+ All Categories
Home > Documents > A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the...

A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the...

Date post: 18-Sep-2019
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
16
A microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health applications 2018
Transcript
Page 1: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

A microfluidic strategy for the separation of

enantiomers

Adeline Perro

1

Microfluidics for synthetic biology and health applications 2018

Page 2: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

• Enantiomeric compounds: same molecular formula and bond sequence so-called “mirror images”

• Two enantiomers exhibit different biological activity in human body

• Chiral synthesis

- Enantioselective catalyst

- Biocatalyst

• Chiral separation

- High performance liquid chromatography (HPLC)

- Gas chromatography (CE)

- Capillary electrophoresis

D. Gheorghe, A. Neacşu, I. Contineanu, S. Tănăsescu and Ş. Perişanu, Journal of Thermal Analysis and Calorimetry, 2017, 130, 1145-1152.M. Jafari, J. Tashkhourian and G. Absalan, Talanta,, 2018, 178, 870-878.J. Xu, Q. Wang, C. Xuan, Q. Xia, X. Lin and Y. Fu, Electroanalysis, 2016, 28, 868-873.

Chirality

2

Page 3: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

Enantioselective recognition at mesoporous chiral surfaces

C. Wattanakit, Y. B. Come, V. Lapeyre, P. A. Bopp, M. Heim, S. Yadnum, S. Nokbin, C. Warakulwit, J. Limtrakul and A. Kuhn, Nat Commun, 2014, 5, 3325.

Surfactant

Template molecule

C. Wattanakit, T. Yutthalekha, S. Asssavapanumat, V. Lapeyre and A. Kuhn, Nat Commun, 2017, 8, 2087.

3

Page 4: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

4

Enantioselective recognition at mesoporous chiral surfaces

Flat Pt L-Dopa imprinted Pt

D-Dopa imprinted Pt After destroyed chiral structure

Different pulse voltammetry of encoded electrodes in various solutions

Page 5: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

General concept

Tryptophan (Trp)

L-Trp D-Trp

• Essential amino acid• Protein synthesis in human body• Precursor of neurotransmitter serotonin

• Important Intermediate in the synthesis of peptide antibiotics

5

Build a microfluidic device in order to separate the enantiomers

Page 6: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

6

Hyphenated microfluidic electrochromatography device with a L-Trp-encoded mesoporous platinum film as stationary phase.

Microfluidic device

S. Assavapanumat et al. Angew Chem Int Ed Engl. 2019 doi: 10.1002/anie.201812057

Page 7: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

7

Chiral surface characterization

Glass

Mesoporous Pt

5 µm

10 µm50 nm

Page 8: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

Different pulse voltammetry of encoded electrodes in various solutionsFlat Pt L-Trp imprinted Pt

D-Trp imprinted Pt After destroyed chiral structure

8

Chiral surface characterization

Page 9: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

9

Microfluidic device

Page 10: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

10

No applied potential

D-Trp L-Trp

Racemic tryptophan discrimination

Page 11: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

Racemic tryptophan discrimination with various potential applied

D-Trp L-Trp

200 mV vs Ag/AgCl100 mV vs Ag/AgCl

11

Page 12: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

12

L-Tryptophan

D-Tryptophan

S-naproxen

R-naproxen

Racemic discrimination of other chiral molecules

Page 13: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

Racemic naproxen discrimination with various potential applied

S-naproxen R-naproxen

200 mV vs Ag/AgCl 300 mV vs Ag/AgCl

7

13

Page 14: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

Conclusion

• Tryptophan imprinted mesoporous platinum • In situ fluorescence characterization

Electroseparation of a racemic solution of tryptophan and naproxen

14

Microfluidic device:

Page 15: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

15

Sunpet Assavapanumat

Thittaya Yutthalekha

Neso Sojic

Nanosystèmes Analytiques (NSysA)École nationale supérieure de chimie et de physique (ENSCBP)

Université de Bordeaux, France

Advanced magic porous material (AMPM)Vidyasirimedhi Institute of Science and technology (VISTEC)

Thailand

Chularat Wattanakit

Alexander Kuhn

Page 16: A microfluidic strategy for the separation of enantiomers fileA microfluidic strategy for the separation of enantiomers Adeline Perro 1 Microfluidics for synthetic biology and health

A microfluidic strategy for the separation of

enantiomers

Adeline Perro

16

Microfluidics for synthetic biology and health applications 2018


Recommended