3 )2

3- OM

e

3- Me

3- CF3

XX X X X2,6-(CF3 )2

2- OM

e

2,6-Me

2

2-CF3

2- Me

4- tBu4-NO

2 4-Ph

4- OM

e

4-CF3

4-Me

4- Bn4- iBu

B(OH)2

R

4-R'2-R3-R

-1.3 (-80)

1.0 (70)

kcal/mol (% ee)

Ph OHF (S)(R)

Ph

Me

OH

(S)-TRIP ( 10 mol %)Selectfluor (1.3 eq.)Na2HPO4 (4.0 eq.)

boronic acid (1.0 eq.) MS 4Atoluene (0.1 M)rt, 16 h, 500 rpm

Ph OHF

(S)-65

OO

POOH

R

R

BHO OH

R

(7b) 2,4,6-(Me)3(7c) 2-iPr(7d) H(7e) 2,6-(iPr)2(7f) 4-iPr(7g) 3,5-(Me)2(7h) 3,5- (CF3)2

R = 4-Me= 4-NO2= 2-Me= 2-OMe= 3,5-(OMe)2= 3,5-(Me)2= 3,5-(CF3)2

B OHHOB OHHOB OHHO

B OHHO

Me

Me

NO2

MeO

7a7b7c7d7e7f7g7h

6691

29

47

-15-8

721124

55703319

-20

-8 -61

72824

-15-6

-57 -48

41

-28

B OHHO

MeO OMe

B OHHO

Me Me

-7720

2322

1221

-23

-31633742

3431

-1636 38 18 13 -12 10

cat

R =(7a) 2,4,6-(iPr)3

0"

10"

20"

30"

40"

50"

60"

70"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100"

Prod

uct(E

e((%

)(

Catalyst(Ee((%)(

(S)444iPr(

OO

POOH

iPr

iPr

Ph OHF

+ o-tolylboronic acid

7f

(S)-6

0"

10"

20"

30"

40"

50"

60"

70"

0" 10" 20" 30" 40" 50" 60" 70" 80" 90" 100"

Prod

uct(E

e((%

)(

Catalyst(Ee((%)(

(S)4TRIP(

Ph OHF

OO

POOH

iPr

iPr

iPr

iPr

iPr

iPr

+ p-tolylboronic acid

7a

(R)-6

Ø  Specific goals: accurately predict new PA/BA outcomes via understanding of underlying mechanism.

PhHO

B ORHO B OOBHO OH

Me Me

(R)-Na-7f(1 equiv)

(1.3 equiv)Ph

OHP

OOO*

benzene-d6

11B NMR: δ = 28.7 ppm

11B NMR: δ = 1.45 ppm

11B NMR: δ = 30.4 ppm

The authors acknowledge the University of California and the Lawrence Berkeley National Laboratory for funding. A.J.N. gratefully acknowledges an Amgen Fellowship in Organic Chemistry for funding and an ACS DOC grant for assistance with travel costs. A.M. would like to acknowledge the Center for High Performance Computing at the University of Utah.

18 examples

up to 94 % eeup to 93% yieldN

HN

OR1

N

N

OR1

triazole PA (5 mol%)

N OAcHN BF4

Na3PO4 (2.4 equiv.)p-xylene, rt, 24 h

R2 R2

NHN

OR1 R

OP

O OO *

via chiral ion pair

catalyst conversion (%) ee (%)1

3a

86

91

8

-84

R2

R2

R2

X NY

pyr-3aimid-3a

88 -4193 -45

entry1

345

Ar =

OO

Ar

Ar

C8H17

C8H17

pyr-3a: X=CH, Y=Nimid-3a: X=N, Y=CH

3a: X=N, Y=N

1: R2 = iPr

2 95 162

2: R2 = Cy

PO2H

R1 = Bn R2 = H

A

OMe

74

82

38

77

43

84

77

75

NO2Me

69

80

49

78

MeO

41

70

82

70

N NN

N NN

Cy

Cy

Cy

N NN

N NN

‡‡

CHPh2

2,4,6-MePh

2,4,6-iPrPh2,4,6-CyPh

1-Ad

Ph4-OMe-Ph

2,6-OMe-Ph

4-HNEt2LPh2,6-F-Ph

4-SO2Me-Ph

0.5 1 1.5 2

0.5

1

1.5

2

Measured DDG‡ HkcalêmolL

PredictedDDG‡Hkca

lêmolL

2-Me-Bn

*"*"*"

*"*"*"*"*"*" N

N

OMe

cat

3h3g3f

ee1

3i

62

33

3a3b

9163

57

23

R2 = 0.95y = 0.95x + 0.05

3j3k 53

63

Torsion Angle = –0.14 - 0.18νN=N + 1.39 νRingD + 0.33 νN=N:νRingD

R2 = 0.91

ΔΔG = 1.06 + 0.36 νN=N - 0.42tor R2 = 0.96

ΔΔG = 1.18 + 0.67 νN=N – 0.61 νRingD – 0.18 νRingD:νN=N

*****

*

NN

N

νN=N

νRing Deformation

R

torsion angle

4f

3d3e

3c 889392

***

Ph

Me

OH

(S)-AdDIP ( 10 mol %)Selectfluor (1.3 eq.)Na2HPO4 (4.0 eq.)

p-tolylboronic acid (1.0 eq.) MgSO4p-xylene/ethylcyclohexane (1:1)

rt, 16 h

Ph O B Ar

O[F]H

PO

O OO

*

H

n Ph OHnF

6, n =1, 72 % yield, 93 % ee n = 2, 48 % yield, 0 % ee

5, n =1

B

n =2

up to 86 % yieldup to 94 % ee

OO

POOH

Ad

Ad

iPr

iPr

iPr

iPr

(S)-AdDIP

15 examples

B(OH)2B(OH)2 B(OH)2B(OH)2

F

FF

F

F

Me Met-Bu

B(OH)2

Me

with (S)-TRIP

35 0 –30 25 50ee of (S)-6

4-Me4-NO22-Me2-OMe

–tor (cat)–B1(cat)

B5 (BA) 2,4,6-Me(7b)

2,4,6-iPr(7a)

AdDIP 2-iPr(7c)

H (7d) 4-iPr

(7f)

2-BA with 2,4,6-cat

Recommended